
Kai Eigner VOORJAAR 2017 3

Using HarfBuzz as OpenType engine in
LuaTEX

Introduction

When TEX was released its associated font format
was the bitmap pk font format derived from TEX’s
companion system Metafont. Over the years TEX has
been adapted to new font formats such as PostScript,
TrueType, and, more recently, OpenType. With respect
to this last format, twomajor TEX variants are currently
available: XƎTEX and LuaTEX. Their approach to font
management is quite different. XƎTEX uses external li-
braries available on the system such as AAT, HarfBuzz,
and SIL Graphite. LuaTEX, on the other hand, can use
any OpenType engine which is implemented in Lua
and hooked into TEX’s font mechanism. The ConTEXt
system contains such an engine. ConTEXt’s creator,
Hans Hagen, has made this engine available outside
ConTEXt by developing plainTEX code for LuaTEX that
calls all relevant functionality of the OpenType engine.

HarfBuzz is a transliteration of the Persian word
harf-bāz, meaning ‘open type’. It is a free and open text
shaping engine that renders texts for OpenType fonts,
and recently also for other font formats. HarfBuzz is
being active developed, and its use has become wide-
spread. HarfBuzz is the preferred rendering engine for
Firefox, Chrome, and XƎTEX. Basically, HarfBuzz con-
verts Unicode text strings into glyph indices referring
to specific glyphs in the font, and their positioning
instructions.

Here I will describe how I was able to couple the
HarfBuzz OpenType engine to LuaTEX.1 First, I will
describe what OpenType fonts and engines are. Next,
I will give some reasons why it is interesting to enrich
LuaTEX with HarfBuzz. Finally, I will disclose some
technical details concerning the way in which I man-
aged to couple HarfBuzz to LuaTEX.

OpenType fonts and engines

OpenType fonts contain glyphs that are specifications
of character shapes using, for example, Bézier curves,
and information describing the transformation of char-
acters into positioned glyphs. These transformations
concern either glyph positions stored in theGPOS table,
or substitutions stored in the GSUB table. Glyphs are

not synonymous with characters. For instance, next to
the glyphs that correspond to the characters ‘f’ and
‘i’, many fonts also contain a glyph called fi ligature
which corresponds to the combination of the characters
‘f’ and ‘i’. In other words, there is no one-to-one
correspondence between characters and glyphs. Other
well-known ligatures in Latin are, for instance, the ff,
ffi, fb, and the ffb ligature. OpenType engines convert
texts by converting series of characters into positioned
glyphs. Which glyph is chosen to represent a character
depends on the font, its applied features, and the char-
acter’s context. The character ‘f’ may be transformed
into a f glyph, but when the font contains the glyph
called fi ligature, and the character ‘f’ is followed by
the character ‘i’, and the user has chosen to apply the
ligature feature of the font, the ‘fi’ letter combination
will be transformed into the fi ligature.

Why using HarfBuzz as OpenType engine
in LuaTEX

The interplay between the characters and their context,
the information in the font, and the features chosen by
the user is far from trivial, especially for scripts like
Arabic or – even more extreme – Devanagari. It is the
rendering engine which has to combine all the informa-
tion and return the appropriate glyphs and their posi-
tions. Although historically TEX had no shaping engine,
currently several versions of TEX have been developed
which have an engine at hand. For instance, XƎTEX is
able to outsource the shaping to an external library.
Interestingly, the 0.9999 release of XƎTEX uses HarfBuzz
as its OpenType rendering engine, and at present XƎTEX
creator Jonathan Kew is working on HarfBuzz. Behdad
Esfahbod, the initiator of HarfBuzz, welcomes the as-
sociation of TEX and HarfBuzz, and argues that, in
the long term, ‘pdfTEX’s successor LuaTEX should be
made to do the same thing. There is more to Unicode
support than just shaping, and in those areas the TEX
engines can gain a lot by building on top of existing
libraries.’2 In my opinion this remark is only partially
appropriate because it passes over the (potential) power
of the ConTEXt OpenType engine currently available
to LuaTEX. Although it is important that LuaTEX has

4 MAPS 47 Kai Eigner

a powerful rendering engine at its disposal, it is not
essential that this should be an external library such
as HarfBuzz. At the moment, the ConTEXt OpenType
engine is able to handle many different font features
and scripts, and in the rare cases in which it is not
yet powerful enough, it has proven to have sufficient
flexibility to be adjusted appropriately. For instance,
rendering Devanagari requests eccentric competence
that the engine initially lacked. However, some time
ago I was able to overcome this deficit by supplement-
ing the engine with extra code that now forms part
of its core. I belief that the ConTEXt OpenType engine
is satisfactory as a rendering engine for LuaTEX. Still,
I have developed an approach which enables the use
HarfBuzz. First, I will elaborate briefly on the ConTEXt
OpenType engine, what it is and how it relates to
LuaTEX, and after that I will give reasons why, in my
view, it is interesting to have HarfBuzz have at one’s
disposal as alternative engine.

ConTEXt is a system for typesetting documents build
on top of LuaTEX, which is a version of TEX with a
Lua scripting engine embedded. One component of
ConTEXt is its OpenType engine that is completely
written in Lua. This engine is designed in such way
that can also be used in LuaTEX independently from
ConTEXt. To do that, one should use the ‘generic’ mode
of the ConTEXt package. In that way OpenType fonts
can be used in LuaTEX. These fonts can be applied not
only by specifying their font name or filename, but also
by language, script, and font features. For instance,

\font\f = {file: MinionPro.otf: mode=node;
language=dflt; script=latn;
liga=yes; kern=yes;} at 20pt

calls the font Minion Pro, for which the language is set
to default, the script to latin, and for which several font
features are set, such as the implementation of kerning
and ligatures.TheConTEXt OpenType engine processes
this call by building a font table in Lua that can be
used during the phase of rendering the text. How the
engine renders text can best be made clear by giving an
example created by means of the \showotfcomposition
command in ConTEXt (see Figure 1), which displays
the positioning and substitutions steps executed by the
rendering engine.

The example demonstrates the implementation of
the font features ‘kern’ (kerning) and ‘liga’ (liga-
tures) while rendering the musical term ‘offbeat’. Step
by step the relevant operations are applied by the
OpenType engine. Interesting in this example is the
interplay with discretionaries, which are constructs in
which TEX stores information about the material to be
displayed at hyphenation points. Discretionaries con-
sist of three parts called pre, post, and replace. The pre

1

font 5: MinionPro.otf @ 20.0pt

features analyze=yes, checkmarks=yes, devanagari=yes, dummies=yes,
extensions=yes, extrafeatures=yes, extraprivates=yes,
kern=yes, language=dflt, liga=yes, mathkerns=yes,
mode=node, script=latn, spacekern=yes

step 1 offbeat U+6F:o U+66:f U+66:f [pre: U+2D:-] U+62:b
U+65:e U+61:a U+74:t
feature 'liga', type 'gsub_ligature', lookup 's_s_24',

replacing U+00066 (f) upto U+00062 (b) by ligature
U+0E093 (f_f_b) case 2

feature 'liga', type 'gsub_ligature', lookup 's_s_24',
replacing U+00066 (f) upto U+00066 (f) by ligature
U+0FB00 (f_f) case 2

step 2 offbeat U+6F:o [pre: U+FB00:ff U+2D:- post: U+62:b
replace: U+E093:ffb] U+65:e U+61:a U+74:t
feature 'kern', type 'gpos_pair', lookup 'p_s_1',

inserting kern -0.24pt between U+0006F (o) and U+0FB00
(f_f) as preinjections

feature 'kern', type 'gpos_pair', lookup 'p_s_1',
inserting kern 0.18pt between U+00062 (b) and U+00065
(e) as postinjections

feature 'kern', type 'gpos_pair', lookup 'p_s_1',
inserting kern -0.24pt between U+0006F (o) and U+0E093
(f_f_b) as replaceinjections

feature 'kern', type 'gpos_pair', lookup 'p_s_1',
inserting kern 0.12pt between U+00065 (e) and U+00061
(a) as injections

feature 'kern', type 'gpos_pair', lookup 'p_s_1',
inserting kern -0.38pt between U+00061 (a) and U+00074
(t) as injections

result offbeat U+6F:o [pre:[kern] U+FB00:ff U+2D:- post:
U+62:b [kern] replace:[kern] U+E093:ffb] U+65:e [kern]
U+61:a [kern] U+74:t

Figure 1.

contains the material to be inserted before the line
break, the post contains the material to be inserted after
the line break, and the replace contains the material
to be inserted if the hyphenation point isn’t chosen. In
simple cases the pre may contain a hyphen char while
the other two are empty. However, in this example,
due to the hyphenation point between off and beat, it
depends on the line breaking whether the ff-ligature
or the ffb-ligature will be displayed. In order to have
both options available, both alternatives are built into
the discretionary.

The ConTEXt OpenType engine is very powerful and
flexible, and can also be used in LuaTEX independently
from ConTEXt. So, why do I think that it is desirable
to have HarfBuzz available as alternative engine for
LuaTEX, and ConTEXt too? I will give two reasons.
First, because rare cases exist for which the ConTEXt
OpenType engine is not (yet) equipped to deal with,
and, second, because having an alternative engine at
hand is helpful for the process of developing and testing
the ConTEXt engine further.

Using HarfBuzz as OpenType engine in LuaTEX VOORJAAR 2017 5

The ConTEXt OpenType engine can handle many
scripts and their corresponding font features. Still, there
are some scripts for which not all features are covered.
As can be seen in Microsofts OpenType Specification3

version 2, several scripts have peculiar features. Take
for instance the script Syriac. Next to the regular feature
‘fina’ this script also has the features ‘fin2’ and ‘fin3’ at
its disposal, which are quite eccentric. Whether they
should be applied to replace the alaph glyph at the end
of Syriac words with its appropriate form depends on
certain properties of the preceding character. Actually,
what is eccentric here is not the fact that the application
of features depends on the properties of the neighbour-
ing characters – that is quite common – but that instead
of being stored into the font, this information has to
be known by the OpenType engine. At this moment,
as far as I know, the ConTEXt OpenType engine lacks
this specific knowledge concerning the appropriate
application of ‘fin2’ and ‘fin3’. Correct typesetting of
Syriac is therefore not (yet) straightforward in ConTEXt
or LuaTEX. Having HarfBuzz at hand as an alternative
would overcome this lack.

Based on my experience with the flexibility of the
ConTEXt OpenType engine, I expect that it will not
be difficult to supplement the engine with the neces-
sary functionality to render Syriac texts. During the
past year, the engine has gone through various stages
of development through which it acquired increas-
ingly complicated skills. One, rendering Devanagari,
I implemented myself. So, I believe that the ConTEXt
OpenType engine will eventually meet all conceivable
needs. However, my experience is that, in the process
of improving the engine, it is very useful to have a
reference point at hand. Although the renderings of-
fered by HarfBuzz may not be faultless or indisputable
– HarfBuzz is also still in development – they are very
useful as benchmark for testing the ConTEXt OpenType
engine. Therefore, it is desirable to have HarfBuzz as an
alternative OpenType engine in LuaTEX and ConTEXt.

Technical details concerning coupling
HarfBuzz to LuaTEX

HarfBuzz is written in C++. Its functions can be ac-
cessed from outside using its application programming
interface (API), which, in this case, is a software li-
brary. I will discuss two ways that LuaTEX is able to
communicate with HarfBuzz via its API. The first is by
means of SwigLib, which is a subproject of the LuaTEX
project that concentrates on making external libraries
available to LuaTEX using SWIG (Simplified Wrapper
and Interface Generator). The second is by means of FFI
(Foreign Function Interface), which is amethod directly
available when using LuaJitTEX. After discussing these
two ways to call HarfBuzz from LuaTEX, I will discuss

some of the technical details concerning the most im-
portant application of this technique, namely the use of
HarfBuzz as OpenType engine in LuaTEX.

SwigLib can be regarded as a repository concern-
ing the connection between application libraries and
LuaTEX. For such connections an interface or binding
between the application library and LuaTEX is needed.
This interface can be created by means of so-called
‘wrapper code’ which can be generated using SWIG –
a software development tool that connects programs
written in C and C++ with high-level programming
languages such as Lua. Recipes by means of which
SWIG can produce the wrapper code for a specific ap-
plication library are stored in SwigLib. In order to create
the interface, the wrapper code has to be compiled.
Luigi Scarso, who manages the SwigLib project, has
developed the SwigLib recipe for several bindings such
as those for Ghostscript and GraphicsMagick. Although
he also looked at HarfBuzz, in SwigLib this binding is
still in the experimental phase. (Furthermore, the mate-
rial that can be found at SwigLib concerning HarfBuzz
is restricted to Microsoft Windows, which happens
to be not the operating system I use.) By tweaking
Luigi’s recipe, and also by adding the necessary code for
working with specific arrays and pointers in HarfBuzz
via the binding, I managed to generate a functional
interface between HarfBuzz and LuaTEX.

LuaJitTEX is a version of LuaTEX that uses LuaJIT,
which is a just-in-time implementation of Lua. Due to
this, it can make use of the FFI of LuaJIT to access
external software libraries. The use of FFI does not
involve bindings or interfaces that have to be compiled.
FFI allows calling external C functions and using C data
structures directly from pure Lua code. In my opinion
using LuaJitTEX – which for Lua-intensive TEX runs is
also much faster than LuaTEX – is preferable to using
LuaTEX. However, using LuaJitTEX may have some
safety risks. The FFI library is a low-level library which
implies it needs to be used with care. It is not safe for
use by untrusted code. In my design of the LuaJIT code
bymeans of which I boundHarfBuzz to LuaTEX via FFI I
choose to use LuaJIT functions with the same name and
functionality as the Lua functions that communicate
withHarfBuzz via the SwigLib binding discussed above.
For instance, both in LuaTEX and LuaJitTEX, I wrote a
function called ‘add_utf8’ by means of which a UTF-8
string can be delivered to HarfBuzz ready for rendering.
This design of the functions enables the implementation
of HarfBuzz, in the process of rendering, to be indepen-
dent from the chosen binding method.4

To use HarfBuzz as LuaTEX’s rendering engine, one
must replace the ConTEXt OpenType enginewith a pro-
cedure that translates between LuaTEX and HarfBuzz
via the HarfBuzz API. In principle, processing a simple
series of characters in LuaTEX in this way is rather

6 MAPS 47 Kai Eigner

straightforward. LuaTEX passes them to HarfBuzz as
UTF-8 characters, and, in return, HarfBuzz returns in-
formation about the glyph indices, i.e., which glyphs
in the font have to be picked, and how they have to
be positioned. In practice, however, even the simple
case of a series of characters has its issues. One issue
concerns glue. LuaTEX can use glue with an arbitrary
width. HarfBuzz does not know this concept. Instead,
it uses the space character. When calling the HarfBuzz
API, some of the glues may be regarded as spaces. This
identification can, for instance, be assigned depending
on the glue width. In my implementation of HarfBuzz,
I choose to represent glue by one space when its width
is greater than zero. Similarly, the ConTEXt OpenType
engine also represents such glue as a space in its
OpenType rules that involve spaces. Another issue con-
cerns attributes. In LuaTEX, characters can be enriched
with information by means of so-called attributes. This
is very useful, for instance, to implement colour han-
dling. In the process of rendering, these attributes have
to be preserved. However, due to the formation of
ligatures and other constructs several characters can
turn into just one glyph. Conversely, it is also possible
that one character turns into more than one glyph.
Therefore, even for a simple series of characters, some
bookkeeping is required to ensure that character attrib-
utes are assigned to the corresponding glyphs.

A more complicated issue concerns the interplay be-
tween discretionaries and OpenType transformations –
such as the formation of ligatures. As illustrated above
(see Figure 1), the word ‘offbeat’ has a hyphenation
point between ‘off’ and ‘beat’. Because the concrete
hyphenating is not established during the stage of
implementing the OpenType transformations – that
happens only in the stage of line breaking which comes
later – the ff ligature and ffb ligature have to be incor-
porated into the discretionary. Ideally, this operation
of incorporating glyphs into discretionaries would be
left to HarfBuzz. LuaTEX would then offer HarfBuzz
something like

off\discretionary{-}{}{}beat

as input and receive something like

o\discretionary{ff-}{b}{ffb}eat

plus information about kerning in return. However,
HarfBuzz has no syntax for hyphenation. Therefore,
it is not possible to send and receive material that
contains discretionaries. To overcome this problem, I
developed a routine that rephrases material contain-
ing hyphenation points into parts free of hyphenation
points covering the situations with and without hy-
phenations. This is not too complicated for a series of

characters with only one hyphenation point. For ‘off-
beat’ the parts would consist, on the one hand, of ‘off-’
and ‘beat’, and, on the other, ‘offbeat’. However, for
series of characters with more than one hyphenation
point, the number of parts that cover all hyphenation
possibilities can become rather large. The general idea
is that all these parts are presented to HarfBuzz and
the result is subdivided back into discretionaries. The
rationale behind this approach is that the OpenType
transformations applied to characters can depend on
the (series of) neighbouring characters. Because these
(series of) neighbouring characters vary depending on
the pending hyphenation, HarfBuzz has to be presented
with all the possibilities. In the example, HarfBuzz
returns off-, beat, and offbeat (plus information about
kerning) which is rephrased in LuaTEX as

\discretionary{off-}{beat}{offbeat}

After that, a process is executed to clear out the dis-
cretionaries. As much material as possible is taken out
from the discretionary. This applies, for instance, to
the o in the example, which is present at the start of
the first and second argument of the discretionary, but
which can be moved to the left of it. The same holds
for eat in the second and third argument of the same
discretionary, which can be moved to the right of it.
Clearing out the discretionary might not be absolutely
necessary in this example: LuaTEX can handle series
of characters that are completely wrapped up in dis-
cretionaries. However, in cases of more than one hy-
phenation point per series of characters, clearing serves
a useful purpose for it can prevent the occurrence of
nested discretionaries that would otherwise have to
be eliminated. The result of this process is very much
comparable to the result that would have been obtained
from using the ConTEXt OpenType engine such as
displayed at the bottom of the ‘offbeat’ example above
(see Figure 1).

Results and conclusion

The approach I followed to implement HarfBuzz in
LuaTEX has yielded positive results. HarfBuzz performs
well. The similarity between texts rendered by the
ConTEXt Opentype engine and HarfBuzz surpassed my
initial expectations, even for tests with complicated
scripts and sophisticated fonts. Although most tests led
to exactly the same results, I found a few scattered
instances in which the outcome differed. For some of
these differences the ConTEXt OpenType engine could
be hold accountable, such as the difference in shape
of the alaph glyph at the end of some Syrian words
discussed above. However, in other cases HarfBuzz
clearly dropped a stitch.

Using HarfBuzz as OpenType engine in LuaTEX VOORJAAR 2017 7

It is desirable to have HarfBuzz available as alter-
native engine for LuaTEX. This would enable render-
ing texts with features the ConTEXt OpenType en-
gine currently does not support. More importantly, it
would benefit the process of developing and testing
the ConTEXt engine further. This is indeed the case,
as demonstrated by improvements made to the engine
based on my reports of tiny faults discovered while
comparing the results of the two engines. The ConTEXt
OpenType engine has proven to be a powerful and
flexible engine for LuaTEX in its own right. How-
ever, it will benefit from having HarfBuzz available
next to it.

Notes
1. For source code and examples, see https://github.com/tatzetwerk
/luatex-harfbuzz.
2. http://behdad.org/text/ (consulted: September 2016)
3. https://www.microsoft.com/en-us/Typography/Specificatio↩
nsOverview.aspx (consulted: September 2016)
4. Moreover, my design of these functions is adopted from a binding
called luaharfbuzz (see https://github.com/deepakjois/luaharfbuzz,
consulted: September 2016). This binding is similar to the binding
developed via SwigLib although the wrapper code is written by
Deepak Jois instead of generated by means of SWIG. Consequently,
next to the SwigLib and FFI binding also luaharfbuzz can be used as
binding that enables my implementation of HarfBuzz as OpenType
engine in LuaTEX.

Kai Eigner, TAT Zetwerk, Nederland, eigner@tatzetwerk.nl

