
Nederlandstalige

TEX

Gebruikersgroep

Postbus 394
1740 AJ Schagen
ntg@nic.surfnet.nl

An Introduction to T EX for New Users∗

Alan Hoenig

John Jay College
17 Bay Avenue

Huntington, NY 11743 USA
(516) 385-0736

ajhjj@cunyvm

Abstract

The purpose of this brief introduction isnot to present a tutorial into the use of TEX, but rather to
introduce the user to the whole notion of what it means to use TEX, how TEX differs from other
typesetting systems, and what the advantages are to using TEX.

1 Introducing an Introduction
When researching TEX and its uses, it’s easy to feel
you’ve fallen into a slippery pit with sharp, upended
spikes at the bottom. What’s all this talk of backslashes,
macros, LaTEX, and bad puns, and what relevance does
it have to producing a nicely printed document? And
what do you mean, TEX isn’t WYSIWYG?

Thus this brief discussion. It’s not a tutorial about TEX,
for who could create such a thing in only a few pages?
I will make mention of certain basic TEX technical mat-
ters, but only in passing. My aim is to give my own
idiosyncratic view TEX, including an assessment of why
you’d want to bother with it. You’ll find the TEX pit is
not so slippery after all, and those spikes are more like
toothpicks. (But there’s nothing to be done about the
bad puns.)

2 To Begin: What is TEX?
We all of us find ourselves having to communicate in-
formation to others in a written fashion. That is, we
face the constant need to prepare letters, memos, re-

ports, books, and so on. For high-quality presentations,
we need a way totypesetthis information using the
conventions of typesetting that have evolved over the
centuries.

We may choose to use a computer to help with this
chore. If we do, we need special typesetting software,
and TEX is one such software system for performing
this typesetting. For certain needs, many feel it is the
best typesetting system. Before discussing why this
should be so, let’s remind ourselves how TEX works.

This reminder is important because TEX works differ-
ently from other systems that paint type on paper. Many
people involved with entering words at keyboards tend
to regard word processing and even desktop publishing
(DTP) in the same light as typesetting. Such systems
revolve around a comforting two-step life cycle:
• Enter the text at the keyboard, observing the screen

all the while to see how the final output will appear;
and then

• Print the document.

∗Version 1992. c© Copyright 1991 Alan Hoenig.



2

Pay attention to the first item. Most of the time in these
programs there is a correspondence between the ap-
pearance of the text and stuff you enter at the keyboard
and the final printed appearance of the document.

Compare this to the TEX life cycle:
• Enter the text at the keyboard, using a text editor

(not TEX—it is not itself a text editor).
• Now run the text file through TEX. With luck, there

will be no errors, and we can proceed to the next
step. Otherwise, as most TEX users come to know
early on in their TEX careers, it’s back to step 1.

• A successful run through TEX produces not a doc-
ument but rather a new file, a so-calleddevice in-
dependentfile. With the aid of a separate program
called adevice driverappropriate to your printer
(printing device, hence the termdevice driver), you
print the document. Only now does your document
appear, right before your eyes.

A lot about TEX can be learned by carefully considering
and contrasting these two ways of doing things.

2.1 TEX is More than One Program
While VenturaPublisheror AdobePagemakerare stan-
dalone programs, TEX apparently isn’t. A careful count
indicates we need at least three programs to do TEX.

First of all, there is the text editing program with which
we prepare our document file and which is separate
from TEX. TEX is pretty tolerant of which such pro-
gram you can use, but just be aware that TEX itself
makes no provision for accepting your text and there-
fore makes no provision for displaying your text as you
type it. (A slight exception: some integrated implemen-
tations of TEX do have an editing mode for preparing
the manuscript, but strictly speaking, it’s not TEX doing
the editing, it’s an add-on component.)

You may use any editor so long as the resulting file is
extended ascii. In this way, yoursource file—this file
that you prepare to feed to TEX—is portable and can be
fed to virtually any implementation of TEX working on
virtually any computer platform.

On my PC, which is where I do most of my TEXing,
I use inexpensive or free editors (they’re in the public
domain or are shareware). They aren’t fancy by any
means, but they deliver ascii text TEX needs. I don’t
care that there are many fancy things they cannot do,
for it’s not theybut TEX that will do the formatting.

2.2 TEX Itself
The program TEX only enters the picture during the
second stage of the cycle. TEX requires as input the
source file you have just finished. It considers your text
in light of the formatting and typesetting commands
with which you have peppered your source file, and if
all goes well, it delivers as output advi file. If all does

not go well, because you mistyped a TEX command or
because your commands are misused, then TEX halts
and gives you an error message.

This process of feeding separate source files to TEX,
correcting whatever errors may occur, and waiting for
a cleandvi file reminds many users of the process of
programming a computer. After all, creating a working
computer program requires creation of a separate pro-
gram file, which is compiled (again, if all goes well) to
produce the final object module.

It’s only the object module which “runs” the program.
Comparing this with TEX, the source file is like the
program file, thedvi file is similar to the object mod-
ule, and the process whereby TEX ingests and analyzes
your file is like the compilation process for Pascal or
Fortran. For that reason, one often speaks ofcompiling
a document with TEX.

But bear in mind—this is an analogy only! TEX users
need have no programming experience, ability, or in-
clination in order to use TEX with great profit.

2.3 The dvi File

This is a file in which the positions of all elements of
your document—letters, figures, punctuation, square
root symbols, and so forth—are specified using a very
general placement language. There has been no coop-
eration between printer manufacturers and there are as
many ways to tell a printer to advance to the top of the
next page, say, as there are different printers.

The author of TEX did not want to get bogged down in
these considerations. He felt ill at ease with the concept
of anchoring TEX to any one printer or even to any sin-
gle printer technology, and so he created this general
and genericdvi language to act as a gateway to all
printers. Therefore, yet a third program is needed to
translate this generaldvi language into a form com-
prehensible to a particular printer. This is the job of the
device driver, a program intended to do this translation
so the printer can paint the characters, lines, and so on
onto the actual page.

By virtue of this separation of duties of TEX and of a de-
vice driver, TEX becomes relevant across a broad spec-
trum of printing technologies. Device drivers exist to
print your documents on dot matrix printers, on hi-tech
laser printers, and on costly phototypesetters. Except
for resolution of individual characters, your document
is identical across printing hardware. That is, the page
breaks, line breaks, position of math characters, and
so on will not vary. That makes it possible to use a
laser printer as a proofing device. Once you are pleased
with the look of your document, you may ship off your
source file or yourdvi file to a service bureau for
printing off a single, high-quality copy, which you give
to your printer, who makes the plates for the whole
kit-and-caboodle of the



3

printing manufacturing process.

2.4 Screen Previewers
There is yet a fourth type of program that is part of
the TEX process, called ascreen previewer. Such a
program makes it possible to see on the video terminal
what your document will look like. Since screen pre-
viewers work much faster than printers and with a lot
less bother, it’s convenient to have one for your display
terminal. Understand, though, that previewers are spe-
cial cases of device drivers; that is, instead of printing
to paper, a screen previewer allow you to “print” advi
file to your computer’s monitor.

2.5 The WYSIWYG Issue
Almost everyone knows by now that wysiwyg stands
for “what you see is what you get”. With a fancy word
processor, a centered chapter title set in some fancy
display font really looks that way on your screen. The
theory is that you have immediate visual feedback and
you can make corrections or revisions right away.

If you refer back to the description of the TEX life
cycle, you see that TEX could not possibly act this
way. Remember, the process of preparing the docu-
ment source file and introducing it to TEX are entirely
separate. Computer people refer to processes like this
as batch processing(in contrast toon-line wysiwyg
processing). Anyway, since the TEX program lies qui-
escent at the time you are preparing your document file,
it would be impossible for TEX to intercede in the on-
screen formatting of your document. To add possible
insult to injury, it’s a fact that your source file might only
approximatelyresemble the look of the final output.

For those of you who die without wysiwyg programs, let
me say that the situation, though bad, could be worse.
For some integrated implementations, TEX processes
your file so rapidly, passing the resultingdvi file to
the screen previewer automatically, that it is an “almost
wysiwyg” system.

It seems as if TEX requires perhaps a good deal more
work than, say,Pagemaker. If this is true, why bother
with TEX at all?

3 The Advantages of TEX
I fiercely maintain that TEX is worth the bother, if bother
indeed it be. First of all, let’s remind ourselves that
none of the leading contenders for desktop publishing
are particularly painless. There is no royal road to fine
typesetting.

Let’s look at the wysiwyg issue first. Is this wysiwyg
deficiency a true deficiency? I and others would argue
that it is not. Leslie Lamport, in one of the most spirited
defenses of the TEX GestaltI’ve seen, remarks that the

wysiwyg acronym should be replaced by

wysiAyg

—what you see isall you get. For wysiwyg systems
generally require you to achieve the look you want by
manually attending to many details you quickly tire of
attending to.

F
or example, in TEX I was able to create a new
command which, when placed in front of a
paragraph, is able to select the first letter, en-

large it, box it, create the proper hanging indentation,
and to finally drop the capital as you see in this para-
graph. In a wysiwyg system, I might have to stop,
position the mouse, and do the same formatting in a
somewhat lengthy and tedious procedure. If there are
lots of boxed and dropped capitals in the document,
there is no painless substitute for this tedium.

There are other things I expect my typesetting program
to do. I expect, for example, sections, exercises, equa-
tions, and so on to be numbered automatically. Many
programs requireyou to perform that chore. I might
be able to put up with that, but what happens if I’ve
created a set of 70 or so exercises for a textbook I’m
writing, and my editor informs me that I need about
20 more elementary problems at thebeginningof the
exercise set? In this day and age, I don’t expect it to
be my responsibility to renumber all the exercises by
hand. Yet that is what many wysiwyg systems would
demand. TEX, needless to say, does not. It renumbers
them for you automatically, as it should.

Those of us involved in scholarly publication know
that lots of flotsam and jetsam accumulate around any
paper—tables of contents, indexes, answers to odd-
numbered problems with hints for solution, footnotes,
endnotes, and so on. If you set TEX up properly, it’s
possible that all this and more will be generated auto-
matically every time you run your document through
TEX. Not only is all this good stuff taken care of au-
tomatically, but it automatically gets revised each time
you revise the main document.

4 Logical Document Structure
It’s important to me that I create my documents in a
form that identifies the parts of the document, rather
than how they will look. For example, I would prefer to
begin an article something like the brief excerpt shown
in Figure 1.

\input docmac

\begintitle
An Introduction to \TeX{}

for New Users
\endtitle

\beginauthor



4

Alan Hoenig
\endauthor

\beginabstract
This talk...new to \TeX.

\endabstract

\begindocument

\head
What is \TeX?

\endhead
...
\subhead

More Details Revealed
\endsubhead
...
\enddocument

Figure 1: Logical document structure.

For those who arereally new to TEX, the word-like
things preceded by a backslash are commands that may
be recognized by TEX. There are a few other things that
need saying about the nature of TEX syntax, but they
are not germane to this talk.

Certainly, this isnot the way I want my document to
appear in its final, printed form. But the commands
above the actual text identify the function of the text
that follows when I prepare the document for input.
Then TEX can perform the formatting appropriate for
the particular publication.

The important thing to know about TEX commands is
they can be strung together to form your own personal
typesetting commands. We call these new commands
macros, short for “macro instruction.” Although it’s
often easy to create simple macros, and to create them
on the fly, the process of creating more complicated
ones is similar to writing computer programs. Seri-
ous debugging may be called for, and this sharpens the
comparison between TEX and a high-level program-
ming language we made earlier. Indeed, part of TEX’s
repertoire includes commands to iterate loops,make de-
cisions, and perform input and output, just like a “real”
programming language.

The very first line of this example seems to imply that
TEX’s first act should be to read in an auxiliary file con-
taining macro definitions for this document. If we’ve
done our jobs well in tagging or marking up our doc-
ument, and in creating the macro definitions, then it’s
straightforward to alter the look of my paper without
having to revise the paper (except for that first line). I
simply instruct TEX to read in a different file with dif-
ferent macro definitions. The tags become typesetting
commands.

For example, for the proceedings of a conference to in-
clude this introduction, the title part of the paper might

look something like

An Intro ... TEX for New Users

Alan Hoenig

but if this paper is not going to be included those pro-
ceedings, then I can easily submit it to some other
journal where the formatting looks like

An Intro ... TEX for New Users

by
Alan Hoenig

by leaving the document untouched and simply revis-
ing the\begintitle - \endtitle definition in the
macro style file. This is the kind of thing that publish-
ers could exploit—while their authors are creating the
book according to a generalized markup scheme, style
designers can create the definitions of these macros to
implement that book’s proper style.

We’ve just seen that when formatting needs
change, only the macros change and not our text. A re-
lated advantage of macro commands, and TEX’s com-
mand structure in general, is that when the text does
undergo revision, TEX’s formatting commands ensure
that the proper formatting continues to apply to the re-
vised text. We need not worry further about proper
formatting. I defined a\strangepar macro so this
paragraph is typeset by entering

\strangepar We’ve just seen that ...

in my source file. In case this paragraph needs re-
vision, all I do is revise the text, making sure that
\strangepar precedes the text in the same way, and
the same strange formatting will carry through.

Workers early on realized the importance of creating
macro files to facilitate the tagging of the logical parts
of a document, and people worked hard to create exten-
sivemacro packagesfor use with TEX. Another motiva-
tion behind the creation of these packages was a hope
that these packages might make TEX easier to use. The
basic, primitive TEX commands can be combined in so
many unusual and flexible ways that a creative macro
designer can almost rewrite the standard TEX syntax.

Of the macro packages that have appeared so far, the
two most well known are LaTEX andAMS-TEX. AMS-
TEX specifically designed to simplify the typesetting of
mathematical quantities, equations, and displays, and
to format the output according to any of various pre-
set style specifications. The author ofAMS-TEX has
rewritten another set of macros to incorporate the best
features ofAMS-TEX and (the original) LaTEX; this new
package is LAMS-TEX.

LaTEX helps separate thestructureof a document from
its meaning while at the same time making TEX easier
to use. LaTEX has been set up to encourage us to create



5

documents with the kind of logical document structure
we spoke of earlier. LaTEX did make TEX easier to use,
but many people feel that certain changes are harder
to make within the LaTEX model. At the moment, the
LaTEX macros are being extensively rewritten to elimi-
nate these problems and make them even easier to use.

It’s important to remember—wheneveryou use a macro
package, no matter which one, you are still using TEX.

5 TEX’s Other Strengths
One real typographic strength of TEX lies in its ability
to automatically invoke typographic niceties that other
systems only dream about. Let me briefly mention
some of them.
• TEX’s line-breaking scheme is far more successful

than other DTP or word processing programs at
eliminating obnoxious hyphenations and rivers of
space in a paragraph. This is largely because TEX
considers the whole paragraph when deciding on
line breaks. In extreme examples, the last word of
a paragraph can influence the line break of the first
line.

• TEX will automaticallykern adjacent letters prop-
erly. A k e is a dollop of white space that is added
or subtracted to improve the appearance of a word.
Consider:

unkerned:WAVE
kerned:WAVE

• Over the centuries, typesetters have replaced cer-
tain pairs of adjacent letters by single letterforms
called ligatures. If needed (and if the ligature is
available in the font), TEX will automatically type-
set the ligature. In the standard Roman typesetting,
TEX provides these ligatures:

ffl ffi ff fi fl
Compare with the unligatured letters:

ffl ffi ff fi fl
• TEX is super at doing tables and mathematics.

6 TEX’s Siblings
The 10-year effort that resulted in the birth of TEX also
produced two other major software systems. By the
way, this delivery happened at Stanford University, and
the author of all these systems is Donald E. Knuth, to
whom we should all render thanks.

The first major software system isMETAFONT, the
graphic side of TEX. All the letterforms in the Com-
puter Modern family of typefaces were produced by
this program.METAFONT would also be perfect for

the creation of logos and diagrams for papers. I person-
ally find METAFONT a “neat” program to use, neater
in many respects than TEX.

Both TEX and METAFONT are massive Pascal pro-
grams, each containing between 20,000 and 30,000
lines of code (depending on how they are pretty-
printed). How can any one person thoroughly test and
debug such programming monsters? Knuth’s answer
was theWEBsystem of structured documentation, the
second additional system I want to mention.

You create a masterWEBfile which contains lines of
code and documentation that have been entered accord-
ing to the properWEBconventions. This file is then run
through two different programs depending on whether
you want to work with the documentation or with the
program. When thedocumentationis generated, it’s in
a form which is particularly easy for humans to read
and understand. When theprogram is generated, it’s
in a form particularly easy for machines to understand
(but quite difficult for humans to read; this way, you
are discouraged from making changes to anything but
the masterWEBfile). In practice,WEBcan be used to
generate large-scale, complex computer systems fairly
rapidly. But by and large, TEX users don’t deal with
WEB.

Knuth, D.E., 1984. The TEXbook. Reading, MA:
Addison-Wesley.

Lamport, L., 1986. LaTEX: A Document Preparation
System. Reading, MA: Addison-Wesley.

Spivak, M.D., 1986.The Joy of TEX. Providence: The
American Mathematical Society.

Spivak, M.D., 1985.The PC-TEX Manual. Mill Valley,
CA: Personal TEX, Inc.
Buerger, D.J., 1990.LaTEX for Engineers and Scientists.
NY: McGraw-Hill.
Electronic manuals.

Doob, Michael, 1990. Gentle Introduction to TEX.
Avail. from TEX Users Group, Providence, RI.
St. Sauver, J.E., [no date].Using TEX on the VAX to
Typeset Documents: A Primer.
Warbrick, Jon, [no date].Essential LaTEX.
Knuth, D.E., 1986.The METAFONTbook. Reading,

MA: Addison-Wesley.
Knuth, D.E., 1983. The WEB System of Structured
Documentation. Stanford, CA: Computer Science De-
partment, Stanford University.

Figure 2: A brief TEX bibliography.

7 Learning More about TEX
Assuming I’ve sparked your interest, let me tell you
how you can find out more about TEX.



6

The TEX canon isThe TEXbook, written by the author
of TEX, Don Knuth. Essentially everything you need
to know about TEX is found here, some place or other.
Leslie Lamport’sLaTEX: A Document Preparation Sys-
temand Mike Spivak’sThe Joy of TEX provide the same
service for LaTEX andAMS-TEX.

Beginners constantly demand ever more information
about TEX at a lower level; let me mention several
works that might be useful in satisfying that demand.
First is PC-TEX Manualby the Mike Spivak and then
there is LaTEX for Engineers and Scientistsby David J.
Buerger.

There are at least three electronic introductions to TEX
that you may be interested in. That is, they have been
written by caring and generous authors who have placed
electronic copies of their manuscripts in the public do-
main. The first such is Michael Doob’sGentle Intro-

duction to TEX; two others areUsing TEX on the VAX
to Typeset Documents: A Primerby Joseph St. Sauver,
andEssential LaTEX by Jon Warbrick. TheTEX Primeris
useful regardless of your computer system, since most
of TEX is independent of the computer system.

A continuing source of information on TEX-related ma-
terial is TUGboat, the transactions of the TEX Users
Group (P O. Box 9506, Providence, RI 02940 USA;
[401] 751–7760).

Note added by editor PR set. Apart from TUG there
exists various so-called LUGs, meaning Local (or Lan-
guage oriented) User’s groups.

NTG distributes David Salomon’s courseware as MAPS
’92 Special. This book can be seen as a companion to
the TEXbook, with a wealth of examples. A LaTEX com-
panion in-the-making is by Goossens, Mittelbach, and
Samarin.


