
NUMMER 48 • VOORJAAR 2018

R E D A C T I E
Michael Guravage, hoofdredacteur
Hans Hagen
Frans Goddijn
Taco Hoekwater

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

Voorzitter
Hans Hagen

voorzitter@ntg.nl

Secretaris
Taco Hoekwater

secretaris@ntg.nl

Penningmeester
Ferdy Hanssen

penningmeester@ntg.nl

Bestuursleden
Frans Goddijn

Piet van Oostrum
Postadres

Nederlandstalige TEX Gebruikersgroep
Baarsjesweg 268-I

1058 AD Amsterdam
ING bankrekening

IBAN: NL53INGB0001306238
BIC: INGBNL2A
E-mail bestuur
ntg@ntg.nl

E-mail MAPS redactie
maps@ntg.nl

WWW
www.ntg.nl

Copyright © 2018 NTG

De Nederlandstalige TEX Gebruikersgroep (NTG) is een vereniging die tot doel
heeft de kennis en het gebruik van TEX te bevorderen. De NTG fungeert als een
forum voor nieuwe ontwikkelingen met betrekking tot computergebaseerde document-
opmaak in het algemeen en de ontwikkeling van ‘TEX and friends’ in het bijzonder.
De doelstellingen probeert de NTG te realiseren door onder meer het uitwisselen van
informatie, het organiseren van conferenties en symposia met betrekking tot TEX en
daarmee verwante programmatuur.
De NTG biedt haar leden ondermeer:

@ Tweemaal per jaar een NTG-bijeenkomst.
@ Het NTG-tijdschrift MAPS.
@ De ‘TEX Live’-distributie op DVD/CDROM inclusief de complete CTAN

software-archieven.
@ Verschillende discussielijsten (mailing lists) over TEX-gerelateerde onderwerpen,

zowel voor beginners als gevorderden, algemeen en specialistisch.
@ De FTP server ftp.ntg.nl waarop vele honderden megabytes aan algemeen

te gebruiken ‘TEX-producten’ staan.
@ De WWW server www.ntg.nl waarop algemene informatie staat over de NTG,

bijeenkomsten, publicaties en links naar andere TEX sites.
@ Korting op (buitenlandse) TEX-conferenties en -cursussen en op het lidmaatschap

van andere TEX-gebruikersgroepen.

Lid worden kan door overmaking van de verschuldigde contributie naar de NTG-giro
(zie links); vermeld IBAN zowel als SWIFT/BIC en selecteer shared cost. Daarnaast
dient via www.ntg.nl een informatieformulier te worden ingevuld. Zonodig kan
ook een papieren formulier bij het secretariaat worden opgevraagd.
De contributie bedraagt ¤ 40. Voor studenten geldt een tarief van ¤ 20. Dit geeft alle
lidmaatschapsvoordelen maar geen stemrecht. Een bewijs van inschrijving is vereist. Een
gecombineerd NTG/TUG-lidmaatschap levert een korting van 10% op beide contributies
op. De prijs in euro’s wordt bepaald door de dollarkoers aan het begin van het jaar. De
ongekorte TUG-contributie is momenteel $105.

Afmelding kan met ingang van het volgende kalenderjaar door opzegging per e-mail
aan de penningmeester.

MAPS bijdragen kunt u opsturen naar maps@ntg.nl, bij voorkeur in LATEX- of
ConTEXt formaat. Bijdragen op alle niveaus van expertise zijn welkom.

Productie. De Maps wordt gezet met behulp van een LATEX class �le en een ConTEXt
module. Het pdf bestand voor de drukker wordt aangemaakt met behulp van pdf-
tex 1.40.19 en luatex 1.0.8 draaiend onder MacOS X 10.13. De gebruikte fonts zijn Linux
Libertine, het niet-proportionele font Inconsolata, schree�oze fonts uit de Latin Modern
collectie, en de Euler wiskunde fonts, alle vrij beschikbaar.

TEX is een door professor Donald E. Knuth ontwikkelde ‘opmaaktaal’ voor het let-
terzetten van documenten, een documentopmaaksysteem. Met TEX is het mogelijk
om kwalitatief hoogstaand drukwerk te vervaardigen. Het is eveneens zeer geschikt
voor formules in mathematische teksten.
Er is een aantal op TEX gebaseerde producten, waarmee ook de logische structuur van
een document beschreven kan worden, met behoud van de letterzet-mogelijkheden
van TEX. Voorbeelden zijn LATEX van Leslie Lamport, AMS-TEX van Michael Spivak,
en ConTEXt van Hans Hagen.

Contents

Redactioneel, Maps redactie 1
The TEX Live Guide – 2018, Karl Berry, editor 3
Executing TEX, Hans Hagen 46
Variable fonts, Hans Hagen 51
TEX Gyre text fonts revisited, Bogusław Jackowski, Piotr Pianowski & Piotr Strzelczyk 59
TLaunch, the TEX Live Launcher, Siep Kroonenberg 66
updmap and fmtutil— past and future changes, Norbert Preining 70
Privacybeleid Nederlandstalige TEX Gebruikersgroep 77

maps redactie VOORJAAR 2018 1

Redactioneel

Door middel van de Maps willen we u op de hoogte houden van ontwikkelingen,
ook om daarmee onze leden te danken voor hun trouwe steun aan de TEX ontwikke-
laars. Verder bieden we ruimte aan lezers die anderen laten delen in hun ervaringen
met TEX, MetaPost, fonts en aanverwanten. Aarzel dus niet ons artikelen te sturen.
Hoewel het internet tegenwoordig een belangrijke bron van informatie is, blijft pa-
pier een functie vervullen binnen de vereniging. Dat past immers bij TEX!

Daar doen we het voor!

Veel leesplezier,

Uw redactie

2 MAPS 48 maps redactie

VOORJAAR 2018 3

The TEX Live Guide—2018
Karl Berry, editor

http://tug.org/texlive/

April 2018

This year’s TEX Live is dedicated to our sadly departed colleague Staszek Wawrykiewicz.

Contents
1 Introduction 2

1.1 TEX Live and the TEX Collection . 2
1.2 Operating system support . 3
1.3 Basic installation of TEX Live . 3
1.4 Security considerations . 3
1.5 Getting help . 3

2 Overview of TEX Live 4
2.1 The TEX Collection: TEX Live, proTEXt, MacTEX . 4
2.2 Top level TEX Live directories . 4
2.3 Overview of the predefined texmf trees . 5
2.4 Extensions to TEX . 6
2.5 Other notable programs in TEX Live . 6

3 Installation 7
3.1 Starting the installer . 7

3.1.1 Unix . 8
3.1.2 MacOSX . 8
3.1.3 Windows . 8
3.1.4 Cygwin . 9
3.1.5 The text installer . 9
3.1.6 The expert graphical installer . 9
3.1.7 The simple wizard installer . 9

3.2 Running the installer . 10
3.2.1 Binary systems menu (Unix only) . 10
3.2.2 Selecting what is to be installed . 10
3.2.3 Directories . 12
3.2.4 Options . 13

3.3 Command-line install-tl options . 14
3.3.1 The -repository option . 14

3.4 Post-install actions . 14
3.4.1 Environment variables for Unix . 15
3.4.2 Environment variables: Global configuration . 15
3.4.3 Internet updates after DVD installation . 15
3.4.4 System font configuration for XeTEX and LuaTEX 15
3.4.5 ConTEXt Mark IV . 16
3.4.6 Integrating local and personal macros . 16
3.4.7 Integrating third-party fonts . 17

3.5 Testing the installation . 17
3.6 Links for additional downloadable software . 18

1

4 MAPS 48 karl berry

1 INTRODUCTION 2

4 Specialized installations 19
4.1 Shared-user (or cross-machine) installations . 19
4.2 Portable (USB) installations . 19

5 tlmgr: Managing your installation 20
5.1 tlmgr GUI mode . 20
5.2 Other GUI interfaces for tlmgr . 21
5.3 Sample tlmgr command-line invocations . 21

6 Notes on Windows 22
6.1 Windows-specific features . 22
6.2 Additional software included on Windows . 22
6.3 User Profile is Home . 23
6.4 The Windows registry . 23
6.5 Windows permissions . 23
6.6 Increasing maximum memory on Windows and Cygwin 24

7 A user’s guide to Web2C 24
7.1 Kpathsea path searching . 25

7.1.1 Path sources . 26
7.1.2 Config files . 26
7.1.3 Path expansion . 26
7.1.4 Default expansion . 27
7.1.5 Brace expansion . 27
7.1.6 Subdirectory expansion . 27
7.1.7 List of special characters and their meaning: a summary 27

7.2 Filename databases . 28
7.2.1 The filename database . 28
7.2.2 kpsewhich: Standalone path searching . 28
7.2.3 Examples of use . 29
7.2.4 Debugging actions . 30

7.3 Runtime options . 32

8 Acknowledgements 32

9 Release history 34
9.1 Past . 34

9.1.1 2003 . 34
9.1.2 2004 . 35
9.1.3 2005 . 36
9.1.4 2006–2007 . 37
9.1.5 2008 . 37
9.1.6 2009 . 38
9.1.7 2010 . 38
9.1.8 2011 . 39
9.1.9 2012 . 39
9.1.10 2013 . 40
9.1.11 2014 . 40
9.1.12 2015 . 41
9.1.13 2016 . 41
9.1.14 2017 . 42

9.2 Present—2018 . 42
9.3 Future . 43

1 Introduction
1.1 TEX Live and the TEX Collection
This document describes the main features of the TEX Live software distribution—TEX and related
programs for GNU/Linux and other Unix flavors, MacOSX, and Windows systems.

tex live guide VOORJAAR 2018 5

1 INTRODUCTION 3

You may have acquired TEX Live by downloading, or on the TEX Collection DVD, which TEX user
groups distribute among their members, or in other ways. Section 2.1 briefly describes the contents of
the DVD. Both TEX Live and the TEX Collection are cooperative efforts by the TEX user groups. This
document mainly describes TEX Live itself.

TEX Live includes executables for TEX, LATEX2ε, ConTEXt, METAFONT, MetaPost, BibTEX and
many other programs; an extensive collection of macros, fonts and documentation; and support for
typesetting in many different scripts from around the world.

For a brief summary of the major changes in this edition of TEX Live, see the end of the document,
section 9 (p. 34).

1.2 Operating system support
TEX Live contains binaries for many Unix-based platforms, including GNU/Linux, MacOSX, and
Cygwin. The included sources can be compiled on platforms for which we do not provide binaries.

As to Windows: Windows 7 and later are supported. Windows Vista may still mostly work, but
TEX Live will no longer even install on Windows XP or earlier. There are no special 64-bit executables
for Windows, but the 32-bit executables should run on 64-bit systems.

See section 2.1 for alternate solutions for Windows and MacOSX.

1.3 Basic installation of TEX Live
You can install TEX Live either from DVD or over the Internet (http://tug.org/texlive/acquire.
html). The net installer itself is small, and downloads everything requested from the Internet.

The DVD installer lets you install to a local disk. You cannot run TEX Live directly from the TEX
Collection DVD (or its .iso image), but you can prepare a runnable installation on, e.g., a USB stick
(see section 4.2). Installation is described in later sections (p. 7), but here is a quick start:

• The installation script is named install-tl. It can operate in a “wizard mode” given the option
-gui=wizard (default for Windows), a text mode given -gui=text (default for everything else),
and an expert GUI mode given -gui=perltk. But see section 3.1.3 for Windows.

• One of the installed items is the ‘TEX Live Manager’ program, named tlmgr. Like the installer, it
can be used in both GUI mode and in text mode. You can use it to install and uninstall packages
and do various configuration tasks.

1.4 Security considerations
To the best of our knowledge, the core TEX programs themselves are (and always have been) extremely
robust. However, the contributed programs in TEX Live may not reach the same level, despite everyone’s
best efforts. As always, you should be careful when running programs on untrusted input; for maximum
safety, use a new subdirectory.

This need for care is especially urgent on Windows, since in general Windows finds programs in
the current directory before anything else, regardless of the search path. This opens up a wide variety
of possible attacks. We have closed many holes, but undoubtedly some remain, especially with third-
party programs. Thus, we recommend checking for suspicious files in the current directory, especially
executables (binaries or scripts). Ordinarily they should not be present, and definitely should not
normally be created by merely processing a document.

Finally, TEX (and its companion programs) are able to write files when processing documents, a
feature that can also be abused in a wide variety of ways. Again, processing unknown documents in a
new subdirectory is the safest bet.

1.5 Getting help
The TEX community is active and friendly, and most serious questions end up getting answered. How-
ever, the support is informal, done by volunteers and casual users, so it’s especially important that you
do your homework before asking. (If you prefer guaranteed commercial support, you can forgo TEX Live
completely and purchase a vendor’s system; http://tug.org/interest.html#vendors has a list.)

Here is a list of resources, approximately in the order we recommend using them:

Getting started If you are new to TEX, the web page http://tug.org/begin.html gives a brief
introduction to the system.

6 MAPS 48 karl berry

2 OVERVIEW OF TEX LIVE 4

TEX FAQ The TEX FAQ is a huge compendium of answers to all sorts of questions, from the most
basic to the most arcane. It is included on TEX Live in texmf-dist/doc/generic/FAQ-en/, and
is available on the Internet through http://www.tex.ac.uk/faq. Please check here first.

TEX Catalogue If you are looking for a particular package, font, program, etc., the TEX Catalogue
is the place to look. It is a huge collection of all TEX-related items. See http://ctan.org/pkg/
catalogue/.

TEX Web Resources The web page http://tug.org/interest.html has many TEX-related links,
in particular for numerous books, manuals, and articles on all aspects of the system.

support archives Principal support forums include the LATEX community site at http:
//latex-community.org/, the q&a site http://tex.stackexchange.com, the Usenet news-
group news:comp.text.tex, and the mailing list texhax@tug.org. Their archives have years of
past questions and answers for your searching pleasure, via (for the latter two) http://groups.
google.com/group/comp.text.tex/topics and http://tug.org/mail-archives/texhax.
And a general web search, for example on http://google.com, never hurts.

asking questions If you cannot find an answer, you can post to http://latex-community.org/
and http://tex.stackexchange.com/ through their web interfaces, to comp.text.tex through
Google or your newsreader, or to texhax@tug.org through email. But before you post anywhere,
please read this FAQ entry, to maximize your chances of getting a useful answer: http://www.
tex.ac.uk/cgi-bin/texfaq2html?label=askquestion.

TEX Live support If you want to report a bug or have suggestions or comments on the TEX Live
distribution, installation, or documentation, the mailing list is tex-live@tug.org. However, if
your question is about how to use a particular program included in TEX Live, please write to
that program’s maintainer or mailing list. Often running a program with the --help option will
provide a bug reporting address.

The other side of the coin is helping others who have questions. All the above resources are open
to anyone, so feel free to join, start reading, and help out where you can.

2 Overview of TEX Live
This section describes the contents of TEX Live and the TEX Collection of which it is a part.

2.1 The TEX Collection: TEX Live, proTEXt, MacTEX
The TEX Collection DVD comprises the following:

TEX Live A complete TEX system to be installed to disk. Home page: http://tug.org/texlive/.

MacTEX for MacOSX, this adds a native MacOSX installer and other Mac applications to TEX Live.
Home page: http://tug.org/mactex/.

proTEXt An enhancement of the MiKTEX distribution for Windows, proTEXt adds a few extra tools
to MiKTEX, and simplifies installation. It is entirely independent of TEX Live, and has its own
installation instructions. Home page: http://tug.org/protext/.

CTAN A snapshot of the CTAN repository (http://www.ctan.org/).

CTAN and protext do not follow the same copying conditions as TEX Live, so be careful when
redistributing or modifying.

2.2 Top level TEX Live directories
Here is a brief listing and description of the top level directories in a TEX Live installation.

bin The TEX system programs, arranged by platform.
readme-*.dir Quick overview and useful links for TEX Live, in various languages, in both HTML and

plain text.

tex live guide VOORJAAR 2018 7

2 OVERVIEW OF TEX LIVE 5

source The source to all included programs, including the main Web2C-based TEX distributions.
texmf-dist The principal tree; see TEXMFDIST below.
tlpkg Scripts, programs and data for managing the installation, and special support for Windows.

In addition to the directories above, the installation scripts and README files (in various languages)
are at the top level of the distribution.

For documentation, the comprehensive links in the top-level file doc.html may be helpful. The
documentation for nearly everything (packages, formats, fonts, program manuals, man pages, Info files)
is in texmf-dist/doc. You can use the texdoc program to find documentation wherever it is located.

This TEX Live documentation itself is in texmf-dist/doc/texlive, available in several languages:

• Czech/Slovak: texmf-dist/doc/texlive/texlive-cz
• German: texmf-dist/doc/texlive/texlive-de
• English: texmf-dist/doc/texlive/texlive-en
• French: texmf-dist/doc/texlive/texlive-fr
• Italian: texmf-dist/doc/texlive/texlive-it
• Polish: texmf-dist/doc/texlive/texlive-pl
• Russian: texmf-dist/doc/texlive/texlive-ru
• Serbian: texmf-dist/doc/texlive/texlive-sr
• Simplified Chinese: texmf-dist/doc/texlive/texlive-zh-cn

2.3 Overview of the predefined texmf trees
This section lists the predefined variables specifying the texmf trees used by the system, and their
intended purpose, and the default layout of TEX Live. The command tlmgr conf shows the values of
these variables, so that you can easily find out how they map to particular directories in your installation.

All of the trees, including the personal ones, should follow the TEX Directory Structure (TDS,
http://tug.org/tds), with all its myriad subdirectories, or files may not be found. Section 3.4.6
(p. 16) describes this in more detail. The order here is the reverse order in which the trees are searched,
that is, later trees in the list override earlier ones.

TEXMFDIST The tree which holds nearly all of the files in the original distribution—configuration files,
scripts, packages, fonts, etc. (The main exception are the per-platform executables, which are
stored in a sibling directory bin/.)

TEXMFSYSVAR The (site-wide) tree used by texconfig-sys, updmap-sys and fmtutil-sys, and also
by tlmgr, to store (cached) runtime data such as format files and generated map files.

TEXMFSYSCONFIG The (site-wide) tree used by the utilities texconfig-sys, updmap-sys, and
fmtutil-sys to store modified configuration data.

TEXMFLOCAL The tree which administrators can use for system-wide installation of additional or up-
dated macros, fonts, etc.

TEXMFHOME The tree which users can use for their own individual installations of additional or updated
macros, fonts, etc. The expansion of this variable dynamically adjusts for each user to their own
individual directory.

TEXMFVAR The (personal) tree used by texconfig, updmap and fmtutil to store (cached) runtime
data such as format files and generated map files.

TEXMFCONFIG The (personal) tree used by the utilities texconfig, updmap, and fmtutil to store
modified configuration data.

TEXMFCACHE The tree(s) used by ConTEXt MkIV and LuaLATEX to store (cached) runtime data; de-
faults to TEXMFSYSVAR, or (if that’s not writable), TEXMFVAR.

The default layout is:

system-wide root can span multiple TEX Live releases (/usr/local/texlive by default on Unix):

2017 A previous release.
2018 The current release.

bin
i386-linux GNU/Linux binaries

8 MAPS 48 karl berry

2 OVERVIEW OF TEX LIVE 6

...
x86_64-darwin MacOSX binaries
win32 Windows binaries

texmf-dist TEXMFDIST and TEXMFMAIN
texmf-var TEXMFSYSVAR, TEXMFCACHE
texmf-config TEXMFSYSCONFIG

texmf-local TEXMFLOCAL, intended to be retained from release to release.

user’s home directory ($HOME or %USERPROFILE%)

.texlive2017 Privately generated and configuration data for a previous release.

.texlive2018 Privately generated and configuration data for the current release.
texmf-var TEXMFVAR, TEXMFCACHE
texmf-config TEXMFCONFIG

texmf TEXMFHOME Personal macros, etc.

2.4 Extensions to TEX
Knuth’s original TEX itself is frozen, apart from rare bug fixes. It is present in TEX Live as the program
tex, and will remain so for the foreseeable future. TEX Live also contains several extended versions of
TEX (also known as TEX engines):

ε-TEX adds a set of new primitives (related to macro expansion, character scanning, classes of marks,
additional debugging features, and more) and the TEX--XET extensions for bidirectional typeset-
ting. In default mode, ε-TEX is 100% compatible with ordinary TEX. See texmf-dist/doc/etex/
base/etex_man.pdf.

pdfTEX builds on the ε-TEX extensions, adding support for writing PDF output as well as DVI, and
many non-output-related extensions. This is the program invoked for most formats, e.g., etex,
latex, pdflatex. Its web site is http://www.pdftex.org/. See texmf-dist/doc/pdftex/manual/
pdftex-a.pdf for the manual, and texmf-dist/doc/pdftex/manual/samplepdf/samplepdf.
tex for example usage of some of its features.

LuaTEX is the designated successor of pdfTEX, and is mostly (but not entirely) backward-compatible.
It is also intended to be a functional superset of Aleph (see below), though technical compatibility
is not intended. The incorporated Lua interpreter (http://www.lua.org/) enables elegant solu-
tions for many thorny TEX problems. When called as texlua, it functions as a standalone Lua
interpreter, and is already used as such within TEX Live. Its web site is http://www.luatex.org/,
and the reference manual is texmf-dist/doc/luatex/base/luatex.pdf.

XeTEX adds support for Unicode input and OpenType- and system fonts, implemented using standard
third-party libraries. See http://tug.org/xetex.

Ω (Omega) is based on Unicode (16-bit characters), thus supports working with almost all the world’s
scripts simultaneously. It also supports so-called ‘Ω Translation Processes’ (OTPs), for performing
complex transformations on arbitrary input. Omega is no longer included in TEX Live as a separate
program; only Aleph is provided:

Aleph combines the Ω and ε-TEX extensions. See texmf-dist/doc/aleph/base.

2.5 Other notable programs in TEX Live
Here are a few other commonly-used programs included in TEX Live:

bibtex, biber bibliography support.
makeindex, xindy index support.
dvips convert DVI to PostScript.
xdvi DVI previewer for the X Window System.
dviconcat, dviselect cut and paste pages from DVI files.
dvipdfmx convert DVI to PDF, an alternative approach to pdfTEX (mentioned above).

tex live guide VOORJAAR 2018 9

3 INSTALLATION 7

Figure 1: First stage of Windows .exe installer

psselect, psnup, . . . PostScript utilities.
pdfjam, pdfjoin, . . . PDF utilities.
context, mtxrun ConTEXt and PDF processor.
htlatex, . . . tex4ht: (LA)TEX to HTML (and XML and more) converter.

3 Installation
3.1 Starting the installer
To begin, get the TEX Collection DVD or download the TEX Live net installer. See http://tug.org/
texlive/acquire.html for more information and other methods of getting the software.

Net installer, .zip or .tar.gz: Download from CTAN, under systems/texlive/tlnet; the url http:
//mirror.ctan.org/systems/texlive/tlnet should redirect to a nearby, up-to-date, mirror.
You can retrieve either install-tl.zip which can be used under Unix and Windows, or the
considerably smaller install-unx.tar.gz for Unix only. After unpacking, install-tl and
install-tl-windows.bat will be in the install-tl subdirectory.

Net installer, Windows .exe: Download from CTAN as above, and double-click. This starts up a
first-stage installer and unpacker; see figure 1. It gives three choices: “Simple install” starts up
the wizard installer, “Custom install” the expert GUI installer, as described in section 3.1.3. A
third option is just unpacking.

TEX Collection DVD: go to the DVD’s texlive subdirectory. Under Windows, the installer nor-
mally starts automatically when you insert the DVD. You can get the DVD by becoming a member
of a TEX user group (highly recommended, http://tug.org/usergroups.html), or purchasing
it separately (http://tug.org/store), or burning your own from the ISO image. You can also
mount the ISO directly on most systems. After installing from DVD or ISO, if you want to get
continuing updates from the Internet, please see 3.4.3.

The same installer program is run, whatever the source. The most visible difference between the two
is that with the net installer, what you end up with is the packages that are currently available. This
is in contrast to the DVD and ISO images, which are not updated between the major public releases.

If you need to download through proxies, use a ~/.wgetrc file or environment variables with the
proxy settings for Wget (http://www.gnu.org/software/wget/manual/html_node/Proxies.html).
TEX Live always uses GNU Wget to download. Of course, this should not matter if you are installing
from the DVD or ISO image.
The following sections explain installer start-up in more detail.

10 MAPS 48 karl berry

3 INSTALLATION 8

3.1.1 Unix

Below, > denotes the shell prompt; user input is bold. The script install-tl is a Perl script. The
simplest way to start it on a Unix-compatible system is as follows:

> perl /path/to/installer/install-tl

(Or you can invoke /path/to/installer/install-tl if it stayed executable, or cd to the directory
first, etc.; we won’t repeat all the variations.) You may have to enlarge your terminal window so that
it shows the full text installer screen (figure 2).

To install in expert GUI mode (figure 3), you’ll need the Perl::TK module compiled with XFT
support, which is generally the case with GNU/Linux, but often not so with other systems. Given that,
you can run:

> perl install-tl -gui

For a complete listing of the various options:

> perl install-tl -help

Warning about Unix permissions: Your umask at the time of installation will be respected by
the TEX Live installer. Therefore, if you want your installation to be usable by users other than you,
make sure your setting is sufficiently permissive, for instance, umask 002. For more information about
umask, consult your system documentation.

Special considerations for Cygwin: Unlike other Unix-compatible systems, Cygwin does not by
default include all of the prerequisite programs needed by the TEX Live installer. See Section 3.1.4.

3.1.2 MacOSX

As mentioned in section 2.1, a separate distribution is prepared for MacOSX, named MacTEX (http:
//tug.org/mactex). We recommend using the native MacTEX installer instead of the TEX Live installer
on MacOSX, because the native installer makes a few Mac-specific adjustments, in particular to allow
easily switching between the various TEX distributions for MacOSX (MacTEX, Fink, MacPorts, . . .)
using the so-called TEXDist data structure.

MacTEX is firmly based on TEX Live, and the main TEX trees and binaries are precisely the same.
It adds a few extra folders with Mac-specific documentation and applications.

3.1.3 Windows

If you are using the unpacked downloaded zip file, or the DVD installer failed to start automatically,
double-click install-tl-windows.bat. If you want more customization options, e.g., selection of
specific package collections, run install-tl-advanced.bat instead.

You can also start the installer from the command-prompt. Below, > denotes the prompt; user input
is bold. If you are in the installer directory, run just:

> install-tl-windows

Or you can invoke it with an absolute location, such as:

> D:\texlive\install-tl-windows

for the TEX Collection DVD, supposing that D: is the optical drive. Figure 4 displays the wizard
installer, which is the default for Windows.

To install in text mode, use:

> install-tl-windows -no-gui

For a complete listing of the various options:

> install-tl-windows -help

tex live guide VOORJAAR 2018 11

3 INSTALLATION 9

Installing TeX Live 2018 from: ...
Platform: x86_64-linux => ’GNU/Linux on x86_64’
Distribution: inst (compressed)
Directory for temporary files: /tmp
...
Detected platform: GNU/Linux on Intel x86_64

 binary platforms: 1 out of 19

<S> set installation scheme (scheme-full)

<C> customizing installation collections
40 collections out of 41, disk space required: 5328 MB

<D> directories:
TEXDIR (the main TeX directory):

/usr/local/texlive/2018
...

<O> options:
[] use letter size instead of A4 by default
...

<V> set up for portable installation

Actions:
<I> start installation to hard disk
<P> save installation profile to ’texlive.profile’ and exit
<H> help
<Q> quit

Figure 2: Main text installer screen (GNU/Linux)

3.1.4 Cygwin

Before beginning the installation, use Cygwin’s setup.exe program to install the perl and wget pack-
ages if you have not already done so. The following additional packages are recommended:

• fontconfig [needed by XeTEX and LuaTEX]
• ghostscript [needed by various utilities]
• libXaw7 [needed by xdvi]
• ncurses [provides the clear command used by the installer]

3.1.5 The text installer

Figure 2 displays the main text mode screen under Unix. The text installer is the default on Unix.
This is only a command-line installer; there is no cursor support at all. For instance, you cannot tab

around checkboxes or input fields. You just type something (case-sensitive) at the prompt and press
the Enter key, and then the entire terminal screen will be rewritten, with adjusted content.

The text installer interface is this primitive for a reason: it is designed to run on as many platforms
as possible, even with a very barebones Perl.

3.1.6 The expert graphical installer

Figure 3 displays the expert graphical installer under GNU/Linux. Other than using buttons and
menus, this does not differ much from the text installer.

This mode can be invoked explicitly with

> install-tl -gui=perltk

3.1.7 The simple wizard installer

Under Windows, the default is to run the simplest installation method we could devise, called the
“wizard” installer (figure 4). It installs everything and asks almost no questions. If you want to
customize your setup, you should run one of the other installers.

On other platforms, this mode can be invoked explicitly with

12 MAPS 48 karl berry

3 INSTALLATION 10

Figure 3: Expert GUI installer screen (GNU/Linux)

> install-tl -gui=wizard

3.2 Running the installer
The installer is intended to be mostly self-explanatory, but following are a few notes about the various
options and submenus.

3.2.1 Binary systems menu (Unix only)

Figure 5 displays the text mode binaries menu. By default, only the binaries for your current
platform will be installed. From this menu, you can select installation of binaries for other platforms
as well. This can be useful if you are sharing a TEX tree across a network of heterogeneous machines,
or for a dual-boot system.

3.2.2 Selecting what is to be installed

Figure 6 displays the TEX Live scheme menu; from here, you choose a “scheme”, which is an overall
set of package collections. The default full scheme installs everything available. This is recommended,
but you can also choose the basic scheme for a small system, minimal for testing purposes, and medium
or teTeX to get something in between. There are also various specialized and country-specific schemes.

You can refine your scheme selection with the ‘collections’ menu (figure 7, shown in GUI mode for
a change).

tex live guide VOORJAAR 2018 13

3 INSTALLATION 11

Figure 4: Wizard installer screen (Windows)

Available platforms:
===

a [] Cygwin on Intel x86 (i386-cygwin)
b [] Cygwin on x86_64 (x86_64-cygwin)
c [] MacOSX current (10.10-10.13) on x86_64 (x86_64-darwin)
d [] MacOSX legacy (10.6-10.10) on x86_64 (x86_64-darwinlegacy)
e [] FreeBSD on x86_64 (amd64-freebsd)
f [] FreeBSD on Intel x86 (i386-freebsd)
g [] GNU/Linux on ARM64 (aarch64-linux)
h [] GNU/Linux on ARM (armel-linux)
i [] GNU/Linux on ARMhf (armhf-linux)
j [] GNU/Linux on Intel x86 (i386-linux)
k [] GNU/Linux on PowerPC (powerpc-linux)
l [X] GNU/Linux on x86_64 (x86_64-linux)
m [] GNU/Linux on x86_64 with musl (x86_64-linuxmusl)
o [] NetBSD on x86_64 (amd64-netbsd)
p [] NetBSD on Intel x86 (i386-netbsd)
s [] Solaris on Intel x86 (i386-solaris)
t [] Solaris on Sparc (sparc-solaris)
u [] Solaris on x86_64 (x86_64-solaris)
v [] Windows (win32)

Figure 5: Binaries menu

Collections are one level more detailed than schemes— in essence, a scheme consists of several
collections, a collection consists of one or more packages, and a package (the lowest level grouping in
TEX Live) contains the actual TEX macro files, font files, and so on.

If you want more control than the collection menus provide, you can use the TEX Live Manager
(tlmgr) program after installation (see section 5); using that, you can control the installation at the
package level.

14 MAPS 48 karl berry

3 INSTALLATION 12

Select scheme:
===
a [X] full scheme (everything)
b [] medium scheme (small + more packages and languages)
c [] small scheme (basic + xetex, metapost, a few languages)
d [] basic scheme (plain and latex)
e [] minimal scheme (plain only)
f [] ConTeXt scheme
g [] GUST TeX Live scheme
h [] infrastructure-only scheme (no TeX at all)
i [] teTeX scheme (more than medium, but nowhere near full)
j [] custom selection of collections

Figure 6: Scheme menu

Figure 7: Collections menu

3.2.3 Directories

The default layout is described in section 2.3, p. 5. The default installation directory is /usr/local/
texlive/2018 on Unix and %SystemDrive%\texlive\2018 on Windows. This arrangement enables
having many parallel TEX Live installations, such as one for each release (typically by year, as here),
and you can switch between them merely by altering your search path.

That installation directory can be overridden by setting the so-called TEXDIR in the installer. The
GUI screen for this and other options is shown in figure 3. The most common reasons to change it
are either lacking enough disk space in that partition (the full TEX Live needs several gigabytes), or
lacking write permission for the default location (you don’t have to be root or administrator to install
TEX Live, but you do need write access to the target directory).

The installation directories can also be changed by setting a variety of environment variables
before running the installer (most likely, TEXLIVE_INSTALL_PREFIX or TEXLIVE_INSTALL_TEXDIR);
see the documentation from install-tl --help (available online at http://tug.org/texlive/doc/
install-tl.html) for the full list and more details.

A reasonable alternative destination is a directory under your home, especially if you will be the
sole user. Use ‘~’ to indicate this, as in ‘~/texlive/2018’.

We recommend including the year in the name, to enable keeping different releases of TEX Live
side by side. (You may wish to also maintain a version-independent name, such as /usr/local/
texlive-cur, via a symbolic link, which you can then repoint after testing the new release.)

Changing TEXDIR in the installer will also change TEXMFLOCAL, TEXMFSYSVAR and TEXMFSYSCONFIG.
TEXMFHOME is the recommended location for personal macro files or packages. The default value is

~/texmf (~/Library/texmf on Macs). In contrast to TEXDIR, here a ~ is preserved in the newly-written
configuration files, since it usefully refers to the home directory of the user running TEX. It expands
to $HOME on Unix and %USERPROFILE% on Windows. Special redundant note: TEXMFHOME, like all trees,
must be organized according to the TDS, or files may not be found.

TEXMFVAR is the location for storing most cached runtime data specific to each user. TEXMFCACHE is

tex live guide VOORJAAR 2018 15

3 INSTALLATION 13

the variable name used for that purpose by LuaLATEXand ConTEXt MkIV (see section 3.4.5, p. 16); its
default value is TEXMFSYSVAR, or (if that’s not writable), TEXMFVAR.

3.2.4 Options

Options customization:
===
<P> use letter size instead of A4 by default: []
<E> execution of restricted list of programs: [X]
<F> create all format files: [X]
<D> install font/macro doc tree: [X]
<S> install font/macro source tree: [X]
<L> create symlinks in standard directories: []

binaries to:
manpages to:

info to:
<Y> after installation, get package updates from CTAN: [X]

Figure 8: Options menu (Unix)

Figure 8 shows the text mode options menu. More info on each:

use letter size instead of A4 by default: The default paper size selection. Of course, individual
documents can and should specify a specific paper size, if desired.

execution of restricted list of programs: As of TEX Live 2010, execution of a few external pro-
grams is allowed by default. The (very short) list of allowed programs is given in the texmf.cnf.
See the 2010 news (section 9.1.7) for more details.

create format files: Although unnecessary format files take time to generate and disk space to store,
it is still recommended to leave this option checked: if you don’t, then format files will be generated
in people’s private TEXMFVAR tree as they are needed. In that location, they will not be updated
automatically if (say) binaries or hyphenation patterns are updated in the installation, and thus
you could end up with incompatible format files.

install font/macro . . . tree: Download/install the documentation and source files included in most
packages. Unchecking is not recommended.

create symlinks in standard directories: This option (Unix only) bypasses the need to change
environment variables. Without this option, TEX Live directories usually have to be added to
PATH, MANPATH and INFOPATH. You will need write permissions to the target directories. This
option is intended for accessing the TEX system through directories that are already known to
users, such as /usr/local/bin, which don’t already contain any TEX files. Do not overwrite
existing files on your system with this option, e.g., by specifying system directories. The safest
and recommended approach is to leave the option unchecked.

after installation . . . CTAN: When installing from DVD, this option is enabled by default, since
usually one wants to take any subsequent package updates from the CTAN area that is updated
throughout the year. The only likely reason to disable it is if you install only a subset from the
DVD and plan to augment the installation later. In any case, the package repository for the
installer, and for updates after installation, can be set independently as needed; see section 3.3.1
and section 3.4.3.

Windows-specific options, as displayed in the advanced Perl/Tk interface:

adjust PATH setting in registry This ensures that all programs will see the TEX Live binary di-
rectory on their search path.

add menu shortcuts If set, there will be a TEX Live submenu of the Start menu. There is a third
option ‘Launcher entry’ besides ‘TeX Live menu’ and ‘No shortcuts’. This option is described in
section 4.1.

change file associations The options are ‘Only new’ (create file associations, but do not overwrite
existing ones), ‘All’ and ‘None’.

16 MAPS 48 karl berry

3 INSTALLATION 14

install TEXworks front end

When all the settings are to your liking, you can type ‘I’ in the text interface, or press the ‘Install TeX
Live’ button in the Perl/Tk GUI, to start the installation process. When it is done, skip to section 3.4
to read what else needs to be done, if anything.

3.3 Command-line install-tl options
Type

> install-tl -help

for a listing of command-line options. Either - or -- can be used to introduce option names. These are
the most common ones:

-gui If possible, use the GUI installer. This requires the Perl/Tk module (http://tug.org/texlive/
distro.html#perltk) compiled with XFT support; if Perl/Tk is not available, installation con-
tinues in text mode.

-no-gui Force using the text mode installer, even under Windows.
-lang LL Specify the installer interface language as a standard (usually two-letter) code. The installer

tries to automatically determine the right language but if it fails, or if the right language is not
available, then it uses English as a fallback. Run install-tl --help to get the list of available
languages.

-portable Install for portable use on, e.g., a USB stick. Also selectable from within the text installer
with the V command, and from the GUI installer. See section 4.2.

-profile file Load the installation profile file and do the installation with no user interaction. The
installer always writes a file texlive.profile to the tlpkg subdirectory of your installation.
That file can be given as the argument to redo the exact same installation on a different system,
for example. Alternatively, you can use a custom profile, most easily created by starting from a
generated one and changing values, or an empty file, which will take all the defaults.

-repository url-or-directory Specify package repository from which to install; see following.
-in-place (Documented only for completeness: Do not use this unless you know what you are doing.)

If you already have an rsync, svn, or other copy of TEX Live (see http://tug.org/texlive/
acquire-mirror.html) then this option will use what you’ve got, as-is, and do only the necessary
post-install. Be warned that the file tlpkg/texlive.tlpdb may be overwritten; saving it is your
responsibility. Also, package removal has to be done manually. This option cannot be toggled via
the installer interface.

3.3.1 The -repository option

The default network package repository is a CTAN mirror chosen automatically via http://mirror.
ctan.org.

If you want to override that, the location value can be a url starting with ftp:, http:, or file:/,
or a plain directory path. (When giving an http: or ftp: location, trailing ‘/’ characters and/or a
trailing ‘/tlpkg’ component are ignored.)

For example, you could choose a particular CTAN mirror with something like: http://ctan.
example.org/tex-archive/systems/texlive/tlnet/, substituting a real hostname and its particular
top-level CTAN path for ctan.example.org/tex-archive. The list of CTAN mirrors is maintained at
http://ctan.org/mirrors.

If the given argument is local (either a path or a file:/ url), compressed files in an archive
subdirectory of the repository path are used (even if uncompressed files are available as well).

3.4 Post-install actions
Some post-installation may be required.

tex live guide VOORJAAR 2018 17

3 INSTALLATION 15

3.4.1 Environment variables for Unix

If you elected to create symlinks in standard directories (described in section 3.2.4), then there is no
need to edit environment variables. Otherwise, on Unix systems, the directory of the binaries for your
platform must be added to the search path. (On Windows, the installer takes care of this.)

Each supported platform has its own subdirectory under TEXDIR/bin. See figure 5 for the list of
subdirectories and corresponding platforms.

Optionally, you can also add the documentation man and Info directories to their respective search
paths, if you want the system tools to find them. The man pages might be found automatically after
the addition to PATH.

For Bourne-compatible shells such as bash, and using Intel x86 GNU/Linux and a default directory
setup as an example, the file to edit might be $HOME/.profile (or another file sourced by .profile,
and the lines to add would look like this:

PATH=/usr/local/texlive/2018/bin/i386-linux:$PATH; export PATH
MANPATH=/usr/local/texlive/2018/texmf-dist/doc/man:$MANPATH; export MANPATH
INFOPATH=/usr/local/texlive/2018/texmf-dist/doc/info:$INFOPATH; export INFOPATH

For csh or tcsh, the file to edit is typically $HOME/.cshrc, and the lines to add might look like:

setenv PATH /usr/local/texlive/2018/bin/i386-linux:$PATH
setenv MANPATH /usr/local/texlive/2018/texmf-dist/doc/man:$MANPATH
setenv INFOPATH /usr/local/texlive/2018/texmf-dist/doc/info:$INFOPATH

If you already have settings somewhere in your “dot” files, naturally the TEX Live directories should
be merged in as appropriate.

3.4.2 Environment variables: Global configuration

If you want to make these changes globally, or for a user newly added to the system, then you are
on your own; there is just too much variation between systems in how and where these things are
configured.

Our two hints are: 1) you may want to check for a file /etc/manpath.config and, if present, add
lines such as

MANPATH_MAP /usr/local/texlive/2018/bin/i386-linux \
/usr/local/texlive/2018/texmf-dist/doc/man

And 2) check for a file /etc/environment which may define the search path and other default
environment variables.

In each (Unix) binary directory, we also create a symbolic link named man to the directory
texmf-dist/doc/man. Some man programs, such as the standard MacOSX man, will automatically
find that, obviating the need for any man page setup.

3.4.3 Internet updates after DVD installation

If you installed TEX Live from DVD and then wish to get updates from the Internet, you need to run
this command—after you’ve updated your search path (as described in the previous section):

> tlmgr option repository http://mirror.ctan.org/systems/texlive/tlnet

This tells tlmgr to use a nearby CTAN mirror for future updates. This is done by default when
installing from DVD, via the option described in section 3.2.4.

If there are problems with the automatic mirror selection, you can specify a particular CTAN mirror
from the list at http://ctan.org/mirrors. Use the exact path to the tlnet subdir on that mirror, as
shown above.

3.4.4 System font configuration for XeTEX and LuaTEX

XeTEX and LuaTEX can use any font installed on the system, not just those in the TEX trees. They do
these via related but not identical methods.

On Windows, fonts shipped with TEX Live are automatically made available to XeTEX by font
name. On MacOSX, supporting font name lookups requires additional steps; please see the MacTEX

18 MAPS 48 karl berry

3 INSTALLATION 16

web pages (http://tug.org/mactex). For other Unix systems, the procedure to be able to find the
fonts shipped with TEX Live via font name follows.

To facilitate this, when the xetex package is installed (either at initial installation or later), the
necessary configuration file is created in TEXMFSYSVAR/fonts/conf/texlive-fontconfig.conf.

To set up the TEX Live fonts for system-wide use (assuming you have suitable privileges), proceed
as follows:

1. Copy the texlive-fontconfig.conf file to /etc/fonts/conf.d/09-texlive.conf.
2. Run fc-cache -fsv.

If you do not have sufficient privileges to carry out the steps above, or if you want to make the TEX
Live fonts available to only one user, you can do the following:

1. Copy the texlive-fontconfig.conf file to ~/.fonts.conf, where ~ is your home directory.
2. Run fc-cache -fv.

You can run fc-list to see the names of the system fonts. The incantation fc-list : family
style file spacing (all arguments are literal strings) shows some generally interesting information.

3.4.5 ConTEXt Mark IV

Both the ‘old’ ConTEXt (Mark II) and the ‘new’ ConTEXt (Mark IV) should run out of the box after
TEX Live installation, and should need no special attention as long as you stick to using tlmgr for
updates.

However, because ConTEXt MkIV does not use the kpathsea library, some setup will be required
whenever you install new files manually (without using tlmgr). After each such installation, each MkIV
user must run:

context --generate

to refresh the ConTEXt disk cache data. The resulting files are stored under TEXMFCACHE, whose default
value in TEX Live is TEXMFSYSVAR;TEXMFVAR.

ConTEXt MkIV will read from all paths mentioned in TEXMFCACHE, and write to the first path that
is writable. While reading, the last found match will take precedence in the case of duplicated cache
data.

For more information, see http://wiki.contextgarden.net/Running_Mark_IV.

3.4.6 Integrating local and personal macros

This is already mentioned implicitly in section 2.3: TEXMFLOCAL (by default, /usr/local/texlive/
texmf-local or %SystemDrive%\texlive\texmf-local on Windows) is intended for system-wide local
fonts and macros; and TEXMFHOME (by default, $HOME/texmf or %USERPROFILE%\texmf), is for personal
fonts and macros. These directories are intended to stick around from release to release, and have their
content seen automatically by a new TEX Live release. Therefore, it is best to refrain from changing
the definition of TEXMFLOCAL to be too far away from the main TEX Live directory, or you will need to
manually change future releases.

For both trees, files should be placed in their proper TEX Directory Structure (TDS) subdirectories;
see http://tug.org/tds or consult texmf-dist/web2c/texmf.cnf. For instance, a LATEX class file
or package should be placed in TEXMFLOCAL/tex/latex or TEXMFHOME/tex/latex, or a subdirectory
thereof.

TEXMFLOCAL requires an up-to-date filename database, or files will not be found. You can update it
with the command mktexlsr or use the ‘Reinit file database’ button on the configuration tab of the TEX
Live Manager GUI.

By default, each of these variables is defined to be a single directory, as shown. This is not a hard-
and-fast requirement. If you need to easily switch back and forth between different versions of large
packages, for example, you can maintain multiple trees for your own purposes. This is done by setting
TEXMFHOME to the list of directories, within braces, separated by commas:

TEXMFHOME = {/my/dir1,/mydir2,/a/third/dir}

Section 7.1.5 describes brace expansion further.

tex live guide VOORJAAR 2018 19

3 INSTALLATION 17

3.4.7 Integrating third-party fonts

This is unfortunately a messy topic. Forget about it unless you want to delve into many details of the
TEX installation. Many fonts are included in TEX Live already, so take a look if you don’t already know
that what you want isn’t there.

A possible alternative is to use XeTEX or LuaTEX (see section 2.4), which let you use operating
system fonts without any installation in TEX.

If you do need to do this, see http://tug.org/fonts/fontinstall.html for our best effort at
describing the procedure.

3.5 Testing the installation
After installing TEX Live, you naturally want to test it out, so you can start creating beautiful documents
and/or fonts.

One thing you may immediately be looking for is a front-end with which to edit files. TEX Live
installs TEXworks (http://tug.org/texworks) on Windows (only), and MacTEX installs TeXShop
(http://pages.uoregon.edu/koch/texshop. On other Unix systems, it’s left up to you to choose
an editor. There are many choices available, some of which are listed in the next section; see also
http://tug.org/interest.html#editors. Any plain text editor will work; something TEX-specific is
not required.

The rest of this section gives some basic procedures for testing that the new system is functional. We
give Unix commands here; under MacOSX and Windows, you’re more likely to run the tests through
a graphical interface, but the principles are the same.

1. Make sure that you can run the tex program in the first place:

> tex --version
TeX 3.14159265 (TeX Live ...)
Copyright ... D.E. Knuth.
...

If this comes back with ‘command not found’ instead of version and copyright information, or
with an older version, most likely you don’t have the correct bin subdirectory in your PATH. See
the environment-setting information on p. 15.

2. Process a basic LATEX file:

> latex sample2e.tex
This is pdfTeX 3.14...
...
Output written on sample2e.dvi (3 pages, 7484 bytes).
Transcript written on sample2e.log.

If this fails to find sample2e.tex or other files, most likely you have interference from old en-
vironment variables or configuration files; we recommend unsetting all TEX-related environment
variables for a start. (For a deep analysis, you can ask TEX to report on exactly what it is
searching for, and finding; see “Debugging actions” on page 30.)

3. Preview the result online:

> xdvi sample2e.dvi # Unix
> dviout sample2e.dvi # Windows

You should see a new window with a nice document explaining some of the basics of LATEX. (Well
worth reading, by the way, if you’re new to TEX.) You do have to be running under X for xdvi
to work; if you’re not, or your DISPLAY environment variable is set incorrectly, you’ll get an error
‘Can’t open display’.

4. Create a PostScript file for printing or display:

> dvips sample2e.dvi -o sample2e.ps

20 MAPS 48 karl berry

3 INSTALLATION 18

5. Create a PDF file instead of DVI; this processes the .tex file and writes PDF directly:

> pdflatex sample2e.tex

6. Preview the PDF file:

> gv sample2e.pdf
or:
> xpdf sample2e.pdf

Neither gv nor xpdf are included in TEX Live, so you must install them separately. See http://
www.gnu.org/software/gv and http://www.foolabs.com/xpdf, respectively. There are plenty
of other PDF viewers, too. For Windows, we recommend trying Sumatra PDF (https://www.
sumatrapdfreader.org/free-pdf-reader.html).

7. Standard test files you may find useful in addition to sample2e.tex:

small2e.tex A simpler document than sample2e, to reduce the input size if you’re having
troubles.

testpage.tex Test if your printer introduces any offsets.
nfssfont.tex For printing font tables and tests.
testfont.tex Also for font tables, but using plain TEX.
story.tex The most canonical (plain) TEX test file of all. You must type ‘\bye’ to the * prompt

after ‘tex story.tex’.

8. If you have installed the xetex package, you can test its access to system fonts as follows:

> xetex opentype-info.tex
This is XeTeX, Version 3.14...
...
Output written on opentype-info.pdf (1 page).
Transcript written on opentype-info.log.

If you get an error message saying “Invalid fontname ‘Latin Modern Roman/ICU’. . . ”, then you
need to configure your system so that the fonts shipped with TEX Live can be found. See Sec-
tion 3.4.4.

3.6 Links for additional downloadable software
If you are new to TEX, or otherwise need help with actually writing TEX or LATEX documents, please
visit http://tug.org/begin.html for some introductory resources.

Links for some other tools you may consider installing:

Ghostscript https://ghostscript.com/

Perl http://www.perl.org/ with supplementary packages from CPAN, http://www.cpan.org/

ImageMagick http://www.imagemagick.com, for graphics processing and conversion

NetPBM http://netpbm.sourceforge.net/, also for graphics.

TEX-oriented editors There is a wide choice, and it is a matter of the user’s taste. Here is a selection
in alphabetical order (a few here are for Windows only).

• GNU Emacs is also available natively under Windows, see http://www.gnu.org/software/
emacs/emacs.html.

• Emacs with AucTEX for Windows is available from CTAN. The AuCTEX home page is http:
//www.gnu.org/software/auctex.

• SciTE is available from http://www.scintilla.org/SciTE.html.
• Texmaker is free software, available from http://www.xm1math.net/texmaker.
• TeXstudio started out as a fork of Texmaker with additional features; http://texstudio.

org/.

tex live guide VOORJAAR 2018 21

4 SPECIALIZED INSTALLATIONS 19

• TeXnicCenter is free software, available from http://www.texniccenter.org and in the
proTEXt distribution.

• TeXworks is free software, available from http://tug.org/texworks and installed as part of
TEX Live for Windows (only).

• Vim is free software, available from http://www.vim.org.
• WinEdt is shareware available though http://tug.org/winedt or http://www.winedt.com.
• WinShell is available from http://www.winshell.de.

For a much longer list of packages and programs, see http://tug.org/interest.html.

4 Specialized installations
The previous sections described the basic installation process. Here we turn to some specialized cases.

4.1 Shared-user (or cross-machine) installations
TEX Live has been designed to be shared between different systems on a network. With a standard
directory layout, no hard paths are configured: the locations for files needed by TEX Live programs are
found relative to the programs. You can see this in the principal configuration file $TEXMFDIST/web2c/
texmf.cnf, which contains lines such as

TEXMFROOT = $SELFAUTOPARENT
...
TEXMFDIST = $TEXMFROOT/texmf-dist
...
TEXMFLOCAL = $SELFAUTOGRANDPARENT/texmf-local

This means that adding the directory for TEX Live executables for their platform to their search path
is sufficient to get a working setup.

By the same token, you can also install TEX Live locally and then move the entire hierarchy after-
wards to a network location.

For Windows, TEX Live includes a launcher tlaunch. Its main window contains menu entries
and buttons for various TEX-related programs and documentation, customizable via an ini file. On
first use, it replicates the usual Windows-specific post-install, i.e., search path modification and file
associations, but only for the current user. Therefore, workstations with access to TEX Live on the
local network only need a menu shortcut for the launcher. See the tlaunch manual (texdoc tlaunch,
or https://ctan.org/pkg/tlaunch).

4.2 Portable (USB) installations
The -portable installer option (or V command in the text installer or corresponding GUI option) creates
a completely self-contained TEX Live installation under a common root and forgoes system integration.
You can create such an installation directly on a USB stick, or copy it to a USB stick afterwards.

To run TEX using this portable installation, you need to add the appropriate binary directory to
the search path during your terminal session, as usual.

On Windows, you can double-click tl-tray-menu at the root of the installation and create a tem-
porary ‘tray menu’ offering a choice of a few common tasks, as shown in this screenshot:

The ‘More. . . ’ entry explains how you can customize this menu.

22 MAPS 48 karl berry

5 TLMGR: MANAGING YOUR INSTALLATION 20

Figure 9: tlmgr in GUI mode: main window, after ‘Load’.

5 tlmgr: Managing your installation
TEX Live includes a program named tlmgr for managing TEX Live after the initial installation. Its
capabilities include:

• installing, updating, backing up, restoring, and uninstalling individual packages, optionally taking
dependencies into account;

• searching for and listing packages and their descriptions;
• listing, adding, and removing platforms;
• changing installation options such as paper size and source location (see section 3.3.1).

tlmgr’s functionality completely subsumes the texconfig program. We still distribute and maintain
texconfig for the sake of anyone used to its interface, but we recommend using tlmgr nowadays.

5.1 tlmgr GUI mode
tlmgr can be started in GUI mode (figure 9) with

> tlmgr -gui

tex live guide VOORJAAR 2018 23

5 TLMGR: MANAGING YOUR INSTALLATION 21

Figure 10: tlmgr in GUI mode: General options

Figure 11: tlmgr in GUI mode: Paper
size options

or in Windows via the Start menu: Start, Programs, TeX Live ..., TeX Live Manager. After clicking
‘Load’ it displays a list of available and installed packages. This assumes of course that the installation
source is valid and reachable.

Figures 10 and 11 show the general and paper size option screens.

5.2 Other GUI interfaces for tlmgr
Besides the tlmgr -gui mode described just above, two other GUI programs use tlmgr as a backend:
tlshell (written in Tcl/Tk) and tlcockpit (written in Java). They are included as separate packages.

5.3 Sample tlmgr command-line invocations
After the initial installation, you can update your system to the latest versions available with:

> tlmgr update -all

If this makes you nervous, first try

> tlmgr update -all -dry-run

or (less verbose):

> tlmgr update -list

This more complex example adds a collection, for the engine XeTEX, from a local directory:

> tlmgr -repository /local/mirror/tlnet install collection-xetex

It generates the following output (abridged):

install: collection-xetex
install: arabxetex
...
install: xetex
install: xetexconfig
install: xetex.i386-linux
running post install action for xetex
install: xetex-def
...
running mktexlsr
mktexlsr: Updating /usr/local/texlive/2018/texmf-dist/ls-R...
...

24 MAPS 48 karl berry

6 NOTES ON WINDOWS 22

running fmtutil-sys --missing
...
Transcript written on xelatex.log.
fmtutil: /usr/local/texlive/2018/texmf-var/web2c/xetex/xelatex.fmt installed.

As you can see, tlmgr installs dependencies, and takes care of any necessary post-install actions,
including updating the filename database and (re)generating formats. In the above, we generated new
formats for XeTEX.

To describe a package (or collection or scheme):

> tlmgr show collection-latexextra

which produces output like this:

package: collection-latexextra
category: Collection
shortdesc: LaTeX supplementary packages
longdesc: A very large collection of add-on packages for LaTeX.
installed: Yes
revision: 46963
sizes: 657941k

Last and most important, for full documentation see http://tug.org/texlive/tlmgr.html, or:

> tlmgr -help

6 Notes on Windows
6.1 Windows-specific features
Under Windows, the installer does some extra things:

Menus and shortcuts. A new ‘TEX Live’ submenu of the Start menu is installed, which contains
entries for some GUI programs (tlmgr, texdoctk, the PS_View (psv) PostScript previewer) and
some documentation.

File associations. If enabled, TeXworks, Dviout and PS_view become either the default program for
their respective filetypes, or get an entry in the ‘Open with’ right-click menus of those filetypes.

Bitmap to eps converter. Various bitmapped formats get an entry bitmap2eps in their ‘Open with’
right-click menu. Bitmap2eps is a simple script which lets sam2p or bmeps do the real work.

Automatic path adjustment. No manual configuration steps are required.

Uninstaller. The installer creates an entry under ‘Add/Remove Programs’ for TEX Live. The uninstall
tab of the TEX Live Manager GUI refers to this. For a single-user install, the installer also creates
an uninstall entry under the Start menu.

Write-protect. For an admin install, the TEX Live directories are write-protected, at least if TEX Live
is installed on a normal NTFS-formatted non-removable disk.

Also, have a look at tlaunch, described in section 4.1, for a different approach.

6.2 Additional software included on Windows
To be complete, a TEX Live installation needs support packages that are not commonly found on a
Windows machine. TEX Live provides the missing pieces. These programs are all installed as part of
TEX Live only on Windows.

Perl and Ghostscript. Because of the importance of Perl and Ghostscript, TEX Live includes ‘hidden’
copies of these programs. TEX Live programs that need them know where to find them, but they
don’t betray their presence through environment variables or registry settings. They aren’t full-
scale installations, and shouldn’t interfere with any system installations of Perl or Ghostscript.

PS_View. Also installed is PS_View, a PostScript and PDF viewer; see figure 12.

tex live guide VOORJAAR 2018 25

6 NOTES ON WINDOWS 23

Figure 12: PS_View: very high magnifications available!

dviout. Also installed is dviout, a DVI viewer. At first, when you preview files with dviout, it will
create fonts, because screen fonts were not installed. After a while, you will have created most
of the fonts you use, and you will rarely see the font-creation window. More information can be
found in the (highly recommended) on-line help.

TEXworks. TEXworks is a TEX-oriented editor with an integrated PDF viewer.

Command-line tools. A number of Windows ports of common Unix command-line programs are
installed along with the usual TEX Live binaries. These include gzip, zip, unzip, and the utilities
from the xpdf suite (pdfinfo, pdffonts, . . .). The xpdf viewer itself is not available for Windows. One
alternative among many is the Sumatra PDF viewer, available from https://sumatrapdfreader.
org/.

fc-list, fc-cache, . . . The tools from the fontconfig library allow XeTEX to handle system fonts on
Windows. You can use fc-list to determine the font names to pass to XeTEX’s extended \font
command. If necessary, run fc-cache first to update font information.

6.3 User Profile is Home
The Windows counterpart of a Unix home directory is the %USERPROFILE% directory. Under Windows
Vista and later it is C:\Users\<username>. In the texmf.cnf file, and Kpathsea in general, ~ will
expand appropriately on both Windows and Unix.

6.4 The Windows registry
Windows stores nearly all configuration data in its registry. The registry contains a set of hierarchically
organized keys, with several root keys. The most important ones for installation programs are HKEY_
CURRENT_USER and HKEY_LOCAL_MACHINE, HKCU and HKLM in short. The HKCU part of the registry is in
the user’s home directory (see section 6.3). HKLM is normally in a subdirectory of the Windows directory.

In some cases, system information could be obtained from environment variables but for other
information, for example the location of shortcuts, it is necessary to consult the registry. Setting
environment variables permanently also requires registry access.

6.5 Windows permissions
In later versions of Windows, a distinction is made between regular users and administrators, where
only the latter have free access to the entire operating system. We have made an effort to make TEX
Live installable without administrative privileges.

26 MAPS 48 karl berry

7 A USER’S GUIDE TO WEB2C 24

If the installer is started with administrative permissions, there is an option to install for all users.
If this option is chosen, shortcuts are created for all users, and the system search path is modified.
Otherwise, shortcuts and menu entries are created for the current user, and the user search path is
modified.

Regardless of administrator status, the default root of TEX Live proposed by the installer is always
under %SystemDrive%. The installer always tests whether the root is writable for the current user.

A problem may arise if the user is not an administrator and TEX already exists in the search path.
Since the effective search path consists of the system search path followed by the user search path,
the new TEX Live would never get precedence. As a safeguard, the installer creates a shortcut to
the command-prompt in which the new TEX Live binary directory is prepended to the local search
path. The new TEX Live will be always usable from within such a command-prompt. The shortcut for
TEXworks, if installed, also prepends TEX Live to the search path, so it should also be immune to this
path problem.

You should be aware that even if you are logged in as administrator, you need to explicitly ask
for administrator privileges. In fact, there is not much point in logging in as administrator. Instead,
right-clicking on the program or shortcut that you want to run usually gives you a choice ‘Run as
administrator’.

6.6 Increasing maximum memory on Windows and Cygwin
Windows and Cygwin (see section 3.1.4 for Cygwin installation specifics) users may find that they run
out of memory when running some of the programs shipped with TEX Live. For example, asy might
run out of memory if you try to allocate an array of 25,000,000 reals, and LuaTEX might run out of
memory if you try to process a document with a lot of big fonts.

For Cygwin, you can increase the amount of available memory by following the instructions in the
Cygwin User’s Guide (http://www.cygwin.com/cygwin-ug-net/setup-maxmem.html).

For Windows, you have to create a file, say moremem.reg, with these four lines:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\Software\Cygwin]
"heap_chunk_in_mb"=dword:ffffff00

and then execute the command regedit /s moremem.reg as administrator. (If you want to change
memory only for the current user instead of system-wide, use HKEY_CURRENT_USER.)

7 A user’s guide to Web2C
Web2C is an integrated collection of TEX-related programs: TEX itself, METAFONT, MetaPost, BibTEX,
etc. It is the heart of TEX Live. The home page for Web2C, with the current manual and more, is
http://tug.org/web2c.

A bit of history: The original implementation was by Tomas Rokicki who, in 1987, developed a first
TEX-to-C system based on change files under Unix, which were primarily the original work of Howard
Trickey and Pavel Curtis. Tim Morgan became the maintainer of the system, and during this period the
name changed to Web-to-C. In 1990, Karl Berry took over the work, assisted by dozens of additional
contributors, and in 1997 he handed the baton to Olaf Weber, who returned it to Karl in 2006.

The Web2C system runs on Unix, 32-bit Windows systems, MacOSX, and other operating sys-
tems. It uses Knuth’s original sources for TEX and other basic programs written in the WEB literate
programming system and translates them into C source code. The core TEX programs handled in this
way are:

bibtex Maintaining bibliographies.
dvicopy Expands virtual font references in DVI files.
dvitomp DVI to MPX (MetaPost pictures).
dvitype DVI to human-readable text.
gftodvi Generic font proofsheets.
gftopk Generic to packed fonts.
gftype GF to human-readable text.

tex live guide VOORJAAR 2018 27

7 A USER’S GUIDE TO WEB2C 25

mf Creating typeface families.
mft Prettyprinting METAFONT source.
mpost Creating technical diagrams.
patgen Creating hyphenation patterns.
pktogf Packed to generic fonts.
pktype PK to human-readable text.
pltotf Plain text property list to TFM.
pooltype Display WEB pool files.
tangle WEB to Pascal.
tex Typesetting.
tftopl TFM to plain text property list.
vftovp Virtual font to virtual property list.
vptovf Virtual property list to virtual font.
weave WEB to TEX.

The precise functions and syntax of these programs are described in the documentation of the individual
packages and of Web2C itself. However, knowing a few principles governing the whole family of programs
will help you take advantage of your Web2C installation.

All programs honor these standard GNU options:

--help print basic usage summary.
--verbose print detailed progress report.
--version print version information, then exit.

For locating files the Web2C programs use the path searching library Kpathsea (http://tug.org/
kpathsea). This library uses a combination of environment variables and configuration files to optimize
searching the (huge) collection of TEX files. Web2C can look at many directory trees simultaneously,
which is useful in maintaining TEX’s standard distribution and local and personal extensions in distinct
trees. To speed up file searches, the root of each tree has a file ls-R, containing an entry showing the
name and relative pathname for all files under that root.

7.1 Kpathsea path searching
Let us first describe the generic path searching mechanism of the Kpathsea library.

We call a search path a colon- or semicolon-separated list of path elements, which are basically
directory names. A search path can come from (a combination of) many sources. To look up a file
‘my-file’ along a path ‘.:/dir’, Kpathsea checks each element of the path in turn: first ./my-file,
then /dir/my-file, returning the first match (or possibly all matches).

In order to adapt optimally to all operating systems’ conventions, on non-Unix systems Kpathsea
can use filename separators different from colon (‘:’) and slash (‘/’).

To check a particular path element p, Kpathsea first checks if a prebuilt database (see “Filename
database” on page 28) applies to p, i.e., if the database is in a directory that is a prefix of p. If so, the
path specification is matched against the contents of the database.

Although the simplest and most common path element is a directory name, Kpathsea supports
additional features in search paths: layered default values, environment variable names, config file values,
users’ home directories, and recursive subdirectory searching. Thus, we say that Kpathsea expands a
path element, meaning it transforms all the specifications into basic directory name or names. This is
described in the following sections in the same order as it takes place.

Note that if the filename being searched for is absolute or explicitly relative, i.e., starts with ‘/’ or
‘./’ or ‘../’, Kpathsea simply checks if that file exists.

28 MAPS 48 karl berry

7 A USER’S GUIDE TO WEB2C 26

7.1.1 Path sources

A search path can come from many sources. In the order in which Kpathsea uses them:

1. A user-set environment variable, for instance, TEXINPUTS. Environment variables with a period
and a program name appended override; e.g., if ‘latex’ is the name of the program being run,
then TEXINPUTS.latex will override TEXINPUTS.

2. A program-specific configuration file, for example, a line ‘S /a:/b’ in dvips’s config.ps.

3. A Kpathsea configuration file texmf.cnf, containing a line like ‘TEXINPUTS=/c:/d’ (see below).

4. The compile-time default.

You can see each of these values for a given search path by using the debugging options (see “Debugging
actions” on page 30).

7.1.2 Config files

Kpathsea reads runtime configuration files named texmf.cnf for search path and other definitions. The
search path used to look for these files is named TEXMFCNF, but we do not recommend setting this (or
any) environment variable.

Instead, normal installation results in a file .../2018/texmf.cnf. If you must make changes to
the defaults (not normally necessary), this is the place to put them. The main configuration file is in
.../2018/texmf-dist/web2c/texmf.cnf. You should not edit this latter file, as your changes will be
lost when the distributed version is updated.

All texmf.cnf files in the search path will be read and definitions in earlier files override those in
later files. For example, with a search path of .:$TEXMF, values from ./texmf.cnf override those from
$TEXMF/texmf.cnf.

• Comments start with % and continue to the end of the line.
• Blank lines are ignored.
• A \ at the end of a line acts as a continuation character, i.e., the next line is appended. Whitespace

at the beginning of continuation lines is not ignored.
• Each remaining line has the form:

variable[.progname] [=] value

where the ‘=’ and surrounding whitespace are optional.
• The variable name may contain any character other than whitespace, ‘=’, or ‘.’, but sticking to

‘A-Za-z_’ is safest.
• If ‘.progname’ is present, the definition only applies if the program that is running is named

progname or progname.exe. This allows different flavors of TEX to have different search paths,
for example.

• value may contain any characters except % and ‘@’. The $var.prog feature is not available on the
right-hand side; instead, you must use an additional variable. A ‘;’ in value is translated to ‘:’ if
running under Unix; this is useful to be able to have a single texmf.cnf for Unix, MS-DOS and
Windows systems.

• All definitions are read before anything is expanded, so variables can be referenced before they
are defined.

A configuration file fragment illustrating most of these points is shown below:

TEXMF = {$TEXMFLOCAL,!!$TEXMFMAIN}
TEXINPUTS.latex = .;$TEXMF/tex/{latex,generic;}//
TEXINPUTS.fontinst = .;$TEXMF/tex//;$TEXMF/fonts/afm//
% e-TeX related files
TEXINPUTS.elatex = .;$TEXMF/{etex,tex}/{latex,generic;}//
TEXINPUTS.etex = .;$TEXMF/{etex,tex}/{eplain,plain,generic;}//

7.1.3 Path expansion

Kpathsea recognizes certain special characters and constructions in search paths, similar to those avail-
able in Unix shells. As a general example, the complex path, ~$USER/{foo,bar}//baz, expands to all
subdirectories under directories foo and bar in $USER’s home directory that contain a directory or file
baz. These expansions are explained in the sections below.

tex live guide VOORJAAR 2018 29

7 A USER’S GUIDE TO WEB2C 27

7.1.4 Default expansion

If the highest-priority search path (see “Path sources” on page 26) contains an extra colon (i.e., leading,
trailing, or doubled), Kpathsea inserts at that point the next-highest-priority search path that is defined.
If that inserted path has an extra colon, the same happens with the next highest. For example, given
an environment variable setting

> setenv TEXINPUTS /home/karl:

and a TEXINPUTS value from texmf.cnf of

.:$TEXMF//tex

then the final value used for searching will be:

/home/karl:.:$TEXMF//tex

Since it would be useless to insert the default value in more than one place, Kpathsea changes only
one extra ‘:’ and leaves any others in place. It checks first for a leading ‘:’, then a trailing ‘:’, then a
doubled ‘:’.

7.1.5 Brace expansion

A useful feature is brace expansion, which means that, for instance, v{a,b}w expands to vaw:vbw.
Nesting is allowed. This is used to implement multiple TEX hierarchies, by assigning a brace list to
$TEXMF. For example, in texmf.cnf, a definition like this (simplified for this example) is made:

TEXMF = {$TEXMFVAR,$TEXMFHOME,!!$TEXMFLOCAL,!!$TEXMFDIST}

We can then use this to define, for example, the TEX input path:

TEXINPUTS = .;$TEXMF/tex//

which means that, after looking in the current directory, the $TEXMFVAR/tex, $TEXMFHOME/tex,
$TEXMFLOCAL/tex and $TEXMFDIST/tex trees only) will be searched (the last two using ls-R data
base files). It is a convenient way for running two parallel TEX structures, one “frozen” (on a CD, for
instance) and the other being continuously updated with new versions as they become available. By
using the $TEXMF variable in all definitions, one is sure to always search the up-to-date tree first.

7.1.6 Subdirectory expansion

Two or more consecutive slashes in a path element following a directory d is replaced by all subdirectories
of d: first those subdirectories directly under d, then the subsubdirectories under those, and so on. At
each level, the order in which the directories are searched is unspecified.

If you specify any filename components after the ‘//’, only subdirectories with matching components
are included. For example, ‘/a//b’ expands into directories /a/1/b, /a/2/b, /a/1/1/b, and so on, but
not /a/b/c or /a/1.

Multiple ‘//’ constructs in a path are possible, but ‘//’ at the beginning of a path is ignored.

7.1.7 List of special characters and their meaning: a summary

The following list summarizes the special characters in Kpathsea configuration files.

: Separator in path specification; at the beginning or the end of a path it substitutes the default
path expansion.

; Separator on non-Unix systems (acts like :).
$ Variable expansion.
~ Represents the user’s home directory.
{...} Brace expansion.
// Subdirectory expansion (can occur anywhere in a path, except at its beginning).
% Start of comment.
\ Continuation character (allows multi-line entries).
!! Search only database to locate file, do not search the disk.

30 MAPS 48 karl berry

7 A USER’S GUIDE TO WEB2C 28

7.2 Filename databases
Kpathsea goes to some lengths to minimize disk accesses for searches. Nevertheless, at installations with
enough directories, searching each possible directory for a given file can take an excessively long time
(this is especially true if many hundreds of font directories have to be traversed.) Therefore, Kpathsea
can use an externally-built plain text “database” file named ls-R that maps files to directories, thus
avoiding the need to exhaustively search the disk.

A second database file aliases allows you to give additional names to the files listed in ls-R. This
can be helpful to confirm to DOS 8.3 filename conventions in source files.

7.2.1 The filename database

As explained above, the name of the main filename database must be ls-R. You can put one at the root
of each TEX hierarchy in your installation that you wish to be searched ($TEXMF by default). Kpathsea
looks for ls-R files along the TEXMFDBS path.

The recommended way to create and maintain ‘ls-R’ is to run the mktexlsr script included with
the distribution. It is invoked by the various ‘mktex’. . . scripts. In principle, this script just runs the
command

cd /your/texmf/root && \ls -1LAR ./ >ls-R

presuming your system’s ls produces the right output format (GNU ls is all right). To ensure that the
database is always up-to-date, it is easiest to rebuild it regularly via cron, so that it is automatically
updated when the installed files change, such as after installing or updating a LATEX package.

If a file is not found in the database, by default Kpathsea goes ahead and searches the disk. If a
particular path element begins with ‘!!’, however, only the database will be searched for that element,
never the disk.

7.2.2 kpsewhich: Standalone path searching

The kpsewhich program exercises path searching independent of any particular application. This can be
useful as a sort of find program to locate files in TEX hierarchies (this is used heavily in the distributed
‘mktex’. . . scripts).

> kpsewhich option... filename...

The options specified in option start with either ‘-’ or ‘--’, and any unambiguous abbreviation is
accepted.

Kpathsea looks up each non-option argument on the command line as a filename, and returns the
first file found. There is no option to return all the files with a particular name (you can run the Unix
‘find’ utility for that).

The most common options are described next.

--dpi=num Set the resolution to num; this only affects ‘gf’ and ‘pk’ lookups. ‘-D’ is a synonym, for
compatibility with dvips. Default is 600.

--format=name
Set the format for lookup to name. By default, the format is guessed from the filename. For
formats which do not have an associated unambiguous suffix, such as MetaPost support files and
dvips configuration files, you have to specify the name as known to Kpathsea, such as tex or enc
files. Run kpsewhich --help for a list.

--mode=string
Set the mode name to string; this only affects ‘gf’ and ‘pk’ lookups. No default: any mode will
be found.

--must-exist
Do everything possible to find the files, notably including searching the disk. By default, only the
ls-R database is checked, in the interest of efficiency.

--path=string
Search along the path string (colon-separated as usual), instead of guessing the search path
from the filename. ‘//’ and all the usual expansions are supported. The options ‘--path’ and
‘--format’ are mutually exclusive.

tex live guide VOORJAAR 2018 31

7 A USER’S GUIDE TO WEB2C 29

--progname=name
Set the program name to name. This can affect the search paths via the .progname feature. The
default is kpsewhich.

--show-path=name
shows the path used for file lookups of file type name. Either a filename extension (.pk, .vf, etc.)
or a name can be used, just as with ‘--format’ option.

--debug=num
sets the debugging options to num.

7.2.3 Examples of use

Let us now have a look at Kpathsea in action. Here’s a straightforward search:

> kpsewhich article.cls
/usr/local/texmf-dist/tex/latex/base/article.cls

We are looking for the file article.cls. Since the ‘.cls’ suffix is unambiguous we do not need to specify
that we want to look for a file of type tex (TEX source file directories). We find it in the subdirectory
tex/latex/base below the ‘texmf-dist’ TEX Live directory. Similarly, all of the following are found
without problems thanks to their unambiguous suffix.

> kpsewhich array.sty
/usr/local/texmf-dist/tex/latex/tools/array.sty

> kpsewhich latin1.def
/usr/local/texmf-dist/tex/latex/base/latin1.def

> kpsewhich size10.clo
/usr/local/texmf-dist/tex/latex/base/size10.clo

> kpsewhich small2e.tex
/usr/local/texmf-dist/tex/latex/base/small2e.tex

> kpsewhich tugboat.bib
/usr/local/texmf-dist/bibtex/bib/beebe/tugboat.bib

By the way, that last is a BibTEX bibliography database for TUGboat articles.

> kpsewhich cmr10.pk

Font bitmap glyph files of type .pk are used by display programs like dvips and xdvi. Nothing is returned
in this case since there are no pre-generated Computer Modern ‘.pk’ files in TEX Live—the Type 1
variants are used by default.

> kpsewhich wsuipa10.pk
/usr/local/texmf-var/fonts/pk/ljfour/public/wsuipa/wsuipa10.600pk

For these fonts (a phonetic alphabet from the University of Washington) we had to generate ‘.pk’ files,
and since the default METAFONT mode on our installation is ljfour with a base resolution of 600 dpi
(dots per inch), this instantiation is returned.

> kpsewhich -dpi=300 wsuipa10.pk

In this case, when specifying that we are interested in a resolution of 300 dpi (-dpi=300) we see that
no such font is available on the system. A program like dvips or xdvi would go off and actually build
the required .pk files using the script mktexpk.

Next we turn our attention to dvips’s header and configuration files. We first look at one of the
commonly used files, the general prologue tex.pro for TEX support, before turning our attention to
the generic configuration file (config.ps) and the PostScript font map psfonts.map—as of 2004, map
and encoding files have their own search paths and new location in texmf trees. As the ‘.ps’ suffix
is ambiguous we have to specify explicitly which type we are considering (dvips config) for the file
config.ps.

> kpsewhich tex.pro
/usr/local/texmf/dvips/base/tex.pro

> kpsewhich --format="dvips config" config.ps
/usr/local/texmf/dvips/config/config.ps

> kpsewhich psfonts.map
/usr/local/texmf/fonts/map/dvips/updmap/psfonts.map

32 MAPS 48 karl berry

7 A USER’S GUIDE TO WEB2C 30

We now take a closer look at the URW Times PostScript support files. The prefix for these in the
standard font naming scheme is ‘utm’. The first file we look at is the configuration file, which contains
the name of the map file:

> kpsewhich --format="dvips config" config.utm
/usr/local/texmf-dist/dvips/psnfss/config.utm

The contents of that file is

p +utm.map

which points to the file utm.map, which we want to locate next.

> kpsewhich utm.map
/usr/local/texmf-dist/fonts/map/dvips/times/utm.map

This map file defines the file names of the Type 1 PostScript fonts in the URW collection. Its contents
look like (we only show part of the lines):

utmb8r NimbusRomNo9L-Medi ... <utmb8a.pfb
utmbi8r NimbusRomNo9L-MediItal... <utmbi8a.pfb
utmr8r NimbusRomNo9L-Regu ... <utmr8a.pfb
utmri8r NimbusRomNo9L-ReguItal... <utmri8a.pfb
utmbo8r NimbusRomNo9L-Medi ... <utmb8a.pfb
utmro8r NimbusRomNo9L-Regu ... <utmr8a.pfb

Let us, for instance, take the Times Roman instance utmr8a.pfb and find its position in the texmf
directory tree with a search for Type 1 font files:

> kpsewhich utmr8a.pfb
/usr/local/texmf-dist/fonts/type1/urw/times/utmr8a.pfb

It should be evident from these examples how you can easily locate the whereabouts of a given file.
This is especially important if you suspect that the wrong version of a file is picked up somehow, since
kpsewhich will show you the first file encountered.

7.2.4 Debugging actions

Sometimes it is necessary to investigate how a program resolves file references. To make this practical,
Kpathsea offers various levels of debugging output:

1 stat calls (disk lookups). When running with an up-to-date ls-R database this should almost
give no output.

2 References to hash tables (such as ls-R databases, map files, configuration files).
4 File open and close operations.
8 General path information for file types searched by Kpathsea. This is useful to find out where a

particular path for the file was defined.
16 Directory list for each path element (only relevant for searches on disk).
32 File searches.
64 Variable values.

A value of -1 will set all the above options; in practice, this is usually the most convenient.
Similarly, with the dvips program, by setting a combination of debug switches, one can follow in

detail where files are being picked up from. Alternatively, when a file is not found, the debug trace
shows in which directories the program looks for the given file, so that one can get an indication what
the problem is.

Generally speaking, as most programs call the Kpathsea library internally, one can select a debug
option by using the KPATHSEA_DEBUG environment variable, and setting it to (a combination of) values
as described in the above list.

(Note for Windows users: it is not easy to redirect all messages to a file in this system. For diagnostic
purposes you can temporarily SET KPATHSEA_DEBUG_OUTPUT=err.log).

Let us consider, as an example, a small LATEX source file, hello-world.tex, which contains the
following input.

tex live guide VOORJAAR 2018 33

7 A USER’S GUIDE TO WEB2C 31

debug:start search(file=texmf.cnf, must_exist=1, find_all=1,
path=.:/usr/local/bin/texlive:/usr/local/bin:

/usr/local/bin/texmf/web2c:/usr/local:
/usr/local/texmf/web2c:/.:/./teTeX/TeX/texmf/web2c:).

kdebug:start search(file=ls-R, must_exist=1, find_all=1,
path=~/tex:/usr/local/texmf).

kdebug:search(ls-R) =>/usr/local/texmf/ls-R
kdebug:start search(file=aliases, must_exist=1, find_all=1,

path=~/tex:/usr/local/texmf).
kdebug:search(aliases) => /usr/local/texmf/aliases
kdebug:start search(file=config.ps, must_exist=0, find_all=0,

path=.:~/tex:!!/usr/local/texmf/dvips//).
kdebug:search(config.ps) => /usr/local/texmf/dvips/config/config.ps
kdebug:start search(file=/root/.dvipsrc, must_exist=0, find_all=0,

path=.:~/tex:!!/usr/local/texmf/dvips//).
search(file=/home/goossens/.dvipsrc, must_exist=1, find_all=0,

path=.:~/tex/dvips//:!!/usr/local/texmf/dvips//).
kdebug:search($HOME/.dvipsrc) =>
kdebug:start search(file=config.cms, must_exist=0, find_all=0,

path=.:~/tex/dvips//:!!/usr/local/texmf/dvips//).
kdebug:search(config.cms)
=>/usr/local/texmf/dvips/cms/config.cms

Figure 13: Finding configuration files

\documentclass{article}
\begin{document}
Hello World!
\end{document}

This little file only uses the font cmr10, so let us look at how dvips prepares the PostScript file (we want
to use the Type 1 version of the Computer Modern fonts, hence the option -Pcms).

> dvips -d4100 hello-world -Pcms -o

In this case we have combined dvips’s debug class 4 (font paths) with Kpathsea’s path element expansion
(see the dvips reference manual). The output (slightly rearranged) appears in Figure 13.

dvips starts by locating its working files. First, texmf.cnf is found, which gives the definitions of
the search paths for the other files, then the file database ls-R (to optimize file searching) and the file
aliases, which makes it possible to declare several names (e.g., a short DOS-like 8.3 and a more natural
longer version) for the same file. Then dvips goes on to find the generic configuration file config.ps
before looking for the customization file .dvipsrc (which, in this case is not found). Finally, dvips
locates the config file for the Computer Modern PostScript fonts config.cms (this was initiated with
the -Pcms option on the dvips command). This file contains the list of the map files which define the
relation between the TEX, PostScript and file system names of the fonts.

> more /usr/local/texmf/dvips/cms/config.cms
p +ams.map
p +cms.map
p +cmbkm.map
p +amsbkm.map

dvips thus goes on to find all these files, plus the generic map file psfonts.map, which is always loaded
(it contains declarations for commonly used PostScript fonts; see the last part of Section 7.2.3 for more
details about PostScript map file handling).

At this point dvips identifies itself to the user:

This is dvips(k) 5.92b Copyright 2002 Radical Eye Software (www.radicaleye.com)

Then it goes on to look for the prolog file texc.pro:

kdebug:start search(file=texc.pro, must_exist=0, find_all=0,
path=.:~/tex/dvips//:!!/usr/local/texmf/dvips//:

~/tex/fonts/type1//:!!/usr/local/texmf/fonts/type1//).
kdebug:search(texc.pro) => /usr/local/texmf/dvips/base/texc.pro

34 MAPS 48 karl berry

8 ACKNOWLEDGEMENTS 32

After having found the file in question, dvips outputs the date and time, and informs us that it will
generate the file hello-world.ps, then that it needs the font file cmr10, and that the latter is declared
as “resident” (no bitmaps needed):

TeX output 1998.02.26:1204’ -> hello-world.ps
Defining font () cmr10 at 10.0pt
Font cmr10 <CMR10> is resident.

Now the search is on for the file cmr10.tfm, which is found, then a few more prolog files (not shown)
are referenced, and finally the Type 1 instance cmr10.pfb of the font is located and included in the
output file (see last line).

kdebug:start search(file=cmr10.tfm, must_exist=1, find_all=0,
path=.:~/tex/fonts/tfm//:!!/usr/local/texmf/fonts/tfm//:

/var/tex/fonts/tfm//).
kdebug:search(cmr10.tfm) => /usr/local/texmf/fonts/tfm/public/cm/cmr10.tfm
kdebug:start search(file=texps.pro, must_exist=0, find_all=0,

...
<texps.pro>
kdebug:start search(file=cmr10.pfb, must_exist=0, find_all=0,

path=.:~/tex/dvips//:!!/usr/local/texmf/dvips//:
~/tex/fonts/type1//:!!/usr/local/texmf/fonts/type1//).

kdebug:search(cmr10.pfb) => /usr/local/texmf/fonts/type1/public/cm/cmr10.pfb
<cmr10.pfb>[1]

7.3 Runtime options
Another useful feature of Web2C is its possibility to control a number of memory parameters (in
particular, array sizes) via the runtime file texmf.cnf read by Kpathsea. The memory settings can be
found in Part 3 of that file in the TEX Live distribution. The more important are:

main_memory Total words of memory available, for TEX, METAFONT and MetaPost. You must make
a new format file for each different setting. For instance, you could generate a “huge” version of
TEX, and call the format file hugetex.fmt. Using the standard way of specifying the program
name used by Kpathsea, the particular value of the main_memory variable will then be read from
texmf.cnf.

extra_mem_bot Extra space for “large” TEX data structures: boxes, glue, breakpoints, etc. Especially
useful if you use PICTEX.

font_mem_size Number of words for font information available for TEX. This is more or less the total
size of all TFM files read.

hash_extra Additional space for the hash table of control sequence names. Only ≈10,000 control
sequences can be stored in the main hash table; if you have a large book with numerous cross-
references, this might not be enough. The default value of hash_extra is 50000.

Of course, this facility is no substitute for truly dynamic arrays and memory allocation, but since these
are extremely difficult to implement in the present TEX source, these runtime parameters provide a
practical compromise allowing some flexibility.

8 Acknowledgements
TEX Live is a joint effort by virtually all of the TEX user groups. This edition of TEX Live was overseen
by Karl Berry. The other principal contributors, past and present, are listed below.

• The English, German, Dutch, and Polish TEX user groups (TUG, DANTE e.V., NTG, and GUST,
respectively), which provide the necessary technical and administrative infrastructure. Please join
the TEX user group near you! (See http://tug.org/usergroups.html.)

• The CTAN team (http://ctan.org), which distributes the TEX Live images and provides the
common infrastructure for package updates, upon which TEX Live depends.

• Nelson Beebe, for making many platforms available to TEX Live developers, and his own compre-
hensive testing and unparalleled bibliographic efforts.

• John Bowman, for making many changes to his advanced graphics program Asymptote to make
it work in TEX Live.

tex live guide VOORJAAR 2018 35

8 ACKNOWLEDGEMENTS 33

• Peter Breitenlohner and the ε-TEX team for the stable foundation of future TEX’s, and Peter
specifically for years of stellar help with GNU autotools and keeping sources up to date. Peter
passed away in October 2015, and we dedicate the continuing work to his memory.

• Jin-Hwan Cho and all of the DVIPDFMx team, for their excellent driver and responsiveness to
configuration issues.

• Thomas Esser, without whose marvelous teTEX package TEX Live would have never existed.
• Michel Goossens, who co-authored the original documentation.
• Eitan Gurari, whose TEX4ht is used to create the HTML version of this documentation, and who

worked tirelessly to improve it at short notice, every year. Eitan prematurely passed away in June
2009, and we dedicate this documentation to his memory.

• Hans Hagen, for much testing and making his ConTEXt package (http://pragma-ade.com) work
within TEX Live’s framework.

• Hàn Thế Thành, Martin Schröder, and the pdfTEX team (http://pdftex.org), for continuing
enhancements of TEX’s abilities.

• Hartmut Henkel, for significant development contributions to pdfTEX LuaTEX, and more.
• Taco Hoekwater, for major renewed development efforts on MetaPost and (Lua)TEX (http:

//luatex.org) itself, incorporating ConTEXt into TEX Live, giving Kpathsea multi-threaded
functionality, and much more.

• Khaled Hosny, for substantial work on XeTEX, DVIPDFMx, and efforts with Arabic and other
fonts.

• Paweł Jackowski, for the Windows installer tlpm, and Tomasz Łuczak, for tlpmgui, used in past
releases.

• Akira Kakuto, for providing the Windows binaries from his W32TEX distribution for Japanese
TEX (http://w32tex.org), and many other development contributions.

• Jonathan Kew, for developing the remarkable XeTEX engine and taking the time and trouble to
integrate it in TEX Live, as well as the initial version of the MacTEX installer, and also for our
recommended front-end TEXworks.

• Dick Koch, for maintaining MacTEX (http://tug.org/mactex) in very close tandem with TEX
Live, and for his great good cheer in doing so.

• Reinhard Kotucha, for major contributions to the TEX Live 2008 infrastructure and installer, as
well as Windows research efforts, the getnonfreefonts script, and more.

• Siep Kroonenberg, also for major contributions to the TEX Live 2008 infrastructure and installer,
especially on Windows, and for the bulk of work updating this manual describing those features.

• Mojca Miklavec, for much help with ConTEXt, building many binary sets, and plenty more.
• Heiko Oberdiek, for the epstopdf package and many others, compressing the huge pst-geo data

files so we could include them, and most of all, for his remarkable work on hyperref.
• Petr Olšak, who coordinated and checked all the Czech and Slovak material very carefully.
• Toshio Oshima, for his dviout previewer for Windows.
• Manuel Pégourié-Gonnard, for helping with package updates, documentation improvements, and

texdoc development.
• Fabrice Popineau, for the original Windows support in TEX Live and work on the French docu-

mentation.
• Norbert Preining, the principal architect of the current TEX Live infrastructure and installer, and

also for coordinating the Debian version of TEX Live (together with Frank Küster), and doing so
much work along the way.

• Sebastian Rahtz, for originally creating TEX Live and maintaining it for many years. Sebastian
passed away in March 2016, and we dedicate the continuing work to his memory.

• Luigi Scarso, for continuing development of MetaPost, LuaTEX, and much more.
• Tomasz Trzeciak, for wide-ranging help with Windows.
• Vladimir Volovich, for substantial help with porting and other maintenance issues, and especially

for making it feasible to include xindy.
• Staszek Wawrykiewicz, a principal tester for all of TEX Live, and coordinator of the many major

Polish contributions: fonts, Windows installation, and more. Staszek passed away in February
2018, and we dedicate the continuing work to his memory.

• Olaf Weber, for his patient maintenance of Web2C in past years.
• Gerben Wierda, for creating and maintaining the original MacOSX support.
• Graham Williams, the originator of the TEX Catalogue.

Builders of the binaries: Marc Baudoin (amd64-netbsd, i386-netbsd), Ken Brown (i386-cygwin,
x86_64-cygwin), Simon Dales (armhf-linux), Johannes Hielschier (aarch64-linux), Akira Kakuto (win32),

36 MAPS 48 karl berry

9 RELEASE HISTORY 34

Dick Koch (x86_64-darwin), Nikola Lečić (amd64-freebsd, i386-freebsd), Henri Menke (x86_64-
linuxmusl), Mojca Miklavec (i386-linux, x86_64-darwinlegacy, i386-solaris, x86_64-solaris, sparc-solaris),
Norbert Preining (x86_64-linux), Thomas Schmitz (powerpc-linux), Boris Veytsman (armel-linux). For
information on the TEX Live build process, see http://tug.org/texlive/build.html.

Translators of this manual: Denis Bitouzé & Patrick Bideault (French), Carlos Enriquez Figueras
(Spanish), Jjgod Jiang, Jinsong Zhao, Yue Wang, & Helin Gai (Chinese), Nikola Lečić (Serbian),
Marco Pallante & Carla Maggi (Italian), Petr Sojka & Jan Busa (Czech/Slovak), Boris Veytsman
(Russian), Zofia Walczak (Polish), Uwe Ziegenhagen (German). The TEX Live documentation web
page is http://tug.org/texlive/doc.html.

Of course the most important acknowledgement must go to Donald Knuth, first for inventing TEX,
and then for giving it to the world.

9 Release history
9.1 Past
Discussion began in late 1993 when the Dutch TEX Users Group was starting work on its 4AllTEX CD
for MS-DOS users, and it was hoped at that time to issue a single, rational, CD for all systems. This
was too ambitious a target for the time, but it did spawn not only the very successful 4AllTEX CD, but
also the TUG Technical Council working group on a TEX Directory Structure (http://tug.org/tds),
which specified how to create consistent and manageable collections of TEX support files. A complete
draft of the TDS was published in the December 1995 issue of TUGboat, and it was clear from an early
stage that one desirable product would be a model structure on CD. The distribution you now have
is a very direct result of the working group’s deliberations. It was also clear that the success of the
4AllTEX CD showed that Unix users would benefit from a similarly easy system, and this is the other
main strand of TEX Live.

We first undertook to make a new Unix-based TDS CD in the autumn of 1995, and quickly identified
Thomas Esser’s teTEX as the ideal setup, as it already had multi-platform support and was built with
portability across file systems in mind. Thomas agreed to help, and work began seriously at the start
of 1996. The first edition was released in May 1996. At the start of 1997, Karl Berry completed a
major new release of Web2c, which included nearly all the features which Thomas Esser had added in
teTEX, and we decided to base the 2nd edition of the CD on the standard Web2C, with the addition
of teTEX’s texconfig script. The 3rd edition of the CD was based on a major revision of Web2C, 7.2,
by Olaf Weber; at the same time, a new revision of teTEX was being made, and TEX Live included
almost all of its features. The 4th edition followed the same pattern, using a new version of teTEX, and
a new release of Web2C (7.3). The system now included a complete Windows setup, thanks to Fabrice
Popineau.

For the 5th edition (March 2000) many parts of the CD were revised and checked, updating hundreds
of packages. Package details were stored in XML files. But the major change for TEX Live 5 was that
all non-free software was removed. Everything in TEX Live is now intended to be compatible with
the Debian Free Software Guidelines (http://www.debian.org/intro/free); we have done our best
to check the license conditions of all packages, but we would very much appreciate hearing of any
mistakes.

The 6th edition (July 2001) had much more material updated. The major change was a new install
concept: the user could select a more exact set of needed collections. Language-related collections were
completely reorganized, so selecting any of them installs not only macros, fonts, etc., but also prepares
an appropriate language.dat.

The 7th edition of 2002 had the notable addition of MacOSX support, and the usual myriad of
updates to all sorts of packages and programs. An important goal was integration of the source back
with teTEX, to correct the drift apart in versions 5 and 6.

9.1.1 2003

In 2003, with the continuing flood of updates and additions, we found that TEX Live had grown so
large it could no longer be contained on a single CD, so we split it into three different distributions (see
section 2.1, p. 4). In addition:

• At the request of the LATEX team, we changed the standard latex and pdflatex commands to now
use ε-TEX (see p. 6).

• The new Latin Modern fonts were included (and are recommended).

tex live guide VOORJAAR 2018 37

9 RELEASE HISTORY 35

• Support for Alpha OSF was removed (HPUX support was removed previously), since no one had
(or volunteered) hardware available on which to compile new binaries.

• Windows setup was substantially changed; for the first time an integrated environment based on
XEmacs was introduced.

• Important supplementary programs for Windows (Perl, Ghostscript, ImageMagick, Ispell) are
now installed in the TEX Live installation directory.

• Font map files used by dvips, dvipdfm and pdftex are now generated by the new program updmap
and installed into texmf/fonts/map.

• TEX, METAFONT, and MetaPost now, by default, output most input characters (32 and above)
as themselves in output (e.g., \write) files, log files, and the terminal, i.e., not translated using
the ^^ notation. In TEX Live 7, this translation was dependent on the system locale settings;
now, locale settings do not influence the TEX programs’ behavior. If for some reason you need
the ^^ output, rename the file texmf/web2c/cp8bit.tcx. (Future releases will have cleaner ways
to control this.)

• This documentation was substantially revised.
• Finally, since the edition numbers had grown unwieldy, the version is now simply identified by

the year: TEX Live 2003.

9.1.2 2004

2004 saw many changes:

• If you have locally-installed fonts which use their own .map or (much less likely) .enc support
files, you may need to move those support files.
.map files are now searched for in subdirectories of fonts/map only (in each texmf tree), along
the TEXFONTMAPS path. Similarly, .enc files are now searched for in subdirectories of fonts/enc
only, along the ENCFONTS path. updmap will attempt to warn about problematic files.
For methods of handling this and other information, please see http://tug.org/texlive/
mapenc.html.

• The TEX Collection has been expanded with the addition of a MiKTEX-based installable CD, for
those who prefer that implementation to Web2C. See section 2 (p. 4).

• Within TEX Live, the single large texmf tree of previous releases has been replaced by three:
texmf, texmf-dist, and texmf-doc. See section 2.2 (p. 4), and the README files for each.

• All TEX-related input files are now collected in the tex subdirectory of texmf* trees,
rather than having separate sibling directories tex, etex, pdftex, pdfetex, etc. See
texmf-dist/doc/generic/tds/tds.html#Extensions.

• Helper scripts (not meant to be invoked by users) are now located in a new scripts subdi-
rectory of texmf* trees, and can be searched for via kpsewhich -format=texmfscripts.
So if you have programs which call such scripts, they’ll need to be adjusted. See
texmf-dist/doc/generic/tds/tds.html#Scripts.

• Almost all formats leave most characters printable as themselves via the “translation file” cp227.
tcx, instead of translating them with the ^^ notation. Specifically, characters at positions 32–256,
plus tab, vertical tab, and form feed are considered printable and not translated. The exceptions
are plain TEX (only 32–126 printable), ConTEXt (0–255 printable), and the Ω-related formats.
This default behavior is almost the same as in TEX Live 2003, but it’s implemented more cleanly,
with more possibilities for customization. See texmf-dist/doc/web2c/web2c.html#TCX-files.
(By the way, with Unicode input, TEX may output partial character sequences when showing
error contexts, since it is byte-oriented.)

• pdfetex is now the default engine for all formats except (plain) tex itself. (Of course it generates
DVI when run as latex, etc.) This means, among other things, that the microtypographic features
of pdftex are available in LATEX, ConTEXt, etc., as well as the ε-TEX features (texmf-dist/doc/
etex/base/).
It also means it’s more important than ever to use the ifpdf package (works with both plain and
LATEX) or equivalent code, because simply testing whether \pdfoutput or some other primitive
is defined is not a reliable way to determine if PDF output is being generated. We made this

38 MAPS 48 karl berry

9 RELEASE HISTORY 36

backward compatible as best we could this year, but next year, \pdfoutput may be defined even
when DVI is being written.

• pdfTEX (http://pdftex.org) has many new features:

– \pdfmapfile and \pdfmapline provide font map support from within a document.
– Microtypographic font expansion can be used more easily.

http://www.ntg.nl/pipermail/ntg-pdftex/2004-May/000504.html
– All parameters previously set through the special configuration file pdftex.cfg must now be

set through primitives, typically in pdftexconfig.tex; pdftex.cfg is no longer supported.
Any extant .fmt files must be redumped when pdftexconfig.tex is changed.

– See the pdfTEX manual for more: texmf-dist/doc/pdftex/manual/pdftex-a.pdf.

• The \input primitive in tex (and mf and mpost) now accepts double quotes containing spaces
and other special characters. Typical examples:

\input "filename with spaces" % plain
\input{"filename with spaces"} % latex

See the Web2C manual for more: texmf-dist/doc/web2c.

• encTEX support is now included within Web2C and consequently all TEX programs, via the
-enc option— only when formats are built. encTEX supports general re-encoding of input and
output, enabling full support of Unicode (in UTF-8). See texmf-dist/doc/generic/enctex/
and http://www.olsak.net/enctex.html.

• Aleph, a new engine combining ε-TEX and Ω, is available. A little information is available
in texmf-dist/doc/aleph/base and http://www.tex.ac.uk/cgi-bin/texfaq2html?label=
aleph. The LATEX-based format for Aleph is named lamed.

• The latest LATEX release has a new version of the LPPL—now officially a Debian-approved license.
Assorted other updates, see the ltnews files in texmf-dist/doc/latex/base.

• dvipng, a new program for converting DVI to PNG image files, is included. See http://www.
ctan.org/pkg/dvipng.

• We reduced the cbgreek package to a “medium” sized set of fonts, with the assent and advice of
the author (Claudio Beccari). The excised fonts are the invisible, outline, and transparency ones,
which are relatively rarely used, and we needed the space. The full set is of course available from
CTAN (http://mirror.ctan.org/tex-archive/fonts/greek/cbfonts).

• oxdvi has been removed; just use xdvi.

• The ini and vir commands (links) for tex, mf, and mpost are no longer created, such as initex. The
ini functionality has been available through the command-line option -ini for years now.

• i386-openbsd platform support was removed. Since the tetex package in the BSD Ports system is
available, and GNU/Linux and FreeBSD binaries were available, it seemed volunteer time could
be better spent elsewhere.

• On sparc-solaris (at least), you may have to set the LD_LIBRARY_PATH environment variable to
run the t1utils programs. This is because they are compiled with C++, and there is no standard
location for the runtime libraries. (This is not new in 2004, but wasn’t previously documented.)
Similarly, on mips-irix, the MIPSpro 7.4 runtimes are required.

9.1.3 2005

2005 saw the usual huge number of updates to packages and programs. The infrastructure stayed
relatively stable from 2004, but inevitably there were some changes there as well:

• New scripts texconfig-sys, updmap-sys, and fmtutil-sys were introduced, which modify the config-
uration in the system trees. The texconfig, updmap, and fmtutil scripts now modify user-specific
files, under $HOME/.texlive2005.

tex live guide VOORJAAR 2018 39

9 RELEASE HISTORY 37

• Corresponding new variables TEXMFCONFIG and TEXMFSYSCONFIG to specify the trees where con-
figuration files (user or system, respectively) are found. Thus, you may need to move personal ver-
sions of fmtutil.cnf and updmap.cfg to these places; another option is to redefine TEXMFCONFIG
or TEXMFSYSCONFIG in texmf.cnf. In any case the real location of these files and the values of
TEXMFCONFIG and TEXMFSYSCONFIG must agree. See section 2.3, p. 5.

• Last year, we kept \pdfoutput and other primitives undefined for DVI output, even though the
pdfetex program was being used. This year, as promised, we undid that compatibility measure.
So if your document uses \ifx\pdfoutput\undefined to test if PDF is being output, it will need
to be changed. You can use the package ifpdf.sty (which works under both plain TEX and LATEX)
to do this, or steal its logic.

• Last year, we changed most formats to output (8-bit) characters as themselves (see previous
section). The new TCX file empty.tcx now provides an easier way to get the original ^^ notation
if you so desire, as in:

latex --translate-file=empty.tcx yourfile.tex

• The new program dvipdfmx is included for translation of DVI to PDF; this is an actively maintained
update of dvipdfm (which is also still available for now, though no longer recommended).

• The new programs pdfopen and pdfclose are included to allow reloading of PDF files in the Adobe
Acrobat Reader without restarting the program. (Other PDF readers, notably xpdf, gv, and
gsview, have never suffered from this problem.)

• For consistency, the variables HOMETEXMF and VARTEXMF have been renamed to TEXMFHOME and
TEXMFSYSVAR, respectively. There is also TEXMFVAR, which is by default user-specific. See the first
point above.

9.1.4 2006–2007

In 2006–2007, the major new addition to TEX Live was the XeTEX program, available as the xetex and
xelatex programs; see http://scripts.sil.org/xetex.

MetaPost also received a notable update, with more planned for the future (http://tug.org/
metapost/articles), likewise pdfTEX (http://tug.org/applications/pdftex).

The TEX .fmt (high-speed format) and the similar files for MetaPost and METAFONT are now
stored in subdirectories of texmf/web2c, instead of in the directory itself (although the directory is still
searched, for the sake of existing .fmt’s). The subdirectories are named for the ‘engine’ in use, such as
tex or pdftex or xetex. This change should be invisible in normal use.

The (plain) tex program no longer reads %& first lines to determine what format to run; it is the
pure Knuthian TEX. (LATEX and everything else do still read %& lines).

Of course the year also saw (the usual) hundreds of other updates to packages and programs. As
usual, please check CTAN (http://mirror.ctan.org) for updates.

Internally, the source tree is now stored in Subversion, with a standard web interface for viewing
the tree, as linked from our home page. Although not visible in the final distribution, we expect this
will provide a stable development foundation for future years.

Finally, in May 2006 Thomas Esser announced that he would no longer be updating teTEX (http:
//tug.org/tetex). As a result, there was a surge of interest in TEX Live, especially among GNU/Linux
distributors. (There is a new tetex installation scheme in TEX Live, which provides an approximate
equivalent.) We hope this will eventually translate to improvements in the TEX environment for every-
one.

9.1.5 2008

In 2008, the entire TEX Live infrastructure was redesigned and reimplemented. Complete information
about an installation is now stored in a plain text file tlpkg/texlive.tlpdb.

Among other things, this finally makes possible upgrading a TEX Live installation over the Internet
after the initial installation, a feature MiKTEX has provided for many years. We expect to regularly
update new packages as they are released to CTAN.

The major new engine LuaTEX (http://luatex.org) is included; besides a new level of flexibility
in typesetting, this provides an excellent scripting language for use both inside and outside of TEX
documents.

40 MAPS 48 karl berry

9 RELEASE HISTORY 38

Support among Windows and the Unix-based platforms is now much more uniform. In particular,
most Perl and Lua scripts are now available on Windows, using the Perl internally distributed with
TEX Live.

The new tlmgr script (section 5) is the general interface for managing TEX Live after the initial
installation. It handles package updates and consequent regeneration of formats, map files, and language
files, optionally including local additions.

With the advent of tlmgr, the texconfig actions to edit the format and hyphenation configuration
files are now disabled.

The xindy indexing program (http://xindy.sourceforge.net/) is now included on most platforms.
The kpsewhich tool can now report all matches for a given file (option –all) and limit matches to

a given subdirectory (option –subdir).
The dvipdfmx program now includes functionality to extract bounding box information, via the

command name extractbb; this was one of the last features provided by dvipdfm not in dvipdfmx.
The font aliases Times-Roman, Helvetica, and so on have been removed. Different packages ex-

pected them to behave differently (in particular, to have different encodings), and there was no good
way to resolve this.

The platex format has been removed, to resolve a name conflict with a completely different Japanese
platex; the polski package is now the main Polish support.

Internally, the WEB string pool files are now compiled into the binaries, to ease upgrades.
Finally, the changes made by Donald Knuth in his ‘TEX tuneup of 2008’ are included in this release.

See http://tug.org/TUGboat/Articles/tb29-2/tb92knut.pdf.

9.1.6 2009

In 2009, the default output format for Lua(LA)TEX is now PDF, to take advantage of LuaTEX’s Open-
Type support, et al. New executables named dviluatex and dvilualatex run LuaTEX with DVI
output. The LuaTEX home page is http://luatex.org.

The original Omega engine and Lambda format have been excised, after discussions with the Omega
authors. The updated Aleph and Lamed remain, as do the Omega utilities.

A new release of the AMS Type 1 fonts is included, including Computer Modern: a few shape
changes made over the years by Knuth in the Metafont sources have been integrated, and the hinting
has been updated. The Euler fonts have been thoroughly reshaped by Hermann Zapf (see http://tug.
org/TUGboat/Articles/tb29-2/tb92hagen-euler.pdf). In all cases, the metrics remain unchanged.
The AMS fonts home page is http://www.ams.org/tex/amsfonts.html.

The new GUI front end TEXworks is included for Windows, and also in MacTEX. For other platforms,
and more information, see the TEXworks home page, http://tug.org/texworks. It is a cross-platform
front end inspired by the MacOSX TeXShop editor, aiming at ease-of-use.

The graphics program Asymptote is included for several platforms. This implements a text-based
graphics description language vaguely akin to MetaPost, but with advanced 3D support and other
features. Its home page is http://asymptote.sourceforge.net.

The separate dvipdfm program has been replaced by dvipdfmx, which operates in a special com-
patibility mode under that name. dvipdfmx includes CJK support and has accumulated many other
fixes over the years since the last dvipdfm release.

Executables for the cygwin and i386-netbsd platforms are now included, while we were advised that
OpenBSD users get TEX through their package systems, plus there were difficulties in making binaries
that have a chance of working on more than one version.

A miscellany of smaller changes: we now use xz compression, the stable replacement for lzma (http:
//tukaani.org/xz/); a literal $ is allowed in filenames when it does not introduce a known variable
name; the Kpathsea library is now multi-threaded (made use of in MetaPost); the entire TEX Live build
is now based on Automake.

Final note on the past: all releases of TEX Live, along with ancillary material such as CD labels,
are available at ftp://tug.org/historic/systems/texlive.

9.1.7 2010

In 2010, the default version for PDF output is now 1.5, enabling more compression. This applies to
all the TEX engines when used to produce PDF and to dvipdfmx. Loading the pdf14 LATEX package
changes back to PDF 1.4, or set \pdfminorversion=4.

pdf(LA)TEX now automatically converts a requested Encapsulated PostScript (EPS) file to PDF,
via the epstopdf package, when and if the LATEX graphics.cfg configuration file is loaded, and

tex live guide VOORJAAR 2018 41

9 RELEASE HISTORY 39

PDF is being output. The default options are intended to eliminate any chance of hand-created
PDF files being overwritten, but you can also prevent epstopdf from being loaded at all by putting
\newcommand{\DoNotLoadEpstopdf}{} (or \def...) before the \documentclass declaration. It is also
not loaded if the pst-pdf package is used. For more details, see the epstopdf package documentation
(http://ctan.org/pkg/epstopdf-pkg).

A related change is that execution of a very few external commands from TEX, via the \write18
feature, is now enabled by default. These commands are repstopdf, makeindex, kpsewhich, bibtex,
and bibtex8; the list is defined in texmf.cnf. Environments which must disallow all such external com-
mands can deselect this option in the installer (see section 3.2.4), or override the value after installation
by running tlmgr conf texmf shell_escape 0.

Yet another related change is that BibTEX and Makeindex now refuse to write their output files
to an arbitrary directory (like TEX itself), by default. This is so they can now be enabled for use by
the restricted \write18. To change this, the TEXMFOUTPUT environment variable can be set, or the
openout_any setting changed.

XeTEX now supports margin kerning along the same lines as pdfTEX. (Font expansion is not
presently supported.)

By default, tlmgr now saves one backup of each package updated (tlmgr option autobackup 1),
so broken package updates can be easily reverted with tlmgr restore. If you do post-install updates,
and don’t have the disk space for the backups, run tlmgr option autobackup 0.

New programs included: the pTEX engine and related utilities for typesetting Japanese; the BibTEXU
program for Unicode-enabled BibTEX; the chktex utility (http://baruch.ev-en.org/proj/chktex) for
checking (LA)TEX documents; the dvisvgm (http://dvisvgm.sourceforge.net) DVI-to-SVG transla-
tor.

Executables for these new platforms are now included: amd64-freebsd, amd64-kfreebsd,
i386-freebsd, i386-kfreebsd, x86_64-darwin, x86_64-solaris.

A change in TEX Live 2009 that we failed to note: numerous TEX4ht-related executables (http:
//tug.org/tex4ht) were removed from the binary directories. The generic mk4ht program can be used
to run any of the various tex4ht combinations.

Finally, the TEX Live release on the TEX Collection DVD can no longer be run live (oddly enough).
A single DVD no longer has enough room. One beneficial side effect is that installation from the physical
DVD is much faster.

9.1.8 2011

The MacOSX binaries (universal-darwin and x86_64-darwin) now work only on Leopard or later;
Panther and Tiger are no longer supported.

The biber program for bibliography processing is included on common platforms. Its development is
closely coupled with the biblatex package, which completely reimplements the bibliographical facilities
provided by LaTeX.

The MetaPost (mpost) program no longer creates or uses .mem files. The needed files, such as
plain.mp, are simply read on every run. This is related to supporting MetaPost as a library, which is
another significant though not user-visible change.

The updmap implementation in Perl, previously used only on Windows, has been revamped and is
now used on all platforms. There shouldn’t be any user-visible changes as a result, except that it runs
much faster.

The initex and inimf programs were restored (but no other ini* variants).

9.1.9 2012

tlmgr supports updates from multiple network repositories. The section on multiple repositories in the
tlmgr help output has more.

The parameter \XeTeXdashbreakstate is set to 1 by default, for both xetex and xelatex. This
allows line breaks after em-dashes and en-dashes, which has always been the behavior of plain TEX,
LATEX, LuaTEX, etc. Existing XeTEX documents which must retain perfect line-break compatibility
will need to set \XeTeXdashbreakstate to 0 explicitly.

The output files generated by pdftex and dvips, among others, can now exceed 2 gigabytes.
The 35 standard PostScript fonts are included in the output of dvips by default, since so many

different versions of them are extant.
In the restricted \write18 execution mode, set by default, mpost is now an allowed program.

42 MAPS 48 karl berry

9 RELEASE HISTORY 40

A texmf.cnf file is also found in ../texmf-local, e.g., /usr/local/texlive/texmf-local/
web2c/texmf.cnf, if it exists.

The updmap script reads a per-tree updmap.cfg instead of one global config. This change should be
invisible, unless you edited your updmap.cfg’s directly. The updmap --help output has more.

Platforms: armel-linux and mipsel-linux added; sparc-linux and i386-netbsd are no longer in the main
distribution.

9.1.10 2013

Distribution layout: the top-level texmf/ directory has been merged into texmf-dist/, for simplicity.
Both the TEXMFMAIN and TEXMFDIST Kpathsea variables now point to texmf-dist.

Many small language collections have been merged together, to simplify installation.
MetaPost: native support for PNG output and floating-point (IEEE double) has been added.
LuaTEX: updated to Lua 5.2, and includes a new library (pdfscanner) to process external PDF

page content, among much else (see its web pages).
XeTEX (also see its web pages for more):

• The HarfBuzz library is now used for font layout instead of ICU. (ICU is still used to support
input encodings, bidirectionality, and the optional Unicode line breaking.)

• Graphite2 and HarfBuzz are used instead of SilGraphite for Graphite layout.
• On Macs, Core Text is used instead of the (deprecated) ATSUI.
• Prefer TrueType/OpenType fonts to Type1 when the names are the same.
• Fix occasional mismatch in font finding between XeTEX and xdvipdfmx.
• Support OpenType math cut-ins.

xdvi: now uses FreeType instead of t1lib for rendering.
microtype.sty: some support for XeTEX (protrusion) and LuaTEX (protrusion, font expansion, track-

ing), among other enhancements.
tlmgr: new pinning action to ease configuring multiple repositories; that section in tlmgr --help

has more, online at http://tug.org/texlive/doc/tlmgr.html#MULTIPLE-REPOSITORIES.
Platforms: armhf-linux, mips-irix, i386-netbsd, and amd64-netbsd added or revived; powerpc-aix re-

moved.

9.1.11 2014

2014 saw another TEX tune-up from Knuth; this affected all engines, but the only visible change likely
is the restoration of the preloaded format string on the banner line. Per Knuth, this now reflects the
format that would be loaded by default, rather than an undumped format that is actually preloaded in
the binary; it may be overridden in various ways.

pdfTEX: new warning-suppression parameter \pdfsuppresswarningpagegroup; new prim-
itives for fake interword spaces to help with PDF text reflowing: \pdfinterwordspaceon,
\pdfinterwordspaceoff, \pdffakespace.

LuaTEX: Notable changes and fixes were made to font loading and hyphenation. The biggest
addition is a new engine variant, luajittex (http://foundry.supelec.fr/projects/luajittex) and
its siblings texluajit and texluajitc. This uses a just-in-time Lua compiler (detailed TUGboat
article at http://tug.org/TUGboat/tb34-1/tb106scarso.pdf). luajittex is still in development, is
not available on all platforms, and is considerably less stable than luatex. Neither we nor its developers
recommend using it except for the specific purpose of experimenting with jit on Lua code.

XeTEX: The same image formats are now supported on all platforms (including Mac); avoid Unicode
compatibility decomposition fallback (but not other variants); prefer OpenType to Graphite fonts, for
compatibility with previous XeTEX versions.

MetaPost: A new numbersystem decimal is supported, along with a companion internal
numberprecision; a new definition of drawdot in plain.mp, per Knuth; bug fixes in SVG and PNG
output, among others.

The pstopdf ConTEXt utility will be removed as a standalone command at some point after the
release, due to conflicts with OS utilities of the same name. It can still (and now) be invoked as mtxrun
–script pstopdf.

psutils has been substantially revised by a new maintainer. As a result, several seldom-used utilities
(fix*, getafm, psmerge, showchar) are now only in the scripts/ directory rather than being user-level
executables (this can be reversed if it turns out to be problematic). A new script, psjoin, has been
added.

tex live guide VOORJAAR 2018 43

9 RELEASE HISTORY 41

The MacTEX redistribution of TEX Live (section 3.1.2) no longer includes the optional Mac-only
packages for the Latin Modern and TEX Gyre fonts, since it is easy enough for individual users to make
them available to the system. The convert program from ImageMagick has also been excised, since
TEX4ht (specifically tex4ht.env) now uses Ghostscript directly.

The langcjk collection for Chinese, Japanese, and Korean support has been split into individual
language collections for the sake of more moderate sizes.

Platforms: x86_64-cygwin added, mips-irix removed; Microsoft no longer supports Windows XP, so
our programs may start failing there at any time.

9.1.12 2015

LATEX2ε now incorporates, by default, changes previously included only by explicitly loading the fixltx2e
package, which is now a no-op. A new latexrelease package and other mechanisms allow for controlling
what is done. The included LATEX News #22 and “LATEX changes” documents have details. Incidentally,
the babel and psnfss packages, while core parts of LATEX, are maintained separately and are not affected
by these changes (and should still work).

Internally, LATEX2ε now includes Unicode-related engine configuration (what characters are letters,
naming of primitives, etc.) which was previously part of TEX Live. This change is intended to be
invisible to users; a few low-level internal control sequences have been renamed or removed, but the
behavior should be just the same.

pdfTEX: Support JPEG Exif as well as JFIF; do not emit a warning if \pdfinclusionerrorlevel
is negative; sync with xpdf 3.04.

LuaTEX: New library newtokenlib for scanning tokens; bug fixes in the normal random number
generator and other places.

XeTEX: Image handling fixes; xdvipdfmx binary looked for first as a sibling to xetex; internal XDV
opcodes changed.

MetaPost: New numbersystem binary; new Japanese-enabled upmpost and updvitomp programs,
analogous to up*tex.

MacTEX: Updates to the included Ghostscript package for CJK support. The TEX Distribution
Preference Pane now works in Yosemite (MacOSX 10.10). Resource-fork font suitcases (generally with-
out an extension) are no longer supported by XeTEX; data-fork suitcases (.dfont) remain supported.

Infrastructure: The fmtutil script has been reimplemented to read fmtutil.cnf on a per-tree ba-
sis, analogous to updmap. Web2C mktex* scripts (including mktexlsr, mktextfm, mktexpk) now prefer
programs in their own directory, instead of always using the existing PATH.

Platforms: *-kfreebsd removed, since TEX Live is now easily available through the system platform
mechanisms. Support for some additional platforms is available as custom binaries (http://tug.org/
texlive/custom-bin.html). In addition, some platforms are now omitted from the DVD (simply to
save space), but can be installed normally over the net.

9.1.13 2016

LuaTEX: Sweeping changes to primitives, both renames and removals, along with some node structure
rearrangements. The changes are summarized in an article by Hans Hagen, “LuaTEX 0.90 backend
changes for PDF and more” (http://tug.org/TUGboat/tb37-1/tb115hagen-pdf.pdf); for all the
details, see the LuaTEX manual, texmf-dist/doc/luatex/base/luatex.pdf.

Metafont: New highly experimental sibling programs MFlua and MFluajit, integrating Lua with
METAFONT, for trial testing purposes.

MetaPost: Bug fixes and internal preparations for MetaPost 2.0.
SOURCE_DATE_EPOCH support in all engines except LuaTEX (which will come in the next release) and

original tex (intentionally omitted): if the environment variable SOURCE_DATE_EPOCH is set, its value
is used for timestamps in the PDF output. If SOURCE_DATE_EPOCH_TEX_PRIMITIVES is also set, the
SOURCE_DATE_EPOCH value is used to initialize the TEX primitives \year, \month, \day, \time. The
pdfTEX manual has examples and details.

pdfTEX: new primitives \pdfinfoomitdate, \pdftrailerid, \pdfsuppressptexinfo, to control
values appearing in the output which normally change with each run. These features are for PDF
output only, not DVI.

XeTEX: New primitives \XeTeXhyphenatablelength, \XeTeXgenerateactualtext,
\XeTeXinterwordspaceshaping, \mdfivesum; character class limit increased to 4096; DVI id byte
incremented.

Other utilities:

44 MAPS 48 karl berry

9 RELEASE HISTORY 42

• gregorio is a new program, part of the gregoriotex package for typesetting Gregorian chant
scores; it is included in shell_escape_commands by default.

• upmendex is an index creation program, mostly compatible with makeindex, with support for
Unicode sorting, among other changes.

• afm2tfm now makes only accent-based height adjustments upward; a new option -a omits all
adjustments.

• ps2pk can handle extended PK/GF fonts.

MacTEX: The TEX Distribution Preference Pane is gone; its functionality is now in TeX Live
Utility; bundled GUI applications upgraded; new script cjk-gs-integrate to be run by users who
wish to incorporate various CJK fonts into Ghostscript.

Infrastructure: System-level tlmgr configuration file supported; verify package checksums; if GPG is
available, verify signature of network updates. These checks happen with both the installer and tlmgr.
(If GPG is not available, updates proceed as usual.)

Platforms: alpha-linux and mipsel-linux removed.

9.1.14 2017

LuaTEX: More callbacks, more typesetting control, more access to internals; ffi library for dynamic
code loading added on some platforms.

pdfTEX: Environment variable SOURCE_DATE_EPOCH_TEX_PRIMITIVES from last year renamed to
FORCE_SOURCE_DATE, with no changes in functionality; if the \pdfpageattr token list contains the
string /MediaBox, omit output of the default /MediaBox.

XeTEX: Unicode/OpenType math now based on HarfBuzz’s MATH table support; some bug fixes.
Dvips: Make the last papersize special win, for consistency with dvipdfmx and package expectations;

the -L0 option (L0 config setting) restores the previous behavior of the first special winning.
epTEX, eupTEX: New primitives \pdfuniformdeviate, \pdfnormaldeviate, \pdfrandomseed,

\pdfsetrandomseed, \pdfelapsedtime, \pdfresettimer, from pdfTEX.
MacTEX: As of this year, only MacOSX releases for which Apple still releases security patches will

be supported in MacTEX, under the platform name x86_64-darwin; currently this means Yosemite,
El Capitan, and Sierra (10.10 and newer). Binaries for older MacOSX versions are not included in
MacTEX, but are still available in TEX Live (x86_64-darwinlegacy, i386-darwin, powerpc-darwin).

Infrastructure: The TEXMFLOCAL tree is now searched before TEXMFSYSCONFIG and TEXMFSYSVAR (by
default); the hope is that this will better match expectations of local files overriding system files. Also,
tlmgr has a new mode shell for interactive and scripted use, and a new action conf auxtrees to
easily add and remove extra trees.

updmap and fmtutil: These scripts now give a warning when invoked without explicitly specifying
either so-called system mode (updmap-sys, fmtutil-sys, or option -sys), or user mode (updmap-user,
fmtutil-user, or option -user). The hope is that this will reduce the perennial problem of invok-
ing user mode by accident and thus losing future system updates. See http://tug.org/texlive/
scripts-sys-user.html for details.

install-tl: Personal paths such as TEXMFHOME are now set to MacTEX values (~/Library/...)
by default on Macs. New option -init-from-profile to start an installation with the values from a
given profile; new command P to explicitly save a profile; new profile variable names (but previous ones
are still accepted).

SyncTEX: the temporary file name now looks like foo.synctex(busy), instead of foo.synctex.gz(busy)
(no .gz). Front ends and build systems that want to remove temp files may need adjusting.

Other utilities: texosquery-jre8 is a new cross-platform program for retrieving locale and other OS
information from a TEX document; it is included in shell_escape_commands by default for restricted
shell execution. (Older JRE versions are supported by texosquery, but cannot be enabled in restricted
mode, as they are no longer supported by Oracle, even for security issues.)

Platforms: See MacTEX entry above; no other changes.

9.2 Present—2018
Kpathsea: Case-insensitive filename matching now done by default in non-system directories; set
texmf.cnf or environment variable texmf_casefold_search to 0 to disable. Full details in the Kpath-
sea manual (http://tug.org/kpathsea).

epTEX, eupTEX: New primitive \epTeXversion.

tex live guide VOORJAAR 2018 45

9 RELEASE HISTORY 43

LuaTEX: Preparation for moving to Lua 5.3 in 2019: a binary luatex53 is available on most
platforms, but must be renamed to luatex to be effective. Or use the ConTEXt Garden (http://wiki.
contextgarden.net) files; more information there.

MetaPost: Fixes for wrong path directions, TFM and PNG output.
pdfTEX: Allow encoding vectors for bitmap fonts; current directory not hashed into PDF ID; bug

fixes for \pdfprimitive and related.
XeTEX: Support /Rotate in PDF image inclusion; exit nonzero if the output driver fails; various

obscure UTF-8 and other primitive fixes.
MacTEX: See version support changes below. In addition, the files installed in /Applications/TeX/

by MacTEX have been reorganized for greater clarity; now this location contains four GUI programs
(BibDesk, LaTeXiT, TeX Live Utility, and TeXShop) at the top level and folders with additional utilities
and documentation.

tlmgr: new front-ends tlshell (Tcl/Tk) and tlcockpit (Java); JSON output; uninstall now a
synonym for remove; new action/option print-platform-info.

Platforms:

• New: x86_64-linuxmusl and aarch64-linux. Removed: armel-linux, powerpc-linux.
• x86_64-darwin supports 10.10–10.13 (Yosemite, El Capitan, Sierra, and High Sierra).
• x86_64-darwinlegacy supports 10.6–10.10 (though x86_64-darwin is preferred for 10.10).

All support for 10.5 (Leopard) is gone, that is, both the powerpc-darwin and i386-darwin
platforms have been removed.

• Windows: XP is no longer supported.

9.3 Future
TEX Live is not perfect, and never will be. We intend to continue to release new versions, and would like
to provide more documentation, more programs, an ever-improved and better-checked tree of macros
and fonts, and anything else TEX. This work is all done by volunteers in their spare time, and so there
is always more to do. Please see http://tug.org/texlive/contribute.html.

Please send corrections, suggestions, and offers of help to:

tex-live@tug.org
http://tug.org/texlive

Happy TEXing!

46 MAPS 48 hans hagen

Executing TEX

Abstract
Much of the LUA code in CONTEXT originates from experiments. When it survives in the
source code it is probably used, waiting to be used or kept for educational purposes. The
functionality that we describe here has already been present for a while in CONTEXT, but
improved a little starting with LUATEX 1.08 due to an extra helper. The code shown here is
generic and not used in CONTEXT as such.

Say that we have this code:

for i=1,10000 do
tex.sprint("1")
tex.sprint("2")
for i=1,3 do

tex.sprint("3")
tex.sprint("4")
tex.sprint("5")

end
tex.sprint("\\space")

end

When we call \directlua with this snippet we get some 30 pages of 12345345345.
The printed text is saved till the end of the LUA call, so basically we pipe some 170.000
characters to TEX that get interpreted as one paragraph.

Now imagine this:

\setbox0\hbox{xxxxxxxxxxx} \number\wd0

which gives 3595950. If we check the box in LUA, with:

tex.sprint(tex.box[0].width)
tex.sprint("\\enspace")
tex.sprint("\\setbox0\\hbox{!}")
tex.sprint(tex.box[0].width)

the result is 3595950 3595950, which is not what you would expect at first sight.
However, if you consider that we just pipe to a TEX buffer that gets parsed after the
LUA call, it will be clear that the reported width is the width that we started with. It
will work all right if we say:

tex.sprint(tex.box[0].width)
tex.sprint("\\enspace")
tex.sprint("\\setbox0\\hbox{!}")
tex.sprint("\\directlua{tex.sprint(tex.box[0].width)}")

because now we get: 3595950 301500. It’s not that complex to write some support
code that makes this more convenient. This can work out quite well but there is a
drawback. If we use this code:

print(status.input_ptr)
tex.sprint(tex.box[0].width)
tex.sprint("\\enspace")
tex.sprint("\\setbox0\\hbox{!}")

executing tex VOORJAAR 2018 47

tex.sprint("\\directlua{print(status.input_ptr)\
tex.sprint(tex.box[0].width)}")

Here we get 6 and 7 reported. You can imagine that when a lot of nested
\directlua calls happen, we can get an overflow of the input level or (depending
on what we do) the input stack size. Ideally we want to do a LUA call, temporarily
go to TEX, return to LUA, etc. without needing to worry about nesting and possible
crashes due to LUA itself running into problems. One charming solution is to use
so-called coroutines: independent LUA threads that one can switch between — you
jump out from the current routine to another and from there back to the current one.
However, when we use \directlua for that, we still have this nesting issue and what
is worse, we keep nesting function calls too. This can be compared to:

\def\whatever{\ifdone\whatever\fi}

where at some point \ifdone is false so we quit. But we keep nesting when the
condition is met, so eventually we can end up with some nesting related overflow.
The following:

\def\whatever{\ifdone\expandafter\whatever\fi}

is less likely to overflow because there we have tail recursion which basically boils
down to not nesting but continuing. Do we have something similar in LUATEX for
LUA? Yes, we do. We can register a function, for instance:

lua.get_functions_table()[1] = function() print("Hi there!") end

and call that one with:

\luafunction 1

This is a bit faster than calling a function like:

\directlua{HiThere()}

which can also be achieved by

\directlua{print("Hi there!")}

which sometimes can be more convenient. Anyway, a function call is what we can
use for our purpose as it doesn’t involve interpretation and effectively behaves like
a tail call. The following snippet shows what we have in mind:

tex.routine(function()
tex.sprint(tex.box[0].width)
tex.sprint("\\enspace")
tex.sprint("\\setbox0\\hbox{!}")
tex.yield()
tex.sprint(tex.box[0].width)

end)

We start a routine, jump out to TEX in the middle, come back when we’re done
and continue. This gives us: 3595950 188640, which is what we expect.

3595950 188640
This mechanism permits efficient (nested) loops like:

tex.routine(function()
for i=1,10000 do

tex.sprint("1")
tex.yield()
tex.sprint("2")
tex.routine(function()

for i=1,3 do

48 MAPS 48 hans hagen

tex.sprint("3")
tex.yield()
tex.sprint("4")
tex.yield()
tex.sprint("5")

end
end)
tex.sprint("\\space")
tex.yield()

end
end)

We do create coroutines, go back and forwards between LUA and TEX, but avoid
memory being filled up with printed content. If we flush paragraphs (instead of e.g.
the space) then the main difference is that instead of a small delay due to the loop
unfolding in a large set of prints and accumulated content, we now get a steady
flushing and processing.

However, we can still have an overflow of input buffers because we still nest them:
the limitation at the TEX end has moved to a limitation at the LUA end. How come?
Here is the code that we use:
local stepper = nil
local stack = { }
local fid = 0xFFFFFF
local goback = "\\luafunction" .. fid .. "\\relax"

function tex.resume()
if coroutine.status(stepper) == "dead" then

stepper = table.remove(stack)
end
if stepper then

coroutine.resume(stepper)
end

end

lua.get_functions_table()[fid] = tex.resume

function tex.yield()
tex.sprint(goback)
coroutine.yield()
texio.closeinput()

end

function tex.routine(f)
table.insert(stack,stepper)
stepper = coroutine.create(f)
tex.sprint(goback)

end

The routine creates a coroutine, and yield gives control to TEX. The resume is
done at the TEX end when we’re finished there. In practice this works fine and when
you permit enough nesting and levels in TEX then you will not easily overflow.

When I picked up this side project and wondered how to get around it, it suddenly
struck me that if we could just quit the current input level then nesting would not
be a problem. Adding a simple helper to the engine made that possible (of course
figuring it out took a while):
local stepper = nil
local stack = { }

executing tex VOORJAAR 2018 49

local fid = 0xFFFFFF
local goback = "\\luafunction" .. fid .. "\\relax"

function tex.resume()
if coroutine.status(stepper) == "dead" then

stepper = table.remove(stack)
end
if stepper then

coroutine.resume(stepper)
end

end

lua.get_functions_table()[fid] = tex.resume

if texio.closeinput then
function tex.yield()

tex.sprint(goback)
coroutine.yield()
texio.closeinput()

end
else

function tex.yield()
tex.sprint(goback)
coroutine.yield()

end
end

function tex.routine(f)
table.insert(stack,stepper)
stepper = coroutine.create(f)
tex.sprint(goback)

end

The trick is in texio.closeinput, a recent helper and one that should be used with
care. We assume that the user knows what she or he is doing. On an old laptop with
a i7-3840 processor running WINDOWS 10 the following snippet takes less than 0.35
seconds with LUATEX and 0.26 seconds with LUAJITTEX.
tex.routine(function()

for i=1,10000 do
tex.sprint("\\setbox0\\hpack{x}")
tex.yield()
tex.sprint(tex.box[0].width)
tex.routine(function()

for i=1,3 do
tex.sprint("\\setbox0\\hpack{xx}")
tex.yield()
tex.sprint(tex.box[0].width)

end
end)

end
end)

Say that we run the bad snippet:
for i=1,10000 do

tex.sprint("\\setbox0\\hpack{x}")
tex.sprint(tex.box[0].width)
for i=1,3 do

50 MAPS 48 hans hagen

tex.sprint("\\setbox0\\hpack{xx}")
tex.sprint(tex.box[0].width)

end
end

This time we need 0.12 seconds in both engines. So what if we run this:

\dorecurse{10000}{%
\setbox0\hpack{x}
\number\wd0
\dorecurse{3}{%

\setbox0\hpack{xx}
\number\wd0

}%
}

Pure TEX needs 0.30 seconds for both engines but there we lose 0.13 seconds on the
loop code. In the LUA example where we yield, the loop code takes hardly any time.
As we need only 0.05 seconds more it demonstrates that when we use the power
of LUA the performance hit of the switch is quite small: we yield 40.000 times! In
general, such differences are far exceeded by the overhead: the time needed to typeset
the content (which \hpack doesn’t do), breaking paragraphs into lines, constructing
pages and other overhead involved in the run. In CONTEXT we use a slightly different
variant which has 0.30 seconds more overhead, but that is probably true for all LUA
usage in CONTEXT, but again, it disappears in other runtime.

Here is another example:

\def\TestWord#1%
{\directlua{

tex.routine(function()
tex.sprint("\\setbox0\\hbox{\\tttf #1}")
tex.yield()
tex.sprint(math.round(100 * tex.box[0].width/tex.hsize))
tex.sprint(" percent of the hsize: ")
tex.sprint("\\box0")

end)
}}

The width of next word is \TestWord {inline}!

The width of next word is 8 percent of the hsize: inline!
Now, in order to stay realistic, this macro can also be defined as:

\def\TestWord#1%
{\setbox0\hbox{\tttf #1}%
\directlua{

tex.sprint(math.round(100 * tex.box[0].width/tex.hsize))
} %
percent of the hsize: \box0\relax}

We get the same result: “The width of next word is 8 percent of the hsize: inline!”.
We have been using a LUA-TEX mix for over a decade now in CONTEXT, and have

never really needed this mixed model. There are a few places where we could (have)
benefited from it and we might use it in a few places, but so far we have done fine
without it. In fact, in most cases typesetting can be done fine at the TEX end. It’s all
a matter of imagination.

Hans Hagen

hans hagen VOORJAAR 2018 51

Variable fonts

Introduction
History shows the tendency to recycle ideas. Often quite some effort is made by
historians to figure out what really happened, not just long ago, when nothing was
written down and we had to do with stories or pictures at most, but also in recent
times. Descriptions can be conflicting, puzzling, incomplete, partially lost, biased,
. . .

Just as language was invented (or evolved) several times, so were scripts.The same
might be true for rendering scripts on a medium. Semaphores came and went within
decades and how many people know now that they existed and that encryption was
involved? Are the old printing presses truly the old ones, or are older examples sim-
ply gone? One of the nice aspects of the internet is that one can now more easily
discover similar solutions for the same problem, but with a different (and indepen-
dent) origin.

So, how about this “new big thing” in font technology: variable fonts. In this case,
history shows that it’s not that new. For most TEX users the names metafont and
METAPOST will ring bells. They have a very well documented history so there is not
much left to speculation. There are articles, books, pictures, examples, sources, and
more around for decades. So, the ability to change the appearance of a glyph in a font
depending on some parameters is not new. What probably is new is that creating
variable fonts is done in the natural environment where fonts are designed: an inter-
active program. The metafont toolkit demands quite some insight in programming
shapes in such a way that one can change look and feel depending on parameters.
There are not that many meta fonts made and one reason is that making them re-
quires a certain mind- and skill set. On the other hand, faster computers, interactive
programs, evolving web technologies, where real-time rendering and therefore more
or less real-time tweaking of fonts is a realistic option, all play a role in acceptance.

But do interactive font design programs make this easier? You still need to be able
to translate ideas into usable beautiful fonts. Taking the common shapes of glyphs,
defining extremes and letting a program calculate some interpolations will not al-
ways bring good results. It’s like morphing a picture of your baby’s face into yours
of old age (or that of your grandparent): not all intermediate results will look great.
It’s good to notice that variable fonts are a revival of existing techniques and ideas
used in, for instance, multiple master fonts. The details might matter even more as
they can now be exaggerated when some transformation is applied.

There is currently (March 2017) not much information about these fonts so what
I say next may be partially wrong or at least different from what is intended. The
perspective will be one from a TEX user and coder.Whatever you think of them, these
fonts will be out there and for sure there will be nice examples circulating soon. And
so, when I ran into a few experimental fonts, with POSTSCRIPT and TRUETYPE outlines,
I decided to have a look at what is inside. After all, because it’s visual, it’s also fun
to play with. Let’s stress that at the moment of this writing I only have a few simple
fonts available, fonts that are designed for testing and not usage. Some recommended
tables were missing and no complex OPENTYPE features are used in these fonts.

52 MAPS 48 hans hagen

The specification
I’m not that good at reading specifications, first of all because I quickly fall asleep
with such documents, but most of all because I prefer reading other stuff (I do have
lots of books waiting to be read). I’m also someone who has to play with something
in order to understand it: trial and error is my modus operandi. Eventually it’s my
intended usage that drives the interface and that is when everything comes together.

Exploring this technology comes down to: locate a font, get the OPENTYPE 1.8 spec-
ification from the MICROSOFT website, and try to figure out what is in the font. When
I had a rough idea the next step was to get to the shapes and see if I could manipulate
them. Of course it helped that in CONTEXT we already can load fonts and play with
shapes (using METAPOST). I didn’t have to install and learn other programs. Once I
could render them, in this case by creating a virtual font with inline PDF literals, a
next stepwas to apply variation.Then came the first experiments with a possible user
interface. Seeing more variation then drove the exploration of additional properties
needed for typesetting, like features.

The main extension to the data packaged in a font file concerns the (to be dis-
cussed) axis along which variable fonts operate and deltas to be applied to coor-
dinates. The gdef table has been extended and contains information that is used in
gpos features. There are new hvar, vvar and mvar tables that influence the horizontal,
vertical and general font dimensions. The gvar table is used for TRUETYPE variants,
while the cff2 table replaces the cff table for OPENTYPE POSTSCRIPT outlines. The
avar and stat tables contain some meta-information about the axes of variations.

It must be said that because this is new technology the information in the standard
is not always easy to understand. The fact that we have two rendering techniques,
POSTSCRIPT cff and TRUETYPE ttf, also means that we have different information
and perspectives. But this situation is not much different from OPENTYPE standards
a few years ago: it takes time but in the end I will get there. And, after all, users also
complain about the lack of documentation for CONTEXT, so who am I to complain?
In fact, it will be those CONTEXT users who will provide feedback and make the
implementation better in the end.

Loading
Before we discuss some details, it will be useful to summarize what the font loader
does when a user requests a font at a certain size and with specific features enabled.
When a font is used the first time, its binary format is converted into a form that
makes it suitable for use within CONTEXT and therefore LUATEX. This conversion
involves collecting properties of the font as a whole (official names, general dimen-
sions like x-height and em-width, etc.), of glyphs (dimensions, UNICODE properties,
optional math properties), and all kinds of information that relates to (contextual) re-
placements of glyphs (small caps, oldstyle, scripts like Arabic) and positioning (kern-
ing, anchoring marks, etc.). In the CONTEXT font loader this conversion is done in
LUA.

The result is stored in a condensed format in a cache and the next time the font is
needed it loads in an instant. In the cached version the dimensions are untouched,
so a font at different sizes has just one copy in the cache. Often a font is needed at
several sizes and for each size we create a copy with scaled glyph dimensions. The
feature-related dimensions (kerning, anchoring, etc.) are shared and scaled when
needed. This happens when sequences of characters in the node list get converted
into sequences of glyphs. We could do the same with glyph dimensions but one
reason for having a scaled copy is that this copy can also contain virtual glyphs and

variable fonts VOORJAAR 2018 53

these have to be scaled beforehand. In practice there are several layers of caching in
order to keep the memory footprint within reasonable bounds.1

When the font is actually used, interaction between characters is resolved using
the feature-related information.When for instance two characters need to be kerned,
a lookup results in the injection of a kern, scaled from general dimensions to the
current size of the font.

When the outlines of glyphs are needed in METAFUN the font is also converted
from its binary form to something in LUA, but this time we filter the shapes. For a
cff this comes down to interpreting the charstrings and reducing the complexity
to moveto, lineto and curveto operators. In the process subroutines are inlined. The
result is something that METAPOST is happy with but that also can be turned into a
piece of a PDF.

We now come to what a variable font actually is: a basic design which is trans-
formed along one or more axes. A simple example is wider shapes:

We can also go taller and retain the width:

Here we have a linear scaling but glyphs are not normally done that way. There
are font collections out there with lots of intermediate variants (say from light to
heavy) and it’s more profitable to sell each variant independently. However, there
is often some logic behind it, probably supported by programs that designers use,
so why not build that logic into the font and have one file that represents many
intermediate forms. In fact, once we have multiple axes, even when the designer has
clear ideas of the intended usage, nothing will prevent users from tinkering with the
axis properties in ways that will fulfil their demands but hurt the designers eyes. We
will not discuss that dilemma here.

When a variable font follows the route described above, we face a problem. When
you load a TRUETYPE font it will just work. The glyphs are packaged in the same
format as static fonts. However, a variable font has axes and on each axis a value can
be set. Each axis has a minimum, maximum and default. It can be that the default
instance also assumes some transformations are applied. The standard recommends
adding tables to describe these things but the fonts that I played with each lacked
such tables. So that leaves some guesswork. But still, just loading a TRUETYPE font
gives some sort of outcome, although the dimensions (widths) might be weird due
to lack of a (default) axis being applied.

An OPENTYPE font with POSTSCRIPT outlines is different: the internal cff format
has been upgraded to cff2 which on the one hand is less complicated but on the
other hand has a few new operators — which results in programs that have not been
adapted complaining or simply quitting on them.

One could argue that a font is just a resource and that one only has to pass it along
but that’s not what works well in practice. Take LUATEX. We can of course load the
font and apply axis vales so that we can process the document as we normally do. But

1. In retrospect one can wonder if that makes sense; just look at how much memory a browser uses
when it has been open for some time. In the beginning of LUATEX users wondered about caching fonts,
but again, just look at what amounts browsers cache: it gets pretty close to the average amount of writes
that a SSD can handle per day within its guaranteed life span.

54 MAPS 48 hans hagen

at some point we have to create a PDF. We can simply embed the TRUETYPE files but no
axis values are applied.This is because, even if we add the relevant information, there
is no way in current PDF formats to deal with it. For that, we should be able to pass all
relevant axis-related information as well as specify what values to use along these
axes. And for TRUETYPE fonts this information is not part of the shape description
so then we in fact need to filter and pass more. An OPENTYPE POSTSCRIPT font is
much cleaner because there we have the information needed to transform the shape
mostly in the glyph description.There we only need to carry some extra information
on how to apply these so-called blend values. The region/axis model used there only
demands passing a relatively simple table (stripped down to what we need). But, as
said above, cff2 is not backward-compatible so a viewer will (currently) simply not
show anything.

Recalling howwe load fonts, how does that translate with variable changes? If we
have two characters with glyphs that get transformed and that have a kern between
them, the kern may or may not transform. So, when we choose values on an axis,
then not only glyph properties change but also relations. We can no longer share
positional information and scale afterwards because each instance can have differ-
ent values to start with. We could carry all that information around and apply it at
runtime but because we’re typesetting documents with a static design it’s more con-
venient to just apply it once and create an instance. We can use the same caching
as mentioned before but each chosen instance (provided by the font or made up by
user specifications) is kept in the cache. As a consequence, using a variable font has
no overhead, apart from initial caching.

So, having dealt with that, how do we proceed? Processing a font is not different
from what we already had. However, I would not be surprised if users are not always
satisfied with, for instance, kerning, because in such fonts a lot of care has to be given
to this by the designer. Of course I can imagine that programs used to create fonts
deal with this, but even then, there is a visual aspect to it too. The good news is that
in CONTEXT we can manipulate features so in theory one can create a so-called font
goodie file for a specific instance.

Shapes
For OPENTYPE POSTSCRIPT shapes we always have to do a dummy rendering in order
to get the right bounding box information. For TRUETYPE this information is already
present but not when we use a variable instance, so I had to do a bit of coding for
that. Here we face a problem. For TEX we need the width, height and depth of a
glyph. Consider the following case:

The shape has a bounding box that fits the shape. However, its left corner is not at
the origin. So, when we calculate a tight bounding box, we cannot use it for actually
positioning the glyph. We do use it (for horizontal scripts) to get the height and
depth but for the width we depend on an explicit value. In OPENTYPE POSTSCRIPT
we have the width available and how the shape is positioned relative to the origin
doesn’t muchmatter. In a TRUETYPE shape a bounding box is part of the specification,
as is the width, but for a variable font one has to use so-called phantom points to
recalculate the width and the test fonts I had were not suitable for investigating this.

At any rate, once I could generate documents with typeset text using variable
fonts it became time to start thinking about a user interface. A variable font can

variable fonts VOORJAAR 2018 55

have predefined instances but of course a user also wants to mess with axis values.
Take one of the test fonts: Adobe Variable Font Prototype. It has several instances:
extralight It looks like this! weight=0.0 contrast=0.0
light It looks like this! weight=150.0 contrast=0.0
regular It looks like this! weight=394.0 contrast=0.0
semibold It looks like this! weight=600.0 contrast=0.0
bold It looks like this! weight=824.0 contrast=0.0
black high contrast It looks like this! weight=1000.0 contrast=100.0
black medium contrast It looks like this! weight=1000.0 contrast=50.0
black It looks like this! weight=1000.0 contrast=0.0

Such an instance is accessed with:
\definefont

[MyLightFont]
[name:adobevariablefontprototypelight*default]

The Avenir Next variable demo font (currently) provides:
regular It looks like this! weight=400.0 width=100.0
medium It looks like this! weight=500.0 width=100.0
bold It looks like this! weight=700.0 width=100.0

heavy It looks like this! weight=900.0 width=100.0
condensed It looks like this! weight=400.0 width=75.0
medium condensed It looks like this! weight=500.0 width=75.0
bold condensed It looks like this! weight=700.0 width=75.0

heavy condensed It looks like this! weight=900.0 width=75.0

Before we continue I will show a few examples of variable shapes. Here we use
some METAFUN magic. Just take these definitions for granted.
\startMPcode

draw outlinetext.b
("\definedfont[name:adobevariablefontprototypeextralight]foo@bar")
(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;

\stopMPcode

\startMPcode
draw outlinetext.b

("\definedfont[name:adobevariablefontprototypelight]foo@bar")
(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;

\stopMPcode

\startMPcode
draw outlinetext.b

("\definedfont[name:adobevariablefontprototypebold]foo@bar")
(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;

\stopMPcode

\startMPcode
draw outlinetext.b

("\definefontfeature[whatever][axis={weight:350}]%
\definedfont[name:adobevariablefontprototype*whatever]foo@bar")

56 MAPS 48 hans hagen

(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;

\stopMPcode

The results are shown in figure 1. What we see here is that as long as we fill the
shape everything will look as expected but using only an outline won’t. The crucial
(control) points aremoved to different locations and as a result they can end up inside
the shape. Giving up outlines is the price we evidently need to pay. Of course this is
not unique for variable fonts although in practice static fonts behave better. To some
extent we’re back to where we were with metafont and (for instance) Computer
Modern: because these originate in bitmaps (and probably use similar design logic)
we also can have overlap and bits and pieces pasted together and no one will notice
that. The first outline variants of Computer Modern also had such artifacts while in
the static Latin Modern successors, outlines were cleaned up.

a b

d c

Figure 1. Four variants

The fact that we need to preprocess an instance but only know how to do that when
we have gotten the information about axis values from the font means that the font
handler has to be adapted to keep caching correct. Another definition is:

\definefontfeature
[lightdefault]
[default]
[axis={weight:230,contrast:50}]

\definefont
[MyLightFont]
[name:adobevariablefontprototype*lightdefault]

Here the complication is that where normally features are dealt with after loading,
the axis feature is part of the preparation (and caching). If you want the virtual font
solution you can do this:

\definefontfeature
[inlinelightdefault]
[default]
[axis={weight:230,contrast:50},
variableshapes=yes]

\definefont
[MyLightFont]
[name:adobevariablefontprototype*inlinelightdefault]

When playing with these fonts it was hard to see if loading was done right. For
instance not all values make sense. It is beyond the scope of this article, but axes like
weight, width, contrast and italic values get applied differently to so-called regions

va
-0.266

riable fonts V
-0.213

OORJAAR 2018 57

(subspaces). So say that we have an 𭑥 coordinate with value 50. This value can be
adapted in, for instance, four subspaces (regions), so we actually get:

𭑥′ = 𭑥 + 𭑠1 × 𭑥1 + 𭑠2 × 𭑥2 + 𭑠3 × 𭑥3 + 𭑠4 × 𭑥4

The (here) four scale factors 𭑠𭑛 are determined by the axis value. Each axis has some
rules about how to map the values 230 for weight and 50 for contrast to such a factor.
And each region has its own translation from axis values to these factors. The deltas
𭑥1, …, 𭑥4 are provided by the font. For a POSTSCRIPT-based font we find sequences
like:

1 <setvstore>
120 [10 -30 40 -60] 1 <blend> ... <operator>
100 120 [10 -30 40 -60] [30 -10 -30 20] 2 <blend> .. <operator>

A store refers to a region specification. From there the factors are calculated using the
chosen values on the axis. The deltas are part of the glyphs specification. Officially
there can be multiple region specifications, but how likely it is that they will be used
in real fonts is an open question.

For TRUETYPE fonts the deltas are not in the glyph specification but in a dedicated
gvar table.

apply x deltas [10 -30 40 -60] to x 120
apply y deltas [30 -10 -30 20] to y 100

Here the deltas come from tables outside the glyph specification and their application
is triggered by a combination of axis values and regions.

The following two examples use Avenir Next Variable and demonstrate that kern-
ing is adapted to the variant.

\definefontfeature
[default:shaped]
[default]
[axis={width:10}]

\definefont
[SomeFont]
[file:avenirnextvariable*default:shaped]

C
-0.120

oming back to the use of typefaces in electr
-0.180

onic publishing: many of
the new typogr

-0.120

aphers r
-0.180

eceive their knowledge and informa
-0.100

tion about the
rules of typogr

-0.120

aphy fr
-0.180

ombook
-0.060

s, fr
-0.180

omcomputermagazines or the instruction
manuals which they get with the pur

-0.180

chase of a PC or sof
-0.120

twar
-0.180

e.T
-0.180

her
-0.180

e is not so
much basic instruction, as of now

-0.360

, as ther
-0.180

e was in the old days, showing the
dif

-0.180

fer
-0.180

ences between good and bad typogr
-0.120

aphic design. Many people ar
-0.180

e
just fascina

-0.100

ted by their PC’
-0.480

s trick
-0.060

s, and think tha
-0.100

t a widely--pr
-0.120

aised pr
-0.180

ogr
-0.120

am,
called up on the scr

-0.180

een, will mak
-0.180

e everything automa
-0.100

tic fr
-0.180

om now on.
Hermann Z

-0.120

apf

\definefontfeature
[default:shaped]
[default]
[axis={width:100}]

\definefont
[SomeFont]
[file:avenirnextvariable*default:shaped]

C
-0.120

oming back to the use of typefaces in electr
-0.180

onic publishing: many of
the new typogr

-0.120

aphers r
-0.180

eceive their knowledge and informa
-0.100

tion about the

58 MAPS 48 hans hagen

rules of typogr
-0.120

aphy fr
-0.180

ombook
-0.060

s, fr
-0.180

omcomputermagazines or the instruction
manuals which they get with the pur

-0.180

chase of a PC or sof
-0.120

twar
-0.180

e.T
-0.180

her
-0.180

e is not so
much basic instruction, as of now

-0.360

, as ther
-0.180

e was in the old days, showing the
dif

-0.180

fer
-0.180

ences between good and bad typogr
-0.120

aphic design. Many people ar
-0.180

e
just fascina

-0.100

ted by their PC’
-0.480

s trick
-0.060

s, and think tha
-0.100

t a widely--pr
-0.120

aised pr
-0.180

ogr
-0.120

am,
called up on the scr

-0.180

een, will mak
-0.180

e everything automa
-0.100

tic fr
-0.180

om now on.
Hermann Z

-0.120

apf

Embedding
Once we’re done typesetting and a PDF file has to be created there are three possible
routes:

� We can embed the shapes as PDF images (inline literal) using virtual font tech-
nology. We cannot use so-called xforms here because we want to support color
selectively in text.

� We can wait till the PDF format supports such fonts, which might happen but
even then we might be stuck for years with viewers getting there. Also docu-
ments need to get printed, and when printer support might arrive is another
unknown.

� We can embed a regular font with shapes that match the chosen values on the
axis. This solution is way more efficient than the first.

Once I could interpret the right information in the font, the first route was the way
to go. A side effect of having a converter for both outline types meant that it was
trivial to create a virtual font at runtime.This option will stay in CONTEXT as pseudo-
feature variableshapes.

When trying to support variable fonts I tried to limit the impact on the backend
code. Also, processing features and such was not touched. The inclusion of the right
shapes is done via a callback that requests the blob to be injected in the cff or glyf
table. When implementing this I actually found out that the LUATEX backend also
does some juggling of charstrings, to serve the purpose of inlining subroutines. In
retrospect I could have learned a few tricks faster by looking at that code but I never
realized that it was there. Looking at the code again, it strikes me that the whole
inclusion could be done with LUA code and some day I will give that a try.

Conclusion
When I first heard about variable fonts I was confident that when they showed up
they could be supported. Of course a specimen was needed to prove this. A first im-
plementation demonstrates that indeed it’s no big deal to let CONTEXT with LUATEX
handle such fonts. Of course we need to fill in some gaps which can be done once
we have complete fonts. And then of course users will demand more control. In the
meantime the helper script that deals with identifying fonts by name has been ex-
tended and the relevant code has been added to the distribution. At some point the
CONTEXT Garden will provide the LUATEX binary that has the callback.

I end with a warning. On the one hand this technology looks promising but on
the other hand one can easily get lost. Probably most such fonts operate over a well-
defined domain of values but even then one should be aware of complex interactions
with features like positioning or replacements. Not all combinations can be tested.
It’s probably best to stick to fonts that have all the relevant tables and don’t depend
on properties of a specific rendering technology.

Hans Hagen

bogusław jackowski, piotr pianowski & piotr strzelczyk VOORJAAR 2018 59

TEX Gyre text fonts revisited

Introduction

The collection of the TEX Gyre (TG in short) family of text
fonts was released by the GUST e-foundry in 2006 – 2009
[1, 2]. Having �nished this task, the GUST e-foundry
team started to work on the math companion (in the
OpenType, OTF, format – see [5]) for the TG text fonts
[3]. Work on the math companion was �nished two
years ago. It resulted in the broadening of the repertoire
of glyphs that could be used not only in math mode
but also in text mode in technical documents. Hans
Hagen, indefatigably coming up with interesting ideas,
proposed to migrate the relevant glyphs to the text TG
fonts. Needless to say, we seized on Hans’s sugges-
tion.

The �rst step was to decide which glyphs are to be
migrated (and/or improved). Obviously, the list of can-
didates grew and grew. All in all, about 1000 glyphs
were designated to be added, mostly geometrical and
math symbols. A math companion, so far, was provided
only for serif fonts, thus the consistent enhancement of
the repertoire of the sans-serif fonts was a working test
for our fonts generator – cf. Section “The MetaType 1
engine” below.

We started with two fonts – the serif TG Pagella and
the sans-serif TG Adventor. The results were satisfying.
Now we are ready for the next step: to enhance similarly
the rest of the TG family (TG Chorus which is hardly
suitable for technical texts, needs individual approach).
We believe, however, that we’re over the hump. Below,
we describe the most di�cult and thus most interesting
(to us) aspects of this stage of the TG project.

The MetaType 1 engine
The scheme of the new MetaType1 work�ow is depicted
in Figure 1.

The main change in the engine consists of the re-
placement of several components (AWK plus perl plus
T1utils) by Python code with the FontForge library
(�nally, the library is available both under Linux and
Windows®). However, the FontForge library does not
allow for a su�ciently detailed control over the con-
tents of the AFM and PFM �les being generated which
necessitates additional steps for �ne tuning these �les
(dashed arrows in Figure 1).

The converter from Type 1 fonts to MetaType 1
sources, actually written in AWK plus T1utils, has not
been rewritten so far. We plan to rewrite it in Python
with FontForge library and enhance it to process also
TrueType and OpenType �les.

Of course, MetaPost still is the main module for gen-
erating glyph shapes. However, instead of spreading the
auxiliary information into several output �les (including
EPS �les), a single auxiliary output �le, containing all
the information needed for further processing, is gen-
erated. We will refer to this �le as Olio Typographic
Information �le, OTI. Olio is a traditional name for a
potpourri (it appears, e.g., in Robert Burns’s Address to
a Haggis –“French ragout or olio”). An OTI �le is a con-
tainer of “assorted bites and fragrances”, indeed. Below
is a fragment of an OTI �le for TG Pagella regular.
FNT FAMILY_NAME TeX Gyre P a g e l l a
FNT HEADER_BYTE49 TeX Gyre P a g e l l a
FNT GROUP_NAME TeX Gyre P a g e l l a
FNT STYLE_NAME R e g u l a r
. . .
FNT WEIGHT R e g u l a r
FNT ITALIC_ANGLE 0
. . .
GLY A CODE 65
GLY A EPS 165
GLY A ANCHOR INBAS ALT . ogonek 623 −143
GLY A ANCHOR INBAS BOT_MAIN 392 −143
GLY A ANCHOR INBAS TOP_MAIN 392 819
GLY A WD 778 HT 692 DP 0 IC 6 GA 392
GLY A HSBW 778
GLY A BBX 15 −3 756 700
. . .
FNT FONT_DIMEN7 0 . 8 3
FNT DIMEN_NAME7 (e x t r a s p a c e)
FNT FONT_DIMEN22 2 . 5
FNT DIMEN_NAME22 (math a x i s)
FNT HEADER_BYTE72 234

Each line of the OTI �le contains either global in-
formation, concerning the whole font (pre�x ‘FNT’), or
local, concerning a given glyph (pre�x ‘GLY’ followed by
the glyph name). We will not dwell too much on the de-
tails of the structure of OTI �les as it will be documented
elsewhere.

60 MAPS 48 bogusław jackowski, piotr pianowski & piotr strzelczyk

METAPOST

font base
METAPOST

source(s)
configuration

files

PFB file

TFM file

ENC and MAP
files (for dvips)

AFM file

fixed AFM file

PFM file

fixed PFM file
OpenType

font file (OTF)

FFDKO, i.e., Python scripts
employing FontForge library

EPS file 1
EPS file 2
EPS file n

auxiliary(OTI)file

...

Python

Python

METAPOST

Figure 1. New MetaType 1 engine: working scheme

The glyph repertoire

As was mentioned, one of the important stimulus for the
“face-lifting” of the TG text fonts were our e�orts on TG
math fonts: a lot of symbols do not need mathematical
extension of the font structure (MATH table in OTF �les);
they, however, may prove useful in typesetting technical
texts; for example, mathematical symbols (operators,
relational symbols), arrows, geometrical symbols, etc.
– see Figures 2 and 3 (next page). The number of glyphs
grew from circa 750 to more than 1600. It may grow
further in the future (see Section “Plans for the future”).

The symbolic glyphs in the TG math fonts were de-
signed only for regular serif variant fonts. The code,
however, turned out �exible enough and with a few
changes it was possible to generate the bold and sans-
serif variants.

Apart from enriching the repertoire, many glyphs
were amended, due to, among others, employing Font-
Forgewhich, by default, minutely checks glyph outlines.
For example, a tilde in TG Adventor was drawn from
scratch, axes in several glyphs were corrected and so
on.

Math-oriented glyphs existing so far in the text fonts
have been replaced with slightly di�erent forms, bet-
ter suited for math formulas. The old forms can be
reached, if required, by using the OTF mechanism called
features [5, 6, 7], namely, the ‘stylistic set’ feature ss10.
Moreover, the Pagella Greek alphabet was taken from
TG Pagella Math, that is, from Diego Puga’s excellent
Mathpazo with the kind permission of the Author who

agreed for us to use a fragment of his font under the
GUST Font Licence (GFL, cf. [11]). The latter change
involves signi�cant change of the metric data. We are
generally very reluctant to introduce such changes, but
believe that the elegance of the Mathpazo Greek alpha-
bet justi�es that decision. Some glyphs from the Greek
alphabet of TG Adventor (programmed in MetaType1)
required improvements which also implied changes in
metric data.

Figure 4. Default math-oriented glyphs (left) vs old
glyphs produced by the OTF ss10 feature (right)

Rolling with punches, we decided to abandon our
initial idea of a full compatibility with the metric of the
renowned Adobe 35 fonts [4]. The reason is two-fold:
�rst, Adobe metric data is, as we pointed out in the doc-
umentation of the TG fonts [2], inconsistent in several
cases; second, preserving full compatibility makes sense
only when the relevant metric �les are used for preview-
ing PostScript �les to be printed on a printer with built-
in Adobe Type1 fonts. The TG fonts might have been
used for such previewing, but, as it turned out, they have
been not (neither in Ghostscript nor in TEX Live; for
example, the URW replacement for the Adobe 35 is used).
Eventually, we decided to tune the TG metric data accord-
ing to our experience whenever required. We believe
that we will manage to avoid such changes in the future.

TEX Gyre text fonts revisited VOORJAAR 2018 61

↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃
▒░▓⬚▭▬▪▫●□△▶▷▽◀◁
↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃
▒░▓⬚▭▬▪▫●□△▶▷▽◀◁

Figure 2. A sample of added glyphs: TG Pagella regular (top) and bold (bottom)

↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃
▒░▓⬚▭▬▪▫●□△▶▷▽◀◁

↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃
▒░▓⬚▭▬▪▫●□△▶▷▽◀◁

Figure 3. A sample of added glyphs: TG Adventor regular (top) and bold (bottom)

The font structure

The structure of the OTF fonts has been been enhanced
with the “backward compatible math style” feature
(ss10) mentioned above and, moreover, with the mech-
anism of anchors, although the name “snaps” seems to
us to be more adequate. Anchors enable putting ac-
cents precisely over glyphs. Roughly speaking, the an-
chor mechanism can be considered the analogue of the

TEX \accent mechanism. Anchors, however, are im-
plemented in much more intricate way: three features,
obscurely documented in [6, 7], namely, ccmp (glyph
composition / decomposition), mark (mark positioning,
precisely, accent-to-base or mark-to-base positioning),
and mkmk (mark-to-mark positioning, or, in other words,
accent-to-accent positioning)1 are used for this purpose,
and yet the OTF anchor mechanism turns out insu�-
ciently e�cacious.

62 MAPS 48 bogusław jackowski, piotr pianowski & piotr strzelczyk

We were suprised with the complexity and laborious-
ness of the implementation of such a simple concept.
Having read the explanations below, the Reader and our
virtual successors should feel forewarned and thus be
less surprised.

“Anchors” or “marks” are actually pairs of numbers
(planar points); the features mark and mkmk are supposed
to position two glyphs in such a way that the respective
anchors of the accent and accentee coincide. The former
feature is used to position accents over or below basic
glyphs, the latter one – to position accents over or below
accents. In the TG fonts, following common practice,
only so called combining accents (a subset of the block
of the combining diacritical marks, [9], that is, zero-
width glyphs, protruding entirely to the left) are used
for accenting and, thus, are equipped with anchors. In
order to reduce the amount of anchor data, we decided to
use as anchored accentees only accentless Latin letters
plus letters “welded” with cedilla, horn, ogonek, and,
additionally, ‘l·’, ‘L·’, ‘ł’, ‘Ł’, ‘ø’, and ‘Ø’.

The ccmp feature enables the transformation of the
input stream, namely: replacing glyphs and assembling
a series of glyphs into a composed character or disas-
sembling a composed glyphs into a series of glyphs. The
respective substitutions, in principle, must be de�ned in
the font. Some engines, however, know better and per-
form such substitutions even if there is no relevant data
in the font. For example, Microsoft Word® replaces ‘i’
(U+0069) followed by a combining top accent, say ‘caron-
comb’ (U+030C), by a single glyph ‘icaron’ (U+01D0),
provided that the latter is available in a given font; no
further information, in particular, the ccmp feature, is re-
quired. Similarly, X ETEX joins accents with the basic
glyph into a single glyph, provided that the assembled
form is present in the font; otherwise, accents are being
put using anchors. This behaviour cannot be turned o� –
X ETEX simply uses system libraries which know better. . .

In the TG fonts, the ccmp feature is used to disassem-
ble accented glyphs (but not glyphs with cedilla, ogonek,
or horns) and to join into a single glyph letters followed
by combining cedilla, ogonek, or horn (provided that
the resulting glyph belongs to the repertoire of a given
font); otherwise, anchors are used. Moreover, ccmp is
used for replacing of certain basic glyphs and accents
by their alternative forms; for example, ‘i’ and ‘j’ in the
vicinity of the top combining accents are replaced by
their dotless forms, top combining accents following
an uppercase letters or ascenders are replaced by their
“high” (�attened) variants.

The process of accenting using anchors, seemingly
a trivial task, is, in fact, quite sophisticated. Unicode
Standard recommends that if a text processor is being
fed with a stream of text data containing a glyph, having
assigned a unicode slot, which is followed by a series
of combining accents, then the text processor may po-
sition these accents over the main glyph [8], provided
that the font contains the relevant positioning informa-
tion. A typical example of the aplication of the anchor
mechanism involving the ccmp+mark+mkmk features (as
implemented in the new TG fonts) is depicted in Figure 5.

In the picture, the names of features written in small
size denote the type of anchor (mark), large ones denote
application of the respective features, labels ‘TOP’ and
‘BOT’ are de�ned by user; the assumed input string is:
‘i’, ‘macronbelowcomb’, ‘caroncomb’, ‘tildecomb’ (that
is, in unicode lingo: U+0069 U+030C U+0331 U+0303).
The anchors have descriptors given in braces: donor and
acceptor (excerpted from physical chemistry).

The process of accenting works as follows in this
case:

@ �rst, the ccmp feature enters the scene: the letter
‘i’, when followed by a combining upper accent, is
replaced with ‘dotlessi’;

@ next, the mark feature acts: the ‘caroncomb’ glyph is
placed over ‘dotlessi’ in such a manner that its ‘TOP’
donor anchor coincides with the ‘TOP’ acceptor
anchor of the glyph ‘dotlessi’; as a result, both
anchors become inactive;

@ next, the mark feature enters once again: the
‘macronbelowcomb’ glyph is placed below ‘dotlessi’
in such a manner that its ‘BOT’ donor anchor
coincides with the ‘BOT’ acceptor anchor of the
letter ‘dotlessi’; as a result both anchors become
inactive;

@ �nally, the mkmk feature intervenes: the ‘tildecomb’
glyph is placed above newly placed ‘caroncomb’ in
such a manner that its ‘TOP’ donor anchor coincides
with the ‘BOT’ acceptor anchor of the ‘caroncomb’
glyph; as a result, both anchors become inactive;

@ the resulting assembled glyph has still two active
anchors, ‘TOP’ and ‘BOT’, that could be used by
the mkmk feature, provided that the relevant glyphs
appear in the input stream (immediately after
‘tildecomb’ in this case).

TEX Gyre text fonts revisited VOORJAAR 2018 63

Figure 5. Anchor mechanism scheme – an example (explanations in the text)

As one can see, the process of assembling glyphs
using anchors is actually fairly complex. It should be
admitted, however, that it enables handling such pecu-
liarities as replacing a caron glyph with a comma-like
variant if glyphs ‘l’, ‘L’ or ‘J’ are to be accented with
caron, replacing a comma accent by a turned comma
accent above ‘g’ (normally comma accent goes below a
letter), or a singular positioning of a dot below accent
at a letter ‘y’, as shown in Figure 6.

Figure 6. Peculiar positioning of certain accents (TEX
source – right; the result – left)

Unfortunately, not all practically important cases can
be reliably handled. Notable example is the replacement
of letters ‘i’ and ‘j’ by their dotless forms: the result
depends to a large extent on the order of the glyphs in
the input stream. In Figure 7, six cases are shown, with
di�erent order of glyphs in the input stream, namely
(here, i stands for the letter ‘i’, c stands for ‘caroncomb’,
and m stands for ‘macronbelowcomb’): 1. ic ; 2. imc ;
3. immc ; 4. immmc ; 5. immmmc ; 6. icccmmmm. Ob-
serve a malpositioned caron in one case – it is the result
of our “design decision”. The replacement ‘i’→‘dotlessi’
is performed only if the top accents occur close to the
letter ‘i’, preferably immediately after it. The OTF feature
speci�cation permits contextual replacements, that is, a
certain number of bottom accents may precede the top
one, but the preceding sequences must be enumerated
explicitly. We decided to limit the length of the context

to three glyphs (case 4. in Figure 7). If more bottom ac-
cents intervene between the letter ‘i’ and the top accent,
the replacement is not performed and the glyphs are
just overlapped (case 5. in Figure 7; as was mentioned,
combining accents have zero width and protrude to the
left). Some fonts de�ne longer contexts (for example,
Charis SIL), but we decided that for practical purposes
three is enough.

Figure 7. Troublesome replacement of ‘i’ by ‘dotlessi’
(explanations in the text)

In order to avoid such situations, we would recom-
mend that the top accents should go �rst, next bottom
accents (case 6. in Figure 7). The problem with our
recommendation is that the order can be reversed by a
text processing agent: according to the Unicode Stan-
dard recommendation, bottom accent should go �rst
and “canonical ordering behavior cannot be overridden
by higher-level protocols” [10]. Some text processing
agents apply the algorithm de�ned in [10] at the phase
of reading the unicode stream. In general, a typesetter
cannot rely safely on the text processor. Even in TEX,
the same text can be processed di�erently depending on
the implementation.

In TEX, selected features, such as ccmp, mark, mkmk,
etc., can be switched on or o� on demand. Not all text
processors o�er such a possibility. Notable example is
Microsoft Word® which has these features switched
on by default (it is not obvious whether it makes use

64 MAPS 48 bogusław jackowski, piotr pianowski & piotr strzelczyk

of the Unicode ordering algorithm). As was mentioned,
not all engines (in particular Microsoft Word®, but
also X ETEX) obey rules coded in the features ccmp, mark,
mkmk. Incidentally, Figure 7 was created usin LuaTEX.

In our opinion, the complexity of implementation of
anchors, resulting in a variety of approaches and imple-
mentations, is caused by the oversimpli�ed mechanism
of the OTF speci�cation: the only allowed operations
on a glyph are (re)positioning and substituting which is
directly related to the OTF table structure and the basic
tables, namely, GPOS and GSUB. The former operation
is restricted merely to shifting, the latter – to one-to-
one, one-to-multiple and multiple-to-one replacements
(which excludes reordering). Replacements can be either
explicit or contextual, which adds complexity and does
not help too much. In particular, fairly aged, not to say
fossil, regular expressions are not allowed in contextual
replacements.

Plans for the future
The next step (besides obvious cleaning of the sources,
both Python and MetaPost) will undoubtedly be ex-
tending in a similar way of the remaining TG text fonts,
both sans-serif (Heros) and serif (Bonum, Cursor, Schola,
and Termes). TG Chorus, as a chancery font, is not suit-
able for such an extension. We consider naming the
stylistic features used in the TG fonts – it needs consid-
eration, however, wrong names may likely introduce
mess rather than order.

Having gathered experience with the text fonts, we
would like to revisit TG math fonts, with attention paid
to sidebearings and math staircase kern.

Moreover, we plan to remove all non-Python mod-
ules. As was mentioned, the path MetaType1 sources
→ OTF and Type1 fonts is governed by Python; the re-
verse path, OTF and Type1 fonts → MetaType1 sources,
currently employs gawk and T1utils, thus, it cannot
be used for converting TTF and OTF fonts to MetaType1
sources. We believe that the employing of FontForge
(as a Python library) is the remedy.

We have no clear answer to the question whether
“small �gures”, accessible by features subs (subscripts),
sups (superscripts), sinf (scienti�c inferiors) numr (nu-
merators), and dnom (denominators), should be included
in the text fonts; in math fonts math sub- and super-
scripts can be used instead. If we include these glyphs,
then next question arises: do we need special �gures
for small caps, smcp, other than traditional in the TEX
realm old-style �gures, also dubbed nautical? And do the
small �gures need variants commonly used for “normal”
�gures, that is, lnum (lining �gures), onum (old-style
�gures), pnum (proportional �gures), and tnum (tabu-
lar �gures)? We are somewhat reluctant to add such a
hodgepodge to already intricate font structure.

Acknowledgements
We are indebted to all people and TEX groups that sup-
ported our font enterprises. Almost all the GUST e-
foundry projects were kindly supported by the Czecho-
slovak TEX Users Group CS TUG, the German-speaking
TEX Users Group DANTE e.V., the Polish TEX Users Group
GUST, the Dutch-speaking TEX Users Group NTG, TUG
India, UK-TUG, and, last but not least, TUG. In a few cases,
GUTenberg, the French-speaking TEX Users Group, sup-
ported us too.

The exceptional, personal thanks we owe to our
friends who kept our spirits up for many years and
tirelessly encouraged us to work on fonts: Hans Hagen,
Johannes Küster, Jurek Ludwichowski, Volker RW Schaa,
Jola Szelatyńska, Ulrik Vieth — hearty thanks!

All trademarks belong to their respective owners and
have been used here for informational purposes only.

References
[1] Bogusław Jackowski, Piotr Strzelczyk, and Piotr

Pianowski. “GUST e-foundry font projects”. In:
TUGBoat 37.3 (2016), pp. 317–336.

[2] Bogusław Jackowski, Janusz M. Nowacki, and
Piotr Strzelczyk. TEX Gyre fonts collection. url:
http : / / www . gust . org . pl / projects / e -
foundry/tex-gyre (visited on 12/18/2017).

[3] Bogusław Jackowski, Piotr Strzelczyk, and Piotr
Pianowski. TEX Gyre math fonts collection. url:
http : / / www . gust . org . pl / projects / e -
foundry/tg-math (visited on 12/18/2017).

[4] Adobe Systems Incorporated. Adobe Metric Files.
url: ftp : / / ftp . adobe . com / pub / adobe /
type/win/all/afmfiles/base35/ (visited on
02/02/2017).

[5] Microsoft Corporation. OpenType Font Format,
ver. 1.60, ISO/IEC 14496-22. url: https://www.
microsoft.com/typography/otspec160/ (vis-
ited on 12/18/2017).

[6] Adobe Systems Incorporated. Feature �le syn-
tax. url: https://www.adobe.com/devnet/
opentype / afdko / topic _ feature _ file _
syntax.html (visited on 04/17/2017).

[7] Microsoft Corporation. Registered features.
url: https : / / www . microsoft . com /
typography / otspec / featurelist . htm
(visited on 02/01/2017).

[8] Unicode Consortium. The Unicode Standard 10.0.0;
chapters 2.3. Compatibility Characters, 2.11. Com-
bining Characters, and 2.12 Equivalent Sequences
and Normalization. url: http://www.unicode.

TEX Gyre text fonts revisited VOORJAAR 2018 65

org/versions/Unicode10.0.0/ch02.pdf (vis-
ited on 02/06/2017).

[9] Unicode Consortium. Combining Diacritical
Marks. url: https : / / www . unicode . org /
charts/PDF/U0300.pdf (visited on 04/05/2018).

[10] Unicode Consortium. The Unicode Standard 10.0.0;
chapter 3.11. Normalization Forms. url: http://
www.unicode.org/versions/Unicode10.0.0/
ch03.pdf (visited on 02/06/2017).

[11] GUST e-Foundry. GUST Font License. url: http:
//www.gust.org.pl/projects/e-foundry/
licenses (visited on 12/30/2017).

Notes
1. Actually, there is one more anchor feature mset (mark posi-
tioning via substitution) meant for handling peculiarities of
the typesetting of Arabic texts.

Bogusław Jackowski
b_jackowski (at) gust dot org dot pl
Piotr Pianowski
p.pianowski (at) gust dot org dot pl
Piotr Strzelczyk
p.strzelczyk (at) gust dot org dot pl

66 MAPS 48 siep kroonenberg

TLaunch, the TEX Live Launcher

Abstract
The TEX Live Launcher offers Windows users of a
network TEX Live installation similar conveniences as a
locally-installed TEX Live. It is easy to integrate
additional TEX-related software.
This paper describes the launcher and its configuration.
As an example, it shows how it is used at the
Rijksuniversiteit Groningen.

1 Overview
The TEX Live launcher gives users on Windows work-
stations easy access to a TEX Live installation already
present on the network.

The launcher interface contains menus and buttons to
invoke programs, and to access related local and online
resources (see �gure 1).

It also takes care of the usual Windows-speci�c con-
�guration: at �rst run, TEX Live is added to the search
path and relevant �letype associations are set up.

Because of prior experience with users running the
initializer or installer when they really want to run the
already initialized or installed TEX Live, I opted for a
launcher that con�gures itself automatically, without
requiring a separate initialization step.

Users can replace the default TEX editor from within
the launcher interface, either with an editor de�ned in
an ini �le or with a third-party editor present on the
�lesystem (see �gure 2).

For the sake of full access to the Windows api, I wrote
the launcher in C. It has no dependencies whatsoever,
aside from a TEX Live installation and Windows ver-
sion 7 or later.

The launcher makes it easy for the TEX Live instal-
lation maintainer to add menu- or button controls and
�letype associations for additional TEX-related software.

Filetypes, menus and buttons are de�ned in a Win-
dows ini �le. If necessary, pre- and post con�guration
script �les can be con�gured as well.

The ini �le included in TEX Live provides functional-
ity more or less equivalent to the classic Windows TEX
Live installation.

In the following sections, we have a more detailed
look at the launcher and its con�guration. The package
documentation contains the full details.

First published in TUGboat 38:2 (2017), pp. 193–196.

Figure 1. The default TEX Live Launcher

Section 6 looks at the TEX Live installation at the
Rijksuniversiteit Groningen, for which the launcher was
created.

2 The ini file
The launcher reads its con�guration from a conventional
Windows ini �le with sections, de�nitions and comment
lines. If the TEX Live installation contains Windows
binaries, then tlaunch.exe will be in the bin/win32
directory, and tlaunch.ini in texmf-dist/web2c.1 A
custom ini �le, supporting di�erent software or with
localized strings, can be placed in a higher-priority tree.

It is also possible to place tlaunch.exe and tlaunch.
ini together in the root of the installation.

In general, entries which refer to non-existent items
are silently ignored.

2.1 Strings
There is a Strings section for string variables. String vari-
able names are case-insensitive. Some string variables,
such as %TLCONFIG%, are required. This variable indi-
cates the directory where the “forgetter” (see section 3)
will be placed.

The optional variables %PRE_CONFIG%, %POST_
CONFIG% and %PRE_FORGET% are the names of scripts to
be run before and after con�guration, and before forget-
ting respectively. The default values of these variables
are empty strings.

Some variables are just conveniences to simplify sub-
sequent de�nitions.

Some string variables, such as %tlroot% and
%version%, can be used outright because they are
already set when the launcher starts parsing the
ini �le. Environment variables, e.g. %appdata% or
%UserProfile% can also be used outright. See the pack-
age documentation for the full list.

TLaunch, the TEX Live Launcher VOORJAAR 2018 67

Figure 2. Selecting a custom editor

A few example string de�nitions:
[Strings]
TLNAME=TeX Live %VERSION%
; tlaunch configuration directory
TLCONFIG=%userprofile%\.texlive%VERSION%\tlaunch
TLSCRIPTS=%tlroot%\scripts
POST_CONFIG=%TLSCRIPTS%\post_config.cmd
; optional announcement text
ANNOUNCE=TeX Live Launcher with extras

2.2 Filetype associations
In Windows, the association of a �lename extension
with a program is indirect: an extension is associated
with a �letype and a �letype is associated with a com-
mand. An example of a �letype de�nition in the ini
�le:
[FT:TL.TeXworks.edit.%VERSION%]
COMMAND="%tlroot%\bin\win32\TeXworks.exe"
EXTENSIONS=.tex .cls .sty

The name of the ini �le section consists of the �le-
type name with an ‘FT:’ pre�x. When a �le with a listed
extension is double-clicked in a �le manager, Windows
will run COMMAND with the (quoted) �lename appended.
If a more complex command is required, e.g. with param-
eters coming after the �lename, the section can de�ne a
more complex command-line with a SHELL_CMD entry.

2.3 Menus and buttons
The ini �le can contain a buttons section and sections
for menus, with the latter indicated by an MN: pre�x to
the section name. Within the section entries, the key is
the string to be displayed and the value is the action to
be taken.

In the case of a button, the display string is put un-

derneath the button (see �gure 1). The launcher tries to
�nd a suitable icon to place on the button itself, but has
a fallback icon if it cannot �nd anything. This fallback
icon is used for the Quit button in �gure 1.

A few examples:
[MN:File]
Browse installation=explorer.exe "%tlroot%\.."
Quit=FU:quit

[MN:Viewers]
PostScript Viewer=FT:TL.PSView.view.%VERSION%
DVI Viewer=FT:TL.DVIOUT.view.%VERSION%

[MN:Documentation]
LaTeX Introduction=SO:%tlroot%\...\lshort.pdf
FAQ=SO:%tlroot%\...\newfaq.pdf

[Buttons]
LaTeX Editor=FU:default_editor
Select default editor...=FU:editor_select
Quit=FU:quit

The value, which is the associated action, can take
several forms:

• No pre�x: a command to be executed.

• With a pre�x FT:, the associated action is the
COMMAND of the indicated �letype, which should
be de�ned earlier in the �le.

• Pre�x SO: (shell object) meaning in this case a �le
or URL that Windows should know how to open.

• Pre�x SC: indicates a script object de�ned earlier
in the ini �le; see the package documentation.

68 MAPS 48 siep kroonenberg

• Pre�x FU: indicates a prede�ned function; see the
package documentation.

2.4 The General section
The most important options in this section replicate
options from the TEX Live installer:

FiletypesAllowed values are none, new (default) and
overwrite

searchpathAllowed values are 0 and 1 (default)

Both entries and the section itself are optional. For
example:
[General]
FILETYPES=new
SEARCHPATH=1

3 Forgetting
The launcher has functions to undo and redo con�gu-
ration, which can be assigned to menu items. However,
the installation may not be under the user’s control and
may no longer be around when the con�guration is to
be cleared out.

Therefore, the launcher creates a so-called forgetter
as part of its �rst-time initialization. This forgetter con-
sists of a copy of the launcher and a modi�ed copy of the
con�guration �le, both placed under the user’s pro�le.
This copy knows from its location that it is intended to
run as forgetter and not as launcher.

4 Scripts
The launcher can run scripts and command-line utilities,
and display their output in a window. The ini �le can
specify scripts for e.g. supplemental initialization and
cleanup (see section 2.1). Section 6.1 shows some exam-
ples. It is also possible to assign scripts to menu entries
and to buttons. More about scripts is in the package
documentation.

5 Launcher-based installations
The 2017 TEX Live installer o�ers the option of creating
a launcher-based installation, as an alternative to creat-
ing menu shortcuts. If this option is selected, then no
path adjustment is done and no �letype associations are
created by the installer itself. The installer invokes the
launcher with a special option to ‘install’ itself, i.e. to
create a start menu shortcut and an uninstaller registry
entry for itself. In case of a single-user install, it also
performs a �rst-time initialization.

With such an installation, the TEX Live installer no
longer has direct dealings with the Windows api, or

Figure 3. The TEX Live Launcher at the Rijksuniversiteit
Groningen

with the Perl modules providing api access.
For purposes of trying out the launcher, TEX Live

includes a script tlaunchmode which can switch the
installation between classic and launcher mode without
reinstalling TEX Live.

6 The launcher at the
Rijksuniversiteit Groningen

Workstations at our university are mostly centrally man-
aged. Typically, users have a centrally managed Start
menu on their Windows workstation. The it people put
the TEX Live Launcher in this menu, so users are just
one click away from starting to use TEX Live.

Settings are centrally backed-up on logout and re-
stored on login. So a user’s desktop looks very similar,
whatever physical workstation [s]he works on. This
same desktop is also available remotely. In addition,
users have a network share for storing their own �les.
This share is also available from any workstation on
which they log in.

6.1 Additional software
The additional programs at our university include:

• More editors: TeXnicCenter and TeXstudio. Both
o�er extensive assistance in editing math.

• The PDF viewer SumatraPDF. This viewer provides
source–PDF synchronization for TeXnicCenter,
which has no built-in PDF viewer.

• The Java-based bibliography manager JabRef.

• The epspdf gui with bundled single-�le Tcl/Tk
runtime (https://ctan.org/pkg/epspdf).

• The pseudo-wysiwyg LyX LaTEX editor.

There are menu items for additional documentation,
such as the LaTEX classes for the university house style.
Controls for the TEX Live Manager and for uninstalling
TEX Live itself are omitted, since those tasks are reserved
for the maintainer of the installation.

TLaunch, the TEX Live Launcher VOORJAAR 2018 69

All these programs were installed on a scratch system
and from there copied into the TEX Live installation tree.
‘Installed’ this way, most of them run more or less ok
from their new location.

However, some �xes were desirable and were imple-
mented via a postcon�g script (see section 2.1):

TeXnicCenter While TeXnicCenter can autocon�g-
ure itself nicely for MiKTEX, it asks TEX Live users
a series of questions about what is where. To spare
users those questions, I wrote a vbscript which
emulates the MiKTEX autocon�guration for TEX
Live, and which is invoked by the postcon�g script.

TeXstudio This editor by default checks at startup
whether there is a new version. The postcon�g
script turns this option o� in an existing or
newly-created TeXstudio con�guration �le.

TEXworks borrows some dictionaries from TeX-
studio.

SumatraPDF This PDF viewer also tests for updates,
which are dealt with in the same way as for
TeXstudio. It also requires a registry setting to
specify that this is not a portable installation, and it
should store its settings under the user’s pro�le.

LyX First-time initialization can take a very long time.
Therefore, a LyX user con�guration directory has
been prepared in advance. The postcon�g script
copies it to the user’s pro�le.2

The launcher documentation contains a �le rug.zip
with slightly sanitized versions of the scripts and con�g-
uration �les actually used at our university installation.

7 Problems
7.1 Non-roaming filetype associations
In a standard Roaming Pro�les setup, �letype associa-
tions do not roam. I plan to add an option to the launcher
to restore missing �letype associations on login. This is
not a problem with the centrally-managed desktops at
our university. On the other hand, on those centrally-
managed desktops some �letype associations are pre-
empted and cannot be permanently changed. This in-
cludes PDF �les.

7.2 Search path
Another problem associated with our desktop manage-
ment software is that programs ignore the user search
path.

This is not a problem for software started from the
launcher.

Some programs do not absolutely need TEX Live on
the search path. Others, such as TEXworks and the dvi-
and PostScript viewers included in TEX Live, are invoked

via a wrapper which takes care of the search path. But
for TeXstudio I had to provide a wrapper myself to take
care of the search path.

And then the university o�ers software such as R and
WinEdt which also need LaTEX on the search path, but
which are not under my control; the it department has
to handle these.

7.3 Uninstalling
The third problem I want to mention is uninstalling
under Windows 10. This is not speci�c to the launcher.

There are two ways to give a user access to an unin-
staller:

• Via a Start menu item. However, Windows 10 may
somehow decide not to display such an item.

• Via an uninstaller registry key. This way, it will
show up in Settings / Apps / Apps & features. How-
ever, Windows may decide to pop up a User Ac-
count Control (uac) prompt even if it is a user in-
stall. Still, a user-installed launcher can be unin-
stalled via right-clicking its icon under the Start
menu, or from within the launcher itself.

8 Finding out more
Earlier, I mentioned the tlaunch manual. If you have
a fully updated 2016 or a later installation of TEX Live
with Windows platform support, then you should have
the tlaunch binary and documentation on your system.
But you can also visit its ctan directory at https://
ctan.org/pkg/tlaunch.

For experimentation, you can run the script
tlaunchmode mentioned at the end of section 5. With
this script you can switch an existing TEX Live installa-
tion to launcher mode and back.

Notes
1. If during installation non-default options are selected for
�le associations or path adjustment, then a second, modi�ed
copy will be written to texmf-var/web2c.
2. There is also a shared LyX con�guration �le which had
to be patched, but this is not a task for a per-user postcon�g
script.

Siep Kroonenberg
Groningen
The Netherlands
siepo (at) cybercomm dot nl

70 MAPS 48 norbert preining

updmap and fmtutil—past and future
changes (or: cleaning up the mess)

Abstract
This article serves first as an introduction to two of the
central utility programs in any TEX Live installation,
updmap and fmtutil, describing the general
functionality as well as the syntax of the configuration
files. In addition, we report on changes that we have
carried out over the last few years relating to the
operation mode. These changes include switching to
multiple configuration files, and the user-mode versus
system-mode changes to be introduced in
TEX Live 2017. Last but not least, we close with a list
of best practices to help guide users.

If you only want to know how best to install fonts
(or formats) and are not particularly interested in the
details, jump to Section 5.

1 Introduction
Two central utility programs in any TEX installation
are updmap, responsible for creating font maps for vari-
ous programs, and fmtutil, responsible for (re)creating
format dumps.

For many years the venerable shell scripts by Thomas
Esser were used on Unix-like systems with only minimal
changes. For Windows, TEX Live used binary programs
developed independently. Having two independent im-
plementations hindered development of new features.
Thus, some years ago we started rewriting them in Perl:
�rst updmap (TEX Live 2012), and later fmtutil (2015).

With the rewrites in place, the �rst new feature added
was already a considerable change in internal behavior:
While the original shell scripts used a single con�gura-
tion �le, the new versions read con�guration �les on a
per-tree basis. This helped users preserve their con�g-
uration across tl upgrades, and gave os distributions
better ways of integration into their respective packag-
ing infrastructure.

With TEX Live 2017, we will go further and elimi-
nate the biggest source of confusion: Users invoking
the scripts in the so-called user mode (in contrast to

First published in TUGboat 38:2 (2017), pp. 188–192.

system mode), thus generating local con�guration �les
shadowing the global ones. The origin of this confusion
is the widespread misinformation to call simply updmap
(fmtutil) when the available fonts change.

TEX Live 2017 and later disable calls to updmap and
fmtutil without an explicit mode request. This means
that users who unknowingly call them will get a warning
message — and hopefully afterwards will use the right
mode.

1.1 Layout of the article
Section 2 will start with an explanation of the function-
ality of the scripts and how they �t into a TEX (Live)
installation. While the general functionality of these
scripts will be similar in other TEX distributions, some
options described here are probably not available in
other installations. In this section we also introduce the
original system and user modes.

Section 3 describes the changes introduced with mul-
tiple con�guration �les, and explains how this can be
used in single and multi-user environments.

Section 4 introduces the changed operational mode
introduced in TEX Live 2017.

Section 5 has recommendations and best practices for
dealing with local fonts and formats.

A running example for the installation of the Math-
ProII fonts will exhibit the usage changes.

2 Functionality of updmap and fmtutil

Although updmap and fmtutil are central to TEX opera-
tions and are automatically executed on many occasions,
both scripts have remained relatively mysterious and
are often misused.

2.1 updmap
Many of the fonts shipped in a TEX system are PostScript
Type 1 fonts. The original TEX does not know anything
about this (or any glyph) font format; it only uses the
metrics from tfm �les. The output drivers on the other
hand need to know how tfm names map to glyphs.

updmap and fmtutil—past and future changes VOORJAAR 2018 71

Typical output drivers are
pdf(la)tex the TEX engine extended with direct pdf

output. Since producing pdf needs the actual fonts,
pdftex is also an output driver.

dvips the classical output driver. TEX engines can
produce dvi (DeVice Independent) �les, which can
be translated to PostScript (or other) formats. To do
this, the fonts have to be embedded.

(x)dvipdf(m(x)) the family of dvi-to-pdf converters.
Instead of going to PostScript �rst, these programs
support direct translation of dvi into pdf. X ETEX
uses one of these in the background. Japanese users
often use dvipdfmx, since it has good support for
Japanese fonts.

xdvi online X11 display program, which of course
needs access to the fonts to render the glyphs.

These output drivers have supported font mapping
in slightly di�erent ways, changing over the years, and
here is where updmap comes into the game: It reads a
list of speci�cations, and creates con�guration �les in
the needed formats.
What does updmap do?
Font de�nitions are necessarily a complicated beast in
the TEX world; many components have to play well
together for the �nal document to contain the correct
fonts. Here is an overview of the main items necessary
to understand updmap:

font de�nition maps a tfm �le name to an external
font (font name and �le name), with optional
additional transformations. A simple example:
eufm10 EUFM10 <eufm10.pfb

which says that the tfm name eufm10 should be
resolved by a font internally named EUFM10, which
is de�ned in the �le eufm10.pfb. Far more complex
font de�nitions are possible, catering to di�erent
encodings and more, but the basic purpose of
mapping a tfm to an external font always remains.

font map �le is a �le of font map de�nitions,
normally collecting together related fonts from
a package. The above de�nition for eufm10 is
contained in euler.map, which contains all the
Euler-related font de�nitions.

updmap con�g �le lists the font map �les, with
additional speci�cations concerning bitmap vs.
outline fonts, as well as a few settings for updmap
itself (details in the next section). Continuing
our example, in a normal TEX Live installa-
tion the font map �le euler.map is listed in
texmf-dist/web2c/updmap.cfg:
Map euler.map

generated �les Finally, updmap generates con�gura-
tion �les in various formats (see above).

Output drivers don’t have (or need) the slightest idea
that updmap and the related intermediate �les even exist;
they only read the ultimately-generated con�guration
�le to determine which fonts are available. This means
that if, somewhere in the middle, one of the steps fails
or is incorrect, the output will probably not have the
right fonts.
Con�guration of fonts in updmap.cfg
The central con�guration �le for updmap is (always)
named updmap.cfg. In former times, only the �rst one
found by the Kpathsea library was used, but now all
updmap.cfg �les are read (see below). Each updmap.cfg
can contain the following items:

1. Empty lines, comments beginning with ‘#’; these
are ignored.

2. Map directives, in one of the forms:
Map foo.map
MixedMap bar.map
KanjiMap baz.map

Map is used for fonts that are available only in
PostScript Type 1 format; MixedMap is for fonts
where both Metafont and PostScript variants are
present; and KanjiMap is for creating the special
Kanji map �le.

3. updmap con�guration lines, of the form
<settingName> <value>

with the following setting names and values
(* indicates the default):
dvipsPreferOutline values *true, false

Whether dvips prefers bitmaps or outlines,
when both are available.

dvipsDownloadBase35 values *true, false
Whether dvips includes the 35 standard
PostScript fonts in its output.

pdftexDownloadBase14 values *true, false
Whether pdftex includes the 14 standard pdf
fonts in its output.

pxdviUse values true, *false
Whether maps for pxdvi (Japanese-patched
xdvi) are under updmap’s control.

(ja|sc|tc|ko)Embed, jaVariant values strings
Controls kanji font embedding for Japanese
(ja), Simpli�ed Chinese (sc), Traditional
Chinese (tc), and Korean (ko).

LW35 values *URWkb, URW, ADOBEkb, ADOBE
Controls which fonts are used for the 35
standard PostScript fonts.

The ..Embed and the jaVariant settings were added to
the TEX Live implementation recently, and might not be
supported in other TEX distributions.

72 MAPS 48 norbert preining

2.2 fmtutil
In the years long ago, when memory was scarce, com-
puters slow, and Knuth went forth to create the most
advanced typesetting system, he devised a way to speed
things up and at the same time conserve space: format
dumps. This is not the place for details but in short, you
can think of them as dumps of the state of the program
(TEX, Metafont, . . .) after a (slow, painful) initialization,
which can be easily and quickly loaded and used as a
starting point for actual typesetting and font design
work.

When there was only one TEX program and one Meta-
font program, managing these dumps was a simple task,
but over time the situation grew more complex: more
programs, more formats, various additions for interna-
tionalization. Nowadays, we’re at a point that people
often do not know what is going on when a formats are
rebuilding message appears.
What does fmtutil do?
Written long ago by Thomas Esser for his teTEX,
fmtutil supports specifying the available format in a
line-based con�guration �le, and for rebuilding them
in various ways. The script has served the TEX commu-
nity for many years. The shell script mentions a �rst
change in 2001, but the script is much older than that
(considerably predating TEX Live).

2.3 Configuration of fonts in fmtutil.cnf
fmtutil is a rather friendlier colleague than updmap,
with no need for all the complicated layers of de�-
nitions. The con�guration �les for fmtutil, named
fmtutil.cnf, de�ne the formats which can be made.
The most commonly used format is LaTEX, but there
are many more, some of which are quite esoteric (e.g.,
utf8mex).

Each format de�nition is on exactly one line, and
consists of four parts:
<fmtname> <engine> <hyphen�le> <options>
Let us look at two examples from TEX Live:
aleph aleph - *aleph.ini
latex pdftex language.dat

-translate-file=cp227.tcx *latex.ini

The �rst one de�nes the format aleph, the second one
the format latex. (The second is broken across lines
only for Maps; in the actual source �le, it’s all on one
line.)

name aleph, latex— the �rst item in a format
de�nition is the format name, which (usually)
coincides with the program name.

engine aleph, pdftex— the second item de�nes
the base engine, the program that is run to load

the de�nitions and dump the image. As shown,
sometimes the format and the engine have the same
name. For the LaTEX format, TEX Live has used the
pdfTEX engine for many years.

hyphen�le -, language.dat— the third item speci-
�es a �le name for hyphenation pattern de�nitions,
or a literal - to indicate that no patterns are used.

options — the rest of the line comprises command
line arguments passed to the engine. In the aleph
line we see that only one �le is passed to the engine,
while in the latex case we also pass an additional
option.

As speci�ed on its own command line, fmtutil reads
fmtutil.cnf, invokes some or all of the engines with
the respective options in turn, and puts the resulting
dump �les in the right place so that the engine can load
the dump.

2.4 Previous behavior and system mode
vs. user mode
The original shell scripts read only one con�guration
�le, found by searching with Kpathsea. This is the very
same method TEX uses to �nd �les when they are read
(e.g., via \include) To cater for user-supplied font maps,
the original updmap program allowed for enabling and
disabling, adding and removing individual entries from
the con�guration �le.

While this approach works nicely in a single user
installation where the user has complete control over
all �les, in a multi-user setting it would be chaos if
users changed a system-wide con�guration �le, adding
their private fonts. Thus, soon after their inception,
Thomas Esser added an additional system mode to these
scripts, distinguished from the normal invocation style
in user mode. The only di�erence between user mode
and system mode is where generated �les are saved: In
user mode this was the directory de�ned by the Kpath-
sea variable TEXMFVAR, while in system mode it was
TEXMFSYSVAR.

System mode was speci�ed by invoking the program
under the name updmap-sys (fmtutil-sys), while user
mode was the default.

This was the state of a�airs for more than a decade.
The advantages of this system were that all con�gura-
tions were contained in a single �le, and the operation
mode was easy (easier?) to understand.

In my case, as I had purchased the MathProII fonts,
every year and on every computer I used I had to manu-
ally disable the open-source clone enabled by default in
belleek.map, add the necessary map �le for the Math-
ProII fonts, and run updmap. While this is not much to
do, it is easy to forget and error-prone.

updmap and fmtutil—past and future changes VOORJAAR 2018 73

3 Per tree configuration
With the Perl reimplementation of the scripts we have
also switched to a di�erent way of handling con�gura-
tion �les: the two programs now read not just a single
con�guration �le, but all con�guration �les found, in a
stacked manner, meaning that �les read later can over-
ride parameters from those read earlier. Override here
means the following: disabling a map that is enabled in
a lower level con�guration �le, and changing settings
from a value set in a lower level con�guration �le.

To see which con�guration �les will be used, these
two commands will output the list of all con�guration
�les used by the two programs:

kpsewhich -all updmap.cfg
kpsewhich -all fmtutil.cnf

This new method allows con�guration of available
fonts and formats to be put in the same tree where
the respective fonts or formats are installed. For-
merly, activation of a map �le or format would not
survive (re)installing a release of TEX Live. Now, lo-
cal fonts can be installed under TEXMFLOCAL, and listed
in TEXMFLOCAL/web2c/updmap.cfg, and they will auto-
matically be picked up across updates.

Similarly, users can have personal fonts or formats
without needing to maintain a copy of the system’s
updmap.cfg or fmtutil.cnf.

3.1 Default locations searched
By default, updmap and fmtutil check the following
directories for updmap.cfg and fmtutil.cnf, in the
order given.

User mode only: TEXMFCONFIG/web2c
TEXMFVAR/web2c
TEXMFHOME/web2c

Both user and TEXMFSYSCONFIG/web2c
system modes: TEXMFSYSVAR/web2c

TEXMFLOCAL/web2c
TEXMFDIST/web2c

with these default values those variables:

TEXMFSYSCONFIG TL/YYYY/texmf-config
TEXMFSYSVAR TL/YYYY/texmf-var

TEXMFDIST TL/YYYY/texmf-dist
TEXMFLOCAL TL/texmf-local
TEXMFHOME ~/texmf

TEXMFCONFIG ~/.texliveYYYY/texmf-config
TEXMFVAR ~/.texliveYYYY/texmf-var

Making use of this information, let’s continue the
previous example of the MathProII fonts. As men-

tioned above, TEX Live ships the free Belleek fonts
which use the same tfm names; thus, we have to disable
belleek.map and add mtpro2.map:

1. Put the MathProII �les, including mtpro2.map, in
TEXMFLOCAL.

2. Edit TEXMFLOCAL/texmf/web2c/updmap.cfg:
@ disable Belleek by adding

#! Map belleek.map
@ enable MathProII by adding

Map mtpro2.map
3. Run updmap-sys.

Now, when I update my TEX Live installation from
one year to the next no additional work is needed:
updmap �nd the local con�guration �le, duly disabling
the one map and activating the other.

Similarly, these per-tree con�guration �les have
brought considerable simpli�cation for distributors like
Debian (indeed, this was the original reason why I im-
plemented this feature).

4 Explicit user mode in tl 2017
4.1 What was the problem?
Let’s suppose a user wants to add a private font to the
TEX setup (as I had to do during my studies, when I
purchased the Lucida fonts for writing my thesis). The
steps were these:

@ Copy updmap.cfg into TEXMFHOME;
@ add the additional map entries to it;
@ run updmap.

In itself this was not a problem. The problem comes
when the fonts on the system side change (because of
an update or addition of new font packages): The user
had to re-execute these steps, every time. Not doing
so would leave the user with outdated information; in
the worst case (but unfortunately a very common case!),
some font de�nitions would no longer be correct, and
thus output �les would be broken.

The reason was mentioned above: The con�guration
�les for the output drivers generated by updmap in the
user’s home directory override the ones in the system
directory.

We might hope for users to know about this problem,
but unfortunately the Internet is full of instructions on
how to install fonts for LaTEX, and the typical recom-
mendation is to call updmap, and not updmap-sys. From
my experience as the maintainer of the TEX Live pack-
ages in Debian, as well as from the TEX Live mailing
lists, I can report that this is the single most common
point of failure.

74 MAPS 48 norbert preining

That is, most users were simply unaware that calling
updmap (as is, thus in user mode) creates copies of con�g-
uration �les which will never be updated unless the user
calls updmap again; system changes in the meantime are
immaterial.

For fmtutil the problem is the same: Format dumps
would remain in the user’s home directory and never
be updated. As a glaring example, I recall a Debian
bug report where a user had called fmtutil once, and
years later some LaTEX packages stopped working,
because he still used the format dump from years ago,
all unknowing.

4.2 New operation mode
For TEX Live 2017, we (that is Karl Berry and I) decided
to try to get out of this interminable chaos once and
for all. Thus, from now on user mode cannot be in-
voked by calling updmap or fmtutil as is; to activate
user mode, it’s now required to give the option -user, or
call the separate scripts updmap-user or fmtutil-user.
To summarize:

System mode is invoked by using updmap-sys or
fmtutil-sys, or by giving the -sys option.

User mode is invoked by using updmap-user or
fmtutil-user, or by giving the -user option.

Calling updmap or fmtutil without -sys or -user
now results in a fatal error, with a link to an explanatory
web page.

Our hope is that this will prevent some (perhaps
many) users from hurting themselves by unintentional
switching to user mode. Furthermore, by introducing
this new behavior we are explicitly invalidating plenty
of documentation on the web that we know to be wrong,
and force users to make a conscious decision. We will
see next year how it has worked out!

5 Best practice and use cases
There is probably only one thing we should write here,
and if you take one thing from this article, it should be
this one:

Use system mode.
Anything else will very likely cause trouble. One

might ask, so why didn’t we abolish user mode com-
pletely? Indeed, we pondered this, but �rstly, it would
be a radical step after so many years, and secondly, there
remain rare cases where user mode is needed; see the
following use cases.

5.1 Use cases
The following use cases are also listed on a tug page
(tug.org/texlive/scripts-sys-user.html); the
scripts refer to this same page in case of missing mode
speci�cations.
Single user computer—add fonts
One of the most common cases: One user, one computer,
TEX Live is installed system-wide, and fonts should be
available to all (1) users of the machine:

@ put the fonts into TEXMFLOCAL according to the tds
(tug.org/tds);

@ enable the font map(s) in the �le
TEXMFLOCAL/web2c/updmap.cfg;

@ run (once) updmap-sys (no options needed).

Future (re)installations of TEX Live will pick up these
local fonts automatically.
Multi-user computer—add system-wide fonts
A common need in a department or company with
organization-speci�c fonts, which all users should have
access to: This case is handled exactly like the previous
case, without any changes.
Multi-user computer—private user fonts
This is the only case where user mode is required: A
computer with multiple users, but some fonts are pri-
vate to speci�c users. Here we cannot install the fonts
system-wide, as other users would gain access to them.
Thus TEXMFHOME is used instead of TEXMFLOCAL, and
updmap-user is run:

@ Put fonts into TEXMFHOME, following the tds;
@ enable the font map(s) in

TEXMFHOME/web2c/updmap.cfg;
@ run (once) updmap-user.

A repeated warning is necessary here, because this is
the prime case of misbehavior we have seen: After doing
this, changes in the font setup of the system are invisible
until updmap-user is rerun. Thus, we recommend run-
ning it regularly, e.g., from Unix cron, to make sure no
discrepancy creeps in between the fonts as actually in-
stalled and those registered in the per-user updmap.cfg.
Single user computer—additional formats
While it is uncommon for users create their own formats,
in principle the procedure is the same as with updmap.
In most cases, the additional formats need not be private,
so following the �rst use case above is suggested:

@ adjust TEXMFLOCAL/web2c/fmtutil.cnf
@ run (once) fmtutil-sys (no options needed).

updmap and fmtutil—past and future changes VOORJAAR 2018 75

5.2 Switching back to system mode
Last but not least, here is how to switch back to system
mode if by chance one has called updmap or fmtutil
in user mode. This is never done automatically, and (at
least for now) there is no interface to the two programs
to allow easily switching.

To switch back to system mode, what has to be done
is to remove the following directory trees (after backing
them up, of course):

@ for updmap: TEXMFVAR/fonts/map
@ for fmtutil: TEXMFVAR/web2c

where under normal circumstances, TEXMFVAR is
~/.texliveYYYY/texmf-var.

6 Conclusion
We hope that the changes made over the last years have
made these programs easier to use, and a bit more pro-
tective for the casual user. But one should not forget
that they are central con�guration programs for TEX, so
messing around with them always bears some risk.

Final exhortation: Use System Mode!

Norbert Preining
Accelia Inc., Tokyo, Japan
norbert (at) preining dot info

ntg VOORJAAR 2018 77

Privacybeleid
Nederlandstalige TEX Gebruikersgroup

De ntg werkt met persoonsgegevens. De ntg vindt het belangrijk dat deze gege-
vens op een zorgvuldige en veilige manier worden verwerkt. In dit document staat
alles over de manier waarop persoonsgegevens worden verzameld en hoe daarmee
wordt omgegaan.

Dit privacybeleid zal soms gewijzigd worden door bijvoorbeeld wetswijzigin-
gen of omdat bepaalde procedures binnen de vereniging wijzigen. Het is daarom
raadzaam dit document periodiek te raadplegen.

Dit privacybeleid is opgesteld in het kader van de avg, die vanaf 25 mei 2018
van kracht is. Daarmee wordt ook voldaan aan de vanaf die datum geldende eu
gdpr.

Beheerder en verwerker van de persoonsgegevens
De Nederlandstalige TEX Gebruikersgroep (ntg) is de gegevensbeheerder en
-verwerker van de persoonsgegevens van de leden van de vereniging. De ntg is
te benaderen via de contactpagina (https://www.ntg.nl/lug/nl.html) op de website.

Bewaarde gegevens
De ntg maakt onderscheid tussen noodzakelijke, optionele en overige persoonsge-
gevens.

Noodzakelijke persoonsgegevens in de ledendatabase
Voor administratieve doeleinden en om als vereniging te kunnen functioneren ver-
eist de ntg de volgende persoonsgegevens van haar leden:

1. uniek lidnummer, door de ntg toegekend, noodzakelijk voor het correct functio-
neren van de administratie

2. lidmaatschapstype
3. achternaam en voorletters, voor alle communicatie
4. postadres, voor het bezorgen van fysieke post zoals ons tijdschrift Maps en de
factuur voor de contributie, indien er geen e-mailadres of factuuradres bekend is

5. e-mailadres, alleen van huidige leden van het bestuur
6. telefoonnummer, alleen van huidige leden van het bestuur
7. jaar van aanvang lidmaatschap
8. taal waarin communicatie wordt gesteld (Nederlands of Engels)

Optionele persoonsgegevens in de ledendatabase
Naast bovenstaande zijn er optionele velden in het aanmeldingsformulier, die de
ntg bewaart indien ingevuld:

� voornaam en gewenste aanhef (de heer/mevrouw), voor alle communicatie
� affiliatie
� e-mailadres, voor het bezorgen van digitale post via de ntg-leden e-mail mailing
lijst en de factuur voor de contributie, indien er geen factuuradres bekend is

� telefoonnummer (voor overige leden)
� homepage

78 MAPS 48 ntg

� geboortedatum, alleen voor controle bij gecombineerd lidmaatschap met senio-
renkorting van de TEX User Group

� factuuradres (als postadres of als e-mailadres), voor het bezorgen van een fac-
tuur voor de contributie

� additionele informatie voor op de factuur, bijvoorbeeld een administratief num-
mer voor de ontvanger van de factuur

� bezoekadres, indien het postadres een postbus is
Overige persoonsgegevens
Voor bijeenkomsten en jaarvergaderingen bewaart de ntg presentielijsten met
daarop de namen van de aanwezige en afgemelde leden. Voor internationale bij-
eenkomsten worden ook affiliatie, plaats en land, en e-mailadressen bewaard.

De ntg is de beheerder van de wereldwijde TEX local user group (lug) data-
base. Hierin bevinden zich namen, postadressen, e-mailadressen, en telefoon- en
faxnummers van (bestuursleden van) de ntg en haar zusterorganisaties in het bui-
tenland.

In de financiële administratie bevinden zich de bankafschriften van de vereni-
ging met daarop de tenaamstelling en nummer van rekeningen waarvan gelden
zijn ontvangen. De ntg bewaart geen bankrekening-informatie in de ledendataba-
se. De financiële administratie wordt zeven jaar bewaard.
Inzage en correctie van persoonsgegevens
Elk ntg lid kan te allen tijde opvragen welke persoonlijke gegevens de ntg be-
waart. Dat kan door een verzoek daartoe te sturen naar de penningmeester van de
vereniging.

Leden kunnen eveneens via een bericht aan de penningmeester persoonsgege-
vens in de ledendatabase laten corrigeren.
Verwijdering van persoonsgegevens
Bij opzegging van het lidmaatschap worden de gegevens in de ledendatabase ver-
wijderd op de einddatum van het lidmaatschap.

Verzoeken gebaseerd op het recht op vergetelheid kunnen worden ingediend bij
de penningmeester.
Klachten
Eenieder heeft het recht om een klacht in te dienen bij de Autoriteit Persoonsge-
gevens, als hij of zij van mening is dat de ntg niet op de juiste manier met zijn of
haar gegevens omgaat. Dit kan via: Melden verwerking persoonsgegevens (https:/
/autoriteitpersoonsgegevens.nl/nl/melden/melden-verwerking-persoonsgegevens).

Locatie van gegevens
Ledendatabase
De penningmeester van de ntg is de beheerder van de ledendatabase. Bij over-
dracht van deze taak wordt de database overgedragen naar de nieuwe verantwoor-
delijke en worden alle gegevens gewist bij de aftredende penningmeester.

De ledendatabase bevindt zich uitsluitend op de ntg server. Alleen de pen-
ningmeester heeft toegang tot de ledendatabase middels een beveiligde login met
wachtwoord. Van deze database bestaan computer-backups op de privé computer
van de penningmeester en bij de partij die deze server host (Elvenkind B.V.). De
ledendatabase wordt niet als een op papier afgedrukte lijst bewaard.

Voor verzending van fysieke poststukken worden door de penningmeester
adreslabel-bestanden gegenereerd die worden doorgegeven aan het bestuurslid
belast met het verzenden, die deze bestanden vernietigt na gebruik.
NTG Server
De ntg.nl server is een virtuele hosting server die de vereniging deelt met de
ConTEXt Group en Boekplan. Naast de ntg website (http://www.ntg.nl) bevinden

Privacybeleid VOORJAAR 2018 79

zich op deze server tevens de ntg mailing lijsten. De beheerders hebben toegang
tot de server via ssh, een beveiligde login met wachtwoord.

Website De ntg website is vrijwel geheel statische html, plaatst geen cookies,
en bewaart geen gegevens van bezoekers met uitzondering van de IP-adressen die
worden gerapporteerd in het webserver log. Er is geen webshop, via deze website
worden geen producten of diensten verkocht. Bezoekers van de website worden
niet gevolgd, hun bezoekgedrag wordt niet geanalyseerd; er vindt dus geen enkele
vorm van profilering plaats. De webserver logs worden automatisch gewist na zes
maanden.

Enkele website formulieren verzamelen tijdelijk (persoons)gegevens die via e-
mail verzonden worden naar de verantwoordelijke persoon binnen de ntg, maar
deze gegevens worden niet opgeslagen:

� Het aanmeldingsformulier voor lidmaatschap verzamelt informatie voor opname
in de ledendatabase. Informatie wordt verzonden naar de ntg penningmeester.

� Het nieuws aanmeldingsformulier bevat naam en e-mailadres van de aanmelder.
Informatie wordt verzonden naar de ntg secretaris en de ntg webmaster.

� Het subsidieaanvraag formulier bevat naam en e-mailadres van de aanvrager.
Informatie wordt verzonden naar de ntg penningmeester.

Alle formulieren en het ‚alleen voor leden’ gedeelte van de ntg website zijn bevei-
ligd via https.

Toegang tot het ‚alleen voor leden’ gedeelte van de ntg website is gekoppeld
aan het abonnement van de ntg-leden mailing lijst (https://mailman.ntg.nl/mailman
/listinfo/ntg-leden). Leden die zich voor deze lijst hebben afgemeld hebben ook
geen toegang tot het ‚alleen voor leden’ gedeelte van de ntg website.

In het historisch publicatiearchief (in pdf formaat) bevinden zich presentielijs-
ten van eerdere bijeenkomsten en jaarvergaderingen.

Het publicatiearchief is online te bezoeken en daarmee zijn deze gegevens open-
baar.

Via de lug contact pagina (http://www.ntg.nl/lug/) is de lug database te
benaderen en kunnen correcties worden aangemeld.

Mailing lijsten De ntg beheert diverse digitale mailing lijsten. De lijst software
gebruikt een database, deze bevat voor elke mailing lijst e-mailadressen en (even-
tueel) persoonsnamen van abonnees, alsook een archief van geplaatste berichten.
Zowel de lijst van abonnees als het archief kunnen openbaar of beperkt zichtbaar
zijn.

Enkele van deze mailing lijsten zijn voor intern gebruik door de vereniging:
Alle leden van de ntg worden bij aanmelding automatisch abonnee van de ntg-

leden mailing lijst (https://mailman.ntg.nl/mailman/listinfo/ntg-leden). Leden
van het ntg bestuur zijn automatisch abonnee van de ntg-bestuur mailing lijst.
Leden van het ntg Maps redactieteam zijn automatisch abonnee van de ntg-maps
mailing lijst. Leden van het ntg server beheerteam zijn automatisch abonnee van
de ntg-server mailing lijst.

Voor deze mailing lijsten voor intern gebruik is online inzage van de lijst van
abonnees en het archief alleen mogelijk voor abonnees van deze lijsten.

Daarnaast beheert de ntg ook diverse openbare mailing lijsten voor discussie en
overleg met betrekking tot TEX gebruik en ontwikkeling, zoals de ntg-context en
tex-nl lijst. Aanmelding als abonnee op deze mailing lijsten is op vrijwillige basis.
De privacy-instellingen kunnen verschillen per lijst, maar gewoonlijk is de abon-
neelijst alleen zichtbaar voor abonnees, en het archief openbaar.

80 MAPS 48 ntg

Gebruik van gegevens
De ntg gebruikt de verzamelde persoonsgegevens alleen om als vereniging te kun-
nen functioneren. De ntg stelt de verzamelde gegevens nooit beschikbaar aan der-
den, behalve:

� Wanneer dit wettelijk is vereist.
� Wanneer het lid via de ntg ook lid is van tug (het ntg-tug joint lidmaatschap).
In dit geval worden de volgende gegevens aan tug ter beschikking gesteld ter
uitvoering van het tug lidmaatschap: lidnummer, lidmaatschapstype, betaling
van lidmaatschap voor het lopende jaar, aanhef, voornaam, voorletters, achter-
naam, postadres en e-mailadres.

In (financiële) jaarverslagen worden alleen geaggregeerde gegevens uit de leden-
database gebruikt, zoals actuele en historische ledenaantallen. Daarmee is deze
informatie dus anoniem gemaakt.

Functionaris gegevensbescherming
De penningmeester van de vereniging is de functionaris voor de gegevensbescher-
ming, en rapporteert aan het bestuur.

