
Bijlage P Metafont’s mode def in action 37

Metafont’s mode def in action

Erik Frambach

Rijksuniversiteit Groningen, Vakgroep Econometrie,
Postbus 800, 9700AV Groningen

e.h.m.frambach@eco.rug.nl

Abstract

In order to obtain maximum output quality when usingMET A F O N T for rendering bitmapped fonts you need
to specify the characteristics of the intended output device. This is done by defining a mode_def in which
several variables are assigned. The meaning and effect of these variables are discussed in a case study of
two types of laser printers.

Keywords: MET A F O N T , mode_def, bitmapped fonts.

1 Introduction
Being familiar with Hewlett-Packard’s Laserjet family of
laser printers, I was much surprised when I saw output
from a Xerox Docutech printer the first time. The latter is
a 600 dpi PostScript compatible laser printer, and as such
comparable to the HP Laserjet 4M.

Using resident fonts such as Times Roman the differences
are subtle though obvious. But when using e.g. Computer
Modern fonts generated for the Laserjet 4M the differences
are dramatic. Lines are much too thin or even seem to dis-
appear at small font sizes.

Obviously, fonts for the Docutech system need to be gener-
ated with different MET A F O N T parameters. And indeed,
after generating new fonts specifically for the Docutech
the output looked much better, even better than the Laser-
jet’s output. MET A F O N T did its job very well, using a
mode_def specific for the Docutech printer.

2 What is a mode def?
A mode_def is a definition of a series of assignments to
various device-specific variables. It tellsMET A F O N T how
to compensate for certain device-specific characteristics.
They are usually stored in a file called local.mf that is
typically used when makingMET A F O N T base file (iniMF).
The file local.mf may contain many mode_defs, though
you may want or need to restrict it to the locally used printer
types to avoid exceeding MET A F O N T ’s capacity.

Now that we know that mode_defs can make the differ-
ence between good and bad output we will examine the
variables and compare the mode_defs for the Laserjet and
the Docutech.

mode_def ljIV =
proofing:=0;
fontmaking:=1;

tracingtitles:=0;
pixels_per_inch:=600;
blacker:=0;
fillin:=.2;
o_correction:=.6;
enddef;

mode_def docutech =
proofing:=0;
fontmaking:=1;
tracingtitles:=0;
pixels_per_inch:=600;
blacker:=1;
fillin:=.1;
o_correction:=0.9;
enddef;

The variables in these definitions are explained in the
MET A F O N T book, but Karl Berry’s explanation in his
mode_def collection1 is quite sufficient for non-experts
(page numbers refer to theMET A F O N T book):

aspect_ratio: the ratio of the vertical resolution to the
horizontal resolution (page 94).

blacker: a correction added to the width of stems and sim-
ilar features, to account for devices which would otherwise
make them too light (page 93). (Write-white devices are
best handled by a more sophisticated method than merely
adding to blacker, as explained above.)

fillin: a correction factor for diagonals and other fea-
tures which would otherwise be ‘filled in’ (page 94). An
ideal device would have fillin=0 (page 94). Negative
values for fillin typically have either gross effects or
none at all, and should be avoided.

fontmaking: if nonzero at the end of the job,MET A F O N T
writes a TFM file (page 315).

o_correction: a correction factor for the ‘overshoot’ of
curves beyond the baseline or x-height. High resolution
curves look better with overshoot, so such devices should
have o_correction=1; but at low resolutions, the over-
shoot appears to simply be a distortion (page 93). Here

1Available at ftp.umb.edu: pub/tex/modes.mf or at CTAN: fonts/modes/modes-2.1.mf.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

38 Metafont’s mode def in action Bijlage P

some additional comments about o_correction, cour-
tesy of Pierre MacKay (edited by Karl):

At present, I find that o_correction works nicely at 80
pixels per em, and gets increasingly disturbingas you move
down towards 50 pixels per em. Below that I do not think
it ought to happen at all.

The problem, of course, is that full o_correction is sup-
posed to occur only at the zenith and nadir of the curve of
‘o’, which is a small region at high resolution, but may be
a long line of horizontal pixels at medium resolution. The
full o_correction does not change a 300 dpi cmr10, but
it changes a 21-pixel high cmr12 to be 23 pixels high. The
extra height and depth is seen along a line of seven pixels
at the bottom and five at the top. This is a pronounced
overshoot indeed.

For high-resolution devices, such as phototypesetters, the
values for blacker, fillin, and o_correction don’t
matter all that much, so long as the values are within their
normal ranges: between 0 and 1, with the values approach-
ing 0, 0, and 1 respectively.

pixels_per_inch: the horizontal resolution; theMET A -
F O N T primitive hppp (which is what determines the ex-
tension on the GF filename, as among other things) is com-
puted from this (page 94). (An ‘inch’ is 72.27 pt in the TEX
world.)

To be more precise, you can determine the resolution of a
font given a mode_def and a magnification m by simply
multiplying pixels_per_inch for that mode_def by m.
(Your results may differ from MET A F O N T ’s if you don’t
use equivalent fixed-point arithmetic.) Then you can deter-
mine the number used in the name of the GF font output by
rounding. For example, a font generated at magstep(.5)
(which is

p
1:2, which MET A F O N T computes as 1.09544)

for a printer with pixels_per_inch=300 will have a res-
olution of 328.63312 dots per inch, and the GF filename
will include the number 329.

proofing: says whether to put additional specials in the
GF file for use in making proofsheets via, e.g., the utility
program GFtoDVI (page 323–4).

tracingtitles: if nonzero, strings that appear asMET A -
F O N T statements are typed on the terminal (page 187).

Neenie Billawala’s article in the April 1987 issue of TUG-
boat describes how to test your printer for the best set of
values for the magic numbers above. Here are some brief
comments on the subject, courtesy of Rocky Bernstein,
again edited by Karl:

For medium-to-low resolution devices, you can first set
the blacker and o_correction to 0 and decide on a
fillin value by looking at the diagonal of a lowercase
‘z’ in cmtt10, or various lines in LaTeX’s line10 font.
The diagonal should be the same thickness as the horizon-
tal bars of the ‘z’. Then I decide on the blacker value,

generally by checking the smaller fonts for too much fill-
ing in. Finally, you can set the o_correction using the
guidelines suggested above.

End quote. From the Docutech values we can conclude that
it tends to print much lighter, it doesn’t fill in diagonals as
much as a Laserjet, and the overshoot is nearly ideal.

3 The proof of the pudding
To determine if the variables are set correctly you need
printed copy. Unfortunately that is not possible in an arti-
cle such as this. However, to proof that the different values
do effect MET A F O N T ’s output we can use the MS-DOS
program PK2BM2 to convert a character from a PK font
file to a bitmap. Output from BM2PK typically looks like
this:
character : 64 (@)

height : 29
width : 34
xoff : -4
yoff : 28

.............********.............

..........***........***..........

........**..............**........

......**..................**......

.....**....................**.....

....**......................**....

...**.........******.........**...

..**.......****.....**........**..

..**......***........**.......**..

.**......***..........*****....**.

.**.....****...........****....**.
......*............****.....**
.....**............****.....**
.....**............****.....**
.....**............****.....**
.....**............****.....**
.....**............****.....**
......*............****.....**
.**.....****...........****.....*.
.**......***..........*****....**.
..**......***........******....*..
..**.......****.....**..***...**..
...**.........******.....*****....
....**............................
.....**...........................
......**..........................
........**....................****
..........***............******...
.............************.........

It can also display bitmaps in hexadecimal format:
character : 64 (@)

height : 29
width : 34
xoff : -4
yoff : 28

0007f80000
0038070000
00c000c000
0300003000
0600001800
0c00000c00
1803f00600
301e0c0300

2Available at CTAN: fonts/utilities/ps2pk/ps2pk14x/msdos/emx/pk2bm.exe or
fonts/utilities/ps2pk/ps2pk14x/msdos/djgpp/pk2bm.exe.

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P Metafont’s mode def in action 39

3038060300
607003e180
60f001e180
c0e001e0c0
c1e001e0c0
c1e001e0c0
c1e001e0c0
c1e001e0c0
c1e001e0c0
c0e001e0c0
60f001e080
607003e180
303807e100
301e0ce300
1803f07c00
0c00000000
0600000000
0300000000
00c00003c0
0038007e00
0007ff8000

Even C-code can be generated:

#define cmr5_@_width 34
#define cmr5_@_height 29
#define cmr5_@_xoff 0
#define cmr5_@_yoff 0
static char cmr5_@_bits[] = {

0x00, 0xe0, 0x1f, 0x00, 0x00,
0x00, 0x1c, 0xe0, 0x00, 0x00,
0x00, 0x03, 0x00, 0x03, 0x00,
0xc0, 0x00, 0x00, 0x0c, 0x00,
0x60, 0x00, 0x00, 0x18, 0x00,
0x30, 0x00, 0x00, 0x30, 0x00,
0x18, 0xc0, 0x0f, 0x60, 0x00,
0x0c, 0x78, 0x30, 0xc0, 0x00,
0x0c, 0x1c, 0x60, 0xc0, 0x00,
0x06, 0x0e, 0xc0, 0x87, 0x01,
0x06, 0x0f, 0x80, 0x87, 0x01,
0x03, 0x07, 0x80, 0x07, 0x03,
0x83, 0x07, 0x80, 0x07, 0x03,
0x83, 0x07, 0x80, 0x07, 0x03,
0x83, 0x07, 0x80, 0x07, 0x03,
0x83, 0x07, 0x80, 0x07, 0x03,
0x83, 0x07, 0x80, 0x07, 0x03,
0x03, 0x07, 0x80, 0x07, 0x03,
0x06, 0x0f, 0x80, 0x07, 0x01,
0x06, 0x0e, 0xc0, 0x87, 0x01,
0x0c, 0x1c, 0xe0, 0x87, 0x00,
0x0c, 0x78, 0x30, 0xc7, 0x00,
0x18, 0xc0, 0x0f, 0x3e, 0x00,
0x30, 0x00, 0x00, 0x00, 0x00,
0x60, 0x00, 0x00, 0x00, 0x00,
0xc0, 0x00, 0x00, 0x00, 0x00,
0x00, 0x03, 0x00, 0xc0, 0x03,
0x00, 0x1c, 0x00, 0x7e, 0x00,
0x00, 0xe0, 0xff, 0x01, 0x00, };

Another nice program to examine or even hand-edit PK font
files is the MS-DOS (or OS/2) program (PKEDITPM).3

A good candidate for displaying the difference between a
font generated for Laserjet or Docutech is cmr5. The am-
persand character will be shown because of its delicate thin
lining.

Laserjet cmr5 Docutech cmr5

The differences are obvious: The Laserjet font is much
thinner. This was an extreme case where lines were as thin
as one pixel. Naturally the differences become less and
less visible with higher font sizes. At 10 pt there is still a
noticeable difference as shown in the letter n:

Laserjet cmr10 Docutech cmr10

The stems of the Laserjet font are one pixel thinner, just
like the serifs. At size higher than 15 pt the differences
become insignificant.

4 Conclusion
It is obvious that mode_defs are essential for high qual-
ity output using fonts written in Metafont. If you have
searched Karl Berry’s mode_def collection and found that
your device is not listed, the best thing you can do is try to
find a device with similar resolution, and see if that suits.
Otherwise you will have to fiddle yourself the variables
mentioned. Ideally you would try normal, bold an italic
versions, at sizes 5 pt, 10 pt and 15 pt.

If you make a newfont_def, please send it to Karl Berry.4

Please mention what fonts at what sizes you tested it on.
This will help other people wondering where particular
values came from.

3Available at CTAN: systems/msdos/emtex/disk5/pkedit.zip or
systems/msdos/emtex/betatest/pkeditpm.zip.

4E-mail address: karl@cs.umb.edu.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

