
118 An indentation scheme Bijlage CC

BIJLAGE CC

An indentation scheme

Victor Eijkhout
University of Illinois at Urbana-Champaign

305 Talbot Lab
104 S. Wright Street

Urbana, Illinois 61801, USA
u641001@HNYKUN11

Indentation is one of the simpler things in TEX: if you
leave one input line open you get a new paragraph, and it
is indented unless you say \noindent. And if you get
tired of writing\noindent all of the time, you declare

\parindent=0pt

at the start of your document. Easy.

More sophisticated approaches to indentation are possi-
ble, however. In this article I will sketch a quite general
approach that can easily be incorporated in existing ma-
cro packages. For a better appreciation of what goes on,
I will start with a tutorial section on what happens when
TEX starts a paragraph.

1 Tutorial: paragraph start
When TEX is not busy typesetting mathematics, it is
processing in horizontal mode, or vertical mode. In ho-
rizontal mode it is putting objects – usually characters –
next to each other, in vertical mode it is putting objects
– usually lines of text – on top of each other.

To see that there is a difference, run the following pieces
of code through TEX:

\hbox{a}
\hbox{b}
\bye

and

a
\hbox{b}
\hbox{c}
\bye

You notice that the same objects are treated in two dif-
ferent ways. The reason for this is that TEX starts each
job in vertical mode, that is, stacking material. In the
second piece of input TEX saw the character ‘a’ before it
saw the boxes. A character is for TEX the sign to switch
to horizontal mode, that is, lining up material, and start
building a paragraph.

Commands that can make TEX switch to horizontal mode
are called ‘horizontal commands’. As appeared from

the above two examples characters are horizontal com-
mands, but boxes are not. Let us now look at the
two most obvious horizontal commands: \indent and
\noindent.

1.1 \indent and \noindent
\indent is the command to start a paragraph with in-
dentation. TEX realizes the indentation by inserting a
box of width \parindent. If you say \indent so-
mewhere in the middle of a paragraph you get some
white space there, caused by the empty box.

\noindent is the command to start a paragraph wit-
hout indentation. After this command TEX merely
switches to horizontal mode; no indentation box is in-
serted. If you give this command somewhere in the
middle of a paragraph it has no effect at all.

If TEX sees a horizontal command that is not \indent
or \noindent, for instance a character, it acts as if
the command was preceded by \indent. This is why
paragraphs usually start with an indentation.

As an illustration here is a small variation on the above
two examples:
\noindent
\hbox{a}
\hbox{b}

\indent
\hbox{a}
\hbox{b}
\bye

1.2 \everypar

TEX performs another action when it starts a paragraph:
it inserts whatever is currently the contents of the token
list\everypar. Usually you don’t notice this, because
the token list is empty in plain TEX (the TEX book [3]
gives only a simple example, and the exhortation ‘if you
let your imagination run you will think of better ap-
plications’). LATEX [5], however, makes regular use of
\everypar. Some mega-trickery with \everypar
can be found in [2].

Reprint MAPS#5 (90.2); Nov 1990 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands



Bijlage CC An indentation scheme 119

� Just to show how this works, I put in front of this
paragraph the statement

\everypar={$\bullet\quad$}

That is, I told TEX that $\bullet\quad$ should be
inserted in front of a paragraph.

� There’s nothing specified for this paragraph; I get
the bullet for free, as \everypar does exactly what its
name promises: it is inserted in front of every paragraph.

At the end of the previous paragraph I specified

\everypar={}

so nothing is inserted from this paragraph onwards.

1.3 Removing indentation
Every TEX user knows that indentation can be prevented
globally by setting \parindent to zero. However,
this is rather crude, and if you use the plain TEX macros
you may notice several rather unpleasant side effects of
this action, for instance when you use the macros\item
and \footnote.

It is possible to use \everypar to prevent indentation,
or more correctly: to remove indentation. This can be
achieved by

\everypar={{\setbox0=\lastbox}}

This needs some explanation.

If the last item that was processed by TEX is a box, then
that box is accessible by the command \lastbox. If
the last item was not a box then \lastbox is an empty
box, but no error ensues. As the \everypar list is
inserted after any indentation box, the \lastbox com-
mand will get hold of the indentation box if there is one.
By assigning the last box to another box register – here
\box0 – it is removed from where it was previously.

Finally, the statement

\setbox0=\lastbox\

is enclosed in braces. TEX’s grouping mechanism resto-
res values when the group ends that were current when
the group began. In this case it has the effect of totally
removing the indentation box: first it is taken and assig-
ned to \box0, then the value of \box0 is restored to
whatever it was before the group began.

1.4 Other actions at the start of a para-
graph

In the above discussion I have omitted one action that
takes place at the start of a paragraph: TEX inserts (ver-
tical) \parskip glue above the paragraph. As this has
no relevance for the subject of indentation I will not go
into it any further. However, in a subsequent article I
will give more information about \parskip.

2 To indent or not to indent
In classical book typography [4] every paragraph is in-
dented, with the exception of the first paragraph of a
chapter. Nowadays a design where no paragraph in-
dents is quite common. There are two mixtures between
always indenting and never indenting: occasionally in-
denting, and occasionally not indenting. Thus it seems
possible to characterize indentation strategies by two
yes/no parameters: one that decides whether paragraphs
should indent in principle, and another parameter that
can overrule those decisions. Let us now see how this
can be implemented in TEX.

2.1 Implementation
Above I have already indicated that changes to
\parindent should be avoided. Let us then assume
that \parindent is greater than zero, even if we will
never indent a paragraph (see [1] for other uses for the
\parindent quantity). We must then realize unin-
dented paragraphs by removing their indentation as ex-
plained above.

First we need a macro for removing the indentation:

\def\removeindentation
{{\setbox0=\lastbox}}

Then we need the switches that control indentation:

\newif\ifNeedIndent %as a rule
\newif\ifneedindent %special cases

Now for the definition of \everypar. This is a bit
tricky.

Let us first collect some bits and pieces. The
main question is to decide when \removeindent
should be called. This is for instance the case if
\NeedIndentfalse, and that parameter is not over-
ruled by \needindenttrue.

\ifNeedIndent
\ifneedindent
\else \removeindentation

\fi \fi

Indentation should also be removed in case
\NeedIndenttrue, but when that parameter is over-
ruled by \needindentfalse.

\ifNeedIndent
\else \ifneedindent

\else \removeindentation
\fi \fi

Next we should make sure that \ifneedindent
is used only for exceptional cases: if the user or a
macro sets this parameter to a different value from
\ifNeedIndent, then that should be obeyed exactly

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#5 (90.2); Nov 1990



120 An indentation scheme Bijlage CC

once.

\ifNeedIndent
\ifneedindent
\else \needindenttrue \fi

\else \ifneedindent \needindentfalse
\fi \fi

This is then the full definition of \everypar:

\everypar={\controlledindentation}
\def\controlledindentation

{\ifNeedIndent
\ifneedindent
\else \removeindentation

\needindenttrue
\fi

\else \ifneedindent
\needindentfalse

\else \removeindentation
\fi \fi}

Another implementation would be possible:

\def\controlledindentation
{\ifneedindent
\else \removeindentation \fi
\let\ifneedindent=\ifNeedIndent}

This saves one conditional, but for most paragraphs it
involves an unnecessary \let command.

2.2 Usage
My aim in developing this indentation scheme was to
hide all commands pertaining to indentation in macros.
The user should have to specify only once whether pa-
ragraphs should indent as a rule:

NeedIndenttrue

and then macros should declare the exceptions:

\def\section#1{...
\needindentfalse
...}

2.3 But couldn’t you simply : : : ?
Maybe people who read this have written macros them-
selves that end like

\def\section#1{...
...
\noindent}

or

\def\section#1\par{...
...
\noindent}

This works reasonably well, but it is not completely safe.
In the first case there shouldn’t be an empty line after a

\section{...}

call, and in the second case there can only be one empty
line after

\section ...

The reason for this is that every empty line genera-
tes a \par command, which annuls the effect of the
\noindent. Hence the more drastic approach.

An argument the other way around can also be found,
by the way. As Ron Whitney pointed out to me, the
following piece of code causes trouble:

\section{Title}%
{\smallcaps The first} words are ...

Any changes made by \everypar are now effected
inside a group. In this case one remedy is to insert a
\leavevmode command, or to define

\def\smallcapswords#1{\leavevmode
{\smallcaps #1}}

which can be used at any place.

Another remedy would be to let all assignments con-
trolling indentation be global. However, there are some
subtle objections to this.

3 About macro packages and users
Above I remarked that plain TEX does not use
\everypar, and that LATEX redefines it a lot. This
means that in plain TEX the user is free to take every va-
lue of \everypar that he or she likes; in LATEX every
attempt of the user to use \everypar is immediately
thwarted.

One might ask how the use of \everypar that I have
sketched compares to this. Can the user be allowed to
access \everypar, even if the macro package needs it
all the time?

In my own ‘Lollipop’ format I have taken the following
way out. The user or the style designer is allowed to fill
in \everypar, as long the statement

\the\everyeverypar

is included. Here \everyeverypar is the token list
with the constant actions such as indentation control that
should be performed always.

A format designer who wishes to hide even this from the
user or the style designer, could use the following piece
of code

\newtoks\temppar
\def\everyparagraph

{\afterassignment\xevpar
\temppar}

Reprint MAPS#5 (90.2); Nov 1990 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands



Bijlage CC An indentation scheme 121

\def\xevpar
{\edef\act{\everypar=

{\the\temppar
\the\everyeverypar
}}%

\act}

so that it becomes possible to write

\everyparagraph={\DoSomething
\everyparagraph={}}

while the \everypar will still contain all of the con-
stant actions.

Short explanation: \everyparagraph is a macro
that is made to look like a token parameter by the use
of \afterassignment. This latter command sets
aside the token \xevpar for insertion after the first
assignment occurring; then whatever follows is assig-
ned to \temppar. After this assignment the macro
\xevpar unwraps the \temppar token list and the
constant actions into \everypar.

4 Conclusion
In a systematic layout indentation commands need never
be typed by the user; they can all be hidden in macros.

Using \everypar it is possible to prevent indenta-
tion both in single instances, and throughout the docu-
ment. This has the advantage that is is not necessary to
zero the \parindent parameter or use \indent and
\noindent instructions.

The approach of employing \everypar as sketched
above can also be used for a paragraph skip scheme, as
I will show in a subsequent article.

References

[1] Donald Knuth, The TEX book, Addison-Wesley
Publishing Company, 1984.

[2] Leslie Lamport, LATEX, a document preparation sys-
tem, Addison-Wesley Publishing Company, 1986.

[3] Victor Eijkhout,Unusual paragraph shapes, Tugboat
vol. 11 (1990) #1, pp. 51–53.

[4] Stanley Morison, First principles of typography,
Cambridge University Press, 1936.

[5] J. Braams, V. Eijkhout, N.A.F.M. Poppelier, The de-
velopment of national LATEX styles, TUGboat vol. 10
(1989) #3, pp. 401–406.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#5 (90.2); Nov 1990


