
A practical introduction to SGML

Michel Goossens and Janne Saarela

CERN, CN Division

CH-1211 Geneva 23

Switzerland

goossens@cern.ch, saarela@cern.ch

Abstract

SGML, the Standard Generalized Markup Language, deals with the structural markup of elec-

tronic documents. It was made an international standard by ISO in October 1986. SGML

soon became very popular thanks in particular to its enthusiastic acceptance in the editing

world, by large multi-national companies, governmental organizations, and, more recently, by

the ubiquity of HTML, HyperText Markup Language, the source language of structured docu-

ments on WWW. This article discusses the basic ideas of SGML and looks at a few interesting

tools. It should provide the reader with a better understanding of the latest developments in

the �eld of electronic documents in general, and of SGML/HTML in particular.

1 Why SGML?

Since the late eighties we have witnessed an ever quickening transition from book pub-

lishing exclusively on paper to various forms of electronic media. This evolution is merely

a re
ection of the fact that the computer and electronics have made inroads into almost

every facet of human activity. In a world in which one has to deal with an ever-increasing

amount of data is support of the computer is a particularly welcome alternative, for the

preparation of telephone directories, dictionaries, or law texts { to mention just a few

examples. In such cases it is not only the volume of the data that is important, but also

the need for it to be kept constantly up-to-date.

Once data have been stored in electronic form one can derive multiple products from

a single source document. For instance, an address list can be turned into a directory

on paper, but it can also be put on cdrom, as a data-base allowing interactive or e-mail

access on the Internet or to print a series of labels. Using a set of law texts or a series

of articles on history marked up in SGML, one can �rst publish a textbook containing

complete law texts, or a historic encyclopedia, and then provide regular updates or

35

36 Michel Goossens and Janne Saarela

extract a series of articles on a given subject; one can also o�er a consultation service

on Internet, via gopher, www or develop a hypertext system on cdrom.

All these applications suppose that the information is not saved in a format that

is only suited for printing (for example, WYSIWYG), but that its logical structure be

clearly marked.

To recapitulate, the strong points of a generic markup (in SGML) are the following:

� the quality of the source document is improved;

� the document can be used more rationally, resulting in an improved life-cycle;

� the publishing costs are reduced;

� the information can be easily reused, yielding an added value to the document

(printed, hypertext, data base).

1.1 The origins of SGML

In order to treat documents electronically it is essential that their logical structure be

clearly marked. On top of that, to ensure that documents are really interchangeable,

one had to develop a common language to implement this type of representation.

A big step forward was the publication by ISO (the International Standards Organiza-

tion, with headquarters in Geneva, Switzerland) in October 1986 of SGML as Standard

ISO8879 [15]. Because SGML had been o�cially endorsed by ISO, the Standard was

quickly adopted by various national or international organizations and by the large soft-

ware developers. One can thus be fairly con�dent that SGML is here to stay and that its

role in electronic publishing will continue to grow.

1.2 Who uses SGML?

With the appearance of new techniques and needs linked to the constantly increasing

importance of electronic data processing, the traditional way of exchanging documents

has been drastically changed. Today, SGML has become an ubiquitous tool for document

handling and text processing.

First among the application areas we will consider in which SGML is at present

actively used is the work of the American Association of Publishers (AAP). The AAP

(see [2] to [4]) selected three types of documents in the �eld of publishing: a book, a

series publication, and an article. For each of these a document type de�nition (DTD,

see below, especially Section 4) has been developed. Together, the AAP and the EPS

(European Physical Society) have proposed a standard method for marking up scienti�c

documents (especially tables and mathematical documents). This work forms the basis

of ISO 12083.

Another application actively developed during the last few years is the CALS

(Computer-aided Acquisition and Logistic Support) initiative of the American Depart-

ment of Defense (DoD). This initiative aims at the replacement of paper documents by

electronic media for the documentation of all arms systems. The DoD decided that all

A practical introduction to SGML 37

documentation must be marked up in SGML, thus also making (the frequent) revisions

a lot easier.

A few other examples of the use of SGML are:1

� the Publications O�ce of the European Communities (FORMEX);

� the Association of German editors (B�orsenverein des Deutschen Buchhandels);

� the British Library with \SGML: Guidelines for editors and publishers" and \SGML:

Guidelines for authors";

� in France, the Syndicat national de l'�edition and the Cercle de la librairie, two as-

sociations of French publishers, have de�ned an application for the French editing

world [20];

� the ISO Publishing Department and the British Patents O�ce (HMSO);

� Oxford University Press and Virginia Polytechnic (PhD, USA);

� the Text Encoding Initiative (classic texts and comments);

� the technical documentation of many major computer manufacturers or scienti�c

publishers, for instance the DocBook or other dedicated DTDs used by IBM, HP,

OSF, O'Reilly, etc.

� many text processing and data base applications have SGML input/output modules

(�lters), for example, Frame, Interleaf, Microsoft, Oracle, Wordperfect;

� McGraw-Hill (Encyclopedia of Science and Technology);

� the electronics industry (Pinacle), the aerospace industry and the airlines (Boeing,

Airbus, Rolls Royce, Lufthansa, etc.), the pharmaceutical industry;

� press agencies;

� text editors and tools with direct SGML interfaces, such as Arbortext, EBT, Exo-

terica, Grif, Softquad;

� and, of course, HTML and www!

2 SGML basic principles

SGML is a standard method of representing the information contained in a document

independently of the system used for input, formatting, or output.

SGML uses the principle of logical document markup, and applies this principle in

the form of the de�nition of a generalized markup language. SGML in itself does not

de�ne per se a markup language, put provides a framework to construct various kinds

of markup languages, in other words SGML is a meta-language.

2.1 Di�erent types of markup

The \text-processing" systems that have found their way into almost every PC or work-

station nowadays are mostly of the WYSIWYG type, i.e., one speci�cally chooses the

\presentation" or \formatting" characteristics of the various textual elements. They

1. See also the \SGML Web Page" at the URL http://www.sil.org/sgml/sgml.html for more infor-

mation on who uses SGML and why.

38 Michel Goossens and Janne Saarela

can be compared to older formatting languages, where speci�c codes were mixed with

the (printable) text of the document to control the typesetting on the micro level. For

example, line and page breaks, explicit horizontal or vertical alignments or skips were

frequently used to compose the various pages. Generally, these control characters were

extremely application-speci�c, and it was di�cult to treat sources marked up in one of

these systems with one of the others. On the other hand, this type of markup does a

very good job of de�ning the speci�c physical representation of a document, and for

certain kinds of documents it might be more convenient for obtaining a given layout,

in allowing a precise control of line and page breaks. This approach makes viewing and

printing documents particularly easy, but re-using the source for other purposes can be

di�cult, even impossible.

To successfully prepare a document for use in multiple ways it is mandatory to clearly

describe its logical structure by eliminating every reference to a physical representation.

This is what is understood under the term logical or generic markup. The logical function

of all elements of a document { title, sections, paragraphs, tables, possibly bibliographic

references, or mathematical equations { as well as the structural relations between these

elements, should be clearly de�ned.

Figure 1 shows a few examples of marking up the same text. One clearly sees the

di�erence between speci�c markup, where precise instructions are given to the text

formatter for controlling the layout (for example, the commands \vskip or .sp), and

generic markup, where only the logical function (chapter or beginning of paragraph) is

speci�ed.

2.2 Generalized logical markup

The principle of logical markup consists in marking the structure of a document, and its

de�nition has two di�erent phases:

1. the de�nition of a set of \tags" identifying all elements of a document, and of formal

\rules" expressing the relations between the elements and its structure (this is the

role of the DTD);

2. entering the markup into the source of the document according to the rules laid out

in the DTD.

Several document instances can belong to the same document \class", i.e., they are

described by the same DTD { in other words they have the same logical structure.

As an example let us consider two source texts of an article (see Figure 2), where the

speci�c structures look di�erent, but the logical structure is built according to the same

pattern: a title, followed by one or more sections, each one subdivided into zero or more

subsections, and a bibliography at the end. We can say that the document instances

belong to the document class \article".

To describe the formal structure of all documents of type \article" one has to

construct the Document Type De�nition (or DTD). of the document class \article".

A DTD is expressed in a language de�ned by the SGML Standard and identi�es all

A practical introduction to SGML 39

Speci�c markup

TEX

\vfil\eject

\par\noindent

{\bf Chapter 2: Title of Chapter}

\par\vskip\baselineskip

Script

.pa

.bd Chapter 2: Title of Chapter

.sp

Generic or logical markup

LATEX

\chapter{Title of Chapter}

\par

HTML (SGML)

<H1>Title of Chapter</H1>

<P>

Figure 1: Di�erent kinds of markup

the elements that are allowed in a document belonging to the document class being

de�ned (sections, subsections, etc). The DTD assigns a name to each such structural

element, often an abbreviation conveying the function of the element in question (for

example, \sec" for a section). If needed, the DTD also associates one or more descriptive

attributes to each element, and describes the relations between elements (for example,

the bibliography always comes at end of the document, while sections can, but need not

contain subsections). Note that the relations between elements do not always have to

be hierarchical, for instance the relation between a section title and a cross-reference to

that title three sections further down is not a hierarchical type of relation. In general,

DTDs use element attributes to express these kinds of cross-link.

Having de�ned the DTD one can then start marking up the document source itself

(article A or article B), using the \short" names de�ned for each document element.

For instance, with \sec" on form the tag <sec> for marking the start of a section and

</sec> to mark its end, and similarly one has <ssec> and </ssec> for subsection, and

so on.

40 Michel Goossens and Janne Saarela

Article A Article B

========= =========

Title Title

Section 1 Section 1

Subsection 1.1 Subsection 1.1

Subsection 1.2 Subsection 1.2

Section 2 Subsection 1.3

Section 3 Section 2

Subsection 3.1 Subsection 2.1

Subsection 3.2 Subsection 2.2

Subsection 3.3

Subsection 3.4

Bibliography Bibliography

Figure 2: Two instances of the same document class \article"

<article>

<tit>An introduction to SGML</tit>

<sec>SGML: the basic principles</sec>

<P> ...

<ssec>Generalized logical markup</ssec>

<P> ...

2.3 A few words about the DTD

If one wants to apply the latest powerful data processing techniques to electronic docu-

ments, using the information about their structure, one must have ways to ensure that

they are marked up without mistakes. One must also ensure that the structure of a

document instance is coherent: a document must obey the rules laid out for documents

of the given document class, according to the DTD for that class.

To ful�l all these aims a DTD de�nes:

� the name of the elements that can be used;

� the contents of each element (Section 4.2);

� how often and in what order each element can occur (Section 4.2);

� if the begin or end tag can be omitted (Section 4.2);

� possible attributes and their default values (Section 4.3);

� the name of the entities that can be used (Section 4.4).

A practical introduction to SGML 41

3 Transmitting the information relative to a document

The aim of SGML is to represent the information contained in a document. Already in

Section 2.2 we have explained that SGML operates in two stages to de�ne the structure

of a document:

� a declaration phase;

� a utilization phase, where the document source is marked up using declared elements,

attributes and entities.

This basic principle is used for the transmission of all the information related to the

document to be exchanged.

The basic character set is ASCII, as de�ned by international Standard ISO/IEC 646.

One can change the character set by changing this declaration at the beginning of the

parsing of the document, when the SGML declaration associated to the DTD is read in

(see Appendix B.)

A document can contain symbols or characters that cannot be entered directly

on the keyboard, such as Greek letters or mathematical symbols, or even illustrations,

photos, or parts of another document. This functionality is implemented through the

use of entity references (see Section 4.4).

The markup system is based on a set of delimiters, special symbols, and keywords

with special meaning.2 For instance when \sec" identi�es the element \Section", then

in the document source <sec> is the tag marking the beginning of a Section, with the

delimiters \<" and \>" indicating, respectively, the tag start and end. Similarly, the

formal structure of the document (described by the DTD) has its own language de�ned

by the SGML Standard.

More generally, the SGML Standard does not de�ne once and for all the structure

of a document and all elements that it can contain, i.e., the delimiters and special

symbols, but merely speci�es the construction rules they have to follow. Also, SGML does

not �x the markup language, but o�ers an abstract syntax, allowing one to construct

particular syntax instances as needed. The Standard proposes an example syntax, called

the reference concrete syntax, used throughout this article. We can thus safely state

that SGML is a meta-language.

4 The structure of a DTD

To better understand how SGML works we propose to examine a real example of a

modern SGML application, namely HTML level 2, which corresponds to the functionality

o�ered by popular HTML viewing programs, such as Mosaic, Netscape or Lynx. The

complete DTD of HTML2 is shown in Appendix A starting on page 76. To make it

easier to identify the various parts of the DTD the lines have been numbered.

2. These symbols can also be rede�ned at the beginning of the document

42 Michel Goossens and Janne Saarela

Before starting to parse a DTD the SGML declaration is read in by the parser. For

HTML this declaration is shown in Appendix B on page 86. It de�nes the character set,

special characters and option settings used in the DTD and allowed in the document

instance. For instance, in the area of markup minimization, the parameter OMITTAG (Line

66) has the value YES, which allows tag minimization, i.e., under certain circumstances

(speci�ed in the DTD) tags can be omitted, as explained in Section 4.2. If, on the other

hand, the value is speci�ed as NO then tag minimization is disallowed altogether.

The DTD de�nes all elements, their possible attributes and the entities associated

with a given document class (HTML2 in our example).

Inside a DTD the start of a declaration is noted by the sequence \<!" and its

termination by `>". Certain sections of a DTD are identi�ed (marked) by a keyword

to ensure they are handled correctly, or to (de)activate their contents according to the

value of the keyword (IGNORE or INCLUDE). The notation for the beginning, respectively

the end of such a marked section is \<![keyword [" and \]]>" (see Lines 37{39,

and 303{305).

4.1 Comments

It is always a good idea to include comment lines inside document sources or DTDs,

whose presence will make them more readable and help in their future maintenance.

An SGML comment has the form:

<!-- text of the comment -->

The comment is limited by the double hyphen signs, --, and can span several lines, as

seen, for instance in Lines 1{11 and 28{35.

4.2 The elements

An element declaration

Each element belonging to the logical structure of a document must be declared. This

declaration speci�es the name of the element, as well as, between parentheses, its

content model, i.e., which elements can or must be part of the element in question.

<!ELEMENT name n m (content model)>

For instance Lines 614 and 616 are equivalent to the declaration:3

<!ELEMENT HTML O O (HEAD, BODY)>

The part between the element name \HTML" and the content model \(HEAD, BODY)"

describes the minimization possibilities for the <HTML> tag (see \Omitting tags" below).

The present declaration speci�es that an HTML document contains a \HEAD" followed

by a \BODY". Line 533 and the de�nition of the parameter entity on Lines 548{551

specify further that the document head must contain a \TITLE" and can contain a few

more elements (ISINDEX, BASE, META, etc).

3. The form used in the DTD at line 616 uses a parameter entity, see Section 4.4.

A practical introduction to SGML 43

symbol description

, all must appear and in the order indicated (ordered \and")

& all must appear but any order is allowed (unordered \and")

| one and only one can appear (exclusive \or")

+ element must appear once or more

? optional element (0 or one)

* element can appear once or more

Table 1: Order and choice operators

Omitting tags

It is possible that under certain circumstances one can infer automatically from the

context that an omitted tag is present. This possibility must be declared for each element

between the element's name and its content model in the form of two blank separated

characters, corresponding, respectively, to the omittag characteristics of the start and

end tag. There are only two possible values, namely a hyphen \-" indicating that the

tag must be present (cannot be omitted), and an uppercase letter O \O" signifying that

it may be omitted. For example, for numbered (OL) and unnumbered (UL) lists and their

elements (LI) one has (from Lines 379 and 411, resp.):4

<!ELEMENT (OL|UL) - - (LI)+>

<!ELEMENT LI - O %flow>

The two blank-separated hyphens, \- -", on the �rst line specify that one must always

use the begin and end tags for the list declarations (. . . and . . .)

while the \- O" on the second line indicate that the end tag for the members of a list

(. . .) may be omitted.

The contents model

As already mentioned, the content model uses order and choice operators (see Table 1

for a list).

We already encountered the operator of choice (|), which speci�es that one of

the elements can be present (but not more than one at a time). Let us now turn our

attention to another example with a description list (<DL>) as declared on Line 357 as:

<!ELEMENT DL - - (DT*, DD?)+>

This indicates that for a description list the start tag <DL> and end tag </DL> must

always be present, and that the list can contain one or more occurrences ((...)+) of

zero or more <DT> tags (DT*) that can be followed (,) by at most one <DD> tag (DD?).

An element with multiple members that can appear in any order is de�ned on Lines

548{553. These lines essentially stipulate that an HTML head can contain, in any order,

4. The meaning of the symbols | and + is explained in Section 4.2, see especially Table 1; the de�nition of

the parameter entity %flow can be found on Line 313, see also Section 4.2.

44 Michel Goossens and Janne Saarela

a title (TITLE), zero or one <ISINDEX>, <BASE>, and <NEXTID> tags, and zero or more

<META> and <LINK>:

<!ELEMENT HEAD O O (%head.content)>

<!ENTITY % head.content

"TITLE & ISINDEX? & BASE? &

(%head.extra)">

<!ENTITY % head.extra

"NEXTID? & META* & LINK*">

An element can contain other elements, characters, or both (in the latter case one

speaks of a mixed content).

One can specify to the SGML parser the type of characters that can be used. The

following reserved names are de�ned for that purpose:

PCDATA parsed character data.

The characters are supposed to have been treated by the parser and can thus

no longer contain entity references or tags. For instance, on Line 557 an HTML

title is de�ned as:

<!ELEMENT TITLE - - (#PCDATA)>

RCDATA replaceable character data.

The parser can expect to �nd only characters or entity references, i.e., (begin

and end) tags are forbidden.

CDATA character data.

No further processing is needed by the SGML parser (nevertheless, the data

might be processed by another program, for instance PostScript). A telephone

number in a letterhead could be declared thus:

<!ELEMENT TEL CDATA>

ANY The element can contain data of type PCDATA or any other element de�ned

in the DTD.

EMPTY The element has an empty content. It can, however, be quali�ed by possible

attributes (see Section 4.3). An example of this is the tag and its

attributes as de�ned on Lines 233{240.

Certain elements can be used anywhere in the document source. In this case it is

convenient to declare them as included in the element document. More generally, an

element can be contained in the content model of another element and can be part

of any of the element's constituents. In this case the syntax +(...) is used. Similarly,

one can exclude certain elements from the element being de�ned by using the syntax

-(...). For instance, the electronic HTML form is de�ned on Line 457 as follows:

<!ELEMENT FORM - - %body.content

-(FORM) +(INPUT|SELECT|TEXTAREA)>

This states that the <FORM> element can contain everything speci�ed by the parameter

entity %body.content (Lines 430, 267, 146, and 309{311). Moreover, all these elements

A practical introduction to SGML 45

keyword value of attribute

CDATA textual data (any characters)

ENTITY(IES) general entity name(s)

ID an SGML element identi�er

IDREF(S) value(s) of element identi�er reference(s)

NAME(S) SGML name(s)

NMTOKEN(S) nominal lexical token(s)

NOTATION notation name

NUMBER(S) number(s)

NUTOKEN(S) numeric lexical token(s)

Table 2: Keywords for attribute types

can contain, at any level the tags <INPUT>, <SELECT>, or <TEXTAREA>. On the other

hand, forms are not recursive, since the <FORM> tag cannot contain itself (-(FORM)).

4.3 Attributes

All possible attributes of all elements in a DTD must be explicitly declared in the same

DTD. For reasons of clarity and convenience, attribute declarations normally immediately

follow the declaration of the element they refer to.

An attribute declaration consists of:

� the name of the element(s) that it refers to;

� the name of the attribute;

� either the attribute type, speci�ed as one of the keywords shown in Table 2, or,

between parentheses, the list of values the attribute can take;

� a default value (one of the possible values speci�ed between quotes, or one of the

keywords shown in Table 3).

An attribute declaration thus takes the following form:

<!ATTLIST element_name

attribute_1 (values) "default"

attribute_2 (values) "default"

... >

For instance, the list declaration (<DL>) (Lines 357{362) de�nes an attribute \com-

pact" to indicate that the members of a list should be typeset more densely.

<!ATTLIST DL COMPACT (COMPACT) #IMPLIED

This declaration speci�es that the only possible value is COMPACT and that the system

(the parser) will provide a default value (#IMPLIED, see Table 3).

One might also wish to specify numeric information, for instance, the <PRE> tag

(Lines 317{320) has an attribute to specify the width of the line:

<!ATTLIST PRE WIDTH NUMBER #implied

46 Michel Goossens and Janne Saarela

keyword description

#FIXED The attribute has a �xed value and can take only that value.

#REQUIRED The value is mandatory and must be speci�ed by the use.

#CURRENT If no value is speci�ed, then the default value will be the the last

speci�ed value.

#CONREF The value will be used for cross-references.

#IMPLIED If no value is speci�ed, the parser will assign a value.

Table 3: Keywords for attribute default values

The attribute type is an \(integer) number" (keyword: NUMBER) and if no value is

speci�ed then the parser will supply a default (#implied).

As a last example let us once more look at the element (image) and its

attributes (Lines 234{240), whose de�nitions correspond essentially to the following

declaration:

<!ATTLIST IMG

SRC %URI; #REQUIRED

ALT CDATA #IMPLIED

ALIGN (top|middle|bottom) #IMPLIED

ISMAP (ISMAP) #IMPLIED

....

The �rst line references the parameter entity %URI (see Lines 73{84) that de�nes a

Uniform Resource Identi�er. This attribute is mandatory (#REQUIRED). The other at-

tributes are optional and have a system-de�ned default value (#IMPLIED). In the case

of the alignment attribute (ALIGN) a choice of any of three values if possible.

4.4 Entities

Entities can be used for the following purposes:

� The de�nitions of abbreviated notations to ease repetitive text strings (general

entities); for example,

<!ENTITY TUG "\TeX{} Users Group">

� The de�nition of notations to input special characters, accents or symbols (general

character entities). An example of character entities can be found on Lines 102{105;

<!ENTITY amp CDATA "&"

-- "&" (ampersand) -->

ISO has de�ned several standard character entity sets, for instance, for national

characters (see Appendix D), graphical symbols, mathematics, etc.

� The inclusion of external �les (external entities).

� The de�nition of variables in a DTD (parameter entities).

A practical introduction to SGML 47

It is important to note that, contrary to element and attribute names, which are

case insensitive and can be speci�ed in upper, lower, or mixed case, entity names are

case-sensitive, and one must take care to specify them precisely as they are de�ned.

General entities are declared in the DTD. An entity declaration �rst speci�es a

symbolic name for the entity, followed by its contents. The latter can contain tags,

entity references, etc., that will be interpreted when the entity is expanded.

To refer to an entity one makes use of an entity reference, which takes the form:

&entity_name;

For example, if one wants to use the entity \TUG" de�ned above, one should type

in the document source the string of characters &TUG; and the parser replaces this by

the string \TEX Users Group".

The data associated with an entity can be in another (external) �le (external entity).

This kind of entity can be used to include in the source document being parsed a table

or �gure (or any kind of data) that was prepared with another application. Instead of

including the complete contents of the �le in the declaration, one merely speci�es the

name of the �le where the data is stored. The �lename must be preceded by the keyword

"SYSTEM", for example, for the unix operating system one might have a declaration of

the form:

<!ENTITY article SYSTEM

"/usr/goossens/tug/sgmlart.sgml">

Inside a DTD one frequently uses parameter entities that allow one to considerably

increase the modularity of the de�nition of the various elements de�ned in the DTD.

Simple examples are (Lines 89, 91, 175);

<!ENTITY % heading "H1|H2|H3|H4|H5|H6">

<!ENTITY % list " UL | OL | DIR | MENU " >

<!ENTITY % text "#PCDATA | A | IMG | BR">

These entities are used, for instance, on Lines 212, 267, 430.

<!ELEMENT (%heading) - - (%text;)+>

4.5 Other DTDs

In order to get a better idea of what DTDs for more complex documents look like, we

shall brie
y discuss the HTML3, DocBook and ISO12083.

HTML3

As it name indicates, HTML3 is a successor to the present HTML Standard (also know

as HTML2, and discussed in detail in the previous sections). HTML35 builds upon HTML2

and provides full backwards compatibility. Tables have been one of the most requested

features; HTML3 proposes a rather simple table model that is suitable for rendering on

a very wide range of output devices, including braille and speech synthesizers.

5. See URL http://www.hpl.hp.co.uk/people/dsr/html/CoverPage.html.

48 Michel Goossens and Janne Saarela

Inline �gures are available and provide for client-side handling of hot zones whilst

cleanly catering for non-graphical browsers. Text can
ow around �gures and full
ow

control for starting new elements is possible.

Mathematics support for equations and formulae in HTML3 mainly uses TEX's box

paradigm. The implementation uses a simple markup scheme, that is still powerful

enough to cope with over 90% of the most common cases. Filters from TEX and other

word processing systems will allow one to easily convert existing sources into HTML3.

As HTML is most often used to present information on-screen, it is important to allow

some positioning control for the various elements in a document. Therefore, HTML3 in-

cludes support for customized lists; �ne positioning control with entities like &emspace;,

horizontal tabs, and alignment of headers and paragraph text.

As well as this, many other often-requested features have been included, most no-

tably a style-sheet mechanism, which counters the temptation to continually add more

presentation features by giving the user almost full control over document rendering,

and taking into account the user's preferences (window size, resource limitations such

as availability of fonts)

The HTML3.0 Internet draft speci�cation is being developed by the IETF (Internet

Engineering Task Force) taking into account the following guidelines:

� interoperability and openness;

� simplicity and scalability;

� platform independence;

� content, not presentation markup;

� support for cascaded style sheets, non-visual media, and di�erent ways of creating

HTML.

To illustrate the use of this DTD one can look at the table and mathematics parts of the

HTML3 DTD (see Appendix E) and at the markup examples and the generated output

(Figures 4 and 6).

DocBook

The DocBook DTD6 de�nes structural SGML markup for computer documentation and

technical books. It is supported by the Davenport Group, an association of software doc-

umentation producers established to promote the interchange and delivery of computer

documentation using SGML and other relevant standards.

The primary goal in developing the DTD was to �lter existing software documen-

tation into SGML. It describes the structures the collaborators of the Davenport group

and other producers and consumers of software documentation have encountered in pro-

cessing large bodies of documentation. The DocBook DTD uses a book model for the

documents. A book is composed of book elements such as Prefaces, Chapters, Appen-

dices, and Glossaries. Five section levels are available and these may contain paragraphs,

lists, index entries, cross references and links.

6. See URL ftp://ftp.ora.com/pub/davenport/docbook/fullguide.sgm.

A practical introduction to SGML 49

<TABLE BORDER>

<TR> <TD>R1 C1</TD><TD>R1 C2</TD><TD>R1 C3</TD>

</TR>

<TR> <TD>R2 C1</TD><TD>R2 C2</TD><TD>R2 C3</TD>

</TR>

</TABLE>

<TABLE BORDER>

<TR> <TD ROWSPAN=2>R12 C1</TD>

<TD>R1 C2</TD><TD>R1 C3</TD>

</TR>

<TR> <TD>R2 C2</TD><TD>R2 C3</TD>

</TR>

<TR> <TD>R3 C1</TD><TD COLSPAN=2>R3 C23</TD>

</TR>

</TABLE>

<TABLE BORDER>

<TR> <TH COLSPAN=2>Head 1-2</TH>

<TH COLSPAN=2>Head 3-4</TH>

</TR>

<TR> <TH>Head 1</TH><TH>Head 2</TH>

<TH>Head 3</TH><TH>Head 4</TH>

</TR>

<TR> <TD>R3 C1</TD><TD>R3 C2</TD>

<TD>R3 C3</TD><TD>R3 C4</TD>

</TR>

<TR> <TD>R4 C1</TD><TD>R4 C2</TD>

<TD>R4 C3</TD><TD>R4 C4</TD>

</TR>

</TABLE>

<P>

<TABLE BORDER>

<TR> <TH COLSPAN=2 ROWSPAN=2></TH>

<TH COLSPAN=2>Background</TH>

</TR>

<TR> <TH>Blue</TH><TH>Yellow</TH>

</TR>

<TR> <TH ROWSPAN=2>Text</TH>

<TH>Red</TH><TD>fair</TD><TD>good</TD>

</TR>

<TR> <TH>Green</TH><TD>bad</TD><TD>good</TD>

</TR>

</TABLE>

Figure 3: HTML3 example of tables (source)

50 Michel Goossens and Janne Saarela

Figure 4: HTML3 example of tables (result with the Mosaic browser)

The DTD also leaves room for localizations. The user of the DTD is free to give

own content models for appendixes, chapters, equations, indexes, etc.

The AAP e�ort and ISO 12083

The American Association of Publishers (AAP) has been working since the publication of

the SGML Standard in 1985 on promoting SGML as an electronic standard for manuscript

preparation. This document, developed over several years as the \AAP Standard," was

later promoted to by the Electronic Publishing Special Interest Group (EPSIG) and the

AAP as \the Electronic Manuscript Standard," and is now a NISO (National Information

Standards Organization) publication. The AAP/EPSIG application is SGML-conforming,

and provides a suggested tag set for authors and publishers. It de�nes the format syntax

A practical introduction to SGML 51

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML 3.0//EN//">

<HTML>

<TITLE>A Math Sampler</TITLE>

<BODY>

<H1>Formulae by examples</H1>

<MATH>x^Iy^J

z^K 

<BOX>(<LEFT>1 + u<OVER>v<RIGHT>)</BOX>

</MATH>

<P><MATH><BOX>[<LEFT>x + y<RIGHT>]</BOX> 

<BOX>(<LEFT>a<RIGHT>]</BOX> 

<BOX>||<LEFT>b<RIGHT>||</BOX></MATH>

<P><MATH>int_a^b

<BOX>f(x)<over>1+x</BOX> 

sin ( x²+1) dt</MATH>

<P><MATH>

<box>dσ<over>dε</box>

=<box>2πZr₀²m

<over>β²(E-m)</box>

[<box>(γ-1)²

<over>γ²</box>

+<box>1<over>ε</box>]

</MATH>

</BODY>

</HTML>

Figure 5: HTML3 example of simple mathematics (source)

of the application of SGML publication of books and journals. The Standard achieves

two goals. First, it establishes an agreed way to identify and tag parts of an electronic

manuscript so that computers can distinguish between these parts. Second, it provides

a logical way to represent special characters, symbols, and tabular material, using only

the ASCII character set found on a standard keyboard.

For several years the AAP and the EPS (European Physical Society) have been

working on a standard method for marking up scienti�c documents. There work has

been the basis for International Standard ISO 12083, the successor to the AAP/EPSIG

Standard, and four DTDs have been distributed by EPSIG as the \ISO" DTDs.7

7. They can be found at the URL http://www.sil.org/sgml/gen-apps.html\#iso12083DTDs.

52 Michel Goossens and Janne Saarela

Figure 6: HTML3 example of simple mathematics (result with the arena browser)

This DTD has a basic book structure consisting of chapters, sections and subsections

down to six levels. The mathematics part is, however, of some interest since it can be

compared to HTML3.

The ISO 12083 table model

The ISO 12083 table model consists of the following elements (see Figure 7 for the

relevant part of the DTD):

<table> the table element;

<np> number;

<title> title;

<tbody> table body;

A practical introduction to SGML 53

<!-- +++ -->

<!-- Tables -->

<!-- +++ -->

<!ELEMENT table - - (no?, title?, tbody) -(%i.float;) >

<!ELEMENT tbody - O (head*, tsubhead*, row*) >

<!ELEMENT row - O (tstub?, cell*) >

<!ELEMENT tsubhead - O %m.ph; >

<!ELEMENT (tstub|cell) - O %m.pseq; >

Figure 7: Part of the ISO 12083 DTD relating to simple tables

.

<head> head;

<tsubhead> table subhead;

<row> row;

<tstub> table stub;

<cell> cell.

This table model does not support spanning rows or columns. It does, however, sup-

port subhead elements that can be used to give more granularity to the table contents.

An example of a marked-up table is shown below.

<table>

<no>1<title>Capitals in Europe

<tbody>

<row><cell>Helsinki<cell>Finland

<row><cell>Rome<cell>Italy

<row><cell>Bern<cell>Switzerland

</table>

Only the simple table model discussed above is part of the basic ISO 12083 DTD as

distributed. There also exists a complex table model [3] that allows the user to treat

more complex tabular material.

The ISO 12083 mathematics model

The mathematics model in ISO 12083 consists of the following element categories:

character transformations

<bold>, <italic>, <sansser>, <typewrit>, <smallcap>, <roman>;

fractions

<fraction>, <num>, <den>;

superiors, inferiors

<sup>, <inf>;

54 Michel Goossens and Janne Saarela

embellishments

<top>, <middle>, <bottom>;

fences, boxes, overlines and underlines

<mark>, <fence>, <post>, <box>,

<overline>, <undrline>;

roots

<radical>, <radix>, <radicand>;

arrays

<array>, <arrayrow>, <arraycol>,

<arraycel>;

spacing

<hspace>, <vspace>, <break>, <markref>;

formulas

<formula>, <dformula>, <dformgrp>.

The model has basically the same elements as the HTML3 model, but is more visual.

Emphasis is on creating fences at the right places inside a formula, whereas the HTML3

model uses <left> and <right> elements. A simple example is:

<formula>

S = ∑<inf>n=1</inf>¹⁰

<fraction>

<num>1</num>

<den>

<radical>3<radix>n</radical>

</den>

</fraction>

</formula>

The complete DTD is shown in Appendix F, which shows the �le math.dtd that is

part of the ISO 12083 DTD set.

5 SGML editors

Several solutions exist to enter SGML or HTML markup into a document, but an editor

that is SGML-aware is probably the best solution. Several (mostly commercial) products

exist (see [16], [17], and [18]), but in the remaining part of this section we shall have a

look at a public domain solution based on the Emacs editor with the psgml application

and on the Grif-based Symposia editor.

A practical introduction to SGML 55

Figure 8: Emacs in psgml mode

5.1 Emacs and PSGML

A major mode for editing SGML documents, psgml8, works with the latest versions of gnu

Emacs. It includes a simple SGML parser and accepts any DTD. It o�ers several menus

and commands for inserting tags with only the contextually valid tags, identi�cation of

structural errors, editing of attribute values in a separate window with information about

types and defaults, and structure-based editing.

Figure 8 shows the �rst HTML test example, to be discussed later (see example

test1.html in Section 6.2). Both the psgml mode and the nsgmls program, discussed

below, use a catalog �le whose structure is de�ned by the SGML Open consortium to

8. The psgml home page is at the URL http://www.lysator.liu.se/projects/about_psgml.html.

56 Michel Goossens and Janne Saarela

ESC C-SPC sgml-mark-element

ESC TAB sgml-complete

ESC C-t sgml-transpose-element

ESC C-h sgml-mark-current-element

ESC C-@ sgml-mark-element

ESC C-k sgml-kill-element

ESC C-u sgml-backward-up-element

ESC C-d sgml-down-element

ESC C-b sgml-backward-element

ESC C-f sgml-forward-element

ESC C-e sgml-end-of-element

ESC C-a sgml-beginning-of-element

C-c C-u Prefix Command

C-c RET sgml-split-element

C-c C-f Prefix Command

C-c C-w sgml-what-element

C-c C-v sgml-validate

C-c C-t sgml-list-valid-tags

C-c C-s sgml-unfold-line

C-c C-r sgml-tag-region

C-c C-q sgml-fill-element

C-c C-p sgml-parse-prolog

C-c C-o sgml-next-trouble-spot

C-c C-n sgml-up-element

C-c C-l sgml-show-or-clear-log

C-c C-k sgml-kill-markup

C-c C-e sgml-insert-element

C-c C-d sgml-next-data-field

C-c C-c sgml-show-context

C-c C-a sgml-edit-attributes

C-c = sgml-change-element-name

C-c < sgml-insert-tag

C-c / sgml-insert-end-tag

C-c - sgml-untag-element

C-c # sgml-make-character-reference

Figure 9: Emacs key-bindings with psgml

A practical introduction to SGML 57

locate the SGML declarations and DTDs (see Appendix C). Thanks to the name of the

DTD declared on the <!DOCTYPE> declaration and that catalog �le, psgml loads the

HTML2 DTD into memory and can then handle the HTML source �le. In the Figure,

all the elements that can occur at the position of the pointer are shown. Figures 9

shows the more important key combinations for quickly calling some functions. For in-

stance, the sequence C-c C-t (sgml-list-valid-tags) was used to obtain the list in

the lower part of Figure 8. As a last technical (but important) detail, in order to func-

tion properly, two variables should be de�ned in the psgml initialization �le psgml.el,

namely sgml-system-path, a list of directories used to look for system identi�ers, and

sgml-public-map, a mapping from public identi�ers to �le names.9

5.2 Symposia

At the Third International World Wide Web Conference \Technology, Tools and Appli-

cations"10, which took place in Darmstadt, Germany, from 10 - 13 April 1995, Vincent

Quint and collaborators discussed their authoring environment for SGML texts in general,

and HTML on WWW in particular.11 Their approach is based on the Grif editor, which

can work with any DTD. They announced that a version with the HTML3 DTD will be

made available freely under the name of Symposia. Grif (and Symposia) allow the user

to enter text in a wysywig way, but entered elements are validated against the DTD. An

example is given in Figure 10, which shows us to be in insert mode in the �rst column

on the �rst row of the table, where we input the word \text", whilst Figure 11 shows

the generated SGML(HTML) source, hidden from the user, but available for any kind of

treatment that one would like to do on the document.

6 SGML utilities

As SGML is now actively used in many applications in the �eld of document production

(see Section 1.2 and [17]) several commercial and publicly available solutions are now

available to increase the productivity, user-friendliness, and ease of using SGML systems.

This section reviews a few of the more interesting publicly available tools.

6.1 Validating an SGML document with NSGMLS

It is often important and useful to be able to validate an SGML (and hence HTML)

document. This can, for instance, be achieved with the publicly available SGML parser

9. See the documentation coming with psgml for more details.

10. An overview of the papers is at the URL http://www.igd.fhg.de/www/www95/papers/.

11. Their paper is available at the URL http://www.igd.fhg.de/www/www95/papers/84/EditHTML.html.

58 Michel Goossens and Janne Saarela

Figure 10: Inserting text in an SGML document with Symposia

Figure 11: SGML source of the document shown in Figure 10

A practical introduction to SGML 59

nsgmls, which is part of sp12, a system developed by James Clark (jjc@jclark.com),

and a successor to his older sgmls13 and arcsgml, written by Charles Goldfarb, who is

considered by many as the father of SGML, and who is also the author of \The SGML

Handbook" [5] describing the SGML Standard in great detail, a reference work that every

serious SGML user should possess.

The nsgmls parser can be called with the syntax:

nsgmls [-deglprsuvx] [-alinktype]

[-ffile] [-iname] [-mfile]

[-tfile] [-wwarning_type]

[filename...]

nsgmls needs at least four �les to run:

� the catalog �le, which describes how the SGML �le's <!DOCTYPE> declaration is

mapped to a �lename (see below);

� the SGML declaration, de�ning the character set used by subsequent �les, and the

sizes of various internal limits, such as the permitted length of identi�ers, as well

as what features of SGML are used, such as tag minimization (see the start of

Section 4 on page 41 and Appendix B);

� the DTD for the document type;

� an SGML or HTML document instance.

6.2 The <!DOCTYPE> declaration

The <!DOCTYPE> declaration has three parameters, as shown in the following example.

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

The �rst parameter speci�es the name of the document class according to which the

document instance (the user's source �le) is marked up. The second parameter is either

SYSTEM or PUBLIC. With the SYSTEM keyword the next parameter contains the �lename

of the DTD, but since actual �lenames are system-dependent, this syntax should be

discouraged in favour of the PUBLIC keyword. In this case, the whereabouts of the DTD

are de�ned via an external entity reference. The SGML Standard does not itself de�ne

how the mapping between this entity reference and an external �le is de�ned, but SGML

12. sp is available at the URL http://www.jclark.com/sp.html. For more information about other publicly

available SGML software, have a look at the the public SGML software list at the URL http://www.

sil.org/sgml/publicSW.html. More generally, on the SGML Web Page at http://www.sil.org/sgml/

sgml.html one �nds entry points to all the above, plus many examples of DTDs, more information about

SGML, Hytime, DSSSL, etc.

13. smgls is written in highly portable C code, whilst nsgmls is C++ with extensive template use, which

limits the portability and makes the installation of the latter somewhat more complicated. Also the executable

module of sgmls is about half the size of the one of nsgmls. See the comments of Nelson Beebe at the URL

http://www.math.utah.edu/~beebe/sp-notes.html for the current situation with implementing nsgmls

on several architectures.

60 Michel Goossens and Janne Saarela

Open has proposed the format of a catalog �le in which those mappings are speci�ed.

A few examples are shown below.

PUBLIC "-//IETF//DTD HTML//EN"

/usr/goossens/sgml/dtds/html.dtd

PUBLIC "ISO 12083:1994//DTD Math//EN"

/usr/joe/dtds/math.dtd

PUBLIC "-//IETF//ENTITIES Latin 1//EN"

/use/joe/sgml/dtds/iso-lat1.sgm

The �rst string following the keyword PUBLIC is called a \public identi�er", a name which

is intended to be meaningful across systems and di�erent user environments. Formally a

public identi�er is composed of several �elds, separated by a double solidus, \//". The

�rst part is an \owner identi�er" (the �rst and third entries have a hyphen, -, meaning

that these identi�ers were not formally registered, and the organization who created

the �le was the IETF (the Internet Engineering Task Force); the second entry carries

an ISO owner identi�er. The second part of the public identi�er (following the double

solidus), is called the \text identi�er". The �rst word indicates the \public text class"

(for example, DTD and ENTITIES), and is followed by the \public text description" (HTML,

Latin 1, etc.), then, optionally, after another double solidus one �nds the \public text

language", a code from ISO Standard 639 ([9] { EN, for English in our case), and this

can be followed by a \display version", if needed.

The �nal element is the �lename associated with the public identi�er speci�ed in

the second �eld.

HTML examples

It is not our intention to describe the various options of this program in detail, but

we shall limit ourselves to showing, with the help of a few simple examples, how this

interesting tool can be used.

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML 2.0//EN">

<HTML>

<!-- This is document test1.html -->

<HEAD>

<TITLE>Document test1.html</TITLE>

</HEAD>

<!-- Beginning of body of document -->

<BODY>

<DL>

<DT>term 1<DD>data 1

<DT>term 2<DD>data 2

<DT>term 3

<DT>term 4<DD>data 4<DD>data 4 bis

A practical introduction to SGML 61

</DL>

á

</BODY>

</HTML>

Presenting this document to nsgmls one obtains the following output in the \Element

Structure Information Set" (ESIS) format.

> nsgmls -m catalog sgml.decl test1.html

#SDA

AVERSION CDATA -//IETF//DTD HTML 2.0//EN

ASDAFORM CDATA Book

(HTML

(HEAD

ASDAFORM CDATA Ti

(TITLE

-Document test1.html

)TITLE

)HEAD

(BODY

ACOMPACT IMPLIED

ASDAFORM CDATA List

ASDAPREF CDATA Definition List:

(DL

ASDAFORM CDATA Term

(DT

-term 1

)DT

ASDAFORM CDATA LItem

(DD

-data 1\n

)DD

ASDAFORM CDATA Term

(DT

-term 2

)DT

ASDAFORM CDATA LItem

(DD

-data 2\n

)DD

ASDAFORM CDATA Term

(DT

62 Michel Goossens and Janne Saarela

-term 3\n

)DT

ASDAFORM CDATA Term

(DT

-term 4

)DT

ASDAFORM CDATA LItem

(DD

-data 4

)DD

ASDAFORM CDATA LItem

(DD

-data 4 bis

)DD

)DL

-\n\|[aacute]\|

)BODY

)HTML

C

As it should, nsgmls parses this program without problems, and shows the di�erent

elements it encounters in ESIS format. The meaning of the most common output

commands generated by nsgmls is as follows.

\\ a \;

\n a record end ;

\| brackets internal SDATA entities;

\nnn character whose octal code is nnn;

(gi start of element whose generic identi�er is gi, attributes for this element are

speci�ed with A commands;

)gi end of element whose generic identi�er is gi;

-data data;

&name reference to external data entity name;

Aname val next element has an attribute name with speci�er and value val (see Tables

2 and 3)

#text application information (can only occur once);

C signals that the document was a conforming document. It will always be the

last command output.

For incorrect documents nsgmls shows an error:

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

A practical introduction to SGML 63

<HTML>

<BODY>

<P>text inside a paragraph

</BODY>

</HTML>

If we present this document to nsgmls (placing the HTML DTD shown in the appendix

at the beginning of the �le) one obtains:

> nsgmls -m catalog sgml.decl test2.html

test2.html:4:6:E: \

element `BODY' not allowed here

test2.html:7:7:E: \

end tag for `HTML' which is not finished

#SDA

AVERSION CDATA -//IETF//DTD HTML 2.0//EN

ASDAFORM CDATA Book

(HTML

(BODY

-

ASDAFORM CDATA Para

(P

-text inside a paragraph

)P

)BODY

)HTML

Note that nsgmls indicates at the fourth line that a <BODY> tag cannot be used at that

particular point (since no mandatory <HEAD> element { Line 614 of DTD { was spec-

i�ed). Then, after reading the last (seventh) line containing the </HTML> tag, nsgmls

complains that the HTML document (enclosed inside <HTML> tags) is not yet �nished.

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

<HTML>

<HEAD>

<TITLE>title</TITLE>

</HEAD>

<BODY>

</BODY>

</HTML>

64 Michel Goossens and Janne Saarela

Those only interested in checking the syntax of a document can run nsgmls with the

-s option, so that it will only print the error messages, as with the incorrect HTML �le

above.

> nsgmls -s -m catalog sgml.decl test3.html

test3.html:8:4:E: \

element `LI' not allowed here

nsgmls does not complain until Line 8, where an isolated list member is found.

As this is not correct according to the DTD, nsgmls signals its disagreement by stating

that the tag is not allowed at that point (Lines 379 and 394 of the DTD state

that list member elements of type can only be used in lists of type , ,

<MENU>, and <DIR>).

6.3 Prettyprinting

Nelson Beebe (beebe@math.utah.edu) has developed a program htmlpty14, written in

the lex and C languages, to prettyprint HTML �les. Its calling sequence is:

htmlpty [-options] [file(s)]

where the more interesting options are:

-f filename name output �le in comment banner;

-h display usage summary;

-i nnn set indentation to nnn spaces per level;

-n no comment banner;

-w nnn set output line width to nnn.

The program was run on �le test1.html with the result shown below.

> html-pretty -i2 -n test1.html

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

<HTML>

<!-- This is document doc1.sgm -->

<HEAD>

<TITLE>

Document test HTML

</TITLE>

</HEAD>

<!-- Beginning of body of document -->

<BODY>

<DL>

<DT>

14. It is at URL ftp://ftp.math.utah.edu/pub/misc/htmlpty-x.yy.trz (choose the latest version x.yz

o�ered).

A practical introduction to SGML 65

term 1

</DT>

<DD>

data 1

</DD>

<DT>

term 2

</DT>

<DD>

data 2

</DD>

<DT>

term 3

</DT>

<DT>

term 4

</DT>

<DD>

data 4

</DD>

<DD>

data 4 bis

</DD>

</DL>

á

</BODY>

</HTML>

The program html-pretty applies heuristics to detect, and often correct, common

HTML errors. It can turn a pure ASCII �le into a syntactically-valid HTML �le that may

then only require a small amount of additional markup to indicate required line breaks.

6.4 SGML document analysis tools

Earl Hook (ehood@convex.com) has developed a set of tools perlSGML15, based on the

perl language. They permit the analysis of SGML documents or DTDs.

dtd2html produces an HTML document starting from an SGML DTD that permits

an easy hypertext navigation through the given DTD;

dtddiff compares two DTDs and shows possible di�erences;

dtdtree shows visually the hierarchical tree structure characterizing the relations

between the various elements of a DTD;

15. This system can be found at the url ftp://ftp.uci.edu/pub/dtd2html.

66 Michel Goossens and Janne Saarela

stripsgml strips a text from its SGML markup, and attempts to translate entity

references by standard ASCII characters.

Let us �rst look at the dtdtree utility. When treating the HTML2 DTD, one obtains

a visual representation that is very useful for understanding the relations that exist

between the various HTML elements. For each element one explicitly sees the elements

it can contain. Three points \..." indicate that the contents of the element has been

shown previously. Lines containing entries between brackets signal a list of elements

that can be included in { (I) and (Ia) { or are excluded from { (X) and (Xa) { the

content model of the element. Figure 12 shows in four columns the (condensed) output

generated by the dtdtree program when treating the HTML2 DTD. For more clarity

most of the repeated blocks have been eliminated and replaced by the string *|**|**|

at the beginning of a line and a few lines have been cut to make them �t (marked with

*** at the end of the line).

Documenting a DTD

To document a DTD (and hence a particular SGML language instance) one can use

the dtd2html utility, which generates, starting from the DTD in question and a �le

describing all document elements, a hypertext representation (in HTML) of all SGML

language elements present in the DTD. This representation makes it easier for users of

an SGML-based documentation system to obtain the information relating to an element

they need for marking up their document. For example, in the case of HTML2, Figure 13

shows the representation as viewed by the HTML browser mosaic.

6.5 Searching and index entries

A search engine for regular expressions for use with the HTML2 DTD is available16

(Figure 14), as well as an index with more than 1100 entries and phrases17 (Figure 15).

Checking an HTML document

For those who do not have sgmls or nsgmls installed there exists a set of programs

htmlchek18, including heuristic checkers for common style and grammar violations. The

programs are available in both perl and awk versions and syntactically check HTML2 and

HTML3 �les for a number of possible errors; they can perform local link cross-reference

veri�cation, and generate a rudimentary reference-dependency map.

htmlchek checks an HTML �le for errors, and giving warnings about possible prob-

lems;

16. http://hopf.math.nwu.edu/html2.0/dosearch.html.

17. http://hopf.math.nwu.edu/html2.0/docindex.html.

18. The documentation is at the URL http://uts.cc.utexas.edu/~churchh/htmlchek.html and the tar

�le at ftp://ftp.cs.buffalo.edu/pub/htmlchek/.

A practical introduction to SGML 67

HTML
|
|_body

| |
| |_#PCDATA
| |_a
| | | (X): a
| | |
| | |_#PCDATA
| | |_b ...
| | |_br ...
| | |_cite ...
| | |_code ...
| | |_em ...
| | |_h1 ...
| | |_h2 ...
| | |_h3 ...
| | |_h4 ...
| | |_h5 ...
| | |_h6 ...
| | |_i ...
| | |_img ...

| | |_kbd ...
| | |_samp ...

| | |_strong ...

| | |_tt ...
| | |_var ...
| |
| |_address
| | |
| | |_#PCDATA
| | |_a ...
| | |_b ...
| | |_br ...
| | |_cite ...
| | |_code ...
| | |_em ...
| | |_i ...
| | |_img ...

| | |_kbd ...
| | |_p ...

| | |_samp ...

| | |_strong ...

| | |_tt ...
| | |_var ...
| |
| |_b
| | |

*|**|**| Like address
| |
| |_blockquote

| | |
| | |_#PCDATA
| | |_a ...
| | |_address ...
| | |_b ...
| | |_blockquote ...

| | |_br ...
| | |_cite ...
| | |_code ...
| | |_dir ...
| | |_dl ...
| | |_em ...
| | |_form ...
| | |_h1 ...
| | |_h2 ...
| | |_h3 ...
| | |_h4 ...
| | |_h5 ...
| | |_h6 ...
| | |_hr ...
| | |_i ...
| | |_img ...

| | |_isindex ...
| | |_kbd ...
| | |_listing ...

| | |_menu ...
| | |_ol ...
| | |_p ...

| | |_pre ...

| | |_samp ...

| | |_strong ...

| | |_tt ...
| | |_ul ...
| | |_var ...
| | |_xmp ...

| |
| |_br
| | |
| | |_EMPTY
| |
| |_cite
| | |

*|**|**| Like address
| |
| |_code
| | |
*|**|**| Like address
| |
| |_dir
| | | (X): ***
| | |
| | |_li
| | | (Xa): ***
| | |
*|**|*****| Like dd
| |
| |_dl
| | |
| | |_dd
| | | |
| | | |_#PCDATA
| | | |_a ...
| | | |_b ...
| | | |_blockquote ...

| | | |_br ...
| | | |_cite ...
| | | |_code ...
| | | |_dir ...
| | | |_dl ...
| | | |_em ...
| | | |_form ...
| | | |_i ...
| | | |_img ...

| | | |_isindex ...
| | | |_kbd ...
| | | |_listing ...

| | | |_menu ...
| | | |_ol ...
| | | |_p ...

| | | |_pre ...

| | | |_samp ...

| | | |_strong ...

| | | |_tt ...
| | | |_ul ...
| | | |_var ...
| | | |_xmp ...

| | |
| | |_dt
| | |
| | |_#PCDATA
| | |_a ...
| | |_b ...
| | |_br ...
| | |_cite ...
| | |_code ...
| | |_em ...
| | |_i ...
| | |_img ...

| | |_kbd ...
| | |_samp ...

| | |_strong ...

| | |_tt ...
| | |_var ...
| |
| |_em
| | |
*|**|**| Like h1
| |
| |_form
| | | (I): ***
| | | (X): form
| | |
| | |_#PCDATA
| | |_a ...
| | |_address ...
| | |_b ...
| | |_blockquote ...

| | |_br ...
| | |_cite ...
| | |_code ...
| | |_dir ...
| | |_dl ...

| | |_em ...
| | |_h1 ...
| | |_h2 ...
| | |_h3 ...
| | |_h4 ...
| | |_h5 ...
| | |_h6 ...
| | |_hr ...
| | |_i ...
| | |_img ...

| | |_input

| | | | (Ia): ***
| | | | (Xa): form
| | | |
| | | |_EMPTY
| | |
| | |_isindex ...
| | |_kbd ...
| | |_listing ...

| | |_menu ...
| | |_ol ...
| | |_p ...

| | |_pre ...

| | |_samp ...

| | |_select
| | | | (Ia): ***
| | | | (Xa): form
| | | |
| | | |_option

| | | | (Ia): ***
| | | | (Xa): form
| | | |
| | | |_#PCDATA
| | |
| | |_strong ...

| | |_textarea
| | | | (Ia): ***
| | | | (Xa): form
| | | |
| | | |_#PCDATA
| | |
| | |_tt ...
| | |_ul ...
| | |_var ...
| | |_xmp ...

| |
| |_h1
| | |
| | |_#PCDATA
| | |_a ...
| | |_b ...
| | |_br ...
| | |_cite ...
| | |_code ...
| | |_em ...
| | |_i ...
| | |_img ...

| | |_kbd ...
| | |_samp ...

| | |_strong ...

| | |_tt ...
| | |_var ...
| |
| |_h2 to h6
| |
| | |
*|**|**| Like h1
| |
| |_hr
| | |
| | |_EMPTY
| |
| |_i
| | |
*|**|**| Like h1
| |
| |_img

| | |
| | |_EMPTY
| |
| |_isindex
| | |
| | |_EMPTY
| |
| |_kbd
| | |

*|**|**| Like h1
| |
| |_listing

| | |
| | |_CDATA
| |
| |_menu
| | | (X): ***
| | |
| | |_li ...
| |
| |_ol
| | |
| | |_li ...
| |
| |_p

| | |
*|**|**| Like h1
| |
| |_pre

| | |
| | |_#PCDATA
| | |_a ...
| | |_b ...
| | |_br ...
| | |_cite ...
| | |_code ...
| | |_em ...
| | |_hr ...
| | |_i ...
| | |_kbd ...
| | |_samp ...

| | |_strong ...

| | |_tt ...
| | |_var ...
| |
| |_samp

| | |
*|**|**| Like h1
| |
| |_strong

| | |
*|**|**| Like h1
| |
| |_tt
| | |
*|**|**| Like h1
| |
| |_ul
| | |
| | |_li ...
| |
| |_var
| | |
*|**|**| Like h1
| |
| |_xmp

| |
| |_CDATA
|
|_head
| |
| |_base
| | |
| | |_EMPTY
| |
| |_isindex ...
| |_link
| | |
| | |_EMPTY
| |
| |_meta
| | |
| | |_EMPTY
| |
| |_nextid
| | |
| | |_EMPTY
| |
| |_title
| |
| |_#PCDATA
|
|_plaintext

|
|_CDATA

Figure 12: Output of the dtdtree program for the HTML2 DTD

68 Michel Goossens and Janne Saarela

Figure 13: Hypertext description of the elements of a DTD (HTML2) as presented by

the HTML browser mosaic

A practical introduction to SGML 69

Figure 14: Searching the HTML2 DTD

70 Michel Goossens and Janne Saarela

Figure 15: Index entries for the HTML2 DTD

A practical introduction to SGML 71

makemenu makes a simple menu for HTML �les, based on each �le's <TITLE> tag;

it can also make a simple table of contents based on the <H1>{<H6>

heading tags;

xtraclnk.pl perl procedure to extract links and anchors from HTML �les and to

isolate text contained inside the <A> and <TITLE> elements;

dehtml removes all HTML markup from a document; is useful for spell checking;

entify replaces 8-bit Latin-1 input by the corresponding 7-bit-safe entity refer-

ences;

The syntax to use these programs is typically:

awk -f htmlchek.awk [opts] infile > outfile

perl htmlchek.pl [opts] infile > outfile

As an example we ran these scripts on the test �les of section 6.2 with the results shown

below, which are consistent with those obtained previously.

> perl dehtml.pl test1.html

Document test HTML

term 1data 1

term 2data 2

term 3

term 4data 4data 4 bis

> awk -f htmlchek.awk test2.html

Diagnostics for file "test2.html":

<body> without preceding <head>...</head>

Warning! at line 4 of file "test2.html"

No <H1> in <body>...</body>

Warning! at line 6 of file "test2.html"

<HEAD> not used in document

Warning! at END of file "test2.html"

<TITLE> not used in document

ERROR! at END of file "test2.html"

Tag P occurred

Tag HTML occurred

Tag BODY occurred

Tag !DOCTYPE occurred

> perl htmlchek.pl test3.html

Diagnostics for file "test3.html":

 outside of list

72 Michel Goossens and Janne Saarela

ERROR! at line 8 of file "test3.html"

No <H1> in <body>...</body>

Warning! at line 9 of file "test3.html"

Tag !DOCTYPE occurred

Tag BODY occurred

Tag HEAD occurred

Tag HTML occurred

Tag LI occurred

Tag TITLE occurred

7 DTD transformations

The logical markup of SGML documents makes it possible to transform the markup

associated to a DTD into that of another. When translating the markup one has to

take into consideration the fact that between some elements a one-to-one mapping

may not exist, but that a many-to-one, and one-to-many correspondence has to be

considered. It should also be noted that the tools used for this purpose need to be

sophisticated, since a normal grammar tool, such as yacc, is not suitable for parsing

SGML documents.

7.1 SGMLS.PL

A translator skeleton, sgmls.pl, is included with the nsgmls distribution. This perl

script reads the ESIS output of nsgmls and provides a set of routines that can be used

for calling user-speci�ed translation routines of each element.

7.2 SGMLS.PM and SGMLSPL

David Megginson (University of Ottawa, Canada, dmeggins@aix1.uottawa.ca) has

developed a more object-oriented approach for the translations, also based on the ESIS

output of nsgmls and calling event-routines for each element found in the input stream.

This package includes a default con�guration for translating documents marked up

according to the DocBook DTD into HTML or LATEX markup.

The sp parser provides an application level interface to SGML document handling.

The core of sp uses C++ and provides a solid class library for parsing SGML documents.

The parsing of an SGML document causes events and the user can write handlers to

translate them in the appropriate way.

7.3 Conversion from DocBook to HTML3

The translation program generates events for each primitive in the source document

and these events are handled by calling a corresponding routine. These routines then

produce the corresponding HTML/LATEX output. Thanks to its object-oriented
avour

A practical introduction to SGML 73

DocBook DTD sgmls
ESIS

representation
Translator

Configuration file

HTML3 DTD

Figure 16: Schematic overview of the DocBook to HTML conversion process

the overall architecture provides solid ground for DTD translations . The following listing

gives an idea of how the conversion is implemented. In the example below two elements

are translated into LATEX. When a tag is found that can be translated, the corresponding

string is produced.

Program listings appear in verbatim

sgml('<PROGRAMLISTING>',

"\n\\begin{verbatim}\n");

sgml('</PROGRAMLISTING>',

"\n\\end{verbatim}}\n");

Class names appear in typewriter.

sgml('<CLASSNAME>', "{\\ttfamily ");

sgml('</CLASSNAME>', "}");

This example is extremely simple since the mappings are basically one-to-one. In

the more general case, when a document element can be used inside di�erent elements,

the substitution is not just a string, but a procedure call, which allows, for instance,

backtracking to cope with context-dependent conversion rules that take into account the

current context. For instance, the code below shows how, when reaching the <TITLE>

end tag, the title information is handled di�erently, according to whether it occurred

inside an article header, section or table element.

sgml('<TITLE>',

sub { push_output 'string'; });

sgml('</TITLE>', sub {

my $element = shift;

my $data = pop_output;

if ($element->in(ARTHEADER)) {

$title = $data;

} elsif ($element->in(SECT1) ||

74 Michel Goossens and Janne Saarela

$element->in(IMPORTANT)) {

output "\n\n\\section{$data}\n";

output "\\label{$id}\n" if $id;

output "\n";

} elsif ($element->in(TABLE)) {

output "\\caption{$data}\n";

output "\\label{$id}\n" if $id;

output "\n";

} else {

die "No TITLE allowed in "

. $element->parent->name . "\n";

}

});

A conversion example of an extract from the DocBook DTD manual is given in

Appendix G. It shows part of the original DocBook document markup, how it is presented

in the ESIS format, �nally its translation in HTML3. Figure 16 shows the principle of the

translation process.

7.4 Commercial solutions

Several companies provide commercial solutions for doing do the translations: Exoterica,

AIS, EBT (Electronic Book Technologies) and Avalanche to mention few.

8 Other standards in the area of electronic documents

SGML is part of a vast project conceived by the International Standards Organization

(ISO) to develop a model to describe the complete process of creating, exchanging,

editing and viewing or printing of electronic documents. This model consists of several

standards, some already adopted, others still under discussion (see [7] and [8]).

SGML (Standard Generalized Markup Language)

ISO 8879, the Standard described in this article is concerned with the creation and editing

of documents. A complementary standard is ISO 9069 [10], SDIF, for \SGML Document

Interchange Format". ISO/IEC 10744, the Hytime Standard, presents a formalism for

the representation of hypermedia documents. The Hytime language ([6], [13]) allows

the descriptions of situations that are time dependent (for example CD-I).

DSSSL (Document Style Semantics and Speci�cation Language)

International Standard ISO 10179 [14], was adopted at the beginning of 1995. It presents

a framework to express the concepts and actions necessary for transforming a structurally

marked up document into its �nal physical form. Although this Standard is primarily

A practical introduction to SGML 75

targeted at document handling, it can also de�ne other layouts, such as those needed

for use with databases.19

SPDL (Standard Page Description Language)

Draft International Standard ISO DIS 10180 [11] de�nes a formalism for the description

of documents in their �nal, completely typeset, unrevisable form.20 The structure of

the language and its syntax strongly resemble the PostScript language, which is not

surprising since PostScript has become the de facto standard page description language.

Fonts

To exchange documents one must also de�ne a font standard. ISO 9541 [12] describes a

method for naming and grouping glyphs or glyph collections independently of a particular

font language (such as PostScript or Truetype).

Acknowledgments

We sincerely thank Nelson Beebe (Utah University, beebe@math.utah.edu) for several

interesting e-mail discussions and for his detailed reading of the compuscript. His sug-

gestions and hints have without doubt substantially improved the quality of the text.

We also want to acknowledge the help of Steven Kennedy (CERN) who proofread the

article.

References

[1] Association of American Publishers, Electronic Manuscript Series. Author's Guide

to Electronic Manuscript Preparation and Markup (Version 2). Association of

American Publishers, EPSIG, Dublin, OH, USA, 1989.

[2] Association of American Publishers, Electronic Manuscript Series. Markup of math-

ematical formulas (Version 2). Association of American Publishers, EPSIG, Dublin,

OH, USA, 1989.

[3] Association of American Publishers, Electronic Manuscript Series. Markup of tab-

ular material (Version 2). Association of American Publishers, EPSIG, Dublin, OH,

USA, 1989.

[4] Association of American Publishers, Electronic Manuscript Series. Reference Man-

ual on Electronic Manuscript Preparation and Markup (Version 2). Association of

American Publishers, EPSIG, Dublin, OH, USA, 1989.

[5] C.F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.

19. More on DSSSL by James Clark is available at the URL http://www.jclark.com/dsssl/.

20. More on SPDL can be found at the URL http://www.st.rim.or.jp/~uda/spdl/spdl.html.

76 Michel Goossens and Janne Saarela

[6] C.F. Goldfarb. Hytime: A standard for structured hypermedia interchange. IEEE

Computer, pages 81{84, August 1991.

[7] M. Goossens and E. van Herwijnen. Introduction sgml, dsssl et spdl. Cahiers

GUTenberg, 12:37{56, December 1991.

[8] M. Goossens and E. van Herwijnen. Scienti�c text processing. Journal of Modern

Physics C, 3(3):479{546, June 1992.

[9] International Organization for Standardization. Code for the presentation of names

of languages. ISO 639:1988 (E/F), ISO Geneva, 1988.

[10] International Organization for Standardization. Information processing { SGML

support facilities { SGML Document Interchange Format (SDIF). ISO 9069:1988,

ISO Geneva, 1988.

[11] International Organization for Standardization. Information Technology { Text

Communication { Standard Page Description Language (SPDL). ISO/IEC DIS

10180, ISO Geneva, 1991.

[12] International Organization for Standardization. Information Technology { Font

information interchange (three parts). ISO/IEC 9541-1,2,3, ISO Geneva, 1991

and 1993.

[13] International Organization for Standardization. Information Technology {

Hypermedia/Time-based Structuring Language (Hytime). ISO/IEC 10744:1992,

ISO Geneva, 1992.

[14] International Organization for Standardization. Information processing { Text and

o�ce systems { Document Style Semantics and Speci�cation Language (DSSSL).

ISO/IEC DIS 10179.2, ISO Geneva, 1994.

[15] International Organization or Standardization. Information processing { Text

and o�ce systems { Standard Generalized Markup Language (SGML). ISO

8879:1986(E), ISO Geneva, 1986.

[16] J. Karney. SGML and tag masters. PC Magazine, 14(3):144{162, 1995.

[17] J. Karney. SGML: It's still �a la carte. PC Magazine, 14(3):168{171, 1995.

[18] P. Ores. Hypertext publishing { edit trial. PC Magazine, 14(3):132{143, 1995.

[19] Eric van Herwijnen. Practical SGML (Second Edition). Wolters-Kluwer Academic

Publishers, Boston, 1994.

[20] Dominique Vignaud. �Editions du Cercle de la Librairie, Paris, 1990.

Appendix A: The DTD of the HTML2 language

1 <!-- html.dtd

2
3 Document Type Definition for the HyperText Markup Language

4 (HTML DTD)

5
6 $Id: html.dtd,v 1.25 1995/03/29 18:53:13 connolly Exp $

7
8 Author: Daniel W. Connolly <connolly@w3.org>

9 See Also: html.decl, html-0.dtd, html-1.dtd

A practical introduction to SGML 77

10 http://info.cern.ch/hypertext/WWW/MarkUp/MarkUp.html

11 -->

12
13 <!ENTITY % HTML.Version

14 "-//IETF//DTD HTML 2.0//EN"

15
16 -- Typical usage:

17
18 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

19 <html>

20 ...

21 </html>

22 --

23 >

24
25
26 <!--============ Feature Test Entities ========================-->

27
28 <!ENTITY % HTML.Recommended "IGNORE"

29 -- Certain features of the language are necessary for

30 compatibility with widespread usage, but they may

31 compromise the structural integrity of a document.

32 This feature test entity enables a more prescriptive

33 document type definition that eliminates

34 those features.

35 -->

36
37 <![%HTML.Recommended [

38 <!ENTITY % HTML.Deprecated "IGNORE">

39]]>

40
41 <!ENTITY % HTML.Deprecated "INCLUDE"

42 -- Certain features of the language are necessary for

43 compatibility with earlier versions of the specification,

44 but they tend to be used an implemented inconsistently,

45 and their use is deprecated. This feature test entity

46 enables a document type definition that eliminates

47 these features.

48 -->

49
50 <!ENTITY % HTML.Highlighting "INCLUDE"

51 -- Use this feature test entity to validate that a

52 document uses no highlighting tags, which may be

53 ignored on minimal implementations.

54 -->

55
56 <!ENTITY % HTML.Forms "INCLUDE"

57 -- Use this feature test entity to validate that a document

58 contains no forms, which may not be supported in minimal

59 implementations

60 -->

61
62 <!--============== Imported Names ==============================-->

63
64 <!ENTITY % Content-Type "CDATA"

65 -- meaning an internet media type

66 (aka MIME content type, as per RFC1521)

67 -->

68
69 <!ENTITY % HTTP-Method "GET | POST"

70 -- as per HTTP specification, in progress

71 -->

72
73 <!ENTITY % URI "CDATA"

78 Michel Goossens and Janne Saarela

74 -- The term URI means a CDATA attribute

75 whose value is a Uniform Resource Identifier,

76 as defined by

77 "Universal Resource Identifiers" by Tim Berners-Lee

78 aka RFC 1630

79
80 Note that CDATA attributes are limited by the LITLEN

81 capacity (1024 in the current version of html.decl),

82 so that URIs in HTML have a bounded length.

83
84 -->

85
86
87 <!--========= DTD "Macros" =====================-->

88
89 <!ENTITY % heading "H1|H2|H3|H4|H5|H6">

90
91 <!ENTITY % list " UL | OL | DIR | MENU " >

92
93
94 <!--======= Character mnemonic entities =================-->

95
96
97 <!ENTITY % ISOlat1 PUBLIC

98 "-//IETF//ENTITIES Added Latin 1 for HTML//EN" "iso-lat1.gml">

99
100 %ISOlat1;

101
102 <!ENTITY amp CDATA "&" -- ampersand -->

103 <!ENTITY gt CDATA ">" -- greater than -->

104 <!ENTITY lt CDATA "<" -- less than -->

105 <!ENTITY quot CDATA """ -- double quote -->

106
107
108 <!--========= SGML Document Access (SDA) Parameter Entities =====-->

109
110 <!-- HTML 2.0 contains SGML Document Access (SDA) fixed attributes

111 in support of easy transformation to the International Committee

112 for Accessible Document Design (ICADD) DTD

113 "-//EC-USA-CDA/ICADD//DTD ICADD22//EN".

114 ICADD applications are designed to support usable access to

115 structured information by print-impaired individuals through

116 Braille, large print and voice synthesis. For more information on

117 SDA & ICADD:

118 - ISO 12083:1993, Annex A.8, Facilities for Braille,

119 large print and computer voice

120 - ICADD ListServ

121 <ICADD%ASUACAD.BITNET@ARIZVM1.ccit.arizona.edu>

122 - Usenet news group bit.listserv.easi

123 - Recording for the Blind, +1 800 221 4792

124 -->

125
126 <!ENTITY % SDAFORM "SDAFORM CDATA #FIXED"

127 -- one to one mapping -->

128 <!ENTITY % SDARULE "SDARULE CDATA #FIXED"

129 -- context-sensitive mapping -->

130 <!ENTITY % SDAPREF "SDAPREF CDATA #FIXED"

131 -- generated text prefix -->

132 <!ENTITY % SDASUFF "SDASUFF CDATA #FIXED"

133 -- generated text suffix -->

134 <!ENTITY % SDASUSP "SDASUSP NAME #FIXED"

135 -- suspend transform process -->

136
137

A practical introduction to SGML 79

138 <!--========== Text Markup =====================-->

139
140 <![%HTML.Highlighting [

141
142 <!ENTITY % font " TT | B | I ">

143
144 <!ENTITY % phrase "EM | STRONG | CODE | SAMP | KBD | VAR | CITE ">

145
146 <!ENTITY % text "#PCDATA | A | IMG | BR | %phrase | %font">

147
148 <!ELEMENT (%font;|%phrase) - - (%text)*>

149 <!ATTLIST (TT | CODE | SAMP | KBD | VAR)

150 %SDAFORM; "Lit"

151 >

152 <!ATTLIST (B | STRONG)

153 %SDAFORM; "B"

154 >

155 <!ATTLIST (I | EM | CITE)

156 %SDAFORM; "It"

157 >

158
159 <!-- <TT> Typewriter text -->

160 <!-- Bold text -->

161 <!-- <I> Italic text -->

162
163 <!-- Emphasized phrase -->

164 <!-- Strong emphais -->

165 <!-- <CODE> Source code phrase -->

166 <!-- <SAMP> Sample text or characters -->

167 <!-- <KBD> Keyboard phrase, e.g. user input -->

168 <!-- <VAR> Variable phrase or substituable -->

169 <!-- <CITE> Name or title of cited work -->

170
171 <!ENTITY % pre.content "#PCDATA | A | HR | BR | %font | %phrase">

172
173]]>

174
175 <!ENTITY % text "#PCDATA | A | IMG | BR">

176
177 <!ELEMENT BR - O EMPTY>

178 <!ATTLIST BR

179 %SDAPREF; "&#RE;"

180 >

181
182 <!--
 Line break -->

183
184
185 <!--========= Link Markup ======================-->

186
187 <![%HTML.Recommended [

188 <!ENTITY % linkName "ID">

189]]>

190
191 <!ENTITY % linkName "CDATA">

192
193 <!ENTITY % linkType "NAME"

194 -- a list of these will be specified at a later date -->

195
196 <!ENTITY % linkExtraAttributes

197 "REL %linkType #IMPLIED

198 REV %linkType #IMPLIED

199 URN CDATA #IMPLIED

200 TITLE CDATA #IMPLIED

201 METHODS NAMES #IMPLIED

80 Michel Goossens and Janne Saarela

202 ">

203
204 <![%HTML.Recommended [

205 <!ENTITY % A.content "(%text)*"

206 -- <H1>Heading</H1>

207 is preferred to

208 <H1>Heading</H1>

209 -->

210]]>

211
212 <!ENTITY % A.content "(%heading|%text)*">

213
214 <!ELEMENT A - - %A.content -(A)>

215 <!ATTLIST A

216 HREF %URI #IMPLIED

217 NAME %linkName #IMPLIED

218 %linkExtraAttributes;

219 %SDAPREF; "<Anchor: #AttList>"

220 >

221 <!-- <A> Anchor; source/destination of link -->

222 <!-- Name of this anchor -->

223 <!-- Address of link destination -->

224 <!-- Permanent address of destination -->

225 <!-- Relationship to destination -->

226 <!-- Relationship of destination to this -->

227 <!-- Title of destination (advisory) -->

228 <!-- Operations on destination (advisory) -->

229
230
231 <!--========== Images ==========================-->

232
233 <!ELEMENT IMG - O EMPTY>

234 <!ATTLIST IMG

235 SRC %URI; #REQUIRED

236 ALT CDATA #IMPLIED

237 ALIGN (top|middle|bottom) #IMPLIED

238 ISMAP (ISMAP) #IMPLIED

239 %SDAPREF; "<Fig><?SDATrans Img: #AttList>#AttVal(Alt)</Fig>"

240 >

241
242 <!-- Image; icon, glyph or illustration -->

243 <!-- Address of image object -->

244 <!-- Textual alternative -->

245 <!-- Position relative to text -->

246 <!-- Each pixel can be a link -->

247
248 <!--========== Paragraphs=======================-->

249
250 <!ELEMENT P - O (%text)*>

251 <!ATTLIST P

252 %SDAFORM; "Para"

253 >

254
255 <!-- <P> Paragraph -->

256
257
258 <!--========== Headings, Titles, Sections ===============-->

259
260 <!ELEMENT HR - O EMPTY>

261 <!ATTLIST HR

262 %SDAPREF; "&#RE;&#RE;"

263 >

264
265 <!-- <HR> Horizontal rule -->

A practical introduction to SGML 81

266
267 <!ELEMENT (%heading) - - (%text;)*>

268 <!ATTLIST H1

269 %SDAFORM; "H1"

270 >

271 <!ATTLIST H2

272 %SDAFORM; "H2"

273 >

274 <!ATTLIST H3

275 %SDAFORM; "H3"

276 >

277 <!ATTLIST H4

278 %SDAFORM; "H4"

279 >

280 <!ATTLIST H5

281 %SDAFORM; "H5"

282 >

283 <!ATTLIST H6

284 %SDAFORM; "H6"

285 >

286
287 <!-- <H1> Heading, level 1 -->

288 <!-- <H2> Heading, level 2 -->

289 <!-- <H3> Heading, level 3 -->

290 <!-- <H4> Heading, level 4 -->

291 <!-- <H5> Heading, level 5 -->

292 <!-- <H6> Heading, level 6 -->

293
294
295 <!--========== Text Flows ======================-->

296
297 <![%HTML.Forms [

298 <!ENTITY % block.forms "BLOCKQUOTE | FORM | ISINDEX">

299]]>

300
301 <!ENTITY % block.forms "BLOCKQUOTE">

302
303 <![%HTML.Deprecated [

304 <!ENTITY % preformatted "PRE | XMP | LISTING">

305]]>

306
307 <!ENTITY % preformatted "PRE">

308
309 <!ENTITY % block "P | %list | DL

310 | %preformatted

311 | %block.forms">

312
313 <!ENTITY % flow "(%text|%block)*">

314
315 <!ENTITY % pre.content "#PCDATA | A | HR | BR">

316 <!ELEMENT PRE - - (%pre.content)*>

317 <!ATTLIST PRE

318 WIDTH NUMBER #implied

319 %SDAFORM; "Lit"

320 >

321
322 <!-- <PRE> Preformatted text -->

323 <!-- <PRE WIDTH=...> Maximum characters per line -->

324
325 <![%HTML.Deprecated [

326
327 <!ENTITY % literal "CDATA"

328 -- historical, non-conforming parsing mode where

329 the only markup signal is the end tag

82 Michel Goossens and Janne Saarela

330 in full

331 -->

332
333 <!ELEMENT (XMP|LISTING) - - %literal>

334 <!ATTLIST XMP

335 %SDAFORM; "Lit"

336 %SDAPREF; "Example:&#RE;"

337 >

338 <!ATTLIST LISTING

339 %SDAFORM; "Lit"

340 %SDAPREF; "Listing:&#RE;"

341 >

342
343 <!-- <XMP> Example section -->

344 <!-- <LISTING> Computer listing -->

345
346 <!ELEMENT PLAINTEXT - O %literal>

347 <!-- <PLAINTEXT> Plain text passage -->

348
349 <!ATTLIST PLAINTEXT

350 %SDAFORM; "Lit"

351 >

352]]>

353
354
355 <!--========== Lists ==================-->

356
357 <!ELEMENT DL - - (DT | DD)+>

358 <!ATTLIST DL

359 COMPACT (COMPACT) #IMPLIED

360 %SDAFORM; "List"

361 %SDAPREF; "Definition List:"

362 >

363
364 <!ELEMENT DT - O (%text)*>

365 <!ATTLIST DT

366 %SDAFORM; "Term"

367 >

368
369 <!ELEMENT DD - O %flow>

370 <!ATTLIST DD

371 %SDAFORM; "LItem"

372 >

373
374 <!-- <DL> Definition list, or glossary -->

375 <!-- <DL COMPACT> Compact style list -->

376 <!-- <DT> Term in definition list -->

377 <!-- <DD> Definition of term -->

378
379 <!ELEMENT (OL|UL) - - (LI)+>

380 <!ATTLIST OL

381 COMPACT (COMPACT) #IMPLIED

382 %SDAFORM; "List"

383 >

384 <!ATTLIST UL

385 COMPACT (COMPACT) #IMPLIED

386 %SDAFORM; "List"

387 >

388 <!-- Unordered list -->

389 <!-- <UL COMPACT> Compact list style -->

390 <!-- Ordered, or numbered list -->

391 <!-- <OL COMPACT> Compact list style -->

392
393

A practical introduction to SGML 83

394 <!ELEMENT (DIR|MENU) - - (LI)+ -(%block)>

395 <!ATTLIST DIR

396 COMPACT (COMPACT) #IMPLIED

397 %SDAFORM; "List"

398 %SDAPREF; "<LHead>Directory</LHead>"

399 >

400 <!ATTLIST MENU

401 COMPACT (COMPACT) #IMPLIED

402 %SDAFORM; "List"

403 %SDAPREF; "<LHead>Menu</LHead>"

404 >

405
406 <!-- <DIR> Directory list -->

407 <!-- <DIR COMPACT> Compact list style -->

408 <!-- <MENU> Menu list -->

409 <!-- <MENU COMPACT> Compact list style -->

410
411 <!ELEMENT LI - O %flow>

412 <!ATTLIST LI

413 %SDAFORM; "LItem"

414 >

415
416 <!-- List item -->

417
418 <!--========== Document Body ===================-->

419
420 <![%HTML.Recommended [

421 <!ENTITY % body.content "(%heading|%block|HR|ADDRESS|IMG)*"

422 -- <h1>Heading</h1>

423 <p>Text ...

424 is preferred to

425 <h1>Heading</h1>

426 Text ...

427 -->

428]]>

429
430 <!ENTITY % body.content "(%heading | %text | %block |

431 HR | ADDRESS)*">

432
433 <!ELEMENT BODY O O %body.content>

434
435 <!-- <BODY> Document body -->

436
437 <!ELEMENT BLOCKQUOTE - - %body.content>

438 <!ATTLIST BLOCKQUOTE

439 %SDAFORM; "BQ"

440 >

441
442 <!-- <BLOCKQUOTE> Quoted passage -->

443
444 <!ELEMENT ADDRESS - - (%text|P)*>

445 <!ATTLIST ADDRESS

446 %SDAFORM; "Lit"

447 %SDAPREF; "Address:&#RE;"

448 >

449
450 <!-- <ADDRESS> Address, signature, or byline -->

451
452
453 <!--======= Forms ====================-->

454
455 <![%HTML.Forms [

456
457 <!ELEMENT FORM - - %body.content -(FORM) +(INPUT|SELECT|TEXTAREA)>

84 Michel Goossens and Janne Saarela

458 <!ATTLIST FORM

459 ACTION %URI #IMPLIED

460 METHOD (%HTTP-Method) GET

461 ENCTYPE %Content-Type; "application/x-www-form-urlencoded"

462 %SDAPREF; "<Para>Form:</Para>"

463 %SDASUFF; "<Para>Form End.</Para>"

464 >

465
466 <!-- <FORM> Fill-out or data-entry form -->

467 <!-- <FORM ACTION="..."> Address for completed form -->

468 <!-- <FORM METHOD=...> Method of submitting form -->

469 <!-- <FORM ENCTYPE="..."> Representation of form data -->

470
471 <!ENTITY % InputType "(TEXT | PASSWORD | CHECKBOX |

472 RADIO | SUBMIT | RESET |

473 IMAGE | HIDDEN)">

474 <!ELEMENT INPUT - O EMPTY>

475 <!ATTLIST INPUT

476 TYPE %InputType TEXT

477 NAME CDATA #IMPLIED

478 VALUE CDATA #IMPLIED

479 SRC %URI #IMPLIED

480 CHECKED (CHECKED) #IMPLIED

481 SIZE CDATA #IMPLIED

482 MAXLENGTH NUMBER #IMPLIED

483 ALIGN (top|middle|bottom) #IMPLIED

484 %SDAPREF; "Input: "

485 >

486
487 <!-- <INPUT> Form input datum -->

488 <!-- <INPUT TYPE=...> Type of input interaction -->

489 <!-- <INPUT NAME=...> Name of form datum -->

490 <!-- <INPUT VALUE="..."> Default/initial/selected value -->

491 <!-- <INPUT SRC="..."> Address of image -->

492 <!-- <INPUT CHECKED> Initial state is "on" -->

493 <!-- <INPUT SIZE=...> Field size hint -->

494 <!-- <INPUT MAXLENGTH=...> Data length maximum -->

495 <!-- <INPUT ALIGN=...> Image alignment -->

496
497 <!ELEMENT SELECT - - (OPTION+) -(INPUT|SELECT|TEXTAREA)>

498 <!ATTLIST SELECT

499 NAME CDATA #REQUIRED

500 SIZE NUMBER #IMPLIED

501 MULTIPLE (MULTIPLE) #IMPLIED

502 %SDAFORM; "List"

503 %SDAPREF;

504 "<LHead>Select #AttVal(Multiple)</LHead>"

505 >

506
507 <!-- <SELECT> Selection of option(s) -->

508 <!-- <SELECT NAME=...> Name of form datum -->

509 <!-- <SELECT SIZE=...> Options displayed at a time -->

510 <!-- <SELECT MULTIPLE> Multiple selections allowed -->

511
512 <!ELEMENT OPTION - O (#PCDATA)*>

513 <!ATTLIST OPTION

514 SELECTED (SELECTED) #IMPLIED

515 VALUE CDATA #IMPLIED

516 %SDAFORM; "LItem"

517 %SDAPREF;

518 "Option: #AttVal(Value) #AttVal(Selected)"

519 >

520
521 <!-- <OPTION> A selection option -->

A practical introduction to SGML 85

522 <!-- <OPTION SELECTED> Initial state -->

523 <!-- <OPTION VALUE="..."> Form datum value for this option-->

524
525 <!ELEMENT TEXTAREA - - (#PCDATA)* -(INPUT|SELECT|TEXTAREA)>

526 <!ATTLIST TEXTAREA

527 NAME CDATA #REQUIRED

528 ROWS NUMBER #REQUIRED

529 COLS NUMBER #REQUIRED

530 %SDAFORM; "Para"

531 %SDAPREF; "Input Text -- #AttVal(Name): "

532 >

533
534 <!-- <TEXTAREA> An area for text input -->

535 <!-- <TEXTAREA NAME=...> Name of form datum -->

536 <!-- <TEXTAREA ROWS=...> Height of area -->

537 <!-- <TEXTAREA COLS=...> Width of area -->

538
539]]>

540
541
542 <!--======= Document Head ======================-->

543
544 <![%HTML.Recommended [

545 <!ENTITY % head.extra "META* & LINK*">

546]]>

547
548 <!ENTITY % head.extra "NEXTID? & META* & LINK*">

549
550 <!ENTITY % head.content "TITLE & ISINDEX? & BASE? &

551 (%head.extra)">

552
553 <!ELEMENT HEAD O O (%head.content)>

554
555 <!-- <HEAD> Document head -->

556
557 <!ELEMENT TITLE - - (#PCDATA)*>

558 <!ATTLIST TITLE

559 %SDAFORM; "Ti" >

560
561 <!-- <TITLE> Title of document -->

562
563 <!ELEMENT LINK - O EMPTY>

564 <!ATTLIST LINK

565 HREF %URI #REQUIRED

566 %linkExtraAttributes;

567 %SDAPREF; "Linked to : #AttVal (TITLE) (URN) (HREF)>" >

568
569 <!-- <LINK> Link from this document -->

570 <!-- <LINK HREF="..."> Address of link destination -->

571 <!-- <LINK URN="..."> Lasting name of destination -->

572 <!-- <LINK REL=...> Relationship to destination -->

573 <!-- <LINK REV=...> Relationship of destination to this -->

574 <!-- <LINK TITLE="..."> Title of destination (advisory) -->

575 <!-- <LINK METHODS="..."> Operations allowed (advisory) -->

576
577 <!ELEMENT ISINDEX - O EMPTY>

578 <!ATTLIST ISINDEX

579 %SDAPREF;

580 "<Para>[Document is indexed/searchable.]</Para>">

581
582 <!-- <ISINDEX> Document is a searchable index -->

583
584 <!ELEMENT BASE - O EMPTY>

585 <!ATTLIST BASE

86 Michel Goossens and Janne Saarela

586 HREF %URI; #REQUIRED >

587
588 <!-- <BASE> Base context document -->

589 <!-- <BASE HREF="..."> Address for this document -->

590
591 <!ELEMENT NEXTID - O EMPTY>

592 <!ATTLIST NEXTID

593 N %linkName #REQUIRED >

594
595 <!-- <NEXTID> Next ID to use for link name -->

596 <!-- <NEXTID N=...> Next ID to use for link name -->

597
598 <!ELEMENT META - O EMPTY>

599 <!ATTLIST META

600 HTTP-EQUIV NAME #IMPLIED

601 NAME NAME #IMPLIED

602 CONTENT CDATA #REQUIRED >

603
604 <!-- <META> Generic Metainformation -->

605 <!-- <META HTTP-EQUIV=...> HTTP response header name -->

606 <!-- <META NAME=...> Metainformation name -->

607 <!-- <META CONTENT="..."> Associated information -->

608
609 <!--======= Document Structure =================-->

610
611 <![%HTML.Deprecated [

612 <!ENTITY % html.content "HEAD, BODY, PLAINTEXT?">

613]]>

614 <!ENTITY % html.content "HEAD, BODY">

615
616 <!ELEMENT HTML O O (%html.content)>

617 <!ENTITY % version.attr "VERSION CDATA #FIXED '%HTML.Version;'">

618
619 <!ATTLIST HTML

620 %version.attr;

621 %SDAFORM; "Book"

622 >

623
624 <!-- <HTML> HTML Document -->

Appendix B: The HTML2 SGML declaration

1 <!SGML "ISO 8879:1986"

2 --

3 SGML Declaration for HyperText Markup Language (HTML).

4
5 --

6
7 CHARSET

8 BASESET "ISO 646:1983//CHARSET

9 International Reference Version

10 (IRV)//ESC 2/5 4/0"

11 DESCSET 0 9 UNUSED

12 9 2 9

13 11 2 UNUSED

14 13 1 13

15 14 18 UNUSED

16 32 95 32

17 127 1 UNUSED

18 BASESET "ISO Registration Number 100//CHARSET

19 ECMA-94 Right Part of

20 Latin Alphabet Nr. 1//ESC 2/13 4/1"

A practical introduction to SGML 87

21
22 DESCSET 128 32 UNUSED

23 160 96 32

24
25 CAPACITY SGMLREF

26 TOTALCAP 150000

27 GRPCAP 150000

28
29 SCOPE DOCUMENT

30 SYNTAX

31 SHUNCHAR CONTROLS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

32 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 127

33 BASESET "ISO 646:1983//CHARSET

34 International Reference Version

35 (IRV)//ESC 2/5 4/0"

36 DESCSET 0 128 0

37 FUNCTION

38 RE 13

39 RS 10

40 SPACE 32

41 TAB SEPCHAR 9

42
43
44 NAMING LCNMSTRT ""

45 UCNMSTRT ""

46 LCNMCHAR ".-"

47 UCNMCHAR ".-"

48 NAMECASE GENERAL YES

49 ENTITY NO

50 DELIM GENERAL SGMLREF

51 SHORTREF SGMLREF

52 NAMES SGMLREF

53 QUANTITY SGMLREF

54 ATTSPLEN 2100

55 LITLEN 1024

56 NAMELEN 72 -- somewhat arbitrary; taken from

57 internet line length conventions --

58 PILEN 1024

59 TAGLEN 2100

60 GRPGTCNT 150

61 GRPCNT 64

62
63 FEATURES

64 MINIMIZE

65 DATATAG NO

66 OMITTAG YES

67 RANK NO

68 SHORTTAG YES

69 LINK

70 SIMPLE NO

71 IMPLICIT NO

72 EXPLICIT NO

73 OTHER

74 CONCUR NO

75 SUBDOC NO

76 FORMAL YES

77 APPINFO "SDA" -- conforming SGML Document Access application

78 --

79 >

80 <!--

81 $Id: html.decl,v 1.14 1995/02/10 22:20:05 connolly Exp $

82
83 Author: Daniel W. Connolly <connolly@hal.com>

84

88 Michel Goossens and Janne Saarela

85 See also: http://www.hal.com/%7Econnolly/html-spec

86 http://info.cern.ch/hypertext/WWW/MarkUp/MarkUp.html

87 -->

Appendix C: The SGML open HTML catalog �le

SGML Open is an industry consortium dedicated to encouraging the adoption of SGML

as a standard for document and data interchange. It proposes a standard way for mapping

entity and other external references in a DTD to �le names via a \catalog" �le. Below

is an example of such a catalog �le for HTML.

Appendix D: The ISO-Latin1 entity set

To have an idea of how character entity sets are de�ned in practice, below is shown the

�le corresponding to Latin1 (standard ISO/IEC 8859-1), available as SGML public entity

set ISOlat1 with ISO 8879.

1 <!-- (C) International Organization for Standardization 1986

2 Permission to copy in any form is granted for use with

3 conforming SGML systems and applications as defined in

4 ISO 8879, provided this notice is included in all copies.

5 -->

6 <!-- Character entity set. Typical invocation:

7 <!ENTITY % ISOlat1 PUBLIC

8 "ISO 8879-1986//ENTITIES Added Latin 1//EN">

9 %ISOlat1;

10 -->

11 <!ENTITY aacute SDATA "[aacute]"--=small a, acute accent-->

12 <!ENTITY Aacute SDATA "[Aacute]"--=capital A, acute accent-->

13 <!ENTITY acirc SDATA "[acirc]"--=small a, circumflex accent-->

14 <!ENTITY Acirc SDATA "[Acirc]"--=capital A, circumflex accent-->

15 <!ENTITY agrave SDATA "[agrave]"--=small a, grave accent-->

16 <!ENTITY Agrave SDATA "[Agrave]"--=capital A, grave accent-->

17 <!ENTITY aring SDATA "[aring]"--=small a, ring-->

18 <!ENTITY Aring SDATA "[Aring]"--=capital A, ring-->

19 <!ENTITY atilde SDATA "[atilde]"--=small a, tilde-->

20 <!ENTITY Atilde SDATA "[Atilde]"--=capital A, tilde-->

21 <!ENTITY auml SDATA "[auml]"--=small a, dieresis or umlaut mark-->

22 <!ENTITY Auml SDATA "[Auml]"--=capital A, dieresis or umlaut mark-->

23 <!ENTITY aelig SDATA "[aelig]"--=small ae diphthong (ligature)-->

24 <!ENTITY AElig SDATA "[AElig]"--=capital AE diphthong (ligature)-->

25 <!ENTITY ccedil SDATA "[ccedil]"--=small c, cedilla-->

26 <!ENTITY Ccedil SDATA "[Ccedil]"--=capital C, cedilla-->

27 <!ENTITY eth SDATA "[eth]"--=small eth, Icelandic-->

28 <!ENTITY ETH SDATA "[ETH]"--=capital Eth, Icelandic-->

29 <!ENTITY eacute SDATA "[eacute]"--=small e, acute accent-->

30 <!ENTITY Eacute SDATA "[Eacute]"--=capital E, acute accent-->

31 <!ENTITY ecirc SDATA "[ecirc]"--=small e, circumflex accent-->

32 <!ENTITY Ecirc SDATA "[Ecirc]"--=capital E, circumflex accent-->

33 <!ENTITY egrave SDATA "[egrave]"--=small e, grave accent-->

34 <!ENTITY Egrave SDATA "[Egrave]"--=capital E, grave accent-->

35 <!ENTITY euml SDATA "[euml]"--=small e, dieresis or umlaut mark-->

36 <!ENTITY Euml SDATA "[Euml]"--=capital E, dieresis or umlaut mark-->

37 <!ENTITY iacute SDATA "[iacute]"--=small i, acute accent-->

A practical introduction to SGML 89

38 <!ENTITY Iacute SDATA "[Iacute]"--=capital I, acute accent-->

39 <!ENTITY icirc SDATA "[icirc]"--=small i, circumflex accent-->

40 <!ENTITY Icirc SDATA "[Icirc]"--=capital I, circumflex accent-->

41 <!ENTITY igrave SDATA "[igrave]"--=small i, grave accent-->

42 <!ENTITY Igrave SDATA "[Igrave]"--=capital I, grave accent-->

43 <!ENTITY iuml SDATA "[iuml]"--=small i, dieresis or umlaut mark-->

44 <!ENTITY Iuml SDATA "[Iuml]"--=capital I, dieresis or umlaut mark-->

45 <!ENTITY ntilde SDATA "[ntilde]"--=small n, tilde-->

46 <!ENTITY Ntilde SDATA "[Ntilde]"--=capital N, tilde-->

47 <!ENTITY oacute SDATA "[oacute]"--=small o, acute accent-->

48 <!ENTITY Oacute SDATA "[Oacute]"--=capital O, acute accent-->

49 <!ENTITY ocirc SDATA "[ocirc]"--=small o, circumflex accent-->

50 <!ENTITY Ocirc SDATA "[Ocirc]"--=capital O, circumflex accent-->

51 <!ENTITY ograve SDATA "[ograve]"--=small o, grave accent-->

52 <!ENTITY Ograve SDATA "[Ograve]"--=capital O, grave accent-->

53 <!ENTITY oslash SDATA "[oslash]"--=small o, slash-->

54 <!ENTITY Oslash SDATA "[Oslash]"--=capital O, slash-->

55 <!ENTITY otilde SDATA "[otilde]"--=small o, tilde-->

56 <!ENTITY Otilde SDATA "[Otilde]"--=capital O, tilde-->

57 <!ENTITY ouml SDATA "[ouml]"--=small o, dieresis or umlaut mark-->

58 <!ENTITY Ouml SDATA "[Ouml]"--=capital O, dieresis or umlaut mark-->

59 <!ENTITY szlig SDATA "[szlig]"--=small sharp s, German (sz ligature)-->

60 <!ENTITY thorn SDATA "[thorn]"--=small thorn, Icelandic-->

61 <!ENTITY THORN SDATA "[THORN]"--=capital THORN, Icelandic-->

62 <!ENTITY uacute SDATA "[uacute]"--=small u, acute accent-->

63 <!ENTITY Uacute SDATA "[Uacute]"--=capital U, acute accent-->

64 <!ENTITY ucirc SDATA "[ucirc]"--=small u, circumflex accent-->

65 <!ENTITY Ucirc SDATA "[Ucirc]"--=capital U, circumflex accent-->

66 <!ENTITY ugrave SDATA "[ugrave]"--=small u, grave accent-->

67 <!ENTITY Ugrave SDATA "[Ugrave]"--=capital U, grave accent-->

68 <!ENTITY uuml SDATA "[uuml]"--=small u, dieresis or umlaut mark-->

69 <!ENTITY Uuml SDATA "[Uuml]"--=capital U, dieresis or umlaut mark-->

70 <!ENTITY yacute SDATA "[yacute]"--=small y, acute accent-->

71 <!ENTITY Yacute SDATA "[Yacute]"--=capital Y, acute accent-->

72 <!ENTITY yuml SDATA "[yuml]"--=small y, dieresis or umlaut mark-->

73

Appendix E: The HTML3 DTD { Tables and mathematics parts

This appendix shows those parts of the HTML3 DTD that relate to tables and mathe-

matics.

1 <!--======================= Captions ======================================-->

2
3 <!ELEMENT CAPTION - - (%text;)+ -- table or figure caption -->

4 <!ATTLIST CAPTION

5 %attrs;

6 align (top|bottom|left|right) #IMPLIED

7 >

8 <!--======================= Tables ==-->

9
10 <!--

11 Tables and figures can be aligned in several ways:

12
13 bleedleft flush left with the left (window) border

14 left flush left with the left text margin

15 center centered (text flow is disabled for this mode)

16 right flush right with the right text margin

17 bleedright flush right with the right (window) border

18 justify when applicable the table/figure should stretch

19 to fill space between the text margins

90 Michel Goossens and Janne Saarela

20
21 Note: text will flow around the table or figure if the browser

22 judges there is enough room and the alignment is not centered

23 or justified. The table or figure may itself be part of the

24 text flow around some earlier figure. You can in this case use

25 the clear or needs attributes to move the new table or figure

26 down the page beyond the obstructing earlier figure. Similarly,

27 you can use the clear or needs attributes with other elements

28 such as headers and lists to move them further down the page.

29 -->

30
31 <!ENTITY % block.align

32 "align (bleedleft|left|center|right|bleedright|justify) center">

33
34 <!--

35 The HTML 3.0 table model has been chosen for its simplicity

36 and the ease in writing filters from common DTP packages.

37
38 By default the table is automatically sized according to the

39 cell contents and the current window size. Specifying the columns

40 widths using the colspec attribute allows browsers to start

41 displaying the table without having to wait for last row.

42
43 The colspec attribute is a list of column widths and alignment

44 specifications. The columns are listed from left to right with

45 a capital letter followed by a number, e.g. COLSPEC="L20 C8 L40".

46 The letter is L for left, C for center, R for right alignment of

47 cell contents. J is for justification, when feasible, otherwise

48 this is treated in the same way as L for left alignment.

49 Column entries are delimited by one or more space characters.

50
51 The number specifies the width in em's, pixels or as a

52 fractional value of the table width, as according to the

53 associated units attribute. This approach is more compact

54 than used with most SGML table models and chosen to simplify

55 hand entry. The width attribute allows you to specify the

56 width of the table in pixels, em units or as a percentage

57 of the space between the current left and right margins.

58
59 To assist with rendering to speech, row and column headers

60 can be given short names using the AXIS attribute. The AXES

61 attribute is used to explicitly specify the row and column

62 names for use with each cell. Otherwise browsers can follow

63 up columns and left along rows (right for some languages)

64 to find the corresponding header cells.

65
66 Table content model: Braille limits the width of tables,

67 placing severe limits on column widths. User agents need

68 to render big cells by moving the content to a note placed

69 before the table. The cell is then rendered as a link to

70 the corresponding note.

71
72 To assist with formatting tables to paged media, authors

73 can differentiate leading and trailing rows that are to

74 be duplicated when splitting tables across page boundaries.

75 The recommended way is to subclass rows with the CLASS attribute

76 For example: <TR CLASS=Header>, <TR CLASS=Footer> are used for

77 header and footer rows. Paged browsers insert footer rows at

78 the bottom of the current page and header rows at the top of

79 the new page, followed by the remaining body rows.

80 -->

81
82 <!ELEMENT TABLE - - (CAPTION?, TR*) -- mixed headers and data -->

83 <!ATTLIST TABLE

A practical introduction to SGML 91

84 %attrs;

85 %needs; -- for control of text flow --

86 border (border) #IMPLIED -- draw borders --

87 colspec CDATA #IMPLIED -- column widths and alignment --

88 units (em|pixels|relative) em -- units for column widths --

89 width NUMBER #IMPLIED -- absolute or percentage width --

90 %block.align; -- horizontal alignment --

91 nowrap (nowrap) #IMPLIED -- don't wrap words --

92 >

93
94 <!ENTITY % cell "TH | TD">

95 <!ENTITY % vertical.align "top|middle|bottom|baseline">

96
97 <!--

98 Browsers should tolerate an omission of the first <TR>

99 tag as it is implied by the context. Missing trailing

100 <TR>s implied by rowspans should be ignored.

101
102 The alignment attributes act as defaults for rows

103 overriding the colspec attribute and being in turn

104 overridden by alignment attributes on cell elements.

105 Use valign=baseline when you want to ensure that text

106 in different cells on the same row is aligned on the

107 same baseline regardless of fonts. It only applies

108 when the cells contain a single line of text.

109 -->

110
111 <!ELEMENT TR - O (%cell)* -- row container -->

112 <!ATTLIST TR

113 %attrs;

114 align (left|center|right|justify) #IMPLIED

115 valign (%vertical.align) top -- vertical alignment --

116 nowrap (nowrap) #IMPLIED -- don't wrap words --

117 >

118
119 <!--

120 Note that table cells can include nested tables.

121 Missing cells are considered to be empty, while

122 missing rows should be ignored, i.e. if a cell

123 spans a row and there are no further TR elements

124 then the implied row should be ignored.

125 -->

126
127 <!ELEMENT (%cell) - O %body.content>

128 <!ATTLIST (%cell)

129 %attrs;

130 colspan NUMBER 1 -- columns spanned --

131 rowspan NUMBER 1 -- rows spanned --

132 align (left|center|right|justify) #IMPLIED

133 valign (%vertical.align) top -- vertical alignment --

134 nowrap (nowrap) #IMPLIED -- don't wrap words --

135 axis CDATA #IMPLIED -- axis name, defaults to element content --

136 axes CDATA #IMPLIED -- comma separated list of axis names --

137 >

138
139 <!--================ Entities for math symbols ============================-->

140
141 <!-- ISO subset chosen for use with the widely available Adobe math font -->

142
143 <!ENTITY % HTMLmath PUBLIC

144 "-//IETF//ENTITIES Math and Greek for HTML//EN">

145 %HTMLmath;

146
147 <!--======================== Math ==-->

92 Michel Goossens and Janne Saarela

148
149 <!-- Use     etc for greater control of spacing. -->

150
151 <!-- Subscripts and Superscripts

152
153 <SUB> and <SUP> are used for subscripts and superscripts.

154
155 i j

156 X ⁱY^j is X Y

157
158 i.e. the space following the X disambiguates the binding.

159 The align attribute can be used for horizontal alignment,

160 e.g. to explicitly place an index above an element:

161 i

162 Xⁱ produces X

163
164 Short references are defined for superscripts, subscripts and boxes

165 to save typing when manually editing HTML math, e.g.

166
167 x^2^ is mapped to x²

168 y_z_ is mapped to y_z

169 {a+b} is mapped to <box>a + b</box>

170
171 Note that these only apply within the MATH element and can't be

172 used in normal text!

173 -->

174 <!ENTITY REF1 STARTTAG "SUP">

175 <!ENTITY REF2 ENDTAG "SUP">

176 <!ENTITY REF3 STARTTAG "SUB">

177 <!ENTITY REF4 ENDTAG "SUB">

178 <!ENTITY REF5 STARTTAG "BOX">

179 <!ENTITY REF6 ENDTAG "BOX">

180
181 <!USEMAP MAP1 MATH>

182 <!USEMAP MAP2 SUP>

183 <!USEMAP MAP3 SUB>

184 <!USEMAP MAP4 BOX>

185
186 <!SHORTREF MAP1 "^" REF1

187 "_" REF3

188 "{" REF5 >

189
190 <!SHORTREF MAP2 "^" REF2

191 "_" REF3

192 "{" REF5 >

193
194 <!SHORTREF MAP3 "_" REF4

195 "^" REF1

196 "{" REF5 >

197
198 <!SHORTREF MAP4 "}" REF6

199 "^" REF1

200 "_" REF3

201 "{" REF5 >

202
203 <!--

204 The inclusion of %math and exclusion of %notmath is used here

205 to alter the content model for the B, SUB and SUP elements,

206 to limit them to formulae rather than general text elements.

207 -->

208
209 <!ENTITY % mathvec "VEC|BAR|DOT|DDOT|HAT|TILDE" -- common accents -->

210 <!ENTITY % mathface "B|T|BT" -- control of font face -->

211 <!ENTITY % math "BOX|ABOVE|BELOW|%mathvec|ROOT|SQRT|ARRAY|SUB|SUP|%mathface">

A practical introduction to SGML 93

212 <!ENTITY % formula "#PCDATA|%math">

213
214 <!ELEMENT MATH - - (#PCDATA)* -(%notmath) +(%math)>

215 <!ATTLIST MATH

216 id ID #IMPLIED

217 model CDATA #IMPLIED>

218
219 <!-- The BOX element acts as brackets. Delimiters are optional and

220 stretch to match the height of the box. The OVER element is used

221 when you want a line between numerator and denominator. This line

222 is suppressed with the alternative ATOP element. CHOOSE acts like

223 ATOP but adds enclosing round brackets as a convenience for binomial

224 coefficients. Note the use of { and } as shorthand for <BOX> and

225 </BOX> respectively:

226
227 1 + X

228 {1 + X<OVER>Y} is _______

229 Y

230
231 a + b

232 {a + b<ATOP>c - d} is

233 c - d

234
235 The delimiters are represented using the LEFT and RIGHT

236 elements as in:

237
238 {[<LEFT>x + y<RIGHT>]} is [x + y]

239 {(<LEFT>a<RIGHT>]} is (a]

240 {||<LEFT>a<RIGHT>||} is || a ||

241
242 Use { and } for "{" and "}" respectively as

243 these symbols are used as shorthand for BOX, e.g.

244
245 {{<LEFT>a+b<RIGHT>}} is {a+b}

246
247 You can stretch definite integrals to match the integrand, e.g.

248
249 {∫_a^b<LEFT>{f(x)<over>1+x} dx}

250
251 b

252 / f(x)

253 | ----- dx

254 / 1 + x

255 a

256
257 Note the complex content model for BOX is a work around

258 for the absence of support for infix operators in SGML.

259
260 You can get oversize delimiters with the SIZE attribute,

261 for example <BOX SIZE=large>(<LEFT>...<RIGHT>)</BOX>

262
263 Note that the names of common functions are recognized

264 by the parser without the need to use "&" and ";" around

265 them, e.g. int, sum, sin, cos, tan, ...

266 -->

267
268 <!ELEMENT BOX - - ((%formula)*, (LEFT, (%formula)*)?,

269 ((OVER|ATOP|CHOOSE), (%formula)*)?,

270 (RIGHT, (%formula)*)?)>

271 <!ATTLIST BOX

272 size (normal|medium|large|huge) normal -- oversize delims -->

273
274 <!ELEMENT (OVER|ATOP|CHOOSE|LEFT|RIGHT) - O EMPTY>

275

94 Michel Goossens and Janne Saarela

276 <!-- Horizontal line drawn ABOVE contents

277 The symbol attribute allows authors to supply

278 an entity name for an accent, arrow symbol etc.

279 Generalisation of LaTeX's overline command.

280 -->

281
282 <!ELEMENT ABOVE - - (%formula)+>

283 <!ATTLIST ABOVE symbol ENTITY #IMPLIED>

284
285 <!-- Horizontal line drawn BELOW contents

286 The symbol attribute allows authors to

287 supply an entity name for an arrow symbol etc.

288 Generalisation of LaTeX's underline command.

289 -->

290
291 <!ELEMENT BELOW - - (%formula)+>

292 <!ATTLIST BELOW symbol ENTITY #IMPLIED>

293
294 <!-- Convenience tags for common accents:

295 vec, bar, dot, ddot, hat and tilde

296 -->

297
298 <!ELEMENT (%mathvec) - - (%formula)+>

299
300 <!--

301 T and BT are used to designate terms which should

302 be rendered in an upright font (& bold face for BT)

303 -->

304
305 <!ELEMENT (T|BT) - - (%formula)+>

306 <!ATTLIST (T|BT) class NAMES #IMPLIED>

307
308 <!-- Roots e.g. <ROOT>3<OF>1+x</ROOT> -->

309
310 <!ELEMENT ROOT - - ((%formula)+, OF, (%formula)+)>

311 <!ELEMENT OF - O (%formula)* -- what the root applies to -->

312
313 <!ELEMENT SQRT - - (%formula)* -- square root convenience tag -->

314
315 <!-- LaTeX like arrays. The COLDEF attribute specifies

316 a single capital letter for each column determining

317 how the column should be aligned, e.g. coldef="CCC"

318
319 "L" left

320 "C" center

321 "R" right

322
323 An optional separator letter can occur between columns

324 and should be one of + - or =, e.g. "C+C+C+C=C".

325 Whitespace within coldef is ignored. By default, the

326 columns are all centered.

327
328 The ALIGN attribute alters the vertical position of the

329 array as compared with preceding and following expressions.

330
331 Use LDELIM and RDELIM attributes for delimiter entities.

332 When the LABELS attribute is present, the array is

333 displayed with the first row and the first column as

334 labels displaced from the other elements. In this case,

335 the first element of the first row should normally be

336 left blank.

337
338 Use &vdots; &cdots; and &ddots; for vertical, horizontal

339 and diagonal ellipsis dots. Use &dotfill; to fill an array

A practical introduction to SGML 95

340 cell with horizontal dots (e.g. for a full row).

341 Note &ldots; places the dots on the baseline, while &cdots;

342 places them higher up.

343 -->

344
345 <!ELEMENT ARRAY - - (ROW)+>

346 <!ATTLIST ARRAY

347 align (top|middle|bottom) middle -- vertical alignment --

348 coldef CDATA #IMPLIED -- column alignment and separator --

349 ldelim NAMES #IMPLIED -- stretchy left delimiter --

350 rdelim NAMES #IMPLIED -- stretchy right delimiter --

351 labels (labels) #IMPLIED -- TeX's \bordermatrix style -->

352
353 <!ELEMENT ROW - O (ITEM)*>

354 <!ELEMENT ITEM - O (%formula)*>

355 <!ATTLIST ITEM

356 align CDATA #IMPLIED -- override coldef alignment --

357 colspan NUMBER 1 -- merge columns as per TABLE --

358 rowspan NUMBER 1 -- merge rows as per TABLE -->

Appendix F: The ISO-12083 mathematics DTD

This appendix shows the mathematics DTD math.dtd of the ISO 12083 DTD.

1 <!-- This is the ISO12083:1994 document type definition for Mathematics -->

2
3 <!-- Copyright: (C) International Organization for Standardization 1994.

4 Permission to copy in any form is granted for use with conforming SGML

5 systems and applications as defined in ISO 8879:1986, provided this notice

6 is included in all copies. -->

7
8 <!-- === -->

9 <!-- PUBLIC DOCUMENT TYPE DEFINITION SUBSET -->

10 <!-- === -->

11
12 <!--

13 This DTD is included by the Book and Article DTDs of ISO12083:1994.

14 As it is a separate entity it may also be included by other DTDs.

15
16 Since there is no consensus on how to describe the semantics of formulas,

17 it only describes their presentational or visual structure. Since, however,

18 there is a strong need for such description (especially within the

19 print-disabled community), it is recommended that the following

20 declaration be added where there is a requirement for a consistent,

21 standardized mechanism to carry semantic meanings for the SGML

22 elements declared throughout this part of this International Standard:

23
24 <!ENTITY % SDAMAP "SDAMAP NAME #IMPLIED" >

25
26 and that the attribute represented by %SDAMAP; be made available for

27 all elements which may require a semantic association, or, in the simpler

28 case, be added to all elements in this DTD. -->

29
30
31
32 <!-- === -->

33 <!-- Parameter entities describing the possible contents of formulas. -->

34 <!-- === -->

35
36 <!ENTITY % p.trans "bold|italic|sansser|typewrit|smallcap|roman"

37 -- character transformations -->

38 <!ENTITY % m.math "fraction|subform|sup|inf|top|bottom|middle|fence|mark|

96 Michel Goossens and Janne Saarela

39 post|box|overline|undrline|radical|array|hspace|vspace|break|markref|

40 #PCDATA" -- mathematical formula elements -->

41
42
43
44 <!-- === -->

45 <!-- Accessible Document and other Parameter Entities

46 If this DTD is not imbedded by a ISO12083:1994 Book or Article,

47 the comment delimiters should be removed. -->

48 <!-- === -->

49
50 <!--ENTITY % SDAFORM "SDAFORM CDATA #FIXED" -->

51 <!--ENTITY % SDARULE "SDARULE CDATA #FIXED" -->

52 <!--ENTITY % SDAPREF "SDAPREF CDATA #FIXED" -->

53 <!--ENTITY % SDASUFF "SDASUFF CDATA #FIXED" -->

54 <!--ENTITY % SDASUSP "SDASUSP NAME #FIXED" -->

55
56
57
58 <!-- === -->

59 <!-- This entity is for an attribute to indicate which alphabet is

60 used in the element (formula, dformula). You may change this to

61 a notation attribute, where the notation could describe a

62 keyboard mapping. Please modify the set as necessary.

63 If this DTD is not imbedded by a ISO12083:1994 Book or Article,

64 the comment delimiters should be removed. -->

65 <!-- === -->

66
67 <!-- ENTITY % a.types "(latin|greek|cyrillic|hebrew|kanji) latin" -->

68
69
70 <!-- === -->

71 <!-- character transformations -->

72 <!-- === -->

73
74 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

75 <!ELEMENT bold - - (%p.trans;|#PCDATA)* -- bold -->

76 <!ELEMENT italic - - (%p.trans;|#PCDATA)* -- italic -->

77 <!ELEMENT sansser - - (%p.trans;|#PCDATA)* -- sans serif -->

78 <!ELEMENT typewrit - - (%p.trans;|#PCDATA)* -- typewriter -->

79 <!ELEMENT smallcap - - (%p.trans;|#PCDATA)* -- small caps -->

80 <!ELEMENT roman - - (%p.trans;|#PCDATA)* -- roman -->

81
82
83 <!-- === -->

84 <!-- Fractions -->

85 <!-- === -->

86
87 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

88 <!ELEMENT fraction - - (num, den) -- fraction -->

89 <!ELEMENT num - - (%p.trans;|%m.math;)* -- numerator -->

90 <!ELEMENT den - - (%p.trans;|%m.math;)* -- denominator -->

91 <!-- ELEMENT NAME VALUE DEFAULT -->

92 <!ATTLIST fraction shape (built|case) #IMPLIED

93 align (left|center|right)

94 center

95 style (single|double|triple|dash|dot|bold|blank|none)

96 single >

97
98
99
100 <!-- === -->

101 <!-- Superiors, inferiors, accents, over and under -->

102 <!-- === -->

A practical introduction to SGML 97

103
104 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

105 <!ELEMENT sup - - (%p.trans;|%m.math;)* -- superior -->

106 <!ELEMENT inf - - (%p.trans;|%m.math;)* -- inferior -->

107 <!-- ELEMENT NAME VALUE DEFAULT -->

108 <!ATTLIST sup location (pre|post) post

109 arrange (compact|stagger)

110 compact >

111 <!ATTLIST inf location (pre|post) post

112 arrange (compact|stagger) compact >

113
114
115 <!-- === -->

116 <!-- Embellishments -->

117 <!-- === -->

118
119 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

120 <!ELEMENT top - - (%p.trans;|%m.math;)*

121 -- top embellishment -->

122 <!ELEMENT middle - - (%p.trans;|%m.math;)*

123 -- middle, or "through" -->

124 <!ELEMENT bottom - - (%p.trans;|%m.math;)*

125 -- bottom embellishment -->

126 <!-- ELEMENT NAME VALUE DEFAULT -->

127 <!ATTLIST top align (left|center|right)

128 center

129 sizeid ID #IMPLIED

130 -- to pass on the height -->

131 <!ATTLIST middle align (left|center|right)

132 center

133 sizeid ID #IMPLIED

134 -- to pass on the height -->

135 <!ATTLIST bottom align (left|center|right)

136 center

137 sizeid ID #IMPLIED

138 -- to pass on the height -->

139
140
141 <!-- The subform element is defined later -->

142
143
144
145 <!-- === -->

146 <!-- Fences, boxes, overlines and underlines -->

147 <!-- === -->

148
149 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

150 <!ELEMENT mark - O EMPTY >

151 <!ELEMENT fence - - (%p.trans;|%m.math;)* -- fence -->

152 <!ELEMENT post - O EMPTY -- post -->

153 <!ELEMENT box - - (%p.trans;|%m.math;)* -- box -->

154 <!ELEMENT overline - - (%p.trans;|%m.math;)* -- overline -->

155 <!ELEMENT undrline - - (%p.trans;|%m.math;)* -- underline -->

156 <!-- ELEMENT NAME VALUE DEFAULT -->

157 <!ATTLIST mark id ID #REQUIRED >

158 <!ATTLIST fence lpost CDATA "|" -- left post --

159 rpost CDATA "|" -- right post --

160 style (single|double|triple|dash|dot|bold|blank|none)

161 single

162 sizeid ID #IMPLIED

163 -- to pass on the height --

164 sizeref IDREF #IMPLIED

165 -- to pick up a height -->

166 <!ATTLIST post post CDATA "|"

98 Michel Goossens and Janne Saarela

167 style (single|double|triple|dash|dot|bold|blank|none)

168 single

169 sizeid ID #IMPLIED

170 -- to pass on the height --

171 sizeref IDREF #IMPLIED

172 -- to pick up a height -->

173 <!ATTLIST box style (single|double|triple|dash|dot|bold|blank|none)

174 single >

175 <!ATTLIST overline type CDATA "-" -- embellishment type --

176 style (single|double|triple|dash|dot|bold|blank|none)

177 single

178 start IDREF #IMPLIED

179 end IDREF #IMPLIED >

180
181 <!ATTLIST undrline type CDATA "_" -- embellishment

182 type --

183 style (single|double|triple|dash|dot|bold|blank|none)

184 single

185 start IDREF #IMPLIED

186 end IDREF #IMPLIED >

187
188
189 <!-- === -->

190 <!-- Labelled arrows -->

191 <!-- === -->

192
193 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

194 <!ELEMENT subform - - (%p.trans;|%m.math;)* -- base element -->

195 <!-- ELEMENT NAME VALUE DEFAULT -->

196 <!ATTLIST subform sizeid ID #IMPLIED

197 -- to pass on a width, or

198 a height --

199 sizeref IDREF #IMPLIED

200 -- to pick up a width -->

201
202
203 <!-- === -->

204 <!-- Roots -->

205 <!-- === -->

206
207 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

208 <!ELEMENT radical - - (radix?, radicand) -- root or radical -->

209 <!ELEMENT radix - - (%p.trans;|%m.math;)* -- radix -->

210 <!ELEMENT radicand O O (%p.trans;|%m.math;)* -- radicand -->

211
212
213 <!-- === -->

214 <!-- Arrays -->

215 <!-- === -->

216
217 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

218 <!ELEMENT array - - (arrayrow+|arraycol+) -- array -->

219 <!ELEMENT arrayrow - O (arraycel+) -- array row -->

220 <!ELEMENT arraycol - O (arraycel+) -- array column -->

221 <!ELEMENT arraycel - O (%p.trans;|%m.math;)* -- array cell -->

222
223 <!-- ELEMENT NAME VALUE DEFAULT -->

224 <!ATTLIST array rowalign NMTOKENS #IMPLIED -- row alignment --

225 colalign NMTOKENS #IMPLIED -- column

226 alignment --

227 rowsep NMTOKENS #IMPLIED -- row separators --

228 colsep NMTOKENS #IMPLIED -- column

229 separators -->

230

A practical introduction to SGML 99

231
232 <!-- === -->

233 <!-- Spacing -->

234 <!-- === -->

235
236 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

237 <!ELEMENT hspace - O EMPTY -- horizontal spacing -->

238 <!ELEMENT vspace - O EMPTY -- vertical spacing -->

239 <!ELEMENT break - O EMPTY -- turn line, break -->

240 <!ELEMENT markref - O EMPTY -- hmark reference -->

241
242 <!-- ELEMENT NAME VALUE DEFAULT -->

243 <!ATTLIST hspace space CDATA "1 mm"

244 -- units as required -->

245 <!ATTLIST vspace space CDATA "1 mm"

246 -- units as required -->

247 <!ATTLIST markref refid IDREF #REQUIRED

248 direct (hor|ver) hor

249 -- horizontal or vertical -->

250
251
252 <!-- === -->

253 <!-- the formula elements -->

254 <!-- === -->

255
256 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

257 <!ELEMENT formula - - (%p.trans;|%m.math;)*

258 -- in-line formula -->

259 <!ELEMENT dformula - - (%p.trans;|%m.math;)*

260 -- display formula -->

261 <!ELEMENT dformgrp - - (formula|dformula)+

262 -- display-formula group -->

263
264 <!-- ELEMENT NAME VALUE DEFAULT -->

265 <!ATTLIST formula id ID #IMPLIED

266 alphabet %a.types;

267 -- %SDAPREF; "<?SDATRANS>Inline formula" --

268 -- %SDASUSP; "SUSPEND" --

269 >

270 <!ATTLIST dformula id ID #IMPLIED

271 num CDATA #IMPLIED

272 align (left|center|right)

273 center

274 alphabet %a.types;

275 -- %SDAPREF; "<?SDATRANS>Display formula" --

276 -- %SDASUSP; "SUSPEND" --

277 >

278 <!ATTLIST dformgrp id ID #IMPLIED

279 num CDATA #IMPLIED

280 align (left|center|right)

281 center

282 -- %SDAPREF; "<?SDATRANS>Display formula group" --

283
284 >

100 Michel Goossens and Janne Saarela

Appendix G: Example of a conversion of the DocBook DTD to

HTML3

G.1 The original document marked up in the DocBook DTD

The listing below is part of the manual describing the DocBook DTD and is tagged

according to that same DocBook DTD (V2.2.1).

<sect1><title>How to Get the DocBook DTD Online</title>

<para>

You can find the DocBook DTD and its documentation online in

the Davenport archive (<filename>/pub/davenport/docbook</filename>)

at <filename>ftp.ora.com</filename> (198.112.208.13).

</para>

<para>

This sample session shows how to retrieve the DTD and its documentation:

<screen>

<!-- could mark up the prompt in next line with computeroutput -->

<systemitem class="prompt">%</><userinput>ftp ftp.ora.com</>

<computeroutput>Connected to amber.ora.com.</>

<computeroutput>220 amber FTP server (Version wu-2.4(1) Fri Apr 15 14:14:30 EDT 1994) ready.</>

<computeroutput>Name (ftp.ora.com:terry): </><userinput>anonymous</>

<computeroutput>331 Guest login ok, send your complete e-mail address as password.</>

<computeroutput>Password: </><lineannotation>← type e-mail address</>

<systemitem class="prompt">ftp></><userinput>cd pub/davenport/docbook</>

</screen>

The DocBook DTD and related ASCII files are in a file named

<filename>docbook.N.shar</>, where <emphasis>N</>

is the current revision number:

<screen>

<systemitem class="prompt">ftp></><userinput>get docbook.2.2.1.shar</>

</screen>

Most of these files also exist separately and may be ftp'd individually.

</para>

<para>

The <command>get</> command will put this ASCII shar file

on your system. You must later unpack it on your system:

<screen>

<userinput>sh docbook.2.2.1.shar</>

</screen>

</para>

G.2 ESIS representation of the source document

The following is the ESIS representation of the same document produced by nsgmls.

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ALABEL IMPLIED

ARENDERAS IMPLIED

(SECT1

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

APAGENUM IMPLIED

(TITLE

-How to Get the DocBook DTD

Online

)TITLE

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(PARA

-You can find the DocBook DTD

and its documentation \nonline

in the Davenport archive \n(

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(FILENAME

A practical introduction to SGML 101

-/pub/davenport/docbook

)FILENAME

-) at \n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(FILENAME

-ftp.ora.com

)FILENAME

- (198.112.208.13).

)PARA

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(PARA

-This sample session shows how

to retrieve the DTD\nand its

documentation:\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

sline ends and leading white

space must be preserved in

output

NLINESPECIFIC

AFORMAT NOTATION LINESPECIFIC

AWIDTH IMPLIED

(SCREEN

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ACLASS TOKEN PROMPT

AMOREINFO TOKEN NONE

(SYSTEMITEM

-%

)SYSTEMITEM

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-ftp ftp.ora.com

)USERINPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-Connected to amber.ora.com.

)COMPUTEROUTPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-220 amber FTP server (Version

wu-2.4(1) Fri Apr 15 14:14:30

EDT 1994) ready.

)COMPUTEROUTPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-Name (ftp.ora.com:terry):

)COMPUTEROUTPUT

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-anonymous

)USERINPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-331 Guest login ok, send your

complete e-mail address as

password.

)COMPUTEROUTPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-Password:

)COMPUTEROUTPUT

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(LINEANNOTATION

-\|[larr]\| type e-mail

address

)LINEANNOTATION

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ACLASS TOKEN PROMPT

AMOREINFO TOKEN NONE

(SYSTEMITEM

-ftp\|[gt]\|

)SYSTEMITEM

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-cd pub/davenport/docbook

)USERINPUT

)SCREEN

-\nThe DocBook DTD and related

ASCII files are in\na file

named

102 Michel Goossens and Janne Saarela

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(FILENAME

-docbook.N.shar

)FILENAME

-, where

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(EMPHASIS

-N

)EMPHASIS

-\nis the current revision

number:\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AFORMAT NOTATION LINESPECIFIC

AWIDTH IMPLIED

(SCREEN

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ACLASS TOKEN PROMPT

AMOREINFO TOKEN NONE

(SYSTEMITEM

-ftp\|[gt]\|

)SYSTEMITEM

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-get docbook.2.2.1.shar

)USERINPUT

)SCREEN

-\nMost of these files\nalso

exist separately and may be

ftp'd individually.

)PARA

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(PARA

-The

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMMAND

-get

)COMMAND

- command will put this ASCII

shar \nfile on your system.

You must later unpack \nit on

your system:\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AFORMAT NOTATION LINESPECIFIC

AWIDTH IMPLIED

(SCREEN

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-sh docbook.2.2.1.shar

)USERINPUT

)SCREEN

)PARA

G.3 HTML3 output

The following presents the �nal HTML3 output resulting from the translation process.

<HTML>

<HEAD>

<TITLE>How to Get the DocBook DTD Online</TITLE>

</HEAD>

<BODY>

<H1>How to Get the DocBook DTD Online</H1>

You can find the DocBook DTD and its documentation online in the

Davenport archive (/pub/davenport/docbook) at ftp.ora.com

(198.112.208.13).<P>This sample session shows how to retrieve

the DTD and its documentation:

<pre>

%<i>ftp ftp.ora.com</i>

Connected to amber.ora.com.

220 amber FTP server (Version wu-2.4(1) Fri Apr 15 14:14:30 EDT 1994) ready.

Name (ftp.ora.com:terry): <i>anonymous</i>

331 Guest login ok, send your complete e-mail address as password.

Password: type e-mail address

ftp><i>cd pub/davenport/docbook</i>

</pre>

The DocBook DTD and related ASCII files are in a file named docbook.N.shar,

where N is the current revision number:

<pre>

ftp><i>get docbook.2.2.1.shar</i>

A practical introduction to SGML 103

</pre>

Most of these files also exist separately and may be ftp'd individually.

<P>

The get command will put this ASCII shar file on your system.

You must later unpack it on your system:

<pre>

<i>sh docbook.2.2.1.shar</i>

</pre>

</BODY>

</HTML>

