
Bijlage V Program text generation with TEX/LATEX 99

BIJLAGE V

Program text generation with TEX/LATEX 1

Piet van Oostrum
piet@cs.ruu.nl

March, 1991

Inhoud:
1. Web
1.1 Cweb
1.2 Fweb
1.3 Spiderweb
2. Tgrind
3. C2latex
4. C++2latex
5. Cprog/Csty macros
6. Program environment
7. Schemetex
8. Ada
9. Miscellaneous

1 Web
1.1 Cweb

1.1.1 ctangle, cweave - translate CWEB to C
and/or TEX

The ctangle program converts a CWEB source docu-
ment into a C program that may be compiled in the usual
way. The output file includes #line specifications so that
debugging can be done in terms of the CWEB source
file.

The cweave program converts the same CWEB file into
a TEX file that may be formatted and printed in the usual
way. It takes appropriate care of typographic details
like page layout and the use of indentation, italics, bold-
face, etc.,and it supplies extensive cross-index informa-
tion that it gathers automatically.

CWEB allows you to prepare a single document contai-
ning all the information that is needed both to produce a
compilable C program and to produce a well-formatted
document describing the program in as much detail as
the writer may desire. The user of CWEB ought to be
familiar with TEX as well as C.

Don Knuth wrote WEB for TEX and Pascal. Silvio Levy
designed and developed CWEB by adapting the WEB
conventions to C and by recoding everything in CWEB.

1.1.2 Levy’s Cweb system ported to MS-DOS
and VAX/VMS

On the UK TEX Archive at Aston University, directory
[tex-archive.web.cweb] contains the sources for building
Silvio Levy’s CWEB system (a WEB suite which uses
C as the programming language, and TEX as the typeset-
ting language) under Unix; this includes a bootstrapping
version of Ctangle which permits one to get Cweave,
etc., working.

Originally this was accompanied by a file VMS.CH
which purported to port Cweb onto VAX/VMS: ho-
wever, Vax-C has been revised since Levy released
this, and further changes were necessary to get the
system working under VMS. The original VMS.CH
has threfore been deleted, and a new subdirectory
[tex-archive.web.cweb.vms] added to hold the files for

1Deze NTG bijlage beschrijft diverse methoden om programma-tekst in een TEX/LATEX document op te nemen. Voor het
grootste gedeelte is deze beschrijving overgenomen uit de documentatie van de betreffende programma’s resp. macro-pakketten.
De simpelste manier is natuurlijk het gebruik van ’verbatim’ en soortgelijke faciliteiten. Het nadeel van deze methode (en
misschien tegelijk ook weer een voordeel) is dat er slechts gebruik gemaakt wordt van een vast font zonder variabele spatiering.
De hierna genoemde methoden proberen de programmatekst te formatteren op een wat meer flexibele manier.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#6 (91.1); May 1991

100 Program text generation with TEX/LATEX Bijlage V

bootstrapping CWEB onto VMS, and the change files to
make this Ctangle and Cweave.

In addition, I have ported CWEB to MS-DOS (under
Borland’s Turbo-C V1.5). This was a *major* under-
taking, because of clashes between identifiers used in
ANSI-standard function prototypes in Borland’s libra-
ries and constants defined in the .web files. Other very
extensive changes were required to handle the large data
structures, which exceed the 64kB segment limit of the
PC architecture. However, it’s all working eventually,
and the files required for bootstrapping it, and the change
files, will be found in [tex-archive.web.cweb.ms-dos].

For both of the above ports, the majority of the files of
the Unix distribution will also be required.

To get started, fetch the file
[tex-archive.web.cweb]00readme.txt
from Aston, either by NIFTP (username PUBLIC,
password PUBLIC), or by sending mail to

<TeXserver@Uk.Ac.Aston.TeX>,
with the body of the message consisting of the two lines:

FILES
[tex-archive.web.cweb]00readme.txt

This file will tell you which other files will be required
to be fetched to have a working version of CWEB under
Unix, VMS or MS-DOS.

Brian Hamilton Kelly

1.2 Fweb, A Fortran/Ratfor/C version of
WEB

Since the advent of Knuth’s famous WEB system for
documenting Pascal and, later, Levy’s C version thereof,
various Fortran users have inquired about the possibility
of a WEB system for Fortran. I have developed a ver-
sion of WEB that supports Fortran, Ratfor, and C (which
can be mixed in the same WEB run). The new version
is called FWEB. I am releasing v. 0.99 for beta-testing.
This release is a bit premature (there are a few known
bugs), but professional responsibilities force me to put
FWEB on the back burner for a few months.

This project was driven by necessity. I was developing a
large scientific code that I planned to write mostly in C.
I was eager to document it as well as I could (so my gra-
duate students could understand it), so I was interested
in Silvio Levy’s CWEB. Levy graciously gave me v. 0.5
of CWEB, which I used successfully for a few years.

However, part of my code could not be efficiently written
in C; Fortran was necessary in some form. Straight For-
tran is terrible, but RATional FORtran (Ratfor) removes
many of the deficiencies and makes Fortran look some-
thing like C. Thus, part of the code was written in Ratfor,
with a preliminary pass through the macro preprocessor
m4 for good measure. Of course, I wanted to document
that code as well. Now althoughCWEB was never inten-
ded for Ratfor, because of Ratfor’s C-like syntax CWEB

was able in many cases to format Ratfor code satisfacto-
rily. Of course, sometimes the documentation fell apart
completely because keywords like DIMENSION aren’t
known to C, and certain syntax is different. Thus, after
living with usable but somewhat marginal woven Rat-
for output from CWEAVE for a while, I decided to do
things right and teach CWEAVE the appropriate rules for
Fortran. I though that would take a couple of weeks...

The first project was to endow FWEB with the concept
of a current language. Since I routinelymix C and Ratfor
code and I wanted all the documentation to be all in one
place, it was important to be able to switch between syn-
taxes as necessary. After some MONTHS (FWEB was
developed in my spare time), I had taught the WEAVE
processor to produce reasonable quality typeset Fortran
and Ratfor, and to switch back and forth between the
various languages. Little had been done to TANGLE at
that point. However, I then decided that it was point-
less to make separate passes through m4 and Ratfor;
why not make TANGLE do it all. Levy had eliminated
the macro preprocessor from CTANGLE since C has its
own. I reinstated one, patterned after ANSI C. I also
added a statement translator, so Ratfor keywords could
be expanded.

Thus, the present version of FWEB has these significant
enhancements over CWEB:
1. The concept of a current language (Fortran, Ratfor,

and/or C);
2. A C-like macro preprocessor;
3. Ratfor to Fortran-77 translation.

My students and I use FWEB every day; we find it to be
a tool of great utility. For writing in Fortran, the macro
processor is indispensible. As far as Ratfor is concerned,
I find it to be a great step forward; I hope never again to
have to write a straight Fortran program.

The goal for FWEB v. 1.0 was to achieve functionality.
It would be pointless to defend the elegance of all of the
internal code at this point: some should be optimized
for speed; some should be rewritten. Eventually, these
projects will be undertaken. (Note that since I’m a major
user I have a powerful motivation.) But now it’s most
important to get some Fortran users involved so I get
some feedback and bug reports.

The relevant files are available via anonymous FTP from
Internet host CCC.NMFECC.GOV in directory (VMS
syntax) TEX$ROOT:[DISTR.FWEB]. The files are
described in READ.ME. As this explains, for VAX/VMS
users only a subset of all files is necessary, since the exe-
cutable binaries FTANGLE.EXE and FWEAVE.EXE
are provided. If you have the courage to try to bring
things up on another machine, you should also read
INSTALL.FWEB, and transfer all files except *.EXE,
*.HLB, and *.HLP to your machine.

If you are bootstrapping onto another machine, please
note that you may have to make a few operating system-
dependent changes in the source code. Feel free to con-

Reprint MAPS#6 (91.1); May 1991 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage V Program text generation with TEX/LATEX 101

tact me for help.

I will appreciate bug reports, suggestions, etc. My ad-
dresses are

MFEnet: krommes@ppc.mfenet
Internet: Krommes%ppc.mfenet@ccc.nmfecc.gov
Bitnet: krommes%ppc.mfenet@lbl.bitnet

John Krommes

1.3 Spiderweb

A note about a new implementation of WEB Norman
Ramsey, Odyssey Research Associates, July 4, 1988 2

1.3.1 abstract
Literate programming has received recent attention
in the Communications of the ACM [Bentley 86,
Van Wyk 87]. WEB is a tool intended for literate pro-
gramming, but until recently it was useful only for
writing PASCAL programs. The author has developed a
new tool, SPIDER, which reads a description of a pro-
gramming language and writes aWEB system that can be
used to write programs in that language. SPIDER has
been used in the author’s organization to build WEB sys-
tems for Ada, C, AWK, and other languages. The author
hopes that SPIDER will enable people to write literate
programs in many more languages than they could be-
fore.

1.3.2 Introduction
Donald Knuth developed the WEB system of structured
documentation as part of the TEX project [Knuth 84].
His implementation of WEB combined PASCAL and
TEX. The WEB idea suggests a way of combining any
programming language with any document formatting
language, but until recently there was no software sup-
port for writing in WEB anything but PASCAL pro-
grams. In 1987, Silvio Levy rewrote the WEB system
in C for C, while retaining TEX as the formatting lan-
guage [Levy 87]. I have has modified Levy’s imple-
mentation by removing the parts that make C the target
programming language, and I have added a third tool,
SPIDER, which complements WEAVE and TANGLE.
SPIDER reads a description of a programming language,
and writes source code for a WEAVE and TANGLEwhich
support that language. Using SPIDER, a C compiler,
and an AWK interpreter, an experienced systems pro-
grammer can generate in a few hours a WEB system for
an Algol-like language.

1.3.3 Features of Spidery WEB
An exhaustive list of Spidery WEB’s features would in-
terest only WEB experts, but I do want to mention some
features that I hope will encourage people to use Spidery
WEB.
� TANGLE andWEAVE can read from multiple files (this

feature is present in Levy’s CWEB), and TANGLE can
write to multiple files. Included files will be searched
for on a path if not found in the current directory.
These features make Spidery WEB more usable on
systems that have make.

� TANGLE can expand macros with multiple parame-
ters.

� The starred sections in Spidery WEB can be organized
hierarchically (in three levels). We have a UNIX tool
that can extract different pieces of the hierarchy from
the output of WEAVE, so that it is possible to take
excerpts from WEB documents.

� TANGLE writes #line directives, so you can debug
at the WEB source level if your compiler respects the
C conventions for #line.

� Many features of WEB seem to exist only to compen-
sate for deficiencies in PASCAL, and most of those
were dropped inCWEB. I have changed much ofCWEB
in order to avoid being bound too much by C conven-
tions. As a result, there are dozens of minor diffe-
rences between Spidery WEB and original WEB. To
give just one example, Spidery WEB supports octal
and hexadecimal constants using WEB-style notation,
not the C notation used in CWEB.

1.3.4 Scope of SPIDER
SPIDER can generate WEB systems for a variety of lan-
guages. The author has writtenSPIDERdescription files
for C, AWK, Ada, SSL (a language that describes attri-
bute grammars to the Cornell Synthesizer Generator),
the Larch Shared Language (a language for describing
equational theories), and Dijkstra’s language of guarded
commands. Debugging the grammar that WEAVE uses
to prettyprint the language is the most time-consuming
part of creating a WEB system for a new target language,
and SPIDER makes it trivial to change that grammar.
To make a SPIDER description file for an Algol-like
language that uses infix expression notation, an expe-
rienced systems programmer should be able to adapt an
existing SPIDER description file very quickly.

SPIDER’s major limitations are lexical. All Spidery
WEBs assume that spaces and tabs in the input are not
significant, except as separators; this makes it impossible
to construct SpideryWEBs for languages like Fortran and
Miranda, where the position of text on a line is signifi-
cant. The lexical structures of identifiers, string literals,
and numeric literals are fixed.

2Copyright 1989 by Norman Ramsey, Odyssey Research Associates. To be used for research purposes only. For more
information, see file COPYRIGHT in the parent directory.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#6 (91.1); May 1991

102 Program text generation with TEX/LATEX Bijlage V

Conclusions
SPIDER is a modest piece of engineering; it does not
introduce new ideas. SPIDER does make it possible to
create a new WEB quickly, and to tinker with it easily.
The author’s group routinely uses Spidery WEB to write
programs in Ada, C, and SSL, and has been pleased with
the result. We have written in WEB an application of
eighteen thousand lines, and we are very pleased at how
easy it has been to review and maintain this code. The
author hopes that the availability of Spidery WEB will
encourage other groups to try literate programming, and
that they, too, will be pleased with the results.

References

[Bentley 86] Jon L. Bentley, “Programming
Pearls,” Communications of the ACM
29:5 (May 1986), 364–368, and 29:6
(June 1986), 471–483.

[Knuth 84] Donald E. Knuth, “Literate Program-
ming,” The Computer Journal 27:2
(1984), 97–111.

[Levy 87] Silvio Levy, “WEBAdapted to C, Ano-
ther Approach,” TUGBoat 8:1 (1987),
12–13.

[Van Wyk 87] Christopher J. Van Wyk,“Literate Pro-
gramming,” Communications of the
ACM 30:7 (July 1987), 593–599, and
30:12 (December 1987), 1000–1010.

2 Tgrind
Several people have asked about including program
source in TEX documents. I believe the most general
approach is to use a utility like tgrind (TeX analog of
vgrind). One specifies the language to be processed
(so that tgrind can detect keywords). Tgrind converts
tabs into the appropriate spacing (generates things like
\tab{24} for 3 tabs), boldens keywords, prints quoted
strings in typewriter font, prints comments in italics, and
other nice things. All these goodies are customizable.
This requires an extra pass, but the preprocessing is quite
fast.

Tgrind is on the Unix TEX tape, in the directory TeX-
contrib/van. It was written by Van Jacobson of LBL.
Unfortunately it is Unix specific, but I think equivalents
for other OS are no problem. Heck, just take your favou-
rite pretty-printer and generate TEX instead of prettified
output.

Tgrind formats program sources in a nice style using
TEX. Comments are placed in italics, keywords in bold
face and strings in typewriter font. Source file line num-
bers appear in the right margin (every 10 lines). The
start of a function is indicated by the function name in
large type in the right margin.

In regular mode tgrind processes its input file(s) and
passes them to TEX for formating and output.

In format mode (i.e., when the flag is used), tgrind pro-
cesses its input file(s) and writes the result to standard
output. This output can be saved for later editting, in-
clusion in a larger document, etc.

Currently known are PASCAL, RATFOR, Modula-2,
MODEL, C, ISP, Yacc, Prolog, Icon, TEX, CSH, and
Bourne Shell .

Author of Tgrind is Van Jacobson, Lawrence Berkeley
Laboratory (based on "vgrind" by Dave Presotto & Wil-
liam Joy of UC Berkeley).

Ken Yap
<ken@rochester.arpa>

3 C2latex
C2latex provides simple support for literate program-
ming in C. Given a C source file in which the comments
have been written in LATEX, c2latex converts the C source
file into a LATEX source file. It can be used to produce
typeset listings of C programs and/or documentation as-
sociated with the program.

The C source given to c2latex usually has the following
form. It starts with a large comment containing LATEX
commands that start a document along with any initial
text. Then there is a sequence of comment and code
pairs, with the comment explaining the code to follow.
The source file is ended by a comment containing LATEX
commands that finish the document.

C2latex produces LATEX source by implementing a small
number of rules. A C comment that starts at the begin-
ning of a line is copied unmodified into the LATEX source
file. Otherwise, non-blank lines are surrounded by a pair
of formatting commands (\begin{flushleft} and
\end{flushleft}), and the lines are separated by
*. Each non-blank line is formatted using LATEX’s
\verb command, except comments within the line are
formatted in an \mbox.

The c2latex program is written in ANSI C and can be
processed by c2latex to produce LATEX source contai-
ning a typeset listing of itself. It has a copyright similar
to those distributed with GNU software. c2latex is avai-
lable from me as a shar file via electronic mail. If there is
enough interest, I will request that the sources be placed
on a public server.

John D. Ramsdell
ramsdell@celebes.mitre.org

4 C++2latex
The program c++2latex converts ANSI-C/C++ programs
into LATEX source.

Reprint MAPS#6 (91.1); May 1991 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage V Program text generation with TEX/LATEX 103

It requires flex which can be found on various ftp sites,
e.g. prep.ai.mit.edu. For those without flex and without
the possibility to get one, I can email the flex’ed program.

Please notice that this program is under GNU Copyleft.

Description
c++2latex is a tool for generating LATEX source from
ANSI-C or C++ programs. It recogizes all keywords,
strings, and comments. These recognized parts can be
set in different fonts. c++2latex can generate com-
plete LATEX files which can directly passed through
LATEX or parts of LATEX files which can be inclu-
ded in other files (either direct or by the \input
or \include commands). The output filename is
searched in various steps. First, if the {-o,+output}
flag is given, the output is written to the file pointed
to by the value of this flag. If the {-t,+pipe} op-
tion is given, the output is written to stdout. (It is an
error to specify both options together.) If none of this
options but an input pathname is given, the output is
written to a file who’s name is the last component of
the input pathname with the substituted or else added
suffix ’.tex’. If the input is read from stdin and none
of the above options is given, the output is written to
’<program-name>.tex’ with <program-name>
being the name of this program.

5 Cprog/Csty macros
The cprog macros allow programs in C, C++, Pascal,
and Modula-2 to be included directly into TEX docu-
ments. Program text is set in a Roman font, comments
in slanted, and strings in typewriter. Operators such
as <= are optionally combined into single symbols like
\le. Keywords are *not* emphasised—I find this
ugly and distracting. (By purest coincidence it would
also be very hard to do.)

These macros can be \input in plain TEX or used as a
style file in LATEX. They provide a convenient alternative
to tgrind, particularly for program fragments embedded
in documents. Full instructions for use appear in the
macro package itself.

This allows C programs to be formatted directly by TEX.
It can be invoked by \cprogfile{filename} or
(in LATEX) \begin{cprog} ... \end{cprog} or
(in plain TEX) \cprog : : : \end{cprog}. In LATEX,
the alternative form \begin{cprog*} is allowed,
where spaces in C strings are printed using the ‘square
u’ character (like LATEX verbatim*). In plain TEX,
you have to use \csname cprog*\endcsname for
this (sorry). If you are using \cprogfile, say
\cprogttspacetrue beforehand if you want this
effect.

The formatting is (necessarily) simple. C text is set
in a normal Roman font, comments in a slanted font,
and strings in a typewriter font, with spaces optionally

made visible as the ‘square u’ symbol. Tabs are ex-
panded to four spaces (this does not look good when
comments are aligned to the right of program text). Some
pairs of input characters appear as single output charac-
ters: << <= >> >= != -> are respectively TEX’s
\ll \le \gg \ge \ne \rightarrow. Say
\cprogpairsfalseto disable this.

You can escape to TEX within cprog text by defining an
escape character. The character @ is suitable for C and
Pascal. I have not tested other characters so they may
interact badly with their existing definitions here. To de-
fine @ as the escape character, do \cprogescape@.
Then within text you can do @ followed by TEX com-
mands. These commands will be in a TeX group with
the \catcodes of \{}% as normal. The commands
are terminated by a newline, which is not considered part
of the program text.

The fonts below can be changed to alter the
setting of the various parts of the program.
The \cprogbaselineskip parameter can be
altered to change the line spacing. LATEX’s
\baselinestretch is taken into account too.
The indentation applied to the whole program is
\cprogindent, initially 0. Before and after the
program there are skips of \beforecprogskip
and \aftercprogskip; the default values are
\parskip and 0 respectively (since there will often
be a \parskip after the program anyway).

If the source text is Pascal or Modula-2, say
\pascaltrue or \modulatrue (respectively) be-
fore formatting it. This makes (* *) be recognised for
comments instead of /* */. Braces fg are also recogni-
sed for Pascal. \pascalfalse or \modulafalse
as appropriate restores the default of C.

This package works by making a large number of charac-
ters active. Since even spaces are active, it is possible to
examine the next character in a macro by making it a pa-
rameter, rather than using \futurelet as one would
normally do. This is more convenient, but the coding
does mean that if the next character itself wants to exa-
mine a character it may look at a token from the macro
rather than the input text. I think that all cases that occur
in practice have been looked after.

The macros could still do with some work. For example,
the big macro defined with [] taking the place of fg could
be recoded to usefg and so be more legible. The internal
macros etc should have @ in their names, and should be
checked against LATEX macros for clashes.

Eamonn McManus
<emcmanus@cs.tcd.ie>

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#6 (91.1); May 1991

104 Program text generation with TEX/LATEX Bijlage V

6 Program environment
In TEX or LATEX is it possible, but difficult, to create
a nice layout for programs. The easiest way is to use
the verbatim environment. The layout is then co-
pied from the input file. In most books a program (e.g.,
a PASCAL-program) is displayed using boldface reser-
ved words, using math-italic for statements and using
teletype fonts for string representations. Without extra
equipment this can be done in TEX as well as in LATEX
using a tabbing-environment. Of course, each font
choice should be made explicitly, e.g., you must say
{\bf begin} to create a boldface begin-symbol and
$x:=x+1$ to denote an assignment. Furthermore, the
user is responsible for setting the tabs and jumping to
the right ones. This is far from being user-friendly.

The program-environment tries to be of some help
while displaying program-texts. It contains a number of
macros of the form \BEGIN, \PROCEDURE and alike
that not only put down a boldface begin- or procedure-
symbol but also sets and jumps to the right tabs. Using
the program environment from the program2-style
file also automatically puts the statements in math-mode
(you do no have to use $-signs anymore).

Rein Smedinga
Department of computing science,
P.O.box 800,
9700 AV Groningen
rein@cs.rug.nl
November 9, 1990

7 Schemetex
SchemeTeX provides simple support for literate pro-
gramming in any dialect of Lisp on Unix. Originally
created for use with Scheme, it defines a new source file
format which may be used to produce LATEX code or Lisp
code. Roughly speaking, LATEX formats Lisp code in a
verbatum-like environment, and it formats Lisp com-
ments in an ordinary environment.

SchemeTeX is available via anonymous FTP from
linus (192.12.120.51) in the shar file named
"pub/schemeTeX.sh". Included is an operating system
independent version for the T dialect of Lisp.

John D. Ramsdell
<ramsdell%linus@mitre-bedford.ARPA>

8 Ada
Zie TUGboat 10#1, April 1989
APE – A set of TEX macros to format Ada programs

I have developed a set of macros to do exactly this for
Ada programs. To get more details on these macros,
read the report in the April issue of TUGBoat, or the
Nov/Dec issue of Ada Letters (both in 1989).

The macros are available by anonymous ftp to
anna.stanford.edu in the pub directory (I think). I can
send them to you if you are willing to cover the costs.

Sriram Sankar

Zie ook:
GUTenberg’90
May 15-18, 1990

University Paul Sabatier, Toulouse, FRANCE

Typesetting ADA programs (P. Naudin, C. Quitte)

9 Miscellaneous

9.1 Typesetting programming languages
in LATEX

About two years ago I wrote a program that converts
programs to TEX. The program sets keywords in bold-
face (or any font you select) using a data file to find out
which strings are keywords and how to skip comments.
I have data files for Modula-2, C, C++, Pascal, Occam,
Beta, and some more. The program is written in C (un-
der VMS) and could well be improved. However it does
what I want it to do, it makes programs ‘look’ nice in
listing. As said it translates to TEX and not LATEX but
that is no big deal to change I’d guess.

If you need this program send a mail to rosen-
ber@ra.abo.fi. mail

Robin Rosenberg

9.2 Typesetting PASCAL in LATEX

I have an SED script and Pascal environment for LATEX
that follows the standard Algol 60 style for setting Pas-
cal text. The SED script translates everything between
\begin{pascal} and \end{pascal} in various
ways that the pascal environment understands. The only
problem with the thing is that indentingmust be in multi-
ples of 4 spaces, but I’ve used it for a number of publica-
tions without hearing any complaints about my awkward
indenting style.

In any case, I strongly recommend the notion of envi-
ronments for language types, as opposed to the various
grind programs. It wouldbe nice to have a standard set of
environment parameters to control things like keyword
font so language environments from different sources
could be at least somewhat interchangable.

Doug Jones
jones@herky.cs.uiowa.edu

Reprint MAPS#6 (91.1); May 1991 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage V Program text generation with TEX/LATEX 105

9.3 manpage.sty

This style option is designed to work with the re-
port document style of LATEX version 2.09. Use
\documentstyle[11pt,manpage]{report}

This LATEX style file is similer to the UNIX troff man
macros in format and is specially tuned for documenting
the C++ library that the author wrote.

The commands that are created in the style file are:

\begin{manpage}{Title}{Module}{Version} % see an example, all will be clear
\end{manpage} % end of manpage environment
\variable{#1} (e.g., \variable{int foo}) % with \medskip added
\variable*{#1} (e.g., \variable*{int bar})% no extra spacing
\function{#1} (e.g., \function{void demo(int dummy)}) % with \medskip added
\function*{#1} (e.g., \function*{void demo(int dummy)})% no extra spacing
\subtitle{#1} (e.g., \subtitle{AUTHOR}) % fit in the same line if possible
\subtitle*{#1} (e.g., \subtitle*{AUTHOR})% always break a newline
"#1" (e.g., "dummy_variable") % argument is in italic&unbreakable
\separator % draw a thin line to seperate suntitle from the text
\header{#1}{#2}{#3} % in case you want to have a header and
\footer{#1}{#2}{#3} % a footer outside of the manpage environment
\dq % print double quote character (")

In the \function macro, data types and their dummy
arguments are separated by a space. So if you have a
function like "int f(const int n)", you should document it
as \function{int f(const˜int n)}. The ar-
gument n is optional. In the \subtitle macro, two
lines of text may be devided by "\\".

Rong Chen (rchen@cs.uiuc.edu)
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801

9.4 Typesetting Scheme code
I wrote something called SLATEX that allows listings of
Scheme code in LATEX without restricting it to the usual
monospace typewriter font supported by other code ty-
pesetters.

I’ve placed the current version in the titan.rice.edu’s ano-
nymous ftp area: get public/slatex.sh.

SLATEX decides which tokens should be, say, boldfaced,
italicized, or sansserifed, pretty much along the style of
the Little Lisper [1]. (The user can completely control
this default decision process, so much so that he can flip
the fonts around, add new fonts, or even do something
silly like make everything come out in typewriter – i.e.,
turn the program into a no-op.)

I’d been leery of distributing SLATEX before because
of the frequent updating that it’s undergone following
the Rice Scheme-and-similar- language users’ lively de-
mands for bells and whistles, e.g.,

� allowing arbitrarily positionable displays, boxed
code, in-text code, and directly inputing actual
Scheme files;

� getting little pockets of LATEX text or mathmode into
the Scheme code, for readable Schemelike pseudo-
code (useful for expository papers and class hand-
outs);

� making it learn automatically that a macro definition
implies that keyword should henceforth be boldfaced,
etc.

At any time, the ftp site will contain the most recent
code. The shar file contains the Scheme source (Ch*z,
but should carry over to other Schemes with minor chan-
ges), a shellscript that piggybacks the codesetter on to
LATEX, the requisite LATEX style file, installation instruc-
tions, a manual in LATEX, a man page, and a copyleft.
The first 2 sections in the manual suffice for most uses,
with fine tuning being described later. (The code, as of
now, contains more fine tuning than documented – I’ll
update the docs when I next get time.)

This is free(ly distributable) software, and hence no war-
ranty, though I’ll be glad to field bug and other reports.

[1] D.P. Friedman and M. Felleisen, ‘The Little Lisper’,
Science Research Associates (3e), 1989, and The MIT
Press, 1987.

Dorai Sitaram
dorai@tone.rice.edu

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#6 (91.1); May 1991

