
Bijlage N Two faces of text 43

BIJLAGE N

Two faces of text
TEX as a programming tool for advanced document retrieval systems

Joop van Gent

Institute for Language Technology and Artificial Intelligence (ITK)
Tilburg University

PoBox 90153
Tilburg, The Netherlands

gent@kub.nl

Introduction

It is a common misconception to think that a scientific
book about earthquakes is a book about earthquakes. If
this would be the case the book could be replaced by a
database containing the information about earthquakes
exposed in the book. All scientific books about earth-
quakes could be replaced by one such database and —
still more improbable —all books in the world could
be replaced by one huge knowledge base containing all
ideas exposed in all books. This is not the case.

A scientific book about earthquakes is also a book about
the author, the time of writing, the origins of the ideas
and linked ideas that are stored in other books. It’s a
book about other books about earthquakes and a book
about itself. The book presents a lot of different sorts of
information, the organisation of which is taken care of by
historically developed and commonly accepted methods
of referencing (bibliographies, index tables, thesauri)
and methods of division (logically splitting up informa-
tion in parts like nesting paragraphs in sections, sections
in chapters, etc.). People find their way in libraries and
books by search strategies based on these finegrained
organisation systems.

The basis of the main ideas presented in this article is
that — as long as hard copy documents exist parallelly
to electronic ones — document retrieval systems should
not only make use of these advanced organisation me-
thods but should also have user interfaces that allow
search strategies that people are acquainted with. Do-
cument retrieval systems should pair the advantages of
fast search performance of computers with ‘traditional’
bumming around in libraries and ‘sniffing’ in books.1

This implies that users should have electronic documents
available in a typeset format that looks like a correspon-
ding hard copy as much as possible. It also implies

that these systems allow users to query the database in
natural language.

For the former statement there are several arguments.
The most important one is probably the following. In
contrast with searching in large databases and quickly
overviewing pages, reading large pieces of text is in
many ways more comfortable on paper than on a com-
puter screen. Evidently, hard copies are also more easily
carried in a handbag. It is therefore to be expected that
hard copies (especially large ones) will keep playing a
role together with electronic documents for quite a long
time. To allow a user to comfortably switch from hard
copy to screen and vice versa is therefore a prerequisite
for a document retrieval system. This can be achieved by
an ‘isomorphism’ of typography.2 Another argument is
that besides using referencing and division a user often
finds his way by recognition of patterns without really
reading text, by just running a thumb through the pa-
ges of a book. This ‘method’ is evidently supported by
having pages in the same typesetting on the screen.

I don’t have strong arguments for qualifying interro-
gation in natural language as an important feature of
document retrieval systems. Nevertheless I think docu-
ment retrieval is one of the ‘discourse domains’ where a
natural language interface is pretty efficient in compari-
son with alternatives like menu structured interaction or
command languages. This is so, because the objects by
their nature have an extremely deep hierarchical struc-
ture. Therefore menu structuring makes search actions
last unnecessary long and command languages — impo-
pular as they are anyway — too complex.

In this article I want to show the important role Knuth’s
typesetting language TEX — as defined in [6] — can
play in the kind of document retrieval systems introdu-
ced above (from now on I will call these systems advan-

1And, of course, with the advantages of new strategies, like those developed in Hypertext(-like) environments (see [3] for a
short introduction & survey).

2In some sense the physical sectioning of documents in numbered pages can be seen as part of the typesetting. Switching
between hard copy and screen is evidently aided by a correspondence in paging and pagenumbering.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#5 (90.2); Nov 1990



44 Two faces of text Bijlage N

ced document retrieval systems). But before doing this
I will give a more detailed description of these systems.

Advanced document retrieval systems
Until recently document library systems have been li-
mited by the fact that most documents are only available
in (good old) hard copy format. For this reason it was
only possible to automatically retrieve information about
a document by looking at its description in a database.
These descriptions were (and still are) stated in terms of
attributes like author, date, editor, title, keywords etc.,
like the features one finds on the little paper cards in a
library catalog. In other words: only the library catalog
could be automatized. Most conventional database sys-
tems are designed to query ‘things’ that are not really
in the database. For example a database of second hand
boats does not really contain second hand boats, it only
contains descriptions of them.

Since more and more documents become available in
(some) electronic format, it becomes interesting to deve-
lop library systems with databases containing electronic
documents. What makes a database of electronic docu-
ments so special is that it does really contain electronic
documents! Retrieval systems therefore can have the
property of being able to show the objects in the data-
base and we probably want to use this ability: we want
to be able to treat a lot of queries by showing document
components in some way on the screen. The system
allows us to look into a document instead of just looking
at it.

While containing documents, these systems allow a lot
of new kinds of queries. For example queries about the
semantic content of a document or about all kinds of
properties of the document components. 3

But how do we set up such a system? What exactly will
be the objects in the database, what structure do they
have and how should they be stored? And secondly:
how should information be retrieved from them? To
answer these questions we have to look at the ‘nature’ of
documents and the way people find information in them.

Logical structure and search strategy
Documents basically have two types of structures: a logi-
cal structure (the organisation of document components)
and a typographical structure (the way the document is
actually presented on paper), both mirroring on a very
abstract level the organisation of the semantic content of

the document. In hard copy documents only the typo-
graphical structure is ‘available’, the logical structure has
to be abstracted by the reader by pattern recognition.4

For example chapters can be recognized by their high-
lighted titles, paragraphs by indentation etc. When we
are looking for some information in a hard copy docu-
ment we often make use of the logical structure of the
document reflected in its typography.

It is this natural kind of search strategy that we would
like to imitate in our retrieval system. An example will
illustrate this. Suppose we have an electronic document
about the sales of a certain series of computers and we
want to know how many computers were actually sold.
No system today will be able to retrieve this information
directly from the document by semantic interpretation
of the text (or figures). But if we know or presume that
the information we are looking for is contained in some
table, we can ask the system to look for a document
component that has the property of being a table. In this
way we can shortcut our search actions.5

How could we get the system to find a table? More ge-
nerally, how can the system find document components?
By extracting the logical structure from the typography
like humans? Recognition of a logical structure on the
basis of typography would request computable methods
of pattern recognition. In addition to the wellknown
problems in this field (algorithm complexity and noise,
see for example the problems with current OCR systems)
The many different kinds of typography used by diffe-
rent authors and editors make any attempt along these
lines hopelessly futile. A better and faster way to achieve
our goal is to explicitly impose a logical structure on a
document.

In what way? It will be clear that for these purposes stor-
age of documents in plain text format will not suffice.6

We will need some format to express attributes of the
components of a document. If — for example — we
want to know the title of a particular chapter of some
document, the system will have to know how to recog-
nize a chapter and a title. This can be done by using a
markup language.

The idea of imposing a logical structure on electronic
documents by using a markup language is not new of
course. SGML, ODA and, in a way, LATEX have been de-
signed for these purposes, although they were primarily
intended for improvement of document interchangability
(by separation of logical and typographical structure).

So documents need to be stored in two different formats
— a logical structure and some typographical represen-

3I use the term ‘document components’ here to indicate the pieces of text (and figures) a document consists of, like
paragraphs, sections, footnotes, etc. Document components are pieces of a document that form somehow a logical unit.

4And of course by semantic interpretation...
5Sometimes the attributes of document components themselves will be the final target of our query. For example we might

want to know the exact title of a particular chapter without being interested in its meaning. Or maybe we want to list the
particular components of a document that mention Shakespeare, without being interested in the contents of these components.

6With plain text format I mean a plain ascii format that contains no codes indicating the logical or typographical attributes
of document components.

Reprint MAPS#5 (90.2); Nov 1990 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands



Bijlage N Two faces of text 45

tation — in order to be able to treat queries about logical
components that should result in showing typeset pa-
ges. If we drop one of them we are either not capable
of representing figures or typeset text, or we have to
make inferences about the logical structure by pattern
recognition (as typeset formats do not contain codes in-
dicating the logical structure information). Moreover if
we we want to see documents in a format that resem-
bles a printed document as closely as possible, we will
probably want them to be sectioned in pages.

The role of TEX
If we choose for a pagewise presentation of typeset do-
cuments, the two ‘faces’ of the document now somehow
have to be linked by a function assigning pages to do-
cument components. This is so because search actions
will always take place on the logical face. Whenever a
query is meant to get typeset information on the screen,
the system will have to know where to find it. Therefore
every component in the logical presentation of a docu-
ment has to contain a label — or adress — indicating a
position in the corresponding typeset representation. In
many cases the typeset version is calculated from the lo-
gically formatted version on the basis of font properties
and other graphical information, like grid, size of figu-
res, style, etc.7 But, as stated before, the typeset version
never contains codes indicating the logical structure of
a document. So what kind of computer program should
take care of the linking? At this point TEX smiles at us.

Because it is the program that does the typesetting that
also has to take care of the right pointers from logical
document components to physical positions in the type-
set version. If we would try to make this preparation
module with an ordinary programming language like C
or PASCAL we would have to solve typesetting calcu-
lation problems that took Donald Knuth ten years while
implementing his TEX.

The TEX language and compilers were originally desig-
ned to bring professional typesetting within the reach of
(scientific) authors. LATEX was meant to combine ty-
pesetting facilities of TEX with an advanced strategy of
logically structuring documents, as is stated clearly by
Leslie Lamport in [7]. I think most of the popularity of
both products is (besides — of course — their quality)
due to the elegance of this combination.

In my opinion TEX has another great merit: it can be
used to elegantly prepare documents for databases of in-
telligent document retrieval systems as described above.
The elegance is due to the parallel processing of se-
mantic representations of documents and corresponding
DVI-files. More precisely: The TEX compiler can be
used to convert a document to a set of two files, one

of which is the standard DVI-format, the other one is a
file containing all information about the logical structure
of a document and about the logical and typographical
properties of the document components. But that’s not
all. The latter file also contains information about the
physical positions of all components. With physical po-
sitions is meant the positions of the DVI-representations
of these components in the DVI-file.

In the next section I will sketch briefly a TEX macro
set that creates database objects from LATEX documents.
This program has been succesfully implemented and can
be extended to other types of document (input) formats
like WordPerfect or SGML. The program is now incor-
porated in a prototype document retrieval system that can
be combined elegantly with a natural language interface.
I need to say at this point that I owe many suggestions
and ideas for implementation of the TEX macro set to
Huub Mulders, my ex collegue (and the best TEXnician I
know) from the Computer Centre of Tilburg University.

A document preparation module in
TEX
The main components of the system we designed are a
document preparation module and a document retrieval
module. The former is a format translator. It is meant
to translate formats used by authors (e.g. WordPerfect,
WordStar, LATEX) to formats that are convenient for re-
trieval. The latter is meant to translate queries of a user
to operations on a database.8

The preparation module is a TEX macro set consisting of
a parser and a generator. In the current implementation
only LATEX documents can be parsed. From every docu-
ment (besides the usual DVI-files and auxiliary files9) a
set of two files is generated: an LST-file and an LSP-file,
which will be examined in depth in the next section. For
the moment I only want to make the following remarks
about them. The former contains the document repre-
sentation as a nested list of document components and
also all text, the latter a set of statements about the su-
blists of this list (i.e. about the document components).
Both files are in plain ascii format and can be directly
interpreted by a Prolog interpreter.

Input and output routines
Only TEX’s standard input routines are used. To be able
to open extra files and write tokens to them I used TEX’s
\openout and \write instructions. To split up the
information for the DVI-file and for both logical format
files I used a recursive macro like:
\eat#1 {#1 ...\swallow{#1}..... \eat}.

7E.g. LaTeX , Ventura, Interleaf.
8At the moment, only a very limited set of query types can be treated.
9For those readers not acquinted with TEX: DVI files are typeset images. Auxiliary files are used for several purposes among

which calculating logical references like table of contents. A nice introduction in TEX, though in Dutch is to be found in [4]

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#5 (90.2); Nov 1990



46 Two faces of text Bijlage N

This macro reads strings from space character to space
character. It takes care for both a direct ‘consumption’
of #1 by TEX’s standard typesetting mechanism and a
‘rechewing’#1 by a (recursive) macro \swallow. The
latter reads #1 token by token. Suppose for example #1
is the string:

(i) congres.\footnote{...}.This.

Then \swallow makes:
c o n g r e s \footnote {...} T h i s
out of it. \swallow passes these 13 tokens to another
set of macro’s that splits up text and logical information.

It will be clear that the \begin{document} macro
had to be adapted to initiate the \eat macro. To pro-
perly exit eat and other recursive macro’s and to ac-
count for a proper nesting of document components in
the LST file the \end{document} macro was also
adapted.10

These redefinitions are very trivial:

\let\begindoc\document%
\def\document#1{%

......(instantiations)....\eat#1}%
\let\enddoc\enddocument%
\def\enddocument{%

.........(handle nestings).....%
\enddoc}%

For the interpretation of tokens routines were needed to
check whether two tokens are the same. This is handled
by the folowing macro:

\newif\ifsame%
\long\def\testsametoken#1#2{%

\edef\partwo{\string#2}%
\edef\parone{\string#1}%
\ifx\parone\partwo\sametrue%
\else\samefalse%
\fi}%

Because of the token by token reading I needed a macro
to append characters to a string. This could be done by
the following macro:

\newtoks\ta\newtoks\tb%
\long\def\rightappend#1\to#2{%

\ta={#1}%
\tb=\expandafter{#2}%
\edef#2{\the\tb\the\ta}}%

Another problem that had to be handled has to do with
the linking of the logical and typographical image. Pa-
genumbers are generated at the beginning of a logical
document component. As TEXnicians know TEX does a

lot of recalculating at the end of document components.
For this reason sometimes a wrong pagenumber was ge-
nerated. This problem was solved by \relax-ing the
pagenumber calculation:

\def\tolspfile#1{{\let\thepage\relax%
\xdef\temppar{%
\write11{\string#1}}}%

\temppar}%

The rest of the macro set comes down to a partly recur-
sive handling of LATEX’s component delimiters.

The output format
It is often suggestes that documents should be stored in
SGML format ,or a similar markup language type. From
a document retrieval point of view this is not very at-
tractive because it implies parsing of SGML documents
while treating a query. We cannot avoid ‘precompiling’
SGML-documents to some other format that allows fas-
ter search strategies.11

I chose to take a format that has at least two attractive
properties. First it is a format that can be interpreted by
any proper Prolog interpreter and therefore it can also be
compiled. Compiling this format results in a low level
pointer structure that allows fast searching. Second it
is a format that facilitates the interpretation of (natural
language) queries. The latter point needs some further
explication.

Interpretation of queries
As in any other query language the evaluation of a na-
tural language query comes down to checking relations
between objects in a database. In the case of documents
and their components these relations are often very par-
ticular types of relations that have to do with the logical
positions of document components, for example the pre-
cedence relation (� precedes �) and the sublist relation
(� is a sublist of �). If we say — for example —
that some chapter contains some footnote we say in fact
that a list of a certain type is a sublist of another type.12

What is so special about this? Well, nested lists (like for
example sets) are in fact algabraic entities with a lot of
welldefined properties. Basic operations on lists can be
implemented in a very trivial way. The idea is then that
we can facilitate the evaluation of queries when the da-
tabase is a nested list and when we define the semantics
of our query language in such a way that it can make use

10None of LaTeX macro’s are redefined in the system files. All redefinitions take place in a distinct top level macro set in a
trivial way by temporarily renaming the LaTeX instructions.

11A way to avoid parsing SGML bulk files is to make use of SGML’s file pointer mechanism. This comes down to putting
markups in files that are interpreted as pointers to other files (for details see [1]). In this way sets of files (document components)
can be structured in any desired way. In this way we loose an advantage of SGML, namely its direct interchangability with
electronic publishing environments.

12The term ‘type’ should not be taken literally here. It is to be discussed whether being a chapter or a footnote is to be taken
as a type or as a predicate.

Reprint MAPS#5 (90.2); Nov 1990 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands



Bijlage N Two faces of text 47

of the basic operations on nested lists when necessary.13

One might argue that a lot of queries don’t request ma-
thematical operations on lists! I think this is indeed the
case with queries about thecontents of a document. A lot
of queries however contain subexpressions (for example
definite descriptions) that refer to document components.
Part of the evaluation of the query therefore comes down
to finding the correct referents for these subexpressions.
Finding a referent on its turn implies an extraction of
one or more elements from a list, which is in fact a
mathematical operation.

EL/DR, a document representation
language
EL/DR is a shorthand for Ensemble Language for Do-
cument Representation. The term ‘Ensemble Language’
refers to a type of semantic representation languages
proposed by Harry Bunt [2]. EL/DR is defined within
this framework. The language is used both for document
representation and for the semantics of natural language
queries. I will only introduce the sublanguage of EL/DR
that is used for document representation here. For details
about EL/DR the reader be referred to [5].

The language called EL/DR is based on the idea that
documents are in fact tree structures or nested lists of
logical components that are themselves also nested lists.
For example, a chapter consists of a list of sections. A
section consists of a list of subsections or paragraphs and
so on. I call those components DLS (Document Logical
Structure). Words, figures and (for the moment) formu-
la’s and tables are considered to be atomic. DLS’s are
syntactically represented in a trivial way. Consider the
next (very small) document:

Yesterday I bought:
- two appels
- a beer
- milk
- some bread

Suppose we say that this document consists of a para-
graph and an enumeration, the latter consisting of four
items. This document can now be logically presented as
a nested list as follows:14

[[Yesterday,I,bought],[[two,appels],
[a,beer],[milk],[some,bread]]]

To avoid ambiguities — every word can occur more than
once in a document — occurrences of words have to be
labelled in a way different from the syntactic represen-
tations of the words themselves, for example:

[[w1,w2,w3],[[w4,w5],
[w6,w7],[w8],[w9,w10]]]

In fact this is done in EL/DR, but from an implementa-
tion point of view it is more convenient to have labels
for DLS’s (nodes in a tree) too. Therefore, all nodes in a
tree structure (atoms included) are implicitly numbered
starting from 0 (the whole document) topdown, leftright
depth-first, to n, the rightmost atomic element of the
tree.

All properties of these DLS’s can now very simply be
stated in terms of predicate-argument constructions (or
for those acquinted with Prolog, in terms of horn clau-
ses). For example:

paragraph([w1,w2,w3]).
enumeration([[w4,w5],[w6,w7],

[w8],[w9,w10]]).
item([w4,w5]).
item([w6,w7]).
item([w8]).
item([w9,w10]).
word(w4).
word(w5).
...

Or when using the implicitly imposed labels:

paragraph(1).
enumeration(5).
item(6).
item(9).
item(12).
item(14).
word(7).
word(8).
...

Chapter titles and crossreferences are two-place predi-
cates, for example:

title(100,101).
crossref(221,457).

The first clause in this example states that the DLS la-
beled ‘101’ is the title of the DLS labeled ‘100’. The
second clause states that the DLS labeled ‘221’ refers to
the DLS labeled ‘457’.15

Finally, the linking of logical components to pagenum-
bers is done in a similar way, for example:
pagenumber(221,23).

The first argument in this example is a label for a logical
component, the second argument refers to a pagenumber,
which is a physical position in the typeset image.

13If we think of representing documents as nested lists we can also make use of their properties in other ways. For example
we can use them to reason about documents.

14For the sake of clarity interpunction is left out.
15Note that crossreferences are not seen as attaching physical positions in a text to document components, but rather as

combining two (or more) logical document components.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#5 (90.2); Nov 1990



48 Two faces of text Bijlage N

Conclusions and final remarks
In this paper I have tried to show that TEX can be used
to prepare suitable database objects for document retrie-
val systems and that alternatives must have particular
qualities that are scarcely found in other programming
languages. Current software supporting TEX has its li-
mitations though. One of these is that not all graphic
information can be represented in DVI-files. This is
particularly the case with bitmaps. It seems therefore
worthwile investigating alternatives like PostScript.

I have made a lot of presuppositions that are or should
be subject of discussion, specifically:
1. advanced document retrieval systems should al-

low search strategies users have historically got ac-
quinted with (but also — of course — new strategies),

2. hard copies will exist for a long time together with
their electronic ‘sisters’; for this reason a correspon-
dence between the graphic representations of both
sisters is desirable,

3. queries that make use of a document’s logical struc-
ture play an important role in document retrieval.

Still I hope to have made clear that the preparation mo-
dule for a document retrieval system should output do-
cuments as nested lists to make its sublists accessable by
mathematical operations in the retrieval module. I also

hope to have stimulated the TEX community to think
about TEX’s hidden qualities in the field of document
retrieval.

References

[1] Martin Bryan: SGML An author’s guide to the
Standard Generalised Markup Language, Addison-
Wesley Publishing Company, 1988.

[2] Harry Bunt: Mass Terms and Model-theoretic Se-
mantics, Cambridge: Cambridge University Press,
1985.

[3] Jeff Conklin: Hypertext; An introduction and sur-
vey, in: Computer, september 1987.

[4] Victor Eijkhout & Nico Poppelier: Wat is TEX?, in:
NTG Report 4, november 1989.

[5] Joop van Gent: A formal language for describing
document structures, forthcoming, 1990.

[6] Donald E. Knuth: Computers & Typesetting,
Addison-Wesley Publishing Company, 1986.

[7] Leslie Lamport: LATEX user’s guide & reference ma-
nual, Addison-Wesley Publishing Company, 1986.

Reprint MAPS#5 (90.2); Nov 1990 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands


