
Bijlage Y Typesetting number sequences 145

Typesetting number sequences
FIFO and some more : : :

Kees van der Laan

Hunzeweg 57
9893 PB Garnwerd, The Netherlands

cgl@rug.nl

Abstract

Typesetting sequences of numerical values, represented via symbolic names which get their values on
the fly, is dealt with. The sorting of the sequence is done by a linear sorting algorithm, of complexity
O(n2). Three or more consecutive numbers are typeset as a range.
The objective was to encode typesetting sequences of numbers as simple,concise, general, compatible,
modular, orthogonal, and : : : , as possible in TEX.1

Keywords: Typesetting sequences, citation lists, lists
of references, linear sorting, FIFO, plain TEX, macro
writing, education.

1 Introduction
To think about typesetting sequences of numerical val-
ues looks a bit peculiar. I was pulled in this direc-
tion when thinking about the ‘range notation’ problem,
which was posed at the tex-nl@hearn discussion list.2

The idea is that for example the numbers 1, 2, 3 should
appear in print as 1–3. This is a trifle when the numbers
are known a priori. When symbolic names are used,
which get their numerical values on the fly, one has to
resort to macros. The macros must take care of ordering
the sequence and proper typesetting the numbers.

For that purpose the macro \typseq—mnemonics:
typeset sequence—was written.

There are various choices possible with re-
spect to the TEX implementation of symbolic
names for numbers. The most direct form is
\chardef\hsymbolic namei = hnumberi.3

The problem was solved in the Polya, 1957, way. First
the kernel problem of typesetting an ordered sequence
of numbers in range notation was considered. Collat-
eral the independent problem of ordering a sequence
had to be solved.4 And finally the merging of both
aspects and the TEX encoding.

The intended scope of readers consists of those who not
only favor the use of LATEX and TEX, but also like to
understand what is going on, and otherwise strive after
keeping the encoding simple and concise.

Notations
\ea, \nx, and \ag, are used as shorthand
for \expandafter, \noexpand, respectively
\aftergroup.

2 Example of use
If we have:5

\chardef\dekker=5, \chardef\forsythe=3,
\chardef\reinsch=4, \chardef\knuth=11,

then

\typseq{\dekker,\knuth,\forsythe,\reinsch}

yields [3–5, 11].

3 Stepping stone
Suppose we have a non-descending sequence of num-
bers and we like to typeset these in range notation. For
example 1, 2, 5, 7, 8, 9, 10 as [1, 2, 5, 7–10].

My solution is the invocation

\cpr{1,2,5,7,8,9,10},

backboned by6

1Not blurred by safeguarding goodies or limited by a particular application.
2Not dealt with is the typesetting of large amount of data via tables or graphs, with or without statistical methods, or the

typesetting of encoded data like van Wijngaarden’s method to typeset millions of prime numbers on an A4 or two.
3This is restricted by 256. If needed one can use \def\hsymbolic nameif: : :g, or \mathchardef: : : .
4For sorting general sequences in TEX, via O(n log n) algorithms, see van der Laan, 1993.
5That these names stand for incomparable outstanding (numerical) mathematicians is a mere coincidence.
6Declarations are omitted. For FIFO see van der Laan, 1992b, or the listing of the file typseq.tex included below.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993



146 Typesetting number sequences Bijlage Y

\def\cpr#1{{\def\process{\processc}\bs
\fifo#1,\ofif,\prtfl\es}}

\def\processc#1{%
\init{#1}\def\processc##1%

{\ifnum##1=\lst\else\ifnum##1=\slst
\lst=\slst\advance\slst1{}\else
\prtfl\sepn\init{##1}\fi\fi}}

\def\init#1{\frst=#1\lst=#1\slst=#1{}%
\advance\slst1 }

\def\prtfl{\the\frst\ifnum\frst<\lst
\advance\frst1{}\ifnum\frst=\lst\sepn
\else\nobreak--\nobreak\fi\the\lst\fi}

\def\bs{[}\def\es{]}\def\sepn{, }

Explanation
\cpr This is an independent macro for just typeset-
ting a sequence in range notation.

\processc The encoding makes use of the FIFO
paradigm7 to process each element. In order to per-
form the appropriate action we must look ahead, or
postpone the typesetting, both to an unknown depth. It
seems natural to postpone as long as needed the type-
setting, with the first and last elements of the range
so far—not necessarily different—stored in the counter
variables \frst, respectively \lst.
The mechanism of redefinition is used to account for
initialization. The first definition of \processc in-
vokes \init—to give the counter variables \frst
and \lst the value of the current list element—
followed by a redefinition of \processc.8 In the
latter redefinition an element is skipped when it equals9

the previous one. If it equals the successor of \lst
then \lst gets the value of its successor. Otherwise
‘the range’ is typeset followed by the value of the separ-
ator, \sepn. The typesetting is handled by the macro
\prtfl. The degenerate case, \frst=\lst, yields
a single number. After having typeset the range we are
in a pseudo initial state. \frst (and \lst) must get
the value of the list element at hand. This is done again
via the invocation of \init.

At the end of the list we must typeset appropriately
the values of \frst and \lst. This is done via the
invocation of \prtfl.

If we look at sorting as a CISO—Collective-In-
Smallest-Out—process, then it is rather straightfor-
ward to combine sorting with \processc, because
\processc handles the range typesetting independ-
ent of how the successive arguments are obtained.10

4 The macro \typseq
Purpose. The purpose of the macro \typseq is to
typeset automatically a sequence in ascending order in
range notation.

Input. The argument of \typseq is the sequence of
symbolic names—representing the numerical values—
separated by commas.

Result. The values of the sequence items are typeset
in ascending order in range notation, separated by the
value of \sepn, and delimited by the values of \bs,
respectively \es.

Design. My encoding of automatic typesetting se-
quences of numbers comes down to
� Store the input sequence as a list with active list

separators,
� Sort the list via appropriate definition of the active

list separator,
� Typeset the list appropriately.

The file typseq.tex
%Shorthands
\let\ag=\aftergroup
\let\ea=\expandafter\let\nx=\noexpand
%Counters
\newcount\frst%First value of range
\newcount\lst %Last value of range
\newcount\slst%Successor \lst
%Newif-s
\newif\ifnoe% Mnemonics: if not empty
%Parameters: separators
\def\sepn{, }% Number separator
%Parameters: brackets
\def\bs{[}\def\es{]}
%FIFO with comma as separator
\def\fifo#1,{\ifx\ofif#1\ofif\fi%
\process{#1}\fifo}\def\ofif#1\fifo{\fi}

%Store, sort and typeset
\def\typseq#1{{\strseqaslst{#1}\bs\srt\prtfl%
\es}}% Local scope because of redef-s.

%Store sequence as list
\def\strseqaslst#1{\let\process=\processs
\xdef\list{\fifo#1,\ofif,}}
%ProcessS stores consecutive elements
%(preceded and) separated by \ls as a list.
\def\processs#1{\nx\ls\nx#1}
%Mod from Syntactic Sugar, MAPS92.1, p135
\def\srt{% Assumed is \list contains
% symbolic names separated by \ls.
\loop\ifx\empty\list\noefalse%

\else\noetrue\fi%
%Test for NOEmpty list.
\ifnoe \first\list% \min=first element

7For FIFO and especially (variant) TEX encodings of the principle, see van der Laan, 1992b.
8This mechanism is general and elegant for coping with begin situations, where the first action is the only one different from

the rest.
9For an ordered sequence ‘less than’ could be used. ‘Equals’ allows for non-ordered sequences too: just numbers which

form a range are compressed.
10This prompts another approach for solving the problem: maintaining a priority queue. My case rests.

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands



Bijlage Y Typesetting number sequences 147

\list% Find minimum and store \min
\processc\min% Typset\min

%Delete minima from \list.
{\def\ls####1{\ifx####1\min\else%
\nx\ls\nx####1\fi}\xdef\list{\list}}%

\repeat}% end \srt
%List Separator.
\def\ls#1{\ifnum#1<\min\let\min=#1{}\fi}
%Pop up first element of list #1
\def\first#1{\def\lop\ls##1##2\pol{%

\let\min=##1{}}\ea\lop#1\pol}

%Compressing sequences; it is assumed
%that elements are separated by commas.
\def\cpr#1{{\def\process{\processc}\bs%
\fifo#1,\ofif,\prtfl\es}}

%Typeset element or keep track of range
\def\processc#1{\init{#1}\def\processc##1%
{\ifnum\lst=##1{}\else\ifnum\slst=##1%
\lst=\slst\advance\slst1{}\else%
\prtfl\sepn\init{##1}\fi\fi}}

\def\init#1{\frst=#1\lst=#1\slst=#1{}%
\advance\slst1{}}

%Print range: \frst-\lst (or \lst).
\def\prtfl{\the\frst\ifnum\frst<\lst{}%
\advance\frst1{}\ifnum\frst=\lst\sepn%
\else\nobreak--\nobreak\fi\the\lst\fi}

\endinput %dec 92; cgl@rug.nl
%Test/example program. \tracingmacros=1
%Typeset sequence: \chardef\a=1
\chardef\b=27\chardef\c=134 %all <256!
\typseq{\c,\a,\b}.
\bye

Explanation

\typseq This composition macro invokes the mac-
ros for storing (\strseqaslst),11 sorting (\srt),
and typesetting (\processc).
\strseqaslst The arguments of the macro are the
sequence elements separated by commas. First the data
are stored in a list, via the use of the FIFO paradigm.12

\ls is used as active list separator.
\srt We loop through the\lists until the\list
is exhausted. In each step the minimum value is de-
termined, typeset, and deleted from the list.13

� Finding the minimum.
To initiate the process the first element is considered
to be the minimum. Then the \list is invoked
with the active list separator the function to find
better minima.

� Delete minimum.
The deletion of the minima from the list is TEX
specific. We first redefine locally the list separ-
ator, \ls, with the function to delete the element
if it equals the minimum value.14 Then \list is

\xdef-ed with \list as replacement text! This
expands \list and provides in \list the non-
minima, again separated by \ls-s.15

Concise and elegant isn’t it?
� Typesetting.

We must account for the range notation—three
or more consecutive numbers are represented as
hfirst numberi–hlast numberi—and other con-
ventions like the separation symbol, and enclosing
the total within square brackets. The latter have
been parameterized into \sepn, \bs, respectively
\es.

5 Variation
My earlier variant of \storeseqaslstmade use of
\ag, as follows

\def\strseqaslst#1{{\ag\def\ag\list\ag{%
\let\process\processs\fifo#1,\ofif,}}}

%with
\def\processs#1{\ag\ls\ag#1}

When an application provides just numbers—for ex-
ample page numbers after index items—the above
\strseqaslst can be adapted to store these num-
bers in \ls\1\ls\2\ls : : :\ls\hni, via

\def\strseqaslst#1{{\ag\def\ag\list\ag{%
\let\process\processs\global\n0
\fifo#1,\ofif,}}}

%with
\def\processs#1{\global\advance\n1
\ea\xdef\csname\the\n\endcsname{#1}%
\ag\ls\ea\ag\csname\the\n\endcsname}

The encoding of \strseqaslst can be made robust
with respect to redundant spaces. I refrained from this
at the moment.
\strseqaslst is superfluous when the convention
is adopted to separate and precede the arguments of
\typseq by \ls.

For other representations of the numbers, for example
in superscript, one can redefine\prtfl. Penalties can
be inserted in the replacement text of \sepn, to inhibit
line breaks. The question is: How much?

6 Looking back
The data structure \list is peculiar. Not only obeys
it to the queue access method, that is from left to right
via the execution of \list with active list separator
\ls, but individual elements can be accessed via their

11Mnemonics: store-sequence-as-list.
12This is in the spirit of the generation of n-stars, TEXbook Appendix D.1 p.374. No \aftergroup is necessary in this

particular case, however.
13This has been published earlier and perhaps a bit hidden, in Syntactic Sugar, van der Laan, 1992a.
14Note that multiple occurrences of the minimum is accounted for.
15The four #-s in the definition of \ls—redefinition within \srt, line 36–37—look peculiar. We must account for the

hidden definition of the loop \body, which makes that the definition of \ls is nested two levels deep!

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#10 (93.1); May 1993



148 Typesetting number sequences Bijlage Y

names too. During the invocation of the example the
data structure is modified as follows16

sequence :\d,\k,\f,\r
list :\ls\d\ls\k\ls\f\ls\r ;

and gradually into \list equals \empty while sort-
ing. Neat!17

7 Epilogue
Typesetting of sequences on the fly occur when dealing
with citation lists, or a list of references to figures and
the like. LATEX’s \cite doesn’t automatically order
sequences or typeset ranges.

The range representation was posed as a problem at
the tex-nl@hearn discussion list. A (LATEX) style was
offered in reply.18 This style was composed by Ron-
ald Kappert out of the work of Arseneau and Green.
Kappert reported that Arseneau has improved upon the
style. The improved style is available on file server ni-
ord.shsu.edu. According to Kappert it is in general use,
especially by those who have long lists of citations. I
myself don’t use long citation lists. I am happy with the
system of ‘name followed by year.’ As author, and also
as reader, I know by heart the name and year of most
of the works to refer to. This is structurally simple. It
also makes the usual multi-pass processing of a list of
references superfluous, because there is no information
needed which will be created later. It is already there.
However, in practice authors are restricted by journal
conventions.

The hardest thing was not to introduce bells-and-
whistles and to keep it as straight as possible. I refrained
from introducing robustness with respect to arguments
with unnecessary spaces.
Ronald Kappert is kindlyacknowledged for his remarks
and suggestions in proofing the article.

8 TEXniques used
� Creating a list of dynamical length via FIFO (and

as alternative with \aftergroup).
� Sorting a list via repeated execution of
\xdef\list{ \list}, and appropriate use of
the active list separator.

� Handling recursion (loop) initialization, such that
some action on first traversal is different from the
action via the same name, on later traversals.

References

[1] Jeffreys, A (1990): Lists in TEX’s mouth. TUG-
boat 11, no. (2), 237–244.

[2] Kappert, R (1992): scite.sty. (From the file server;
it is compiled of work from D. Arseneau and I.
Green: overcite.sty, drftcite.sty, cite.sty. Actually,
I. Green made the style citesort.sty, which has been
assimilated by D. Arseneau in his styles.)

[3] Knuth, D.E (1984): The TEXbook, Addison-Wesley.
[4] Laan, C.G. van der (1992a): Syntactic Sugar.

MAPS92.2, 130–136. (Submitted TUG ’93.)
[5] Laan, C.G. van der (1992b): FIFO & LIFO sing the

BLUes. MAPS92.2, 139–144. (Submitted TUG-
boat.)

[6] Laan, C.G. van der (1992c): Tower of Hanoi, re-
visited. TUGboat 13, no. (1), 91–94. Also in
MAPS92.1, 125–127.

[7] Laan, C.G. van der (1993): Sorting in BLUe,
MAPS93.1. (Submitted TUG ’93.)

[8] Lamport, L (1986): LATEX, user’s guide & refer-
ence manual. Addison-Wesley.

[9] Polya, G (1957): How to solve it. Anchor.

16Symbolic names abbreviated to their first letter.
17Instead of emptying the \list I could have maintained a property list, for example a permutation array. Another approach.

My case rests.
18My code consists of the modules: storing, sorting, and typesetting in range notation (each � 10 lines), next to the

composition (1 line).

Reprint MAPS#10 (93.1); May 1993 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands


