
122 A parskip scheme Bijlage DD

BIJLAGE DD

A parskip scheme

Victor Eijkhout
University of Illinois at Urbana-Champaign

305 Talbot Lab
104 S. Wright Street

Urbana, Illinois 61801, USA
u641001@HNYKUN11

While I was workingon the LATEX styles described in [1],
it became apparent to me that lots of people are rather
fond of the sort of layout that can be described as

\parindent=0cm
\parskip=6pt % or other positive size

Unfortunately, most of them realize this layout by no
more sophisticated means than simply inserting these
two lines at the beginning of the input. The drawback of
such a simple action is that all sorts of vertical spaces are
augmented by the \parskip when there is absolutely
no need to, or where it is positively unwanted. Examples
of this are the white space below section headings, and
the white space above and below list environments in
LATEX.

In this article I will present an approach that unifies the
paragraph skip and the white spaces surroundingvarious
environments. Since the macros given below make use
of the\everypar token list, this article may be seen as
a sequel to an earlier paper on an indentationscheme [2],
which is based on a similar principle. The \everypar
parameter was explained there.

nparskip
TEX starts a paragraph when it switches from vertical
to horizontal mode. The vertical mode may have been
initiated by a \par (for instance because of an empty
line after a preceding paragraph) or by a vertical skip
command; the switch to horizontal mode can be effected
by, for example, a character or a horizontal skip com-
mand (see the list in [3, p. 283]). Immediately above the
first line of the paragraph TEX will then add glue of size
\parskip to the vertical list1.

Apparently, then, the\parskip parameter is very sim-
ple to use. That this is only an apparent simplicity beco-
mes clear in a number of instances.

For instance, unless precautions are taken, the white
space below headings is augmented by the paragraph
skip. Precautions against this are not particularly ele-
gant: the easiest solution is to include a

\vskip-\parskip

statement, to backspace the paragraph skip in advance.
Such an approach, however, is somewhat error-prone.
Vertical spacing will be messed up if what follows is not
a paragraph, but a display formula or a box.

Similar considerations apply to the amounts of white
space that surround, for example, list environments, as
in LATEX.

Paragraph skip: to be or not to be

(This section is something of a footnote to the rest of
the article. Readers who are not interested in layout
consideration may skip the rest of it.)

Ordinarily in plain TEX and in LATEX the paragraph skip
is set to0pt plus 1pt, which gives pages some ‘last
resort’ stretchability. However, even an amount of verti-
cal space as small as one point may become very visible,
and often without need (see for instance the first page of
the preface of [3]).

Furthermore, Stanley Morison states that not indenting
paragraphs is ‘decidedly an abject method’ [4]. Howe-
ver, reading his intention instead of his words, he is only
concerned with the recognizability of the individual pa-
ragraphs. The positive value of the paragraph skip is
sufficient to ensure this. If a layout is based on zero va-
lues for both \parindent and \parskip, one may
for instance give the\parfillskip a positive natural
width to prevent last lines of a paragraph from almost,
or completely, lining up with the right margin.

Neither Donald Knuth nor Leslie Lamport seem to have
given much thought to the case where the paragraph
skip has a positive natural width. Leslie Lamport dis-
misses all potential difficulties with the remark that ‘it
is customary not to leave any extra space between para-
graphs’ [5, p. 94].

1Unless this paragraph is at the start of a vertical list, for instance at the start of a vertical box or insertion item.

Reprint MAPS#5 (90.2); Nov 1990 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands



Bijlage DD A parskip scheme 123

Environments and white lines
Given that the paragraph skip appears to interact with
explicit vertical spacing in user macros, it may seem like
a good idea to find a unified approach to both. In the rest
of this article I will describe the implementation of the
following basic idea: give the paragraph skip the value
zero whenever you do an explicit vertical skip.

For the presentation I assume a context with some form
of environments. These are the assumptions that I make
about such environments:
� An environment is a portion of material that is ver-

tically separated from whatever is before and after
it. Thus, according to this definition, a portion of
a paragraph cannot be an environment, nor can an
environment start or end in the middle of a paragraph.

� An environment has associated with it three glue
parameters: to an environment foo correspond
\fooStartskip (glue above the environment),
\fooParskip (the paragraph skip inside the en-
vironment), and the \fooEndskip (glue below the
environment).

� At the outset of the environment a
\StartEnvironment{foo}
statement is executed; at the end of the environment
a macro
\EndEnvironment{foo}
is executed. These statements are assumed to contain
a \begingroup and \endgroup respectively.

Such assumptions are sufficiently general for the ma-
cros below to be adaptable to existing macro packages.
At first sight it would appear as if section headings are
not covered by the above points. However, there is no
argument against the start and end of an environment
occurring in the same macro.

Tools
First I will present two auxiliary macros: \csarg and
\vspace.

The command \csarg is only needed inside other ma-
cros; it is meant to enable constructs such as

\csarg\vskip{#1Parskip}

Its definition is

\def\csarg#1#2{\expandafter
#1\csname#2\endcsname}

By way of explanation of this macro, consider a simple
example. Let us assume that there exists a macro

\def\startlist#1{ ...
\csarg\vskip{#1Startskip}
...}

The call

\startlist{enumerate}

will then lead to the following call to \csarg:

\csarg\vskip{enumerateStartskip}

This expands to

\expandafter\vskip
\csname enumerateStartskip\endcsname

Now the \expandafter forces \csname to be exe-
cuted before the \vskip, so the next step of the expan-
sion looks like

\vskip\enumerateStartskipand this statement
can simply be executed.

Next I need a generalization of \vskip, which I will
call \vspace: a number of calls to \vspace should
have the effect that only the maximum argument is pla-
ced.

\newskip\tempskipa
\def\vspace
#1{\tempskipa=#1\relax

\ifvmode \ifdim\tempskipa<\lastskip
\else \vskip-\lastskip

\vskip\tempskipa
\fi

\else \vskip\tempskipa \fi}

This may need some explanation too. First, by the as-
signment

\tempskipa=#1

I allow the argument of \vspace to be both a control
sequence, for instance\parskip, and a denotation, for
instance5pt plus 3pt. If one omits the assignment,
the latter option would cause trouble in the\ifdim test.

The decision to keep the maximum value of the skip,
instead of always replacing the last skip, was motivated
by phenomena such as a display formula at the end of
a list. If the skip below the display is larger than the
vertical glue below the list (which may for instance be
zero), the former should be retained entirely.

Note that this macro can insert vertical space of size
zero. This will for instance happen if it follows a \par
command at the end of a paragraph. It is then called
in vertical mode, but the last item on the vertical list is
a box (the last line of the paragraph) instead of a glue
item. The parameter \lastskip will then be zero.

The environment macros
In this section, I will give the implementa-
tion of the macros \StartEnvironment and
\EndEnvironment.

There is a remarkable similarity between these two ma-
cros. As I explained above, the basic idea is to have only
explicit spacing above and below the environment; thus,
the value of \parskip should then be zero both for
the first paragraph in the environment, and for the first
paragraph that follows it. Both macros should then
� save the current value of the paragraph skip;

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#5 (90.2); Nov 1990



124 A parskip scheme Bijlage DD

� set the paragraph skip to zero;
� give TEX a signal that, somewhere in the near future,

the old value of \parskip is to be restored.

For this I allocate a skip register and a conditional:
\newskip\TempParskip
\newif\ifParskipNeedsRestoring

The basic sequence for both macros is then
\TempParskip=\parskip
\parskip=0cm\relax
\ParskipNeedsRestoringtrue

For both macros, however, this sequence needs to be
refined slightly.

The paragraph skip to be ‘restored’ at the start of the
environment is the specific value associated with that
environment. This gives us:
\def\StartEnvironment
#1{\csarg\vspace{#1Startskip}

\begingroup %% make changes local
\csarg\TempParskip{#1Parskip}
\parskip=0cm\relax
\ParskipNeedsRestoringtrue}

Note that the statement
\csarg\TempParskip{#1parskip}

denotes an assignment (without an optional equals sign)
here.

At the end of the environment we have to be more care-
ful. It may be the case that the environment being ended
was inside another environment, and occurred before
the first paragraph inside that environment. In that case
the value of \parskip is zero, and the proper value
must still be restored. Therefore, no further actions are
required. We arrive at the following implementation:
\def\EndEnvironment
#1{\csarg\vspace{#1Endskip}

\endgroup %% restore global values
\ifParskipNeedsRestoring
\else \TempParskip=\parskip

\parskip=0cm\relax
\ParskipNeedsRestoringtrue

\fi}

Note that both macros start with a vertical skip. This
prevents the \begingroup and \endgroup state-
ments from occurring in a paragraph. On a side note:
since these macros are executed in vertical mode, I have
not bothered to terminate any lines with comment signs.
Any spaces generated by these macros are ignored in
vertical mode.

Paragraph skip restoring
So far, I have ignored one important question: how
exactly is restoring the paragraph skip implemented. For
this I use the\everypar token list. Basically then, the
idea is the same as in [2]: the occurrence of a paragraph
will automatically have TEX perform, through the inser-
tion of the \everypar tokens, the actions necessary
for subsequent paragraphs.

\everypar=
{\ControlledIndentation

%see Tugboat 11, #3
\ControlledParskip}

\def\ControlledParskip
{\ifParskipNeedsRestoring

\parskip=\TempParskip
\ParskipNeedsRestoringfalse

\fi}

The cost of a controlledparagraph skip is then one condi-
tional per paragraph. Conceivably, this cost could even
be reduced further (to almost zero) by defining

\def\CPS % Controlled Parskip
{\ifParskipNeedsRestoring

\parskip=\TempParskip
\ParskipNeedsRestoringfalse
\let\ControlledParskip=\relax

\fi}

and including a statement

\let\ControlledParskip=\CPS

in both
the\StartEnvironment and\EndEnvironment
macros, and at the start of the job (for instance by inclu-
ding it in the macro package). This approach, however,
does not particularly appeal to me. Too much ‘pushing
the bit around’.

Conclusion
The \parskip parameter is arguably the most tricky
parameter of TEX. Its workings are very easy to describe,
but in actual practice difficulties arise. In this article
I have described how treatment of the paragraph skip
can be integrated with the glue above and below envi-
ronments. As in an earlier article on indentation, I use
for this the \everypar parameter as an essential tool.

References

[1] J. Braams, V. Eijkhout, N.A.F.M. Poppelier, The de-
velopment of national LATEX styles, TUGboat vol. 10
(1989) #3, pp. 401–406.

[2] Victor Eijkhout, An indentation scheme, TUGboat
vol. 11 (1990) #4.

[3] Donald Knuth, The TEX book, Addison-Wesley
Publishing Company, 1984.

[4] Stanley Morison, First principles of typography,
Cambridge University Press, 1936.

[5] Leslie Lamport, LATEX, a document preparation sys-
tem, Addison-Wesley Publishing Company, 1986.

Reprint MAPS#5 (90.2); Nov 1990 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands


