
Hans Hagen NAJAAR 2015 101

Lua in MetaPost

Introduction
For some years I have been wondering if we could
escape to Lua inside MetaPost, or, in practice, to
mplib in LuaTEX. The idea is simple: embed Lua code
in a MetaPost file that gets run as soon as it’s seen.
In case you wonder why Lua code makes sense,
imagine generating graphics using external data.The
capabilities of Lua to deal with that is more flexible
and advanced than in MetaPost. Of course we could
generate a MetaPost definition of a graphic from
data, but it often makes more sense to do the reverse.
I finally found time and a reason to look into this,
and in the following sections I will describe how
it’s done.

The basics
The approach is comparable to LuaTEX’s \directlua.
That primitive can be used to execute Lua code, and
in combination with tex.print we can pipe strings
back into the TEX input stream. There, there is a
complication in that we have to be able to oper-
ate under different so-called catcode regimes: the
meaning of characters can differ per regime. We also
have to deal with line endings in special ways as
they relate to paragraphs and such. MetaPost doesn’t
have that complication; being perfectly happy with
simple strings. For putting back input into MetaPost
a mechanism similar to scantokens can be used.That
way we can return anything (including nothing) as
long as MetaPost can interpret it and as long as it
fulfils the expectations.

numeric n ;
n := scantokens("123.456") ;

A script is run as follows:

numeric n ;
n := runscript("return '123.456'") ;

This primitive doesn’t have the word lua in its name
so, in principle, any wrapper around the library can
use it as a hook. In the case of LuaTEX the script
language is of course Lua. At the MetaPost end we
only expect a string. How that string is constructed
is completely up to the Lua script. In fact, the user

is completely free to implement the runner any way
she or he wants, like:

local function scriptrunner(code)
local f = loadstring(code)
if f then
return tostring(f())

else
return ""

end
end

This is hooked into an instance as follows:

local m = mplib.new {
...
run_script = scriptrunner,
...

}

Now, beware, this is not the ConTEXt way. We pro-
vide print functions and other helpers, which we will
explain in the next section.

Helpers
After I got this feature up and running I played a
bit with possible interfaces at the ConTEXt (read:
MetaFun) end and ended upwith a bitmore advanced
runner where no return value is used. The runner is
wrapped in the lua macro.

numeric n ;
n := lua("mp.print(12.34567)") ;
draw textext(n) xsized 4cm withcolor maincolor ;

This renders as:

12.34567
In case you wonder how efficient calling Lua is,

don’t worry; it’s fast enough, especially if you con-
sider suboptimal Lua code and the fact that we switch
between machineries.



102 MAPS 46 Hans Hagen

draw image (
lua("statistics.starttiming()") ;
for i=1 upto 5000 :
draw lua ("mp.pair
(math.random(-74,126),
math.random(-35,35))" ) ;

endfor ;
setbounds currentpicture to
fullsquare xyscaled (100,20) ;

lua("statistics.stoptiming()") ;
draw textext(lua
("mp.print(
statistics.elapsedtime())")

) ysized 40 ;
) withcolor maincolor
withpen pencircle scaled 1 ;

Here the part:

draw lua ("mp.pair
(math.random(-74,126),
math.random(-35,35))" ) ;

effectively becomes (for instance):

draw scantokens "(25,15)" ;

which in turn becomes:

draw scantokens (25,15) ;

The same happens with this:

draw textext (lua
("mp.print

(statistics.elapsedtime())"
) ) ...

This becomes for instance:

draw textext(scantokens "1.23") ...

and therefore:

draw textext(1.23) ...

We can use mp.print here because the textextmacro
can deal with numbers. The following also works:

draw textext(lua
("mp.quoted
(statistics.elapsedtime())"
)

) ...

Now we get (in MetaPost speak):

draw textext(scantokens
(ditto & "1.23" & ditto) ...

Here ditto represents the double quotes that mark a
string. Of course, because we pass the strings directly
to scantokens, there are no outer quotes at all, but
this is how it can be simulated. In the end we have:

draw textext("1.23") ...

The decision to use mp.print or mp.quoted depends
on what the expected return value is; an assignment
to a numeric can best be a number or an expression
resulting in a number.

This graphic becomes:

0.064
The runtime on my current machine is some 0.25

seconds without and 0.12 seconds with caching. But
to be honest, speed is not really a concern here as
the amount of complex MetaPost graphics can be
neglected compared to extensive node list manipu-
lation. With LuajitTEX generating the graphic takes
15% less time.1

The three print commands accumulate their argu-
ments:

numeric n ;
n := lua("mp.print(1) mp.print('+') mp.print(2)")
;
draw textext(n) xsized 1cm
withcolor maincolor ;

As expected we get:

3
Equally valid is:

1. Processing a small 8 page document like this takes about one second, which includes loading a bunch of fonts.



Lua in MetaPost NAJAAR 2015 103

numeric n ;
n := lua("mp.print(1,'+',2)") ;
draw textext(n) xsized 1cm

withcolor maincolor ;

This gives the same result:

3
Of course all kind of action can happen between

the prints. It is also legal to have nothing returned
as could be seen in the 10.000 dot example; there the
timer related code returns nothing, so effectively we
have scantokens(""). Another helper is mp.quoted,
as in:

draw textext
(lua
("mp.quoted
('@0.3f',
" & decimal n & "
)"

)
) withcolor maincolor ;

This typesets 3.000. Note the @. When no percent
character is found in the format specifier, we assume
that an @ is used instead.

But, the real benefit of embedded Lua is when we
deal with data that is stored at the Lua end. First we
define a small dataset:

\startluacode
table.save("demo-data.lua",
{
{ 1, 2 }, { 2, 4 }, { 3, 3 },
{ 4, 2 }, { 5, 2 }, { 6, 3 },
{ 7, 4 }, { 8, 1 },

}
)
\stopluacode

There are several ways to deal with this table. I will
show clumsy as well as better looking ways.

lua("MP = { }
MP.data = table.load('demo-data.lua')"
) ;
numeric n ;
lua("mp.print('n := ',\#MP.data)") ;
for i=1 upto n :
drawdot

lua("mp.pair
(MP.data[" & decimal i & "])"

) scaled cm
withpen pencircle scaled 2mm
withcolor maincolor ;

endfor ;

Here we load a Lua table and assign the size to
a MetaPost numeric. Next we loop over the table
entries and draw the coordinates.

We will stepwise improve this code. In the previ-
ous examples we omitted wrapper code but here we
show it:

\startluacode
MP.data = table.load('demo-data.lua')
function MP.n()
mp.print(#MP.data)

end
function MP.dot(i)
mp.pair(MP.data[i])

end
\stopluacode

\startMPcode
numeric n ;
n := lua("MP.n()") ;
for i=1 upto n :
drawdot
lua("MP.dot
(" & decimal i & ")"

) scaled cm
withpen pencircle scaled 2mm
withcolor maincolor ;

endfor ;
\stopMPcode

So, we create a few helpers in the MP table. This
table is predefined so, normally, you don’t need to
define it. You may, however, decide to wipe it clean.



104 MAPS 46 Hans Hagen

You can decide to hide the data:

\startluacode
local data = { }

function MP.load(name)
data = table.load(name)

end
function MP.n()
mp.print(#data)

end
function MP.dot(i)
mp.pair(data[i])

end
\stopluacode

It is possible to use less Lua, for instance in:

\startluacode
local data = { }
function MP.loaded(name)
data = table.load(name)
mp.print(#data)

end
function MP.dot(i)
mp.pair(data[i])

end
\stopluacode

\startMPcode
for i=1 upto
lua
("MP.loaded
('demo-data.lua')"

) :
drawdot
lua("MP.dot(",i,")") scaled cm
withpen pencircle scaled 4mm
withcolor maincolor ;

endfor ;
\stopMPcode

Here we also omit the decimal because the lua
macro is clever enough to recognize it as a number.

By using some MetaPost magic we can even go a
step further in readability:

\startMPcode{doublefun}
cmykcolor maincolor;
maincolor := (1,.15,0,0);
lua.MP.load("demo-data.lua") ;

for i=1 upto lua.MP.n() :
drawdot lua.MP.dot(i) scaled cm
withpen pencircle scaled 4mm
withcolor maincolor ;

endfor ;

for i=1 upto MP.n() :
drawdot MP.dot(i) scaled cm
withpen pencircle scaled 2mm
withcolor white ;

endfor ;
\stopMPcode

Here we demonstrate that it also works in double
mode; which makes sense when processing data
from other sources. Note how we omit the lua.
prefix: the MP macro will deal with that.

So in the end we can simplify the code that we
started with to:

\startMPcode{doublefun}
for i=1 upto
MP.loaded("demo-data.lua") :
drawdot
MP.dot(i) scaled cm



Lua in MetaPost NAJAAR 2015 105

withpen pencircle scaled 2mm
withcolor maincolor ;

endfor ;
\stopMPcode

Access to variables
The question with such mechanisms is always: how
far should we go. Although MetaPost is a macro
language, it has properties of procedural languages.
It also has more introspective features at the user
end. For instance, one can loop over the resulting
picture and manipulate it. This means that we don’t
need full access to MetaPost internals. However, it
makes sense to provide access to basic variables:
numeric, string and boolean.

draw textext(lua
("mp.quoted
('@0.15f',
mp.get.numeric('pi')-math.pi

)"
)

)
ysized .5cm
withcolor maincolor ;

In double mode you will get zero printed but in
scaled mode we definitely get a different result:

-0.000006349878856
In the next example we use mp.quoted to make

sure that we indeed pass a string. The textextmacro
can deal with numbers, but an unquoted yes or no is
asking for problems.

boolean b ;
b := true ;
draw textext(
lua
("mp.quoted(mp.get.boolean('b')
and 'yes' or 'no')"
)

)
ysized 1cm
withcolor maincolor ;

Especially when more text is involved, it makes
sense to predefine a helper in the MP namespace.
BecauseMetaPost, currently, doesn’t like newlines in
the middle of a string, a lua call has to be on one line.

yes
Here is an example where Lua does something

that would be close to impossible, especially if more
complex text is involved.

string s ;
s := "" ; % ""
draw textext
(lua
("mp.quoted
(characters.lower
(mp.get.string('s')
)

)"
)

)
ysized 1cm
withcolor maincolor ;

As you can see here, thewhole repertoire of helper
functions can be used in a MetaFun definition.

τεχ
The library
In ConTEXt we have a dedicated runner, but for the
record we mention the low level constructor:

local m = mplib.new {
...
script_runner = function(s) return
loadstring(s)() end,

script_error = function(s)
print(s) end,

...,
}

An instance (in this case m) has a few extra methods.
Instead you can use the helpers in the library.

m:get_numeric(name) returns a numeric (double)
m:get_boolean(name) returns a boolean (true or false)
m:get_string (name) returns a string

mplib.get_numeric(m,name) returns a numeric (double)
mplib.get_boolean(m,name) returns a boolean (true or false)
mplib.get_string (m,name) returns a string

In ConTEXt the instances are hidden and wrapped
in high level macros, so there you cannot use these



106 MAPS 46 Hans Hagen

commands.

ConTEXt helpers
The mp namespace provides the following helpers:

print(...) returns one or more values
pair(x,y) pair(t) returns a proper pair
triplet(x,y,z) triplet(t) returns an RGB color
quadruple(w,x,y,z) quadruple(t) returns an CMYK color
format(fmt,...) returns a formatted string
quoted(fmt,...) quoted(s) returns a (formatted) quoted

string
path(t[,connect][,close]) returns a connected (closed)

path

The mp.get namespace provides the following
helpers:

numeric(name) gets a numeric from MetaPost
boolean(name) gets a boolean from MetaPost
string(name) gets a string from MetaPost

Paths
In the meantime we got several questions on the
ConTEXt mailing list about turning coordinates into
paths. Now imagine that we have this dataset:

10 20 20 20 -- sample 1
30 40 40 60
50 10

10 10 20 30 % sample 2
30 50 40 50
50 20

10 20 20 10 # sample 3
30 40 40 20
50 10

In this case I have put the data in a buffer, so that
it can be shown here, as well as used in a demo.
Note how we can add comments. The following code
converts this into a table with three subtables.

\startluacode
MP.myset =
mp.dataset
(buffers.getcontent("dataset"))

\stopluacode

We use the MP (user) namespace to store the table.
Next we turn these subtables into paths:

\startMPcode

for i=1 upto
lua("mp.print(mp.n(MP.myset))") :

draw
lua("mp.path
(MP.myset[" & decimal i & "]
)"

)
xysized (HSize,10ExHeight)
withpen
pencircle scaled .25ExHeight

withcolor basiccolors[i]/2 ;
endfor ;

\stopMPcode

This gives:

Instead, we can fill the path; in which case we also
need to close it. The true argument deals with that:

\startMPcode
for i=1 upto
lua("mp.print(mp.n(MP.myset))") :

path p ; p :=
lua("mp.path
(MP.myset
[" & decimal i & "],
true

)"
)
xysized (HSize,10ExHeight) ;

fill p
withcolor basiccolors[i]/2
withtransparency (1,.5) ;

endfor ;
\stopMPcode

We get:

The following makes more sense:

\startMPcode
for i=1 upto
lua("mp.print



Lua in MetaPost NAJAAR 2015 107

(mp.n(MP.myset))"
) :

path p ;
p := lua("mp.path
(MP.myset[" & decimal i & "])"
)
xysized (HSize,10ExHeight) ;

p :=
(xpart llcorner boundingbox p,0)
-- p --
(xpart lrcorner boundingbox p,0)
-- cycle ;

fill p
withcolor basiccolors[i]/2
withtransparency (1,.25) ;

endfor ;
\stopMPcode

So this gives:

This (area) fill is so common, that we have a helper
for it:

\startMPcode
for i=1 upto
lua("mp.size(MP.myset)") :

fill area
lua("mp.path
(MP.myset[" & decimal i & "])"

)
xysized (HSize,5ExHeight)
withcolor basiccolors[i]/2
withtransparency (2,.25) ;

endfor ;
\stopMPcode

So this gives:

This snippet of MetaPost code still looks kind of
horrible, so how can we make it look better? Here is
an attempt. First we define a bit more Lua:

\startluacode
local data = mp.dataset

(buffers.getcontent("dataset"))

MP.dataset = {
Line = function(n) mp.path(data[n]) end,
Size = function() mp.size(data) end,

}
\stopluacode

We can now make the MetaPost look more nat-
ural. Of course, this is possible because in MetaFun
the lua macro does some extra work.

\startMPcode
for i=1 upto
lua.MP.dataset.Size() :

path p ;
p := lua.MP.dataset.Line(i)
xysized (HSize,20ExHeight) ;

draw
p
withpen
pencircle scaled .25ExHeight

withcolor basiccolors[i]/2 ;
drawpoints
p
withpen pencircle scaled ExHeight
withcolor .5white ;

endfor ;
\stopMPcode

As expected, we get the desired result:

Once we start making things look nicer and more
convenient to code, we quickly end up with helpers
like those in the next example. First we save some
demo data in files:

\startluacode
io.savedata("foo.tmp","10 20 20 20 30 40 40 60

50 10")
io.savedata("bar.tmp","10 10 20 30 30 50 40 50

50 20")
\stopluacode



108 MAPS 46 Hans Hagen

We load the data in datasets:

\startMPcode
lua.mp.datasets.load("foo","foo.tmp");
lua.mp.datasets.load("bar","bar.tmp");
fill area
lua.mp.datasets.foo.Line()
xysized (HSize/2-EmWidth,10ExHeight)
withpen
pencircle scaled .25ExHeight

withcolor green/2 ;
fill area
lua.mp.datasets.bar.Line()
xysized (HSize/2-EmWidth,10ExHeight)
shifted (HSize/2+EmWidth,0)
withpen
pencircle scaled .25ExHeight

withcolor red/2 ;
\stopMPcode

Because the datasets are stored by name, we can
use themwithout worrying about them being forgot-
ten:

If no tag is given, the filename (without suffix) is
used as a tag, so the following is valid:

\startMPcode
lua.mp.datasets.load("foo.tmp") ;
lua.mp.datasets.load("bar.tmp") ;

\stopMPcode

The following methods are defined for a dataset:

method usage
Size the number of subsets in a dataset
Line the joined pairs in a dataset making a non-

closed path
Data the table containing the data (in subsets,

so there is always at least one subset)

Due to limitations in MetaPost suffix handling the
methods start with an uppercase character.

Remark
Currently, the features described here are still ex-
perimental but the interface will not change. There
might be a fewmore accessors and for sure more Lua
helpers will be provided. As usual I need some time
to play with it before I make up my mind. It is also
possible to optimize the MetaPost--Lua script call a
bit, but I might do that later.

When we played with this interface we ran into
problems with loop variables and macro arguments.
These are internally more or less anonymous. Take
this:

for i=1 upto 100 : draw(i,i) endfor ;

The i is not really a variablewith name i but becomes
an object (capsule) when the condition is scanned,
and a reference to that object when the body is
scanned. The body of the for loop gets expanded
for each step, but at that time there is no longer a
variable i. The same is true for variables in:

def foo(expr x, y, delta) =
draw (x+delta,y+delta)

enddef ;

We are still trying to get this right with the Lua
interface. Interesting is that when we were exploring
this, we ran into quite some cases where we could
make MetaPost abort due some memory or stack
overflow. Some are just bugs in the new code (due to
the new number model) while others come with the
design of the system: border cases that never seem
to happen in interactive use while the library use
assumes no interaction in case of errors.

In ConTEXt there are more features and helpers
than shown here but these are discussed in the Meta-
Fun manual.

Hans Hagen


