
BijlageP Sorting in TEX’s Mouth 163

Sorting in TEX’s Mouth�

Bernd Raichle

Stettener Str. 73
D-73732 Esslingen, FRG

raichle@Informatik.Uni-Stuttgart.de

Abstract

TEX’s macro processor, the so-called mouth, can be used to perform very complex tasks. Because this part
of TEX’s programming language is as powerful as a Turing machine, it is possible to implement algorithms
using only TEX’s mouth.
I will show how sorting algorithms can be implemented in a straight-forward and very elegant and under-
standable way using only macros and macro expansion TEXniques.

1 Motivation
While reading Jeffrey’s paper [2] about list processing in
TEX’s mouth in 1990, I figured I understood his macros
and the underlying ideas — at the beginning, at least. My
first attempts to implement a quicksort algorithm based on
his insertion sort macros failed disastrously for a simple
reason: I had a wrong model for TEX’s macro processor.
I thought in terms of a procedural or functional model in
which a macro is seen as a function reading some tokens
as its arguments and returning a token list as its function
value, instead of thinking of it as a simple replacement of
tokens by other tokens.

In the summer of 1993 with more experience in TEX macro
programming, I retried the implementation of a quicksort
algorithm with more success. Coincidentally at this time
van der Laan’s papers [6, 7] appeared, the first including
an attempt at mouth-only processing, the second with his
version of multi-purpose sorting macros.

This paper is my answer to van der Laan’s questions about
the usefulness and the need for mouth processing.

2 TEX’s programming language
Users of TEX have different models for TEX. Depending
on the user’s needs, different parts of TEX and different ab-
straction levels of functionality are useful and appropriate.
Someone who uses TEX as a text formatter via LATEX needs
a different understanding than someone who uses TEX as
a programming language writing macros for complicated
tasks.

For a user, focussing on the programming language TEX,
the language can be divided in two major parts. On one
side, TEX contains the mouth, a macro processor provid-
ing a macro language with its own characteristics. On the

other side, we have the stomach of TEX, the language part,
where all commands with side effects, such as all assign-
ments and text output or dvi output commands, are exe-
cuted. The programming language realized by the stomach
is incomplete because it misses control structures such as
conditionals or loops.

The usable programming language has to consist of both
parts because the assignment capabilities of the stomach
are needed in order to define macro definitions and to read
or write text, i.e., to produce an output. The mouth is
necessary for all tasks that needs an iterative application
or a recombination of input tokens. TEX’s stomach uses
the macro processor for almost all commands to scan the
command arguments. Additionally, while scanning the
arguments of many stomach commands, such as \write,
\edef, count or dimension register assignments, all tokens
are expanded. Thus stomach operations are not allowed in
these places, leading to the problem of fragile commands
in moving arguments. This is partly taken care of with
LATEX’s \protect.

Because of the importance of TEX’s mouth, the rest of this
paper focusses on the macro processor part in more detail.

2.1 TEX’s macro processor
TEX’s mouth realizes a macro language operating on token
lists.1 A token references either a primitive command or
a macro definition and is built from the characters of the
input files in TEX’s eyes and mouth using a fixed set of
rules [5, pp. 37ff].

The mouth reads one token after another from the currently
active input, a file or a token list, and tries to expand each
token. If the token read is unexpandable, i.e., it references a
primitive with side effects, the expansion process is stopped

�Reprint from the Proceedings of the Eigth European TEX Conference, Gdańsk, Poland, September 26–30, 1994.
1Be aware that this statement and the use of the word mouth in this paper is imprecise as a result of Knuth’s ‘technique of deliberate

lying’. More precisely, TEX’s gullet is the macro processor, whereas the mouth is ‘the process by which input files are converted to lists
of tokens’ [5, p. 267].

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

164 Sorting in TEX’s Mouth BijlageP

and the token is given to the stomach for further processing.
If the token is expandable, i.e., it references a macro or a
primitive without side effects, the mouth reads more tokens
without expansion, if arguments are needed, and replaces
the token read in the input by a list of tokens. This means
that the next token is the first token of the replacement text
because the original token is removed.

Comparing macros and macro expansion with procedures
or functions in a procedural programming language, it is
important to note that tokens building the arguments of a
macro are not expanded at the time the macro is expanded.

2.2 Basic Operations
TEX’s macro language only knows about a very restrictive
set of basic operations on (token) lists implementable by
very simple macro definitions. These basic operations2

are
� get first element of a list
\def\Car#1#2\EOL{#1},

� get the rest of a list
\def\Cdr#1#2\EOL{#2\EOL},

� add a new element in front of a list
\def\Cons#1#2\EOL{{#1}#2\EOL},

� add a new element to the end of a list
\def\tCons#1#2\EOL{#2{#1}\EOL},

� append two lists
\def\Append#1\EOL#2\EOL{#1#2\EOL},

� and similar operations to get the n-th element of a list,
add n elements, or append n lists to a list with n < 9.

Complex operations, such as
� get the length of a list,
� search for an element in a list,
� return the n-th element of a list,
� delete all elements equal to a specified element,
� reverse a list,
� apply an operation to all elements of a list,

and a lot more operations are not supported by simple
macros, but have to be defined using more or less complex
macro definitions. When looking on the list of complex
operations, it should be obvious that they are based on an
important concept: iteration!

2.3 Loops and Iteration
The macro language does not contain any loop primitives
or any other primitives allowing iteration. The reason is
simple: it is not necessary. In a macro language missing
an iteration primitive, a loop can be easily implemented
by using the macro token realizing the loop in its own re-
placement text. That is, iteration is implemented by using
recursion.

If the replacement text of a macro contains a token refer-
encing this macro, the expansion process in the mouth will
expand the macro and expand the macro and expand the
macro : : : .

Example 1 We want to apply a macro \Func to all tokens
of a list. A first definition for the iteration macro is

\def\Mapc#1{\Func{#1}\Mapc}
\def\Func#1{ (#1) }

Applying this macro to the token list 1234, will yield the
expansion sequence

\Mapc 1 2 3 4
\Func{1}\Mapc 2 3 4

(1) \Mapc 2 3 4
(1) \Func{2}\Mapc 3 4
(1) (2) \Mapc 3 4
(1) (2) \Func{3}\Mapc 4
(1) (2) (3) \Mapc 4
. . .

This first macro definition seems to solve our problem. But
what will the macro \Mapc do after reading the last ele-
ment 4? It will continue and will finally stop with an error
message since we have implemented an endless loop.

Before solving this problem, a small change to the macro
definition will show another iteration macro technique
which can be used to collect temporary values.

Example 2 We want to collect the application of a macro
\Func to each element in a list without applying this macro,
until we have iterated over the complete list.

\def\MapCar{\DoMapCar{}}
\def\DoMapCar#1#2{\DoMapCar{#1\Func{#2}}}

Before the iteration starts, the value of this argument, in
which we collect the result, is initialised with the empty
list. Applying the new macro to the list 1234 yields the
sequence

\MapCar 1 2 3 4
\DoMapCar{} 1 2 3 4
\DoMapCar{\Func{1}} 2 3 4
\DoMapCar{\Func{1}\Func{2}} 3 4
\DoMapCar{\Func{1}\Func{2}\Func{3}} 4

. . .

An advantage of \MapCar in comparison to \Mapc is im-
portant: because the collected result is an argument of
\DoMapCar, it is possible to enhance this macro by apply-
ing additional operations after the iteration is completed.

To make the two macros perfect for common use, it is nec-
essary to add tests checking for the end of the list which
terminates the recursion.

Example 3 The definitions of the two macros \Mapc and
\MapCar are completed by adding \if... comparisons
checking for the end of the argument token list. I will use
the token \relax in all following macro examples as the
end of list marker. Be aware of this in case you want to
use these macros with lists containing \relax as a normal
element.

2The lists in the examples are token sequences delimited by the token \EOL.

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageP Sorting in TEX’s Mouth 165

\def\Mapc#1{\DoMapc#1\relax}
\def\DoMapc#1{%

\ifx\relax#1% end of list?
\else
\ReturnFi{\Func{#1}\DoMapc}%

\fi}

\def\MapCar#1{\DoMapCar{}#1\relax}
\def\DoMapCar#1#2{%
\ifx\relax#2% end of list?
\ReturnElseFi{#1}%

\else
\ReturnFi{\DoMapCar{#1\Func{#2}}}

\fi}

\def\ReturnFi#1\fi{\fi #1}
\def\ReturnElseFi#1\else#2\fi{\fi #1}

\def\Func#1{(#1)}% ... as an example

When adding \if... comparisons to complete these two
macros, it is necessary to ignore all tokens of the false
branch of the test including the \else and \fi tokens.
Otherwise, the following iterations will use these tokens
instead of the next element of the list as its arguments. Ad-
ditionally, the definition of a macro without ignoring these
tokens applied to a list will overflow some of TEX’s internal
stacks.

To avoid this problem, I have used the special macros
\Return... in the \Mapc and \MapCar macros. In
most cases \expandafter can be used instead of
the \Return... macros to skip over the \else and
\fi [3], but sometimes a ‘slightly ridiculous sequence’
of \expandafters is needed [1].

3 Sorting
Sorting is a basic tool whose algorithms and algorithm im-
plementations are complex and interesting enough to use
it for studying the advantages and disadvantages of a pro-
gramming language. In the rest of this paper, I will explain
the implementation of sorting algorithms in TEX’s macro
processor by using the technique shown in the \MapCar

macro.

From the set of well-known internal sorting algorithms [4,
pp. 73ff], such as sorting by insertion (straight insertion
sort, Shell’s sort), by selection (straight selection sort,
Heapsort), by exchanging (bubble sort, shaker sort, Quick-
sort), and by merging (merge sort), I will describe and
implement Quicksort in detail because this sorting method
is appropriate and fast enough for larger lists.

3.1 Quicksort
The principle of the quicksort method is easily explained:
Given is a field L with n elements. Choose a key value K.
Partition the field L in two subfields Ll and Lr such that
8x 2 Ll : x � K and 8x 2 Lr : x � K. Apply these
partitioning steps to the subfields recursively until all sub-
fields contain at most one element. The concatenation of
all subfields is the sorted field.

A difficulty in implementing the quicksort method is the
selection of the key valueK at the beginning of each parti-
tioning step. If K can be chosen in such a way that the two

resulting subfields contain an equal number of elements,
the execution time of the algorithm will be of ordern logn.
In the worst case, one of the two subfields contains only
one element, so that the execution time will be of order n2.
Because the search for the best value K in each subfield
needs additional execution time, simpler selection methods
are usually implemented: choose a random integer between
the value of the first and the last element or consider a small
sample and choose the median of this sample.

When implementing the quicksort method using arrays,
the partitioning needs to be executed ‘in place’ because of
memory restrictions. In those implementations elements
are exchanged in pairs until the field is partitioned into the
two subfields [4, pp. 114ff].

3.2 Quicksort and Lists
When trying to implement the quicksort method using
TEX’s macro processor, we have to use the description
above for (token) lists. Ignoring the problem of selecting a
good key value K, we can use the following algorithm:

Given is a list with more than one element. Choose the first
element as the key value K; the two sublists Ll and Lr are
empty. Compare each element x in the rest of the list with
the key value K. If x � K, append it to Ll, otherwise
to Lr .

Example 4 Given is a list L = f3; 6; 1; 8;7;2; 5; 0; 4g.
We choose the first element (3) as key value and initialise
the two sublists withLl = fg and Lr = fg. After iterating
over all elements remaining in the list, the two sublists are
Ll = f1; 2; 0g and Lr = f6; 8; 7; 5; 4g.

If this partitioningstep is applied recursively to all sublists,
and at the end these sublists and key values are concate-
nated in the correct order, we get a sorted list.

An important fact is that a simple iteration is the only
complex list operation in this algorithm, otherwise only
primitive list operations (get first element, get the rest of a
list, append lists) are used.

3.3 Quicksort Implementation
Using the technique of the \MapCar macro, an implemen-
tation of this algorithm is easy:

\def\QuickSort#1{\StartPartition#1\relax}
\def\StartPartition#1{%

\ifx\relax#1% % empty list?
\else \ReturnFi{\DoPartition{#1}{}{}}%
\fi}

\def\DoPartition#1#2#3#4{%
\ifx\relax#4% % end of rest?

\ReturnElseifFiFi{\QuickSort{#2}%
{#1}%

\QuickSort{#3}}%
\else\ifnum#4<#1 % element < key value?

\ReturnElseFiFi
{\DoPartition{#1}{#2{#4}}{#3}}%

\else \ReturnFiFi
{\DoPartition{#1}{#2}{#3{#4}}}%

\fi\fi}

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

166 Sorting in TEX’s Mouth BijlageP

\def\ReturnFi#1\fi {\fi #1}
\def\ReturnElseifFiFi#1\else#2\fi\fi

{\fi #1}
\def\ReturnFiFi#1\fi\fi {\fi\fi #1}
\def\ReturnElseFiFi#1\else#2\fi\fi

{\fi\fi #1}

When the macro \QuickSort is applied to the list
{{3}{6}{1}{8}{7}{2}{5}{0}{4}} of Example 4 and
\tracingmacros is set to a non-zero positive number, the
following sequence can be observed in the lines of the log
file where the \QuickSort macro is called:

{3}{6}{1}{8}{7}{2}{5}{0}{4}
{1}{2}{0}
{0}
{2}
{6}{8}{7}{5}{4}
{5}{4}
{4}
{8}{7}
{7}

This sequence is the result of the partitioning tree shown
in Figure 1. Looking at the leaves of this tree, you will see
the sorted list.

H
H
H

H
H

HH��
�
�

�
��

�
�
�

Q
Q
Q

�
�
�

Q
Q
Q

�
�

�
�

361872504

120 3 68754

0 1 2 54 6 87

4 5 7 8

Figure 1: Sublist partitions (solid lines) and the used
key values K (dotted lines) for the example
\QuickSortf361872504g.

3.4 Necessary Improvements
Because the first implementation of quicksort uses a very
simple scheme to choose the key values K, it is normal
that tests will show worst cases of the execution time when
these macros are applied to already sorted lists or to lists
where all elements are equal.

40 elements (a) (b) (c) (d)

time 18 41 stack
overflow

36

Table 1: Execution time (in seconds) of the simple Quick-
sort implementation for a list with 40 elements.

I have applied the first quicksort implementation to a list
with 40 elements (a) in random order, (b) sorted in as-
cending order, (c) sorted in descending order, and (d) with
equal elements. Table 1 shows the results obtained on a
slow personal computer (Atari ST, 68 000/8MHz).

Case (c), the sorted list in reverse order, is the worst case
for this implementation: if the list contains more than some

30 elements, TEX will abort with an overflow of the param-
eter stack.

To overcome this problem, it is necessary to either use a
better selection scheme for the key values, which is impos-
sible without using more complex operations, or to ensure
that the list and sublists are not sorted for all partitioning
steps.

Example 5 If each odd numbered element of the list
A = f0; 1; 2; 3;4; 5; 6; 7;8g is appended to the tail and each
even numbered element to the front of the list B0 = fg,
the result is the sequence of lists B1 = f0g, B2 = f1; 0g,
B3 = f1; 0; 2g, : : : ,B9 = f7; 5; 3; 1; 0;2;4;6; 8g.

A very simple method to disturb the order in a list is
sketched in Example 5. Applying this method to the im-
plementation when appending an element to one of the two
sublists, a better behaviour for the worst cases is attained.

\def\QuickSort#1{\StartPartition#1\relax}
\def\StartPartition#1{%

\ifx\relax#1% % empty list?
\else \ReturnFi{\DoPartitionI{#1}{}{}}%
\fi}

\def\DoPartitionI#1#2#3#4{%
\ifx\relax#4% % end of rest?

\ReturnElseifFiFi{\QuickSort{#2}%
{#1}%

\QuickSort{#3}}%
\else\ifnum#4<#1 % element < key value?

\ReturnElseFiFi
{\DoPartitionII{#1}{#2{#4}}{#3}}%

\else \ReturnFiFi
{\DoPartitionII{#1}{#2}{#3{#4}}}%

\fi\fi}

\def\DoPartitionII#1#2#3#4{%
\ifx\relax#4% % end of rest?

\ReturnElseifFiFi{\QuickSort{#2}%
{#1}%

\QuickSort{#3}}%
\else\ifnum#4>#1 % element > key value?

\ReturnElseFiFi
{\DoPartitionI{#1}{#2}{{#4}#3}}%

\else \ReturnFiFi
{\DoPartitionI{#1}{{#4}#2}{#3}}%

\fi\fi}

A drawback of this disordering trick should be noted:
whereas the first quicksort implementation is stable, i.e.,
elements with equal keys retain their original relative order,
the new one is unstable.

3.5 Comparison with other Quicksort
Implementations

In order to compare this fully expandable version of quick-
sort with other quicksort versions in TEX, I have used
two other, not fully expandable implementations: line (I)
in Table 2 represents the execution times for the shown
\QuickSort macro, line (III) shows the result of Kees
van der Laan’s multi-purpose implementation [7]. Finally,
I tried to implement an optimized quicksort version accord-
ing to Knuth’s description [4, S. 114ff], using a median of
three values for the key valuesK in each partitioning step.
Line (IV) shows the result for this version.

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

BijlageP Sorting in TEX’s Mouth 167

elements 1 20 40 80 160 320
(I) 11 14 20 46 90 289
(II) 11 13 18 36 66 196
(III) 14 17 26 34 68 162
(IV) 10 13 16 25 45 93

Table 2: Execution time (in seconds) of the four Quicksort
implementations for disordered lists.

Whereas the execution times of the two quicksort imple-
mentations (III) and (IV) are of order n logn, the execution
time of the ‘mouth only’ implementation (I) is of order n2.
The implementation uses the quicksort method — why is
the execution time not proportional to n logn? The answer
to this question is surprising: In the partitioning loop, TEX
has to scan the tokens of the two collected sublists as argu-
ments of the \DoPartition macro and it has to skip these
tokens in the false branches of the used conditions using
the\Return... macros. Nonetheless the table shows that
the presented \Quicksort macro is fast enough for short
lists with less than 50–60 elements.

Using this analysis of the problem, it is possible to speed
up the \QuickSort macros: We move the arguments for
the recursive calls in \DoPartitionI/II to the end and
replace the calls by new macros with the same argument
structure. These new macros expand to the former macro
sequences in the conditional branches with the necessary
argument recombination. With these changes, TEX has to
scan the sublists in #2 and #3 only twice instead of three
times. The macros of the final version of \QuickSort are
shown in the next section; line (II) of Table 2 contains the
measured times.

3.6 Implementation Enhancements
The macros shown implement a quicksort algorithm suit-
able only for integers. After substituting the integer com-
parison tests \ifnum#4<#1 (and \ifnum#4>#1) by a
\Compare macro and using an appropriate definition for
this macro, these macros can be used to sort other data
types.

\def\QuickSort#1{\StartPartition#1\relax}
\def\StartPartition#1{%

\ifx\relax#1% % empty list?
\else \ReturnFi{\DoPartitionI{#1}{}{}}%
\fi}

\def\DoPartitionI#1#2#3#4{%
\ifx\relax#4% % end of rest?
\ReturnElseifFiFi\DoQuickSort

\else\Compare{#1}{#4}%
\ReturnElseFiFi\PartitionGreaterII

\else
\ReturnFiFi\PartitionLessII

\fi\fi
{#1}{#2}{#3}{#4}}

\def\DoPartitionII#1#2#3#4{%
\ifx\relax#4% % end of rest?
\ReturnElseifFiFi\DoQuickSort

\else\Compare{#4}{#1}%
\ReturnElseFiFi\PartitionLessI

\else
\ReturnFiFi\PartitionGreaterI

\fi\fi
{#1}{#2}{#3}{#4}}

\def\DoQuickSort#1#2#3#4{%
\QuickSort{#2}\Func{#1}\QuickSort{#3}}

\def\PartitionLessI #1#2#3#4{%
\DoPartitionI{#1}{#2}{{#4}#3}}

\def\PartitionLessII #1#2#3#4{%
\DoPartitionII{#1}{#2}{#3{#4}}}

\def\PartitionGreaterI #1#2#3#4{%
\DoPartitionI{#1}{{#4}#2}{#3}}

\def\PartitionGreaterII#1#2#3#4{%
\DoPartitionII{#1}{#2{#4}}{#3}}

\def\Func#1{{#1}}
\def\Compare#1#2{\ifnum #1>#2\space}

The \QuickSort macros do not depend on the macro
\Compare being fully expandable. However, only
if \Compare is fully expandable will the resulting
\QuickSort be fully expandable.

In the following example for a \Compare macro, a list of
text words is sorted by the length of the typeset text using
a roman font.

\def\Compare#1#2{\begingroup \rm
\setbox0=\hbox{#1}%
\setbox2=\hbox{#2}%
\expandafter\endgroup\ifdim\wd0>\wd2 }

\def\Func#1{#1\par}

In order to allow the postprocessing of the sorted list,
each element is handed to the macro \Func, which can
be changed appropriately.

4 Conclusions
Is it necessary to restrict the implementation of the sorting
algorithm to mouth processing? Or using van der Laan’s
words [6, p. 315]: ‘Why don’t [the authors] make clear the
need for mouth processing, or should I say mouth optimiz-
ing?’

Generally, it is always necessary to use mouth processing
because the mouth is the only language part of TEX pro-
cessing macros with conditionals, and hence the necessary
capabilities to provide iterations.

Additionally, it is necessary to restrict macro definitions to
mouth processing, if the context of the macro usage forces it
because TEX’s stomach processes the macro in expansion
only mode, e.g. in the argument of a \write or \edef
command. There are even more examples of contexts in
which only mouth processing is allowed: 1) Integers, di-
mensions or glue specifications can be built using macros
specifying different parts. If one of these macros expands
to an unexpandable token, e.g. \relax or another stomach
command, TEX stops the scanning process and probably
complains about a missing number. 2) german.sty [8]
uses an active double quote character to allow the short-
cut input "a for an ä. Because a double quote is also
used in TEX to input numbers in hexadecimal notation, it is
necessary to use mouth-only processing to decide whether
the double quote introduces a hexadecimal number or not.
3) Inside the mouth command \csname: : : \endcsname

all used control sequences have to be expandable.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

168 Sorting in TEX’s Mouth BijlageP

At first glance, the restriction to mouth processing seems to
be necessary only for expert TEX users writing some high-
level macros using low-level macros and primitives. Think-
ing of a LATEX beginner who needs to insert \protect in
some obscure places, it seems that the complex interactions
between TEX’s eyes, mouth, and stomach cannot be hidden
from ordinary users.

Finally, in order to use the full power of the programming
language TEX, it is necessary to get a better understanding
of the capabilities and restrictions of its parts. Furthermore,
since TEX’s stomach will never be used without its mouth,
it is best to start playing with TEX’s macro processor.

5 Acknowledgements
I am pleased to thank Alan Jeffrey for his helpful comments
on a preliminary version of this paper. In particular, his
idea of introducing additional macros based on my analy-
sis of the \QuickSort version (I) has led to the improved
version (II). Thanks to Frank Tränkle and Jörg Heitkötter
(–joke) for proofreading.

References
[1] Victor Eijkhout, Oral TEX: Erratum, TUGboat,

13(1):75, 1992.

[2] Alan Jeffrey, Lists in TEX’s Mouth, TUGboat,
11(2):237–245, 1990.

[3] Alois Kabelschacht, \expandafter vs. \let and
\def in Conditionals and a Generalization of plain’s
\loop, TUGboat, 8(2):184–185, 1987.

[4] Donald E. Knuth, The Art of Computer Programming,
Volume 3: Sorting and Searching, Addison-Wesley,
Reading, Mass., 1973.

[5] Donald E. Knuth, The TEXbook, Addison-Wesley,
Reading, Mass., 1986.

[6] Kees van der Laan, Syntactic Sugar, TUGboat,
14(3):310–318, 1993.

[7] Kees van der Laan, Sorting within TEX, TUGboat,
14(3):319–328, 1993.

[8] Hubert Partl, German TEX, TUGboat, 9(1):70–72,
1988.

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

