Bijlage P

Sorting in TEX's Mouth 163

Sorting in TEX’s Mouth*

Bernd Raichle

Stettener Str. 73
D-73732 Esdlingen, FRG
rai chl e@nformati k. Uni -Stuttgart. de

Abstract

TeX's macro processor, the so-called mouth, can be used to perform very complex tasks. Because this part
of TEX’s programming language is as powerful as a Turing machine, it is possible to implement agorithms

using only TEX’s mouth.

I will show how sorting algorithms can be implemented in a straight-forward and very elegant and under-
standable way using only macros and macro expansion TEXniques.

1 Motivation

While reading Jeffrey’s paper [2] about list processing in
TeX’s mouth in 1990, | figured | understood his macros
and the underlying ideas — at the beginning, at least. My
first attemptsto implement a quicksort algorithm based on
his insertion sort macros failed disastroudly for a simple
reason: | had a wrong model for TEX'S macro processor.
| thought in terms of a procedura or functional model in
which amacro is seen as a function reading some tokens
as its arguments and returning a token list as its function
value, instead of thinking of it as a simple replacement of
tokens by other tokens.

In the summer of 1993 with more experience in TeX macro
programming, | retried the implementation of a quicksort
algorithm with more success. Coincidentaly at thistime
van der Laan's papers [6, 7] appeared, the first including
an attempt at mouth-only processing, the second with his
version of multi-purpose sorting macros.

This paper is my answer to van der Laan’s questions about
the usefulness and the need for mouth processing.

2 TeX’sprogramming language

Users of TEX have different models for TEX. Depending
on the user’s needs, different parts of TeX and different ab-
straction level s of functionality are useful and appropriate.
Someonewho uses TEX as atext formatter vialATEX needs
a different understanding than someone who uses TEX as
a programming language writing macros for complicated
tasks.

For a user, focussing on the programming language TgX,
the language can be divided in two major parts. On one
side, TEX contains the mouth, a macro processor provid-
ing a macro language with its own characteristics. On the

other side, we have the stomach of TeX, the language part,
where al commands with side effects, such as all assign-
ments and text output or dvi output commands, are exe-
cuted. The programming language realized by the stomach
is incomplete because it misses control structures such as
conditionalsor loops.

The usable programming language has to consist of both
parts because the assignment capabilities of the stomach
are needed in order to define macro definitionsand to read
or write text, i.e, to produce an output. The mouth is
necessary for al tasks that needs an iterative application
or a recombination of input tokens. TeX's stomach uses
the macro processor for amost al commands to scan the
command arguments. Additionally, while scanning the
arguments of many stomach commands, such as\wite,
\ edef , count or dimensionregister assignments, all tokens
are expanded. Thus stomach operationsare not allowed in
these places, leading to the problem of fragile commands
in moving arguments. This is partly taken care of with
IATEX s\ prot ect .

Because of the importance of TEX’s mouth, the rest of this
paper focusses on the macro processor part in more detail.

2.1 TEX’smacro processor

TEX’smouth realizes a macro language operating on token
lists.! A token references either a primitive command or
a macro definition and is built from the characters of the
input files in TEX's eyes and mouth using a fixed set of
rules[5, pp. 37ff].

The mouth reads one token after another from the currently
active input, afile or atoken list, and tries to expand each
token. If thetokenread isunexpandable, i.e., it referencesa
primitivewith side effects, the expansion processisstopped

*Reprint from the Proceedings of the Eigth European TEX Conference, Gdansk, Poland, September 2630, 1994.
! Be aware that this statement and the use of the word mouth in this paper is imprecise asa result of Knuth's ‘technique of deliberate
lying’. More precisely, TEX's gullet is the macro processor, whereas the mouth is ‘the processby which input files are converted to lists

of tokens' [5, p. 267].

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Reprint MAPS#14 (95.1); May 1995

164 Sorting in TEX's Mouth

and thetokenisgiventothe stomach for further processing.
If the token is expandable, i.e, it references a macro or a
primitivewithout side effects, the mouth reads more tokens
without expansion, if arguments are needed, and replaces
the token read in the input by alist of tokens. This means
that the next token isthefirst token of the replacement text
because the original token is removed.

Comparing macros and macro expansion with procedures
or functions in a procedura programming language, it is
important to note that tokens building the arguments of a
macro are not expanded at the time the macro is expanded.

2.2 Basic Operations
TeEX’s macro language only knows about a very restrictive
set of basic operations on (token) lists implementable by
very simple macro definitions. These basic operations’
are
o get first element of alist
\ def \ Car #1#2\ EOL{ #1},
o gettherest of alist
\ def \ Cdr #1#2\ EOL{ #2\ EOL},
e add anew element in front of alist
\ def \ Cons#1#2\ EQL{ { #1} #2\ EOL},
e add anew element to the end of alist
\ def \ t Cons#1#2\ EOL{ #2{ #1}\ EQL},
o gppend two lists
\ def \ Append#1\ EQL#2\ EOL{ #1#2\ EQL},
o and similar operationsto get the n-th element of alist,
add n elements, or append n liststoalist withn < 9.

Complex operations, such as

get the length of aligt,

search for an element in alist,

return the n-th element of alist,

delete all elements equal to a specified element,
reverse alist,

apply an operationto all elements of alist,

and a lot more operations are not supported by simple
macros, but have to be defined using more or less complex
macro definitions. When looking on the list of complex
operations, it should be obvious that they are based on an
important concept: iteration!

2.3 Loopsand Iteration

The macro language does not contain any loop primitives
or any other primitives allowing iteration. The reason is
simple: it is not necessary. In a macro language missing
an iteration primitive, a loop can be easily implemented
by using the macro token realizing the loop in its own re-
placement text. That is, iteration isimplemented by using
recursion.

If the replacement text of a macro contains a token refer-
encing thismacro, the expansion process in the mouth will
expand the macro and expand the macro and expand the
macro. . ..

Bijlage P

Examplel Wewant to apply amacro\ Func toall tokens
of alist. A first definition for the iteration macro is

\ def \ Mapc#1{\ Func{#1}\ Mapc}
\ def\ Func#1{ (#1) }

Applying thismacro to the token list 1234, will yield the
expansion sequence

\ Mapc 12314
\ Func{1}\ Mapc 234
(1) \Mapc 234
(1) \Func{2}\ Mapc 34
(1) (2) \Mapc 34
(1) (2) \Func{3}\Mapc 4

\ Mapc 4

(1 (2) (3)

Thisfirst macro definition seems to solve our problem. But
what will the macro \ Mapc do after reading the last ele-
ment 47 It will continue and will finally stop with an error
message since we have implemented an endless |oop.

Before solving this problem, a small change to the macro
definition will show another iteration macro technique
which can be used to collect temporary values.

Example2 We want to collect the application of a macro
\ Func to each lementinalist without applying thismacro,
until we have iterated over the completelist.

\ def\ MapCar {\ DoMapCar {}}
\ def \ DoMvapCar #1#2{\ DoMapCar { #1\ Func{#2}}}

Before the iteration starts, the value of this argument, in
which we collect the result, is initialised with the empty
list. Applying the new macro to the list 1234 yields the
sequence

\ MapCar

\ DoMapCar {}

\ DoMapCar {\ Func{1}}

\ DoMapCar {\ Func{ 1}\ Func{2}}
\ DoMapCar {\ Func{ 1} \ Func{ 2}\ Func{ 3}

An advantage of \ MapCar in comparison to\ Mapc isim-
portant: because the collected result is an argument of
\ DoMapCar , it ispossibleto enhance thismacro by apply-
ing additional operations after the iteration is completed.

To make the two macros perfect for common use, itisnec-
essary to add tests checking for the end of the list which
terminates the recursion.

Example3 The definitions of the two macros\ Mapc and
\ MapCar are completed by adding \i f... comparisons
checking for the end of the argument token list. 1 will use
the token\ r el ax in al following macro examples as the
end of list marker. Be aware of thisin case you want to
use these macroswith listscontaining\ r el ax asanormal
element.

2The lists in the examples are token sequencesdelimited by the token\ EQL.

Reprint MAPS#14 (95.1); May 1995

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P

\ def\ Mapc#1{\ DoMapc#1\r el ax}
\ def \ DoMapc#1{ %
\Vifx\rel ax#1% end of |ist?
\el se
\ Ret ur nFi {\ Func{#1}\ DoMapc} %
\fi}
\ def\ MapCar #1{\ DoMapCar { } #1\ r el ax}
\ def \ DoMapCar #1#2{ %
\Vifx\rel ax#2% end of |ist?
\ Ret ur nEl seFi {#1} %
\el se
\ Ret ur nFi {\ DovapCar { #1\ Func{#2}}}
\fi}
\def\ ReturnFi #1\fi {\fi #1}
\ def\ Ret ur nEl seFi #1\ el se#2\fi {\fi #1}

\def\ Func#1{(#1)}% ... as an exanple

When adding\i f. .. comparisonsto complete these two
macros, it is necessary to ignore al tokens of the false
branch of the test including the \ el se and \ fi tokens.
Otherwise, the following iterations will use these tokens
instead of the next el ement of thelist asitsarguments. Ad-
ditionally, the definition of a macro without ignoring these
tokensappliedtoalist will overflow someof TEX'sinternal
stacks.

To avoid this problem, | have used the special macros

\Return... in the\Mapc and \ MapCar macros. In
most cases \expandafter can be used instead of
the \ Return. .. macros to skip over the \ el se and

\fi [3], but sometimes a ‘dightly ridiculous sequence
of \ expandaf t er sisneeded [1].

3 Sorting

Sorting isabasic tool whose algorithmsand agorithmim-
plementations are complex and interesting enough to use
it for studying the advantages and disadvantages of a pro-
gramming language. Intherest of thispaper, | will explain
the implementation of sorting algorithmsin TEX’s macro
processor by using the technique shown in the \ MapCar

macro.

From the set of well-known internal sorting algorithms[4,
pp. 73ff], such as sorting by insertion (straight insertion
sort, Shell’s sort), by selection (straight selection sort,
Heapsort), by exchanging (bubble sort, shaker sort, Quick-
sort), and by merging (merge sort), | will describe and
implement Quicksort in detail because this sorting method
isappropriate and fast enough for larger lists.

3.1 Quicksort

The principle of the quicksort method is easily explained:
Givenisafied L with n elements. Choose akey value K.
Partition the field L in two subfields L; and L, such that
Vee Lz < KandVz € L, : ¢ > K. Apply these
partitioning steps to the subfields recursively until al sub-
fields contain at most one element. The concatenation of
all subfieldsisthe sorted field.

A difficulty in implementing the quicksort method is the
selection of the key value K at the beginning of each parti-
tioning step. If K can be chosen in such away that thetwo

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Sorting in TEX's Mouth 165

resulting subfields contain an equal number of elements,
the execution time of the a gorithmwill be of order n log n.
In the worst case, one of the two subfields contains only
one element, so that the execution timewill be of order n?.
Because the search for the best value K in each subfield
needs additional execution time, simpler selection methods
areusually implemented: choosearandominteger between
thevalueof thefirst and thelast element or consider asmall
sample and choose the median of thissample.

When implementing the quicksort method using arrays,
the partitioning needs to be executed ‘in place’ because of
memory restrictions. In those implementations e ements
are exchanged in pairsuntil thefield is partitioned into the
two subfields [4, pp. 114ff].

3.2 Quicksort and Lists

When trying to implement the quicksort method using
TEX'S macro processor, we have to use the description
above for (token) lists. Ignoring the problem of selecting a
good key value K, we can use the following a gorithm:

Givenisalist with more than oneelement. Choosethefirst
element as thekey value K'; thetwo sublists ; and L, are
empty. Compare each element » in therest of thelist with
the key value K. If » < K, append it to L;, otherwise
toL,.

Example4 Givenisalist L = {3,6,1,8,7,2,5,0,4}.
We choose the first element (3) as key value and initialise
thetwo sublistswith L; = {} and L, = {}. Afteriterating
over dl elements remaining inthelist, the two sublistsare
Li={1,2,0and L, = {6,8,7,5,4}.

If thispartitioning step isapplied recursively to all sublists,
and at the end these sublists and key values are concate-
nated in the correct order, we get a sorted list.

An important fact is that a simple iteration is the only
complex list operation in this agorithm, otherwise only
primitivelist operations (get first element, get therest of a
list, append lists) are used.

3.3 Quicksort Implementation

Using the technique of the\ MapCar macro, an implemen-
tation of thisalgorithmis easy:

\ def\ Qui ckSort #1{\ StartPartition#l\rel ax}
\def\StartPartition#1l{%
\i fx\rel ax#1% % enpty list?
\el se \ReturnFi {\DoPartition{#1}{}{}}%
\fi}

\ def\ DoParti ti on#1#2#3#4{ %
\i fx\rel ax#4% % end of rest?
\ Ret ur nEl sei f Fi Fi {\ Qui ckSort {#2}%
{#1} %
\ Qui ckSort {#3}}%
\el se\i fnum#4<#1 % el enent < key val ue?
\ Ret ur nEl seFi Fi
{\ DoPartition{#1}{#2{#4}}{#3}}%
\el se \ReturnFiFi
{\ DoPartition{#1}{#2}{#3{#4}}}%
\Vfivfi}

Reprint MAPS#14 (95.1); May 1995

166 Sorting in TEX's Mouth

\ def\ Ret ur nFi #1\fi {\fi #1}
\ def \ Ret ur nEl sei f Fi Fi #1\ el se#2\fi\fi
{\fi #1}
\def\ReturnFi Fi #1\fi\fi {\fi\fi #1}
\ def \ Ret ur nEl seFi Fi #1\ el se#2\fi\fi
{(\FiVFi #1)

When the macro \ Qui ckSort is applied to the list
{{3}{6}{1}{8}{7}{2}{5}{0}{4}} of Example 4 and
\'t raci ngmacr os isset toanon-zero positive number, the
following sequence can be observed inthelines of thel og
filewherethe\ Qui ckSort macroiscaled:

{3{6}{1}{8}{73{2}{5}{0}{4}

{13{23{0}

{0}

{2}

{6}{8}{7}{5}{4}

{5}{4}

{4}

{8{7}

{7}
This sequence is the result of the partitioning tree shown
in Figure 1. Looking at the leaves of thistree, you will see
the sorted list.

361872504
120 3 68754
0 1 2 54 6 87
4 5 7 8

Figure 1: Sublist partitions (solid lines) and the used
key values K (dotted lines) for the example
\ Qui ckSort {361872504}.

3.4 Necessary | mprovements

Because the first implementation of quicksort uses a very
simple scheme to choose the key values K, it is normal
that testswill show worst cases of the execution timewhen
these macros are applied to aready sorted lists or to lists
where al elements are equal .

40 elements | (&) (b) (© (d)

time ‘18 41 Stk
overflow

Table 1: Execution time (in seconds) of the simple Quick-
sort implementation for a list with 40 el ements.

| have applied the first quicksort implementation to a list
with 40 elements (&) in random order, (b) sorted in as-
cending order, (c) sorted in descending order, and (d) with
equal eements. Table 1 shows the results obtained on a
slow personal computer (Atari ST, 68000/8MHz).

Case (), the sorted list in reverse order, is the worst case
for thisimplementation: if thelist containsmore than some

Reprint MAPS#14 (95.1); May 1995

Bijlage P

30 elements, TEX will abort with an overflow of the param-
eter stack.

To overcome this problem, it is necessary to either use a
better selection scheme for the key values, which isimpos-
sible without using more complex operations, or to ensure
that the list and sublists are not sorted for all partitioning

steps.

Example5 If each odd numbered element of the list
A=1{0,1,2,3,4,5,6,7,8} isappendedtothetail andeach
even numbered element to the front of thelist B, = {},
the result is the sequence of lists B, = {0}, B2 = {1,0},
Bs ={1,0,2},...,Bs = {7,5,3,1,0,2,4,6,8}.

A very simple method to disturb the order in a list is
sketched in Example 5. Applying this method to the im-
plementation when appending an el ement to one of thetwo
sublists, abetter behaviour for the worst cases is attained.

\ def\ Qui ckSort #1{\ StartPartition#l\rel ax}
\def\StartPartition#1l{%
\i fx\rel ax#1% % enpty list?
\el se \ReturnFi {\DoPartitionl {#1}{}{}}%
\fi}
\ def\ DoParti ti onl #1#2#3#4{ %
\ifx\rel ax#4% % end of rest?
\ Ret ur nEl sei f Fi Fi {\ Qui ckSort {#2}%
{#1} %
\ Qui ckSort {#3}}%
\el se\i fnum#4<#1 % el enent < key val ue?
\ Ret ur nEl seFi Fi
{\ DoPartitionl|{#1}{#2{#4}}{#3}}%
\'el se \ Ret urnFi Fi
{\ DoPartitionl|{#1}{#2}{#3{#4}}}%
\Vfivfi}
\def\ DoPartitionl | #1#2#3#4{ %
\ifx\rel ax#4% % end of rest?
\ Ret ur nEl sei f Fi Fi {\ Qui ckSort {#2}%
{#1} %
\ Qui ckSort {#3}}%
\el se\i fnum#4>#1 % el enent > key val ue?
\ Ret ur nEl seFi Fi
{\ DoPartitionl{#1}{#2}{{#4}#3}}%
\'el se \ Ret urnFi Fi
{\ DoPartitionl{#1}{{#4}#2}{#3}}%
\VfiVfi}

A drawback of this disordering trick should be noted:
wheresas the first quicksort implementation is stable, i.e.,

elementswith equal keysretaintheir origina relative order,
the new oneisunstable.

3.5 Comparison with other Quicksort
Implementations

In order to compare thisfully expandable version of quick-
sort with other quicksort versions in TeX, | have used
two other, not fully expandable implementations: line (1)
in Table 2 represents the execution times for the shown
\ Qui ckSort macro, line (I11) shows the result of Kees
van der Laan’s multi-purposeimplementation [7]. Finaly,
| tried toimplement an optimized quicksort version accord-
ing to Knuth’sdescription [4, S. 114ff], using a median of
three values for the key values K in each partitioning step.
Line (IV) showstheresult for this version.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage P
#elements| 1 20 40 80 160 320
0) 11 14 20 46 90 289
(D) 11 13 18 36 66 196
D) 14 17 26 34 68 162
(V) 10 13 16 25 45 93

Table 2: Execution time (in seconds) of the four Quicksort
implementationsfor disordered lists.

Whereas the execution times of the two quicksort imple-
mentations(111) and (1V) are of order n log n, theexecution
time of the ‘mouth only’ implementation (1) isof order n2.
The implementation uses the quicksort method — why is
the execution time not proportiona to n log n? The answer
to thisquestionis surprising: In the partitioning loop, TEX
has to scan the tokens of the two collected sublists as argu-
mentsof the\ DoParti ti on macroandit hasto skipthese
tokens in the false branches of the used conditions using
the\ Ret ur n. .. macros. Nonethel essthetabl e showsthat
the presented \ Qui cksort macro isfast enough for short
listswith less than 50-60 el ements.

Using thisanalysis of the problem, it is possible to speed
up the\ Qui ckSort macros: We move the arguments for
therecursive callsin\ DoPartitionl/I1 totheend and
replace the calls by new macros with the same argument
structure. These new macros expand to the former macro
sequences in the conditional branches with the necessary
argument recombination. With these changes, TEX hasto
scan the sublistsin #2 and #3 only twice instead of three
times. The macros of thefinal version of \ Qui ckSort are
shown in the next section; line (11) of Table 2 contains the
mesasured times.

3.6 Implementation Enhancements

The macros shown implement a quicksort algorithm suit-
able only for integers. After substituting the integer com-
parison tests \ i f nun#4<#1 (and \i f nun#4>#1) by a
\ Conpar e macro and using an appropriate definition for
this macro, these macros can be used to sort other data

types.

\ def\ Qui ckSort #1{\ StartPartition#l\rel ax}
\def\StartPartition#1l{%
\ifx\rel ax#1% % enpty list?
\el se \ReturnFi {\DoPartitionl {#1}{}{}}%
\fi}
\ def\ DoParti ti onl #1#2#3#4{ %
\i fx\rel ax#4% % end of rest?
\ Ret ur nEl sei f Fi Fi \ DoQui ckSort
\ el se\ Conpar e{ #1} { #4} %
\ ReturnEl seFi Fi\PartitionGeaterl|
\el se
\ReturnFi Fi\PartitionLesslI
\VfiVfi
{#1}{#2} {#3}{#4}}

\ def \ DoPar ti ti onl | #1#2#3#4{ %
\ifx\rel ax#4% % end of rest?
\ Ret ur nEl sei f Fi Fi \ DoQui ckSort
\ el se\ Conpar e{ #4} { #1} %
\ Ret urnEl seFi Fi\PartitionLessl
\el se
\ReturnFi Fi\PartitionGeaterl
\FiVfi
{#1}{#2} {#3}{#4}}

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Sorting in TEX's Mouth 167

\ def \ DoQui ckSor t #1#2#3#4{ %

\ Qui ckSort {#2}\ Func{#1}\ Qui ckSort {#3}}
\def\ PartitionLessl #1#2#3#4{ %

\ DoPartitionl {#1}{#2}{{#4}#3}}
\def\PartitionLesslI #1#2#3#4{ %

\DoPartitionl | {#1}{#2}{#3{#4}}}
\def\PartitionG eaterl #1#2#3#4{%

\ DoPartitionl {#1}{{#4}#2}{#3}}
\def\PartitionG eaterl|#1#2#3#4{ %

\ DoPartitionl | {#1}{#2{#4}}{#3}}

\ def\ Func#1{{#1}}
\ def \ Conpar e#1#2{\ i f num #1>#2\ space}

The \ Qui ckSort macros do not depend on the macro
\ Conpare being fully expandable. However, only
if \ Compare is fully expandable will the resulting
\ Qui ckSort befully expandable.

In the following example for a\ Conpar e macro, alist of
text wordsis sorted by the length of the typeset text using
aroman font.

\ def \ Conpar e#1#2{\ begi ngroup \rm

\ set box0=\ hbox{ #1} %

\ set box2=\ hbox{ #2} %

\ expandafter\ endgroup\ifdi M wdO>\ wd2 }
\ def \ Func#1{ #1\ par}

In order to alow the postprocessing of the sorted list,
each element is handed to the macro \ Func, which can
be changed appropriately.

4 Conclusions

Isit necessary to restrict the implementation of the sorting
algorithm to mouth processing? Or using van der Laan’s
words[6, p. 315]: ‘Why don’t [the authors] make clear the
need for mouth processing, or should | say mouth optimiz-
ing?

Generdly, it is dways necessary to use mouth processing
because the mouth is the only language part of TEX pro-

cessing macros with conditional s, and hence the necessary
capabilitiesto provide iterations.

Additionally, it is necessary to restrict macro definitionsto
mouth processing, if the context of themacro usageforcesit
because TEX's stomach processes the macro in expansion
only mode, eg. in the argument of a\write or \ edef

command. There are even more examples of contexts in
which only mouth processing is allowed: 1) Integers, di-
mensions or glue specifications can be built using macros
specifying different parts. If one of these macros expands
to an unexpandabletoken, e.g.\ r el ax or another stomach
command, TEX stops the scanning process and probably
complains about a missing number. 2) ger man. sty [8]
uses an active double quote character to allow the short-
cut input "a for an 4. Because a double quote is aso
used in TEX to input numbersin hexadecimal notation, itis
necessary to use mouth-only processing to decide whether
the double quote introduces a hexadecimal number or not.
3) Inside the mouth command \ csnane. . .\ endcsnane
all used control sequences have to be expandable.

Reprint MAPS#14 (95.1); May 1995

168 Sorting in TEX's Mouth

Atfirst glance, therestrictionto mouth processing seemsto
be necessary only for expert TEX users writing some high-
level macrosusinglow-level macrosand primitives. Think-
ing of alATEX beginner who needstoinsert\ prot ect in
some obscure places, it seemsthat the complex interactions
between TEX's eyes, mouth, and stomach cannot be hidden
from ordinary users.

Finally, in order to use the full power of the programming
language TEX, it is necessary to get a better understanding
of thecapabilitiesand restrictionsof itsparts. Furthermore,
since TpX's stomach will never be used without its mouth,
itisbest to start playing with TEX’s macro processor.

5 Acknowledgements

| am pleased tothank Alan Jeffrey for hishel pful comments
on a preliminary version of this paper. In particular, his
idea of introducing additional macros based on my analy-
sisof the\ Qui ckSort version (1) hasled to theimproved
version (I1). Thanks to Frank Trankle and Jorg Heitkotter
(—joke) for proofreading.

Reprint MAPS#14 (95.1); May 1995

Bijlage P

References

[1] Victor Eijkhout, Oral TgX:
13(2):75, 1992.

[2] Alan Jeffrey, Lists in TeX's Mouth, TUGboat,
11(2):237-245, 1990.

[3] Alois Kabelschacht, \ expandafter vs. \let and
\ def in Conditionalsand a Generaization of plain's
\'| oop, TUGboat, 8(2):184-185, 1987.

[4] Dondd E. Knuth, The Art of Computer Programming,
Volume 3: Sorting and Searching, Addison-Wesley,
Reading, Mass., 1973.

[5] Donadd E. Knuth, The TeXbook, Addison-Wedley,
Reading, Mass., 1986.

[6] Kees van der Laan, Syntactic Sugar, TUGboat,
14(3):310-318, 1993.

[7] Kees van der Laan, Sorting within TEX, TUGboat,
14(3):319-328, 1993.

[8] Hubert Partl, German TeX, TUGboat, 9(1):70-72,
1988.

Erratum, TUGboat,

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

