
200 Paradigms: Two-part macros BijlageV

Paradigms: Two-part macros

Kees van der Laan
Hunzeweg 57,

9893 PB Garnwerd, The Netherlands
cgl@rc.service.rug.nl

1 BLUe’s Design III
Hi folks. When attending Amy’s class in 1990, I was much
surprised about the two-part macro. In Algol, FORTRAN,
PASCAL and ADA, I had not heard of the concept, let
alone I was familiar with it.

In blue.tex they are at the heart of the syntax for the markup
language. To speak with Jackowski ‘I use them all the
time.’

2 One-part vs. two-parts
One-part macros are explained in chapter 20 of The
TEXbook. They are used as a shortcut for the replacement
text parameterized by at most nine arguments.

A two-part macro is different. The first part sets up the ‘en-
vironment’ followed by script elements and ended by the
second part, to finish up the environment. LATEX empha-
sizes the environment concept in for example

\begin{abstract}...\end{abstract}
\begin{center}...\end{center}
\begin{itemize}...\end{itemize}
\begin{picture}...\end{picture}
\begin{quote}...\end{quote}
\begin{tabular}...\end{tabular}
\begin{thebibliography}...

\end{thebibliography}
\begin{verbatim}...\end{verbatim}
%etc.

3 Why?
The need for bothering about two-part macros is that the
enclosed script elements are processed on the fly, meaning
with the right catcodes.

To digress a little on the above the following hypothetical
example. Suppose we have

{\catcode‘*=13
\gdef\begindemo{\bgroup
\catcode‘*=13 \def*{MUL}}

\gdef\demo#1{\catcode‘*=13 \def*{MUL}#1}
}\let\enddemo\egroup

then the result of

\begindemo*\enddemo
%and
\demo*

is different. The first yields MUL and the latter *.

Explanation

In the two-part case the * is seen after the catcode has
changed. while in the latter the * is seen, and the catcode
fixed, before it is made active.

However, in chapter 20 of The TEXbook there is no treat-
ment of two-part macros, nor is there an entry for it in
the index, alas. Exercise 5.7 deals with named blocks and
checking of them. The latter is used in LATEX to make sure
that the right environment closing tag is used in the markup.
In Appendix E, where example formats (o.a. manmac) are
explained, two-part macros are abundant, for example

\beginchapter...\endchapter
\beginlines...\endlines
\begindisplay...\enddisplay
\begintt...\endtt
\begimathdemo...\endmathdemo
\beginchart...\endchart
\beginsyntax...\endsyntax
\begindoublecolumns...\enddoublecolumns
\exercise...\answer...\par

Furthermore, of late two questions were posed on TeX-nl,
which exposed the unfamiliarity with two-part macros. All
this was enough for me to spend a paradigm column on
two-part macros.1

Example (\beginlines: : : \endlines)

The functionality is that the script in between is processed
line-by-line and preceded and followed by an \hrule.

\def\beginlines{\par\begingroup\nobreak
\medskip\parindent0pt\hrule\kern1pt
\nobreak\obeylines\everypar{\strut}}

\def\endlines{\kern1pt\hrule\endgroup
\medbreak\noindent}

In the TEXbook script this is combined with in-line
verbatim.2

Explanation

The replacement text of \beginlines is processed, fol-
lowed by the formatting on-the-fly of the inserted material
(after \beginlines) up to \endlines. The replacement
text of the latter finishes it up.

1Note that \beginchapter’s title is not processed on the fly. In the ‘Paradigm: Headache?’ I have shown how the title and the
contents of the chapter can be processed on the fly.

2To set text verbatim. By the way, this is another approach to ‘verbatims with an escape character.’

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage V Paradigms: Two-part macros 201

Unwanted breaks are avoided. The \hrule is set in the
first part and in the second part next to opening and clos-
ing of the group. The in between script is processed with
\obeylines on.

Example (\begindisplay: : : \enddisplay)

The functionality is that the script in between is processed
as a non-centered display, indented by \displayindent,
next to the value of \parindent from the template.
Pruned from non-essential issues for the two-part macro
idea, the macros read as follows.

\def\begindisplay{$$\the\thisdisplay\halign
\bgroup\indent##\hfil&&\qquad##\hfil\cr}

\def\enddisplay{\crcr\egroup$$}

Explanation

The replacement text of \begindisplay is processed,
followed by the formatting on-the-fly of the inserted ma-
terial (after \begindisplay) up to \enddisplay. The
replacement text of the latter finishes it up.

$$ followed by \halign is something special. It starts
the so-called alignment display, meaning that each hbox
of the \halign is added to the main vertical list indented
at the left by \displayindent. It is not a math display.
\the\thisdisplay allows to insert assignments.

By the way, note that the user is not bothered by the details
of the template of the \halign; it is already there.3

And what about a one-part on top?

This is not possible via my method as explained in
‘Paradigms: Headache?’, because each table entry must
have balanced braces. Suppose we have

\def\display#{\begindisplay\bgroup
\aftergroup\enddisplay
\let\dummy=}

then the \bgroup after \begindisplay is ‘unbalanced’
in the first column, except when it is about one entry only.

\display{a} %works
\display{a&b}%doesn’t work

I let it go

because I could not provide a nice solution. What I tried
is out of balance with just using the two-part macros. The
best I could get at, when we allow in-line verbatim, needs
the following input.

\thisdisplay{\catcode‘\!=0 \catcode‘\\=12 }
\display{\a&b!cr e&f}

Conclusion

When tables are involved my method of building one-part
macros on top of two-part macros is not suited.4

For the manmac

version of the two-part macro see The TEXbook 421.
Note that there the \catcode‘\ˆˆM annihilates the ef-
fect of \obeylines. The \obeylines was introduced
only to allow for an optional argument. Because of my
\thisdisplay toks variable, the \obeylines and its an-
nihilator are no longer needed. Knuth’s coding has been
simplified, at the expense of introducing a token variable
\thisdisplay.5

4 From the TeX-nl list
Andrea de Leeuw van Weenen and Ton Biegstraaten posed
the following problems.
� let characters print other characters
� let _ in math denote an underscore and not a subscript.

Although it turned out that my suggestions are not the
100% required ones, I’ll expose them here nonetheless, be-
cause they illustrate the use of two-part macros.

Andrea’s problem

Let us suppose that the problem is to let B typeset 1, on de-
mand. Then a solution reads.

\def\beginIT{\bgroup\catcode‘\B=13 \ITstart}
{\catcode‘\B=13
\gdef\ITstart{\def B{\char’61}}}
\def\endIT{\egroup}
%with use
ABC\quad
\beginIT ABC\endIT\quad
ABC

The result reads ABC A1C ABC.

The problem which remained is that Andrea needs simul-
taneously macros with those letters like B in their name.
She added the problem to her list of ‘Impossible with TEX
problems.6’

Ton’s problem

The restriction, which made that my solution was not ap-
propriate, is that it should be possible to use the solution as
argument of one-part macros, and that to unlimited depth.7

In my approach all involved one-part macros had to be
rewritten into two-part ones. However, if people would
start to think in two-part macros (nearly) all would have
been fine.

\def\beginusn{\hbox\bgroup\catcode‘_=13
\startusn}

3In my \btable macro, I allowed the possibility for a user to supply his own template, because I stored the template in a token
variable.

4If one prefers a simple, but restricted one-part macro provide \def \display#1f \begindisplay #1 \enddisplayg.
5Optional arguments — well, more generally ‘Parameterization’ — will be subject of the next paradigm column.
6I’m curious to see that list in MAPS some day.
7Courtesy Piet van Oostrum.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

202 Paradigms: Two-part macros BijlageV

{\catcode‘_=13\gdef\startusn{\def_{_}}}
\def\endusn{\egroup}
%with use
$a_b\quad \beginusn a_b\endusn\quad a_b$

and result

ab a b ab.

On top of the above two-part macros we can add one-
part macros wih the same functionality, as explained in the
‘Paradigm: Headache?’

The one-part macros read \def\IT{\beginIT\bgroup

\aftergroup\endIT
\let\dummy=}

%
\def\usn{\beginusn\bgroup

\aftergroup\endusn
\let\dummy=}

As expected ABC\quad\IT{ABC}\quad ABC
yields ABC A1C ABC, and
$a_b\quad\usn{a_b}\quad a_b$
yields ab a b ab.

Note that I omitted here the # as last element of the param-
eter list, neglecting some built-in security checks.8

5 \eqalign as two-part macro
As an example of how to cast a one-part macro into
two parts, and a one-part macro9 on top, let us rewrite
\eqalign, The TEXbook 362. The extra functionality of
this approach is that the two-part variant can be used in
those cases where the argument needs to be processed on
the fly.

\def\begineqalign{\,\vcenter\bgroup
\the\thiseqalign\openup1\jot\m@th
\starteqalign}

\def\starteqalign{\ialign\bgroup
\strut\hfil$\displaystyle{##}$&&
$\displaystyle{{}##}$\hfil\crcr}

\def\endeqalign{\crcr\egroup\egroup}
%with the one-part
\def\eqalign#1{\begineqalign

#1\endeqalign}

I don’t have a concrete example for the need for modifying
\eqalign towards processing on the fly. However, it il-
lustrates how to rewrite a one-part macro into two-parts as
basis.

Looking back

I like the consistent markup via

\beginhtagi

hcopy properi or \htagi{hcopy properi}
\endhtagi

The right-hand variant is suited for the markup of headings,
for example. It has been adopted in blue.tex, as basic syn-
tax, for the markup language.

6 Multiple use of copy
Sometimes we need to process the copy — or should we
talk about data then? — more than once. An example is
the data for a crossword, where I used the data for typeset-
ting the puzzle — the data reflect the structure — and the
solution. See ‘Typesetting crosswords via TEX, revisited,’
MAPS 92.2.

The basic idea is to store the data with the right catcodes.10

\def\bdata{\begingroup
\obeylines\obeyspaces\store}

\def\store#1\edata{\endgroup
\def\storeddata{#1}}

Explanation

The data, in natural markup line-by-line, can be supplied
between \bdata and \edata. The \edata is a parame-
ter separator and not the invocation of the closing part of a
two-part macro, although it looks the same. What happens
is that\bdata sets up the environment, especially provides
the right catcodes. \store ends the environment (scope)
and stores the data, with the wanted catcodes, as replace-
ment text of \storeddata. In order to appreciate the sub-
tleness of the above coding the following digressions.

6.1 Two-part macros and storing on the fly
This is inhibited by the following11

� the opening and closing brace of the replacement text
of a \def must be explicit

� the right-hand side of a token list assignment must be
explicit.

The following innocent coding is therefore incorrect.12

\def\bdata{\begingroup
\obeylines\obeyspaces
\gdef\storeddata\bgroup}

\def\edata{\egroup\endgroup}

Possible alternatives to my coding above are

\def\data{\obeylines\obeyspaces
\gdef\storeddata}

%with use
\begingroup
\data{ab c

8In the case of the # end separator the text after the macro invocation must syntactically begin with an opening brace. When the #
separator is omitted, anything can follow htagi.

9Not more limited than the one available.
10Perhaps the most trivial approach is to insert the data each time we need it. I consider that inelegant and also error-prone. The given

macro is a beautiful example, if I may say so, of what Victor Eijkhout and David Salomon call two-step macros (see later), while at the
user level the macro can be used as if it is a two-part macro, with the nice opening and closing tags.

11Courtesy Victor Eijkhout in ‘TEX by Topic,’ section 10.3 group delimiters. Awareness of these restrictions is indispensable for
writing two-part macros. I omitted the use of \setbox, because once set in a box one can’t do much with the data anymore.

12The use of explicit braces is incorrect as well.

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage V Paradigms: Two-part macros 203

e fg}
\endgroup
%
%and via the use of a toks variable
%
\newtoks\storeddata
\def\data{\obeylines\obeyspaces
\global\storeddata}

%with use
\begingroup
\data{ab c

e fg}
\endgroup

Nice aspects of the above approaches are
� at the outer level I abstracted from storing in a def or a

token variable, and
� the symmetry.

Definitely not nice aspects are
� it looks as if the data are stored in \data, and
� the \begingroup and \endgroup at the user level.

6.2 A one-part on top?
My scheme does not work for this case. Some puzzling
yielded as one-part \data on top of \bdata, with \edata
eliminated.13

\def\data{\begingroup
\def\store##1{\endgroup

\gdef\storeddata{##1}\endgroup}
\bdata}

%With use
\data{ab c

d ef}

Explanation

\data starts a group and (re)defines \store. The invoca-
tion of \bdata set the catcodes — via \obeylines and
\obeyspaces — and invokes \store. The argument to
the latter macro is stored in \storeddata with the right
catcodes. \store also ends the groups.14

6.3 Chapterhead
For blue.tex I designed \report. A report takes chapter ti-
tles. The problem is: How to write macros consistent with
the philosophy of starting from two-part macros and build-
ing a one-part on top, with the chapter title also stored for
use in the running headline, for example.

In an abstract sense this is equivalent to the \bdata

\edata, \data suite. It is even simpler, because I just
have to store the name and allow the following use.

\beginchapterhead
<name> or \chapterhead{<name>}
\endchapterhead

The required result must be such that the chapter name
will be typeset appropriately within context, as pre-
scribed by the token variables \prechapterhead and

\postchapterhead, and that the name will be stored in
the token variable \chaptername.

The coding of the two-part macros read.

\def\beginchapterhead{\the\prechapterhead
\storechaptername}

\def\storechaptername#1\endchapterhead{%
\chaptername={#1}\endchapterhead}

\def\endchapterhead{{\chpfont
\the\chaptername}\the\postchapterhead}

The one-part macro on top reads.

\def\chapterhead{\bgroup
\def\storechaptername##1{\egroup

\global\chaptername={##1}%
\endchapterhead}

\beginchapterhead}

The head-suite of macros also need processing and storing
if not for writing to a ToC file. The use of the token vari-
able \prechapterhead provided the hook to change the
catcode of the circumflex — which in blue.tex is default ac-
tive because of preparing Index Reminders — into 7 and
allow processing math as part of the title.

What have we gained?

We can use now the title with different fonts, as ti-
tle and in the running head. Moreover, we can use
the \beginchapterhead, \endchapterhead pair
to enclose the title, or let it look as an assignation
to \chapterhead. Looking back there emerged a
paradigm for the use

\begin<tag>
<copy> or \<tag>{<copy>}
\end<tag>

with <copy> also stored in the token variable \tagname.
Useful!

6.4 And what about multiple use with different
catcodes?

Like Knuth we are at loss, unless we make use of a file. It
occurs in manmac’s math demos, for example

Input Output

$xˆ2$ x
2

needs markup with repetition of the data15

\beginmathdemo
\it Input&\it Output\cr
\noalign{\vskip2pt}
|$xˆ2$|%<---
&xˆ2 %<---

\endmathdemo

Subtle, very subtle. One thing is crystal clear, however.
Because of the above varieties (and pitfalls?), a discipline
of TEX coding is needed.

13Note that in-line verbatim as part of the data goes wrong, in the sense of unexpected results.
14The group opening in \bdata is not needed here, but within the context of the two-part macro next to the one part, it is needed.
15Borrowed from The TEXbook script. In blue.tex I added \crcr to \endmathdemo, for consistency with \halign use.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#14 (95.1); May 1995

204 Paradigms: Two-part macros BijlageV

7 Epilog
Eijkhout in ‘TEX by Topic’ and Salomon in ‘Insights and
Hindsights’ treat two-step macros, not two-part macros.16

One macro will set up conditions and a second will do
the work. The difference with two-part macros is that the
‘workmacro’ also terminates the conditions, while in two-
part macros the second part has only the functionalityto ter-
minate. Probably other macros are involved to do the work.
A beautiful example from manmac is the non-centered dis-
play macro with tags

\begindisplay %to set up conditions
\startdisplay %to do the work
\enddisplay %to finish up

As known, I prefer — like Knuth — the separation of con-
cerns principle, and like opening and closing tags.

To my knowledge it is not possible to build gracefully, and
with the same functionality, a one-part table macro on top
of its constituent two-parts, in full generality.

Have fun, and all the best.

16Apparently they did not inspectmanmac in detail. In Eijkhout’s book look at section 11.9.4, the macro\PickToEol. In Salomon’s
courseware look at section 5.19, the macro \elp.

Reprint MAPS#14 (95.1); May 1995 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

