
From LATEX to HTML and back

Michel Goossens and Janne Saarela

CERN, CN Division

CH-1211 Geneva 23

Switzerland

goossens@cern.ch, saarela@cern.ch

Abstract

Both LATEX and HTML are languages that can express the structure of a document, and

similarities between these two systems are shown. A detailed study is made of the La-

TeX2HTML program, written by Nikos Drakos, that is today the most complete utility for

translating LATEX code into HTML, providing a quasi-automatic translation for most ele-

ments. A discussion of a few other tools for translating between HTML and LATEX concludes

the article.

1 Similarities between LATEX and HTML

HTML and LATEX are both generic markup systems, and a comparison between tags for

structural elements in both cases is shown in Table 1. In most cases the di�erences are

trivial, seeming to indicate that, at �rst approximation, translating between these two

systems should not prove too di�cult.

The translation programs described in this article use these similarities, but in order

to exploit the richness of the LATEX language as compared to HTML (especially HTML2,

which has no support for tables or mathematics), an ad hoc approach has to be adopted.

To handle correctly LATEX commands that have no equivalent in HTML, such elements

can either be transformed into bitmap or PostScript pictures (an approach taken by

LaTeX2HTML), or the user can specify how the given element should be handled in the

target language.

105

106 Michel Goossens and Janne Saarela

Description HTML LATEX

Sectioning commands

level 1 <H1> \chapter or \section

level 2 <H2> \section or \subsection

level 3 <H3> \subsection or \subsubsection

level 4 <H4> \subsubsection or \paragraph

level 5 <H5> \paragraph or \subparagraph

level 6 <H5> \subparagraph

new paragraph <P> \par

Lists

numbered list \begin{enumerate}

unnumbered list \begin{itemize}

list element \item

description list <DL> \begin{description}

term <DT> \item

de�nition <DD> text

Highlighting text

emphasis text \emph{text}

italic <I>text</I> \textit{text}

bold text \textbf{text}

�xed with <TT>text</TT> \texttt{text}

Table 1: Comparison of structural elements in HTML and LATEX

2 Converting LATEX into HTML

Before discussing the LaTeX2HTML program, we want to mention a few other programs.

First there is l2x1, written by Henning Schulzrinne (Berlin, Germany), which translates

LATEX into various other formats. This program is written in C and calls a Tcl function

[4] for each LATEX command.

A converter html.tcl is available for translating LATEX �les into HTML, by writing,

for instance:

l2x -p html.tcl article.tex

Presently, only a sub-set of all LATEX commands are handled (no mathematical for-

mulae, tables, verbatim texts, etc.), yet it is not too di�cult to augment the code of

the converter html.tcl by introducing new Tcl commands.

1. See the URL http://info.cern.ch/hypertext/WWW/Tools/l2x.html.

From LATEX to HTML and back 107

Schwarzkopf has developed Hyperlatex2, a package written in the GNU Emacs Lisp

language to translate documents marked up in (a subset of) LATEX into HTML.

Another interesting tool is tex2RTF3, a utility to convert from LATEX to four other

formats, including HTML. It does a relatively good job for a sub-set of LATEX commands,

but, as with the tcl approach of l2x, it cannot handle more complex structures, such

as mathematical expressions and tables.

Finally, although not directly relevant to LATEX, texihtml4 translates texinfo

sources5 into HTML.

3 The LATEX2HTML converter { Generalities

LaTeX2HTML is a program written in the perl programming language6 [7, 8, 9] by Nikos

Drakos.7 It transforms a LATEX document into a series of HTML �les linked in a way that

re
ects the structure of the original document.

3.1 What LATEX2HTML is and What it is Not

LaTeX2HTML is a conversion tool that allows documents written in LATEX to become part

of the World Wide Web. In addition, it o�ers an easy migration path towards authoring

complex hypermedia documents using familiar word-processing concepts.

LaTeX2HTML replicates the basic structure of a LATEX document as a set of inter-

connected HTML �les which can be explored using automatically generated navigation

panels. The cross-references, citations, footnotes, the table of contents and the lists of

�gures and tables are also translated into hypertext links. Formatting information which

has equivalent \tags" in HTML (lists, quotes, paragraph breaks, type styles, etc.) is also

converted appropriately. The remaining heavily formatted items such as mathematical

equations, pictures or tables are converted to images placed automatically at the correct

positions in the �nal HTML document.

LaTeX2HTML extends LATEX by supporting arbitrary hypertext links and symbolic

cross-references between evolving remote documents. It also allows the speci�cation

2. The documentation is available at the URL http://www.cs.ruu.nl/people/otfried/html/

Hyperlatex/hyperlatex.html. Otfried Schwarzkopf, who works at the University of Utrecht, can be reached

via email at otfried@cs.ruu.nl.

3. Written by Julian Smart (Edinburgh, Great Britain). For more information see the URL http://www.

aiai.ed.ac.uk/~jacs/tex2rtf.html.

4. Written in perl by Lionel Cons (CERN, Geneva). For more information see the URL http://asis01.

cern.ch/infohtml/texi2html.html.

5. texinfo is a TEX based markup language used for all gnu project related documentation.

6. More information can be found in the UF/NA perl archive at the URL http://www.cis.ufl.edu/

perl/.

7. The documentation is at the URL http://cbl.leeds.ac.uk/nikos/tex2html/doc/latex2html/

latex2html.html. One can also join the LaTeX2HTML mailing list by sending a message to

latex2html-request@mcs.anl.gov with as only contents line: subscribe.

108 Michel Goossens and Janne Saarela

of conditional text and the inclusion of raw HTML commands. These hypermedia ex-

tensions to LATEX are available as new commands and environments from within a LATEX

document.

3.2 Overview

The main characteristics of the LaTeX2HTML translator are summarized in this section.

� a document is broken into one or more components as speci�ed by the user;

� optional, customizable navigation panels can be added to each generated page to

link other parts of the document, or external documents;

� inline and displayed equations are handled as images;

� tables and �gures, and all other arbitrary environments are passed on to LATEX and

included as images; these images are included inline or made available via hypertext

links;

� �gures or tables can be arbitrarily scaled and shown either as inlined images or

\thumbnails";

� output can be generated to cope with the possibilities of various kind of browsers

(for example, line browsers);

� de�nitions of new commands, environments, and theorems are given even when they

are in external �les;

� footnotes, tables of contents, lists of �gures and tables, bibliographies, and the index

are handled correctly;

� LATEX cross-references and citations are transformed into hyperlinks, which work just

as well inside a (sub)document as between several documents (located anywhere on

the Internet);

� most LATEX accented national characters are translated into their ISO-Latin-1 equiv-

alent;

� hypertext links to arbitrary Internet services are recognized;

� programs running arbitrary scripts can be invoked (at the LATEX level);

� a conditional text mechanism allows material to be included in the HTML or printed

(dvi) versions only;

� similarly raw HTML material can be present in the LATEX document (such as for

specifying interactive forms);

� common LATEX commands (i.e., those de�ned in the LATEX Reference manual [3])

are handled gracefully;

� the user can de�ne (in perl) functions to translate (un)known LATEX commands in

a customized way.

3.3 Using LATEX2HTML

To use LaTeX2HTML, simply type

latex2html options-list file.tex

From LATEX to HTML and back 109

By default a new directory \file" will be created to contain the generated HTML �les,

some log �les and possibly some images.

The output from LaTeX2HTML can be customized using a number of command line

options, as described below.

The command line options options-list allow one to change the default behavior

of LaTeX2HTML. Alternatively, the corresponding perl variables in the initialization

�le .latex2html-init may be changed, in order to achieve the same result (see

Section 3.5).

-split num The default is 8.

Stop splitting sections into separate �les at this depth. A value of 0 will put the

document into a single HTML �le.

-link num The default is 4.

Stop revealing child nodes at each node at this depth. (A node is characterized by

the sequence part-chapter-section-subsection-. . .). A value of 0 will show no links

to child nodes, a value of 1 will show only the immediate descendents, etc. A value

at least as big as that of the -split option will produce a table of contents for the

tree structure, rooted at each given node.

-external_images

Instead of including any generated images inside the document, leave them outside

the document and provide hypertext links to them.

-ascii_mode

Use only ASCII characters and do not include any images in the �nal output. In

ASCII mode, the output of the translator can be used on character-based browsers

that do not support inlined images (the tag).

-t top-page-title

Use the string top-page-title for the title of the document.

-dir output-dir

Redirect the output to the output-dir directory.

-no_subdir

Place the generated HTML �les in the current directory. By default another �le

directory is created (or reused).

-ps_images

Use links to external PostScript pictures rather than inlined GIF (Graphics Inter-

change Format) images.

-address author-address

The address author-address will be used to sign each page.

-no_navigation

Do not put navigation links in each page.

-top_navigation

Put navigation links at the top of each page.

110 Michel Goossens and Janne Saarela

-bottom_navigation

Put navigation links at the bottom of each page as well as at the top.

-auto_navigation

Put navigation links at the top of each page. If the page has more words than

$WORDS_IN_PAGE (the default is 450) then put one at the bottom of the page also.

-index_in_navigation

When an index exists, put a link to the index page in the navigation panel.

-contents_in_navigation

When a table of contents exists, put a link to that table in the navigation panel.

-next_page_in_navigation

Put a link to the next logical page in the navigation panel.

-previous_page_in_navigation

Put a link to the previous logical page in the navigation panel.

-info string

Generate a new section About this document ... containing information about the

document being translated. The default is for generating such a section with infor-

mation on the original document, the date, the user and the translator. If string is

empty (or has the value 0), this section is not created. If string is non-empty, it

will replace the default information in the contents of the About this document ...

section.

-dont_include �le1 �le2 ...

Do not include the speci�ed �le(s) �le1 , �le2 , etc. Such �les can be package �les

that contain raw TEX commands that the translator cannot handle.

-reuse

Images generated during a previous translation process should be reused as far as

possible. This option disables the initial interactive session where the user is asked

whether to reuse the old directory, delete its contents or quit. Images which depend

on context (for example, numbered tables or equations) cannot be reused and are

always regenerated.

-no_reuse

Do not reuse images generated during a previous translation. This enables the initial

interactive session during which the user is asked whether to reuse the old directory,

delete its contents or quit.

-init_file �le

Load the perl initialization script �le. It will be loaded after the �le (if it exists)

$HOME/.latex2html-init. It can be used to change default options.

-no_images

Do not produce inlined images. If needed, the missing images can be generated

\o�-line" by restarting LaTeX2HTML with the -images_only option.

From LATEX to HTML and back 111

-images_only

Try and convert any inlined images that were left over from previous runs of La-

TeX2HTML. The advantage of using the latter two options is that the translation

can be allowed to �nish even when there are problems with image conversion. In

addition, it may be possible to �x manually any image conversion problems and then

run LaTeX2HTML again just to integrate the new images without having to translate

the rest of the text.

-show_section_numbers

Instruct LaTeX2HTML to show section numbers. By default, section numbers are not

shown, in order to allow individual sections to be used as stand-alone documents.

-h Print the list of options.

3.4 Simple use of LATEX2HTML

To show the procedure for translating a LATEX document into HTML, let us �rst look

at a simple example, namely the �le shown in Figure 1.8 After running this �le through

LATEX (twice, to resolve the cross-references) one obtains the output shown in Figure 2.

This same LATEX source document is now run through LaTeX2HTML with the com-

mand

> latex2html -init_file french.pl babel.tex

where the default options have been used apart from the fact that we want titles in

French. That is why we use the option -init_file to load the �le french.pl, which

merely contains

$TITLES_LANGUAGE = "french";

1;

as explained in Section 3.9.

The log messages generated by LaTeX2HTML are shown below.

This is LaTeX2HTML Version 95.1 (Fri Jan 20 1995)

by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/usr/g/goossens/babel.tex

Loading /usr/local/lib/latex2html/styles/makeidx.perl

....

Reading ...

Processing macros+.....

Reading babel.aux

Translating ...0/8..............1/8....2/8....3/8

....4/8.............5/8............6/8...........

8. This one-page example is chosen because it is discussed in detail in Chapter 9 of [1] and at the same

time shows how LaTeX2HTML handles non-English documents.

112 Michel Goossens and Janne Saarela

\documentclass{article}

\usepackage{makeidx}

\usepackage[dvips]{graphicx}

\usepackage[french]{babel}

\makeindex

\begin{document}

\begin{center}\Large

Exemple d'un article en fran\c{c}ais\\[2mm]\today

\end{center}

\tableofcontents

\listoffigures

\listoftables

\section{Une figure EPS}

\index{section}

Cette section montre comment inclure une figure

PostScript\cite{bib-PS} dans un document \LaTeX. La

figure~\ref{Fpsfig} est ins\'er\'ee dans le texte \`a

l'aide de la commande \verb!\includegraphics{colorcir.eps}!.

\index{figure}\index{PostScript}

\begin{figure}

\centering

\begin{tabular}{c@{\qquad}c}

\includegraphics[width=3cm]{colorcir.eps} &

\includegraphics[width=3cm]{tac2dim.eps}

\end{tabular}

\caption{Deux images EPS}\label{Fpsfig}

\end{figure}

\section{Exemple d'un tableau}

Le tableau~\ref{tab:exa} \`a la page \pageref{tab:exa}

montre l'utilisation de l'environnement \texttt{table}.

\begin{table}

\centering

\begin{tabular}{cccccc}

\Lcs{primo} \primo &\Lcs{secundo} \secundo &\Lcs{tertio} \tertio&

\Lcs{quatro} \quatro & 2\Lcs{ieme}\ 2\ieme

\end{tabular}

\caption{Quelques commandes de l'option \texttt{french}

de \texttt{babel}}\label{tab:exa}\index{tableau}

\end{table}

\begin{thebibliography}{99}

\index{r\'ef\'erences}

\bibitem{bib-PS}

Adobe Inc. \emph{PostScript, manuel de r\'ef\'erence

(2i\`eme \'edition)} Inter\'Editions (France), 1992

\end{thebibliography}

\printindex

\index{index}

\end{document}

Figure 1: Example of a LATEX document

From LATEX to HTML and back 113

Exemple d’un article en français

7 décembre 1994

Table des matières

1 Une figure EPS 1

2 Exemple d’un tableau 1

Liste des figures

1 Deux images EPS : 1

Liste des tableaux

1 Quelques commandes de l’option french de babel : 1

1 Une figure EPS

Cette section montre comment inclure une figure PostScript[1] dans un document LATEX. La figure 1 est insérée dans
le texte à l’aide de la commande \includegraphics{colorcir.eps}.

4 6 8 10 12 14

6810121416
0

40

80

120

160

200

240

Figure 1: Deux images EPS

2 Exemple d’un tableau

Le tableau 1 à la page 1 montre l’utilisation de l’environnement table.

\primo 1
o \secundo 2

o \tertio 3
o \quatro 4

o 2\ieme 2e

Tableau 1: Quelques commandes de l’optionfrench de babel

Références

[1] Adobe Inc. PostScript, manuel de référence (2ième édition) InterÉditions (France), 1992

Index

figure, 1

index, 1

PostScript, 1

références, 1

section, 1

tableau, 1

1

Figure 2: Output generated by LATEX from document shown in Figure 1

114 Michel Goossens and Janne Saarela

7/8.....8/8.....

Writing image file ...

This is TeX, Version 3.1415 (C version 6.1)

(images.tex

LaTeX2e <1994/12/01>

Generating postscript images using dvips ...

This is dvipsk 5.58e Copyright 1986, 1994

Radical Eye Software

' TeX output 1995.05.11:0844' -> 14024_image

(-> 14024_image001) <tex.pro><special.pro>

[1<colorcir.eps><tac2dim.eps>]

(-> 14024_image002) <tex.pro><special.pro>[2]

Writing 14024_image002.ppm

Writing img2.gif

Writing 14024_image001.ppm

Writing img1.gif

Doing section links

Doing table of contents

Doing the index

Done.

The results are shown in Figure 3. The main document is shown in the middle at

the top. Numbered arrows indicate the secondary documents that are produced and

to which point in the main document they are linked. The document also contains a

table of contents that is not shown explicitly, since its contents are almost identical to

that of the main document. Note the navigation buttons at the top of each \page".

This navigation panel corresponds to the (default) option \-top_navigation". The

navigation panel contains �ve push buttons:

Next to go to the next document,

default option -next_page_in_navigation;

Up to go up one level;

Previous to move to the previous document,

default option -previous_page_in_navigation;

Contents to jump directly to Table of Contents,

default option -contents_in_navigation;

Index to jump straight to the Index,

default option -index_in_navigation.

Each of the default values can be modi�ed by rede�ning the corresponding perl variables

in the initialization �le .latex2html.init, as described in Section 3.5.

From LATEX to HTML and back 115

A detailed explanation of the meaning of the various numbers in Figure 3 is given

below.

➊ the list of �gures, containing a hyperlink pointing to document ➌ (containing the

�gure in question);

➋ the list of tables, containing a hyperlink pointing to document ➍ (containing the

table in question);

➌ the �rst section, containing some text, a �gure, and a hyperlink ([1]) pointing to

an entry in the bibliography (document ➎);

➍ the second section, also containing some text and a table;

➎ the bibliographic references;

➏ the index, containing keywords that provide hyperlinks pointing to entry points in

the various documents;

➐ an explanatory note detailing the procedure by which the document was translated

into HTML. This text can be customized with the help of the option -desc (see

Section 3.6).

3.5 Extending and customizing the translator

As the translator only partially covers the set of LATEX commands and because new LATEX

commands can be de�ned arbitrarily using low level TEX commands, the translator should

be
exible enough to allow end users to specify how they want particular commands to

be translated.

Adding support for packages

LaTeX2HTML provides a mechanism to automatically load �les containing code to

translate speci�c packages. For instance, when in a LATEX document, the command

\includegraphics{xxxx} is found, a �le called LATEX2HTMLDIR/styles/xxxx.perl

is looked for. If such a �le exists, it will be loaded into the main script.

This mechanism helps keep the core script smaller and modular and also makes it

easier for others to contribute perl code to translate speci�c packages. The current

distribution includes the �les german.perl, french.perl, makeidx.perl, and for the

hypertext extensions html.perl. Note, however, that writing such extensions requires

an understanding of perl and of the way LaTeX2HTML is organized. Some more details

will be given in Appendix C.

Presently, the user can ask that particular commands and their arguments be ignored

or passed on to LATEX for processing (the default behavior for unrecognized commands

is for their arguments remains in the HTML text). Commands passed to LATEX are con-

verted to images that are either \inlined" in the main document or are accessible via

hypertext links. Simple extensions using the commands below may be included in the

system initialization �le LATEX2HTMLDIR/latextohtml.config, or in the customiza-

tion initialization �le .latex2html-init in the user's home directory or in the directory

where the �les to be converted reside.

116 Michel Goossens and Janne Saarela

➌ ➍ ➏

➐

➊ ➋ ➎

F
ig
u
re
3
:
T
h
e
H
T
M
L
st
ru
ct
u
re
g
en
er
a
te
d
fr
o
m
th
e
LA
T E
X
so
u
rc
e
o
f
F
ig
u
re
1
a
s
vi
su
a
liz
ed
w
it
h
th
e
M
o
s
a
i
c
b
ro
w
se
r

From LATEX to HTML and back 117

Directing the translator to ignore commands

Commands that should be ignored may be speci�ed in the .latex2html-init �le as

input to the ignore_commands subroutine. Each command which is to be ignored should

be on a separate line followed by compulsory or optional argument markers separated by

#'s, for example:9

<cmd_name>#{}# []# {}# [] ...

{}'s mark compulsory arguments and []'s optional ones.

Some commands may have arguments which should be left as text, even though

the command should be ignored (\mbox, \center, etc.). In these cases the arguments

should be left unspeci�ed.

Here is an example of how this mechanism may be used:

&ignore_commands(<<_IGNORED_CMDS_);

documentclass # [] # {}

linebreak# []

pagebreak# []

center

<add your commands here>

_IGNORED_CMDS_

Asking the translator to pass commands to LATEX

Commands that should be passed on to LATEX for processing because there is no direct

translation to HTML may be speci�ed in the .latex2html-init �le as input to the

process_commands_in_tex subroutine. The format is the same as that for specifying

commands to be ignored. Here is an example:

&process_commands_in_tex (<<_RAW_ARG_CMDS_);

fbox # {}

framebox # [] # [] # {}

<add your commands here>

_RAW_ARG_CMDS_

Customizing LATEX2HTML

Besides honoring the options speci�ed on the command line, LaTeX2HTML reads two stan-

dard �les that can be used to customize its behavior. The �rst �le, latextohtml.config,

is a system-wide �le (usually in the directory /usr/local/lib/latex2html). It con-

tains the de�nitions for a complete installation, i.e., those common for all users, and

speci�es where certain external utility programs needed by LaTeX2HTML are to be found

on the system (such as LATEX, dvips, gs, pmbplus). Moreover, in this �le important

perl variables are initialized to their default values. At the end of the �le one has the

9. It is possible to add arbitrary perl code between any of the argument markers that will be executed

when the command is processed. For this, however, a basic understanding of how the translator works and,

of course, perl is required.

118 Michel Goossens and Janne Saarela

possibility of specifying those LATEX commands or environments that should be ignored,

and those that should be passed on to LATEX to be transformed into images for inclusion

in the HTML �le.

The second �le, .latex2html-init, allows the user to customize LaTeX2HTML on

an individual level. LaTeX2HTML will normally look for this �le in the user's home di-

rectory (variable $HOME on Unix). This �le can contain the same information as the

global con�guration �le latextohtml.config and is thus the ideal place to overwrite

default values or to specify in the perl language how certain speci�c LATEX commands

should be handled. It should be noted that the LaTeX2HTML distribution LaTeX2HTML

already contains a few �les with de�nitions for translations of supplementary LATEX com-

mands introduced by certain extension packages, such as german.perl, french.perl,

html.perl and makeidx.perl. To help the user, the distribution comes with an ex-

ample �le dot.latex2html-init that can serve as a model for writing one's own

.latex2html-init.

Creating a customization �le .latex2html-init

Before discussing examples of commands that can be put in the .latex2html-init

customization �le, it should be emphasized once more that this �le, as well as all other

�les that are part of the LaTeX2HTML system, contain only perl instructions, and that

one should thus have at least a basic understanding of this language before trying to

edit any of these �les.

Figures 4 and 5 show an example initialization �le dot.latex2html-init. Its �rst

parts initialize most of the perl variables used by the LaTeX2HTML system by set-

ting them equal to their default values (as de�ned in the system-wide initialization �le

latex2html.config. Values that need not to be changed can be deleted from the �le.

When studying the various system variables, note the correspondence between the perl

variables and the options of the latex2html described in Section 3.3).

Examples

We want to leave most of the values at their defaults as shown in Figures 4 and 5.

However, we specify the format of the address �elds explicitly and make a few more

modi�cations; in particular, we do not want images to be included inside the HTML

documents. Thus we should write something like:

$ADDRESS = "<I>Michel Goossens
" .

"CN Division
" .

"Tel. 3363
" .

"\n$address_data[1]</I>";

$MAX_SPLIT_DEPTH = 2; # stop at subsection

$MAX_LINK_DEPTH = 1; # child nodes to sections

$EXTERNAL_IMAGES = 1; # images outside document

draw a nice rainbow-colored line (gif file)

From LATEX to HTML and back 119

#LaTeX2HTML Version 95.1 : dot.latex2html-init

#

Command Line Argument Defaults

$MAX_SPLIT_DEPTH = 8; # Stop making separate files at this depth

$MAX_LINK_DEPTH = 4; # Stop showing child nodes at this depth

$NOLATEX = 0; # 1 = do not pass unknown environments to Latex

$EXTERNAL_IMAGES = 0; # 1 = leave the images outside the document

$ASCII_MODE = 0; # 1 = do not use any icons or internal images

$PS_IMAGES = 0; # 1 = use links to external postscript

images rather than inlined GIF's.

$TITLE = $default_title; # The default is "No Title"

$DESTDIR = '.'; # Put the result in this directory

$NO_SUBDIR = 0; # 0 = create (reuse) file subdirectory

1 = put generated HTML files in current dir.

Supply your own string if you don't like the default <Name> <Date>

$ADDRESS = "<I>$address_data[0]
\n$address_data[1]</I>";

$NO_NAVIGATION = 0; # 1 = no navigation panel at top of each page

$AUTO_NAVIGATION = 1; # 1 = put navigation links at top of page

$WORDS_IN_PAGE = 300; # if nb. words on page > $WORDS_IN_PAGE put

navigation panel at bottom of page.

$INDEX_IN_NAVIGATION = 1; # put link to index page in navigation panel

$CONTENTS_IN_NAVIGATION = 1; # put link to table of contents " " "

$NEXT_PAGE_IN_NAVIGATION = 1; # put link to next logical page " " "

$PREVIOUS_PAGE_IN_NAVIGATION = 1;# put link to prev. " " " " "

$INFO = 1; # 0 = do not make "About this document..." section

$REUSE = 1; # Reuse images generated during previous runs

Do not try to translate these package files.

Complex LaTeX packages may cause the translator to hang.

If this occurs add the package's filename here.

$DONT_INCLUDE = "memo:psfig:pictex:revtex";

When this is 1, the section numbers are shown. The section numbers should

then match those that would have bee produced by LaTeX.

The correct section numbers are obtained from the $FILE.aux file generated

by LaTeX.

Hiding the section numbers encourages use of particular sections

as standalone documents. In this case the cross reference to a section

is shown using the default symbol rather than the section number.

$SHOW_SECTION_NUMBERS = 0;

Other global variables

$CHILDLINE = "
 <HR>\n";

This is the line width measured in pixels and it is used to right justify

equations and equation arrays;

$LINE_WIDTH = 500;

Affects ONLY the way accents are processed

$default_language = 'english';

This number will determine the size of the equations, special characters,

and anything which will be converted into an inlined image

except "image generating environments" such as "figure", "table"

or "minipage".

Effective values are those greater than 0.

Sensible values are between 0.1 - 4.

$MATH_SCALE_FACTOR = 1.6;

This number will determine the size of

image generating environments such as "figure", "table" or "minipage".

Effective values are those greater than 0.

Sensible values are between 0.1 - 4.

$FIGURE_SCALE_FACTOR = 0;

Figure 4: dot.latex2html-init �le (part 1)

120 Michel Goossens and Janne Saarela

If this is set then intermediate files are left for later inspection.

This includes $$_images.tex and $$_images.log created during image

conversion.

Caution: Intermediate files can be *enormous*.

$DEBUG = 0;

The value of this variable determines how many words to use in each

title that is added to the navigation panel (see below)

#

$WORDS_IN_NAVIGATION_PANEL_TITLES = 4;

If both of the following two variables are set then the "Up" button

of the navigation panel in the first node/page of a converted document

will point to $EXTERNAL_UP_LINK. $EXTERNAL_UP_TITLE should be set

to some text which describes this external link.

$EXTERNAL_UP_LINK = "";

$EXTERNAL_UP_TITLE = "";

If this is set then the resulting HTML will look marginally better if viewed

with Netscape.

$NETSCAPE_HTML = 0;

Valid paper sizes are "letter", "legal", "a4","a3","a2" and "a0"

Paper sizes has no effect other than in the time it takes to create inlined

images and in whether large images can be created at all ie

- larger paper sizes *MAY* help with large image problems

- smaller paper sizes are quicker to handle

$PAPERSIZE = "a4";

Replace "english" with another language in order to tell LaTeX2HTML that you

want some generated section titles (eg "Table of Contents" or "References")

to appear in a different language. Currently only "english" and "french"

is supported but it is very easy to add your own. See the example in the

file "latex2html.config"

$TITLES_LANGUAGE = "english";

Navigation Panel

The navigation panel is constructed out of buttons and section titles.

These can be configured in any combination with arbitrary text and

HTML tags interspersed between them.

The buttons available are:

$PREVIOUS - points to the previous section

$UP - points up to the "parent" section

$NEXT - points to the next section

$NEXT_GROUP - points to the next "group" section

$PREVIOUS_GROUP - points to the previous "group" section

$CONTENTS - points to the contents page if there is one

$INDEX - points to the index page if there is one

#

If the corresponding section exists the button will contain an

active link to that section. If the corresponding section does

not exist the button will be inactive.

#

Also for each of the $PREVIOUS $UP $NEXT $NEXT_GROUP and $PREVIOUS_GROUP

buttons there are equivalent $PREVIOUS_TITLE, $UP_TITLE, etc variables

which contain the titles of their corresponding sections.

Each title is empty if there is no corresponding section.

#

The subroutine below constructs the navigation panel in each page.

Feel free to mix and match buttons, titles, your own text, your logos,

and arbitrary HTML (the "." is the Perl concatenation operator).

sub navigation_panel {....}

1; # This must be the last line

Figure 5: dot.latex2html-init �le (part 2). The navigation panel perl code is shown

in Figure 10.

From LATEX to HTML and back 121

instead of the default simple line (<HR>)

$CHILDLINE = "
<IMG " .

"SRC=rainbow_line.gif>
"

Normally, LaTeX2HTML will read all package and class �les and interpret all the

commands that are de�ned in those �les. This can lead to problems, so it is wise

to exclude some �les. Also, one may want to de�ne a translation into perl for the

commands in one or more �les, so they should also not be read. The list of �les to be

excluded, is speci�ed as follows:

$DONT_INCLUDE = "memo:psfig:times:revtex:" .

"aps:float:harvard:tabls";

Special symbols and inline equations are generally transformed into inlined (bitmap)

images that are placed inside the HTML text on the same line when viewing the docu-

ment with a browser. On the other hand, display environments, such as tables, �gures,

minipages, and multi-line equations are transformed into images that will also be shown

on a line by themselves after starting a new paragraph. The scale factor for the two

kinds of images (inline and displayed) can be speci�ed by the following parameters:

$MATH_SCALE_FACTOR = 1.6;# inline images

$FIGURE_SCALE_FACTOR = 0;# display images

= 0, original dimension

Finally, we specify { as described in Sections 3.5 and 3.5 { a list of commands to

be ignored and passed to LATEX.

Commands to ignore

&ignore_commands(<<_IGNORED_CMDS_);

documentclass # [] # {}

usepackage # [] # {}

mbox

makebox# [] # []

_IGNORED_CMDS_

Commands to pass on to LaTeX{}

&process_commands_in_tex (<<_RAW_ARG_CMDS_);

includegraphics # [] # [] # {}

rotatebox # {} # {}

_RAW_ARG_CMDS_

1; # This MUST be the last line

We notice that the mandatory argument of the \mbox and \makebox commands

is not speci�ed, so that it will end up in the text, while the optional arguments of the

122 Michel Goossens and Janne Saarela

\makebox command will disappear. In the case of the framed box commands \fbox and

\framebox, both mandatory and optional arguments are passed on to LATEX.

It is important to note that the last line of the �le must be the one shown in the

example above.

3.6 Hypertext extensions

These commands are de�ned in the html.sty package �le that is part of the distribution.

They are de�ned as LATEX commands that are (mostly) ignored during the LATEX run

but are activated in the HTML version. To use them the html package must be included

with a \usepackage command.

Hyperlinks in LATEX

With the \htmladdnormallink and \htmladdimg commands one can build arbitrary

hypertext references.

\htmladdnormallink{text}{hURLi}

When processed by LATEX the URL part will be ignored, but LaTeX2HTML will transform

it into an active hypertext link that can give access to sound, images, other documents,

etc., for instance,

\htmladdnormallink{The Ω Project}

{http://www.ens.fr/omega/}

\htmladdnormallinkfoot{text}{hURLi}

This command takes the same two arguments and has the same e�ect when generating

HTML as the command \htmladdnormallink, but when processed by LATEX it shows

the URL as a footnote.

\htmladdimg{hURLi}

In a similar way, the argument of the \htmladdimg command should be a URL pointing

to an image. This URL is ignored in the LATEX hard copy output.

Cross-references between living documents

In this case we want to use a mechanism for establishing cross-references between two

or more documents via symbolic labels independent of the physical realisation of these

documents. The documents involved may reside in remote locations and may be spread

across one or more HTML �les.

The mechanism is an extension of the simple \label-\ref pairs that can be used

only within a single document. A symbolic label de�ned with a \label command can

be referred to using a \ref command. When processed by LATEX, each \ref command

From LATEX to HTML and back 123

is replaced by the section number at which the corresponding \label occurred. When

processed by LaTeX2HTML each \ref is replaced by a hypertext link to the place where

the corresponding \label occurred. The new commands, detailed below, show how it

is possible to refer to symbolic labels de�ned with \label in other external documents.

Such references to external symbolic labels are then translated into hyperlinks pointing

to the external document.

Cross-references between documents are established with the commands:

\externallabels

{hURL directory external documenti}

{hexternal document labels.pl �lei}

\externalref{hlabel in remote documenti}

The �rst argument to \externallabels should be a URL to the directory con-

taining the external document. The second argument should be the full pathname to

the labels.pl �le belonging to the external document. The �le labels.pl associates

symbolic labels with physical �les and is generated automatically for each translated doc-

ument. For remote external documents it is necessary to copy the labels.pl �le locally

so that it can be read when processing a local document that uses it. The command

\externallabels should be used once for each external document in order to import

the external labels into the current document. The argument to \externalref can be

any symbolic label de�ned in any of the external documents in the same way that the

\ref command refers to labels de�ned internally.

After modi�cations in an external document, such as addition or deletion of sec-

tioning levels, or a segmentation into di�erent physical parts, a new �le, labels.pl,

will be generated. If in another document the \externallabels command contains the

correct address to the labels.pl �le, then cross-references will be realigned correctly.

A warning will be given if labels.pl cannot be found.

Example of a composite document

In this section we show how to handle a set of composite documents taking advantage

of the hypertext extensions described in Section 3.6.

We start with the LATEX source document shown in Figure 1 and divide it, for

demonstration purposes, into four sub-documents, shown in Figure 6, namely a main

�le (ex20.tex) and three secondary �les (ex21.tex, ex22.tex and ex2bib.tex). We

must �rst run all these �les through LATEX and then in the correct order through La-

TeX2HTML. Indeed, as we use cross-references to refer to document elements in external

documents (with the commands \externalref and \externallabels) we should �rst

treat the secondary �les ex21.tex, ex22.tex, and ex2bib.tex, before tackling the

master �le ex20.tex.

By default, LaTeX2HTML writes the �les that it creates into a subdirectory with the

same name as the original �le, for example, after execution of the command:

124 Michel Goossens and Janne Saarela

\documentclass{article}

\usepackage{html}

\usepackage[dvips]{graphicx}

\usepackage[french]{babel}

\begin{document}

\begin{center}

\Large Exemple d'un document compos\'e

\end{center}

\htmladdnormallink{Les Images}%

{../ex21/ex21.html}

\externallabels{../ex21}%

{../ex21/labels.pl}

R\'ef\'erence \`a une figure

externe~\externalref{Fpsfig}.

\htmladdnormallink{Les tableaux}%

{../ex22/ex22.html}

\externallabels{../ex22}%

{../ex22/labels.pl}

R\'ef\'erence \`a un tableau

externe~\externalref{tab-exa}.

\htmladdnormallink{La bibliographie}%

{../ex2bib/ex2bib.html}

\end{document}

\documentclass{article}

\usepackage{html}

\usepackage[dvips]{graphicx}

\usepackage[french]{babel}

\makeindex

\begin{document}

\section{Une figure EPS}\label{sc-figure}

Cette section montre comment inclure une

\externallabels{../ex2bib}%

{../ex2bib/labels.pl}%

figure PostScript\externalref{bibPS}

dans un document \LaTeX. La

\hyperref{figure}{figure }{}{Fpsfig}

est ins\'er\'ee dans le texte \`a l'aide

de la commande

\verb!\includegraphics{colorcir.eps}!.

\begin{figure}\centering

\htmlimage{thumbnail=0.2}

\begin{tabular}{c@{\qquad}c}

\includegraphics[width=6cm]{colorcir.eps}&

\includegraphics[width=6cm]{tac2dim.eps}

\end{tabular}

\caption{Deux images EPS}\label{Fpsfig}

\end{figure}

\end{document}

Master �le (ex2.tex) File containing images (ex21.tex)

\documentclass{article}

\usepackage{html}

\usepackage[french]{babel}

\newcommand{\Lcs}[1]{%

\texttt{\symbol{'134}#1}\enspace}

\begin{document}

\section{Exemple d'un tableau}

\label{sec-tableau}

Le \hyperref{tableau}{tableau }{}{tab-exa}

montre l'utilisation de l'environnement

\texttt{table}.

\begin{table}\centering

\begin{tabular}{ccccc}

\Lcs{primo} \primo &

\Lcs{secundo} \secundo &

\Lcs{tertio} \tertio &

\Lcs{quatro} \quatro &

2\Lcs{ieme}\ 2\ieme

\end{tabular}

\caption{Quelques commandes de l'option

\texttt{french} de

\texttt{babel}}\label{tab-exa}

\end{table}

\end{document}

\documentclass{article}

\usepackage{html}

\usepackage[french]{babel}

\makeindex

\begin{document}

\begin{thebibliography}{99}

\bibitem{bib-PS}\label{bibPS}

Adobe Inc. \emph{PostScript, manuel de

r\'ef\'erence (2i\`eme \'edition)}

Inter\'Editions (France), 1992

\end{thebibliography}

\end{document}

File containing the table (ex22.tex) File with the bibliography (ex2bib.tex)

Figure 6: Example of a composite document (LATEX �les)

From LATEX to HTML and back 125

> latex2html ex20.tex

one ends up with a directory ex20 containing all �les associated with the translation of

the input �le ex20.tex. Figure 7 shows the structure of the four sub-directories created.

To guide LaTeX2HTML in translating these documents we also used a customization

�le, myinit.pl, containing some rede�nitions of perl constants.

File myinit.pl

Customization of latex2html

$ADDRESS = "<I>Michel Goossens
" .

"Division CN
" .

"T�el. 3363
" .

"\n$address_data[1]</I>";

$MAX_SPLIT_DEPTH = 0; # do not split document

$MAX_LINK_DEPTH = 0; # no down links needed

$NO_NAVIGATION = 1; # no navigation panel

1; # Mandatory last line

When executing LaTeX2HTML on the �les we then issued the following command:

> latex2html -init_file myinit.pl \

> -t "Image" \

> -info "Test du 2/12/94" \

> ex21.tex

Apart from loading our customization �le moninit.pl (option -init_file), we also

specify a title for the document (option -t), and add a description about the document

(option -info). The result can be seen in the upper left corner of Figure 8.

Shown below are the informative messages generated by LaTeX2HTML when exe-

cuting the above command. At �rst the �le html.perl associated with the hypertext

extensions described in Section 3.6 is loaded (thanks to the \usepackage{html} com-

mand as seen in the source in Figure 6). The auxiliary �le ex21.aux is also read, thus

reminding us that the documents should be treated by LATEX before LaTeX2HTML is run.

After reading the complete LATEX input �le, LaTeX2HTML generates the �le image.tex

which contains the LATEX code corresponding to all environments for which no translation

rules were available. After running LATEX on images.tex the dvi �le is transformed by

the dvips program into PostScript. Then another program, ghostview, interprets this

PostScript and transforms it into the GIF format (via an intermediate stage using the

ppm format). It is these GIF images that are used by most browsers to show the images

on screen. At the end, LaTeX2HTML reads the �le(s) containing the labels of the external

documents in order to resolve possible cross-references by including the necessary <URL>

addresses.

This is LaTeX2HTML Version 0.6.4 (Tues Aug 30 1994)

126 Michel Goossens and Janne Saarela

Top directory (TeX source files)

================================

569 ex20.tex

721 ex21.tex

627 ex22.tex

322 ex2bib.tex

Subdirectories (generated HTML files)

=====================================

ex20

1187 ex20.html

109 images.pl

93 labels.pl

ex21

1755 T_18854_figure15.gif

12118 _18854_figure15.gif

122 _18854_tex2html_wrap57.gif

1345 ex21.html

539 images.pl

589 images.tex

190 labels.pl

ex22

624 _15561_table12.gif

1047 ex22.html

512 images.pl

687 images.tex

191 labels.pl

ex2bib

844 ex2bib.html

109 images.pl

141 labels.pl

Note the presence of the �les labels.pl that contain information associating the symbolic names

used on the \label commands in the original LATEX source documents with the physical docu-

ments. The other �les are one or more HTML �les that were created by the translation process.

GIF images are generated for all environments that LaTeX2HTML cannot translate gracefully into

HTML. In this case the relevant part of the LATEX code is �rst copied into a �le images.tex

that is run through LATEX, which places each such environment on a separate page, so that the

dvips program can produce a PostScript picture for each that is then (in principle) translated into

GIF by using the Ghostscript program (see Section A.1 for more information about all these

programs)

Figure 7: Subdirectory structure after translation of the four documents shown in

Figure 6

From LATEX to HTML and back 127

by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/usr/goossens/html/ex21.tex

Loading /usr/local/lib/latex2html/styles/html.perl...

Reading ...

Reading ex21.aux

Translating ...0/2..........1/2........2/2......

Generating images using LaTeX ...

This is TeX, Version 3.1415 (C version 6.1)

(18854_images.tex

LaTeX2e <1994/06/01> patch level 3

Hyphenation patterns for english, loaded.

Generating postscript images using dvips ...

This is dvipsk 5.58c Copyright 1986, 1994

Radical Eye Software

' TeX output 1994.12.02:1830' -> 18854_image

(-> 18854_image001) <tex.pro><special.pro>[1]

(-> 18854_image002) <tex.pro>

<special.pro>[2<colorcir.eps><tac2dim.eps>]

GS>GS>Writing 18854_image001.ppm

GS>Writing _18854_tex2html_wrap57.gif

GS>GS>Writing 18854_image002.ppm

GS>Writing _18854_figure15.gif

GS>GS>Writing 18854_image002.ppm

GS>Writing T_18854_figure15.gif

Doing section links

Done.

The result of all our e�orts is shown in Figure 8.

3.7 Including arbitrary HTML markup

Raw HTML tags and text may be included using the rawtext environment. An interest-

ing use of this feature is in the creation of interactive electronic forms. from within a

LATEX document. When producing the paper (DVI) version of a document the rawhtml

environment is ignored.

Here is an example:

128 Michel Goossens and Janne Saarela

➊

➋ ➌

➀

➁

➂

✪

✪

A
s
re
q
u
e
st
e
d
,
th
e
re
a
re
n
o
n
a
vi
g
a
ti
o
n
p
a
n
n
e
ls
,
th
e
ti
tl
e
s
a
n
d
th
e
in
fo
rm
a
ti
o
n
p
a
rt
A

b
o
u
t

t
h
is

d
o
c
u
m

e
n
t

.
.
.
h
a
ve
b
e
e
n
c
u
st
o
m
iz
e
d
a
s
in
d
ic
a
te
d
in
th
e
�
le

m
y
i
n
i
t
.
p
l
.
T
h
e
a
rr
o
w
s
c
a
rr
yi
n
g
th
e
n
u
m
b
e
rs

➊

,

➋

,
a
n
d

➌

c
o
rr
e
sp
o
n
d
to
h
yp
e
rl
in
k
s
p
o
in
ti
n
g
to
a
n
H
T
M
L
d
o
c
u
m
e
n
t
u
si
n
g
th
e
\
h
t
m
l
a
d
d
n
o
r
m
a
l
l
i
n
k

c
o
m
m
a
n
d
in
th
e
LA
T E
X
so
u
rc
e
.
T
h
e
a
rr
o
w
s
n
u
m
b
e
re
d

➀

a
n
d

➁

a
re
c
ro
ss
-r
e
fe
re
n
c
e
s
c
o
n
st
ru
c
te
d
w
it
h
th
e
c
o
m
m
a
n
d
s
\
e
x
t
e
r
n
a
l
r
e
f
,
th
a
t
m
a
ke
u
se
o
f

sy
m
b
o
lic
n
a
m
e
s
sp
e
c
i�
e
d
a
s
th
e
a
rg
u
m
e
n
t
o
f
\
l
a
b
e
l
c
o
m
m
a
n
d
s
in
th
e
ta
rg
e
t
d
o
c
u
m
e
n
ts
.
T
h
e
a
rr
o
w
n
u
m
b
e
re
d

➂

c
o
rr
e
sp
o
n
d
s
to
a
h
yp
e
rl
in
k
c
o
n
n
e
c
ti
n
g

th
e
th
u
m
b
n
a
il
in
th
e
te
xt
w
it
h
th
e
re
a
l-
si
ze
im
a
g
e
a
va
ila
b
le
a
s
a
se
p
a
ra
te
e
xt
e
rn
a
l
g
i
f
�
le
.
F
in
a
lly
,
th
e
st
a
rt
a
n
d
e
n
d
p
o
in
ts
o
f
th
e
b
ib
lio
g
ra
p
h
ic
re
fe
re
n
c
e

lin
k
a
re
in
d
ic
a
te
d
b
y
th
e
sy
m
b
o
l

✪

.

F
ig
u
re
8
:
T
h
e
H
T
M
L
�
le
st
ru
ct
u
re
o
b
ta
in
ed
fr
o
m
th
e
co
m
p
o
si
te
d
o
cu
m
en
t
a
n
d
it
s
su
b
-d
o
cu
m
en
ts
(F
ig
u
re
6
)
a
s
vi
ew
ed
b
y

th
e
M
o
s
a
i
c
b
ro
w
se
r.

From LATEX to HTML and back 129

\begin{rawhtml}

<HTML>

<HEAD>

<TITLE>Example of simple form</TITLE>

</HEAD>

<BODY>

<FORM

ACTION="http://www.server.ch/form.cgi"

METHOD="POST">

Radio buttons:

 <INPUT TYPE="radio" NAME="mode"

VALUE="FM"> Frequency modulation.

 <INPUT TYPE="radio" NAME="mode"

VALUE="SW" CHECHED> Short waves.

</FORM>

</BODY>

</HTML>

\end{rawhtml}

The result of running this electronic form with Mosaic would yield Figure 9

Conditional text

Conditional text can be speci�ed using the environments latexonly and htmlonly.

These allow the writing of parts of a document intended only for electronic delivery or

only for paper-based delivery.

This would be useful in, for example, adding a long description of a multi-media

resource to the paper version of a document. Such a description would be redundant in

the electronic version, as the user can have direct access to this resource.

Using LATEX commands involving counters (for example, numbered �gures or equa-

tions) in conditional texts may cause problems with the values of the counters in the

electronic version.

Cross-references shown as \hyperized" text

In printed documents cross-references are shown by numerical or symbolic indirection,

such as \see equation 3.1a" (numeric indirection), or \see chapter \Hypertext" (sym-

bolic indirection). In a hypertext document, however, cross-references can be shown

without any indirection by using highlighting of a relevant piece of text. This can con-

tribute to making a document more readable by removing unnecessary visual information.

130 Michel Goossens and Janne Saarela

Figure 9: Including arbitrary HTML Markup

With LaTeX2HTML one can use the \hyperref command to specify how a cross-

reference should appear in the printed and hypertext versions of a document.

\hyperref{text-h}{text-d1}{text-d2}{label}

The meaning of the four arguments is as follows:

text-h text to be highlighted in the hypertext version;

text-d1 text to be shown in the printed version followed by a numeric reference;

text-d2 text following the reference text;

label the label de�ning the cross-reference.

Example of the use of hyperref, with a

\hyperref

{reference to conditional text}

{reference to conditional text

From LATEX to HTML and back 131

(see Section }

{ for more information)}

{sec:latexonly}

as an example.

Here is how it will be printed:

Example of the use of hyperref, with a reference to conditional text (see Section

3.7 for more information) as an example.

In the hypertext version what would appear is:

Example of the use of hyperref, with a reference to conditional text as an

example.

A simpler version of the above command but having the same e�ect for the HTML

version:

\htmlref{text}{label}

In the HTML version the text will be \hyperized" pointing to the label, while in the

printed version the text will be shown as it is and the label ignored.

Customizing the navigation panel

The navigation panel is the strip containing \buttons" and text that appears at the top

and possibly at the bottom of each generated page and that provides hypertext links to

other sections of a document. Some of the options and variables that control whether

and where it should appear have already been mentioned in Section 3.3.

A simple mechanism for appending customized buttons to the navigation panel is

provided by the command, \htmladdtonavigation. This takes one argument, which

LaTeX2HTML appends to the navigation panel:

\htmladdtonavigation

{\htmladdnormallink

{\htmladdimg{http://server/mybutton.gif}}

{http://server/link}}

For example, the above will add an active button mybutton.gif pointing to the

speci�ed location.

It is also possible to completely specify what is to appear in the navigation panel

and its order of appearance. As each section is processed, LaTeX2HTML assigns relevant

information to a number of global variables. These variables are used by the subroutine

navigation_panel where the navigation panel is constructed as a string consisting of

these variables and some formatting information.

This subroutine can be rede�ned in the system and/or user con�guration �les

HOME/.latex2html-init and LATEX2HTMLDIR/latex2html.config.

The list below contains the names of control panel variables that relate to navigation

icons and explains where they point to.

132 Michel Goossens and Janne Saarela

CONTENTS contents page (if it exists);

INDEX index page (if it exists).

NEXT next section;

PREVIOUS previous section;

UP \parent" section;

NEXT_GROUP next \group" section;

PREVIOUS_GROUP previous \group" section.

The list below contains the names of textual links that point to the title information

associated with the control panel variables described above.

NEXT_TITLE next section;

PREVIOUS_TITLE previous section;

UP_TITLE \parent" section;

NEXT_GROUP_TITLE next \group" section;

PREVIOUS_GROUP_TITLE previous \group" section.

If the corresponding section exists, each iconic button will contain an active link to

that section. If the corresponding section does not exist, the button will be inactive. If

the section corresponding to a textual link does not exist then the link will be empty.

The variable WORDS_IN_NAVIGATION_PANEL_TITLES controls the number of words in each

textual link. It may be changed in the con�guration �les. Figure 10 shows an example

of a navigation panel.

3.8 Image conversion

LaTeX2HTML converts equations, special accents, external PostScript �les, and LATEX

environments it cannot directly translate into inlined images. It is possible to control the

�nal appearance of such images, both for inline and display-type constructs.

The size of all \inline" images depends on a con�guration variable which speci�es

how much to enlarge or reduce them in relation to their original size in the printed

version of the document (MATH_SCALE_FACTOR), i.e., scale factors of 0.5 or 2.0 make

all images half or twice as large as the original. A value of 0.0 means that no scaling

factor has to be applied.

On the other hand, display-type images (such as those generated by the en-

vironments table, figure, equation, or minipage) are controlled by the variable

FIGURE_SCALE_FACTOR. The default value for both of these variables is 1.6.

Moreover, several parameters can a�ect the conversion of a single \�gure" with the

\htmlimage command:

From LATEX to HTML and back 133

sub navigation_panel {

Start with a horizontal rule (3-d dividing line)

"<HR> ".

Now add few buttons with a space between them

"$NEXT $UP $PREVIOUS $CONTENTS $INDEX $CUSTOM_BUTTONS" .

"
\n" . # Line break

If ``next'' section exists, add its title to the navigation panel

($NEXT_TITLE ? " Next: $NEXT_TITLE\n" : undef) .

Similarly with the ``up'' title ...

($UP_TITLE ? "Up: $UP_TITLE\n" : undef) .

... and the ``previous'' title

($PREVIOUS_TITLE ? " Previous: $PREVIOUS_TITLE\n" : undef) .

Horizontal rule (3-d dividing line) and new paragraph

"<HR> <P>\n"

}

Figure 10: Example de�nition of a navigation panel. (Note that \." is the perl string

concatenation operator and \#" signi�es a comment).

\htmlimage{options}

This command can be used inside every environment that is normally translated into

a display-type image. To be e�ective the \htmlimage command (and its options) must

be placed inside the environment on which it has to operate. The argument options

speci�es how the image in question will be handled; it contains a comma-separated list

of keyword-value pairs.

scale=scale-factor

the scale factor for the �nal image;

external

the image does not have to be included in the document, but a hyperlink whose

URL points to it has to be inserted to access it;

thumbnail=reduction-factor

a small inlined image will be generated and placed in the caption; its size depends

134 Michel Goossens and Janne Saarela

on the speci�cation reduction-factor that downsizes the image by that amount.

Note that this option implies external.

map=image-map-URL

turns the inlined image into an active image map.10

An example is the following LATEX code:

\begin{figure}

\htmlimage{thumbnail=0.25}

\includegraphics{myfig.eps}

\caption{description of my figure}

\label{fig-myfig}

\end{figure}

\htmlimage can also be used to locally cancel out the e�ect of the con�guration

variable FIGURE_SCALE_FACTOR. For instance, if one does not want to resize a given

image, then the command htmlimage{scale=0} will do the trick.

3.9 Internationalization

A special variable, TITLES_LANGUAGE, in the initialization or con�guration �les deter-

mines the language in which some section titles will appear. For example, by setting it

to

$TITLES_LANGUAGE = "french";

LaTeX2HTML will produce \Table des mati�eres" instead of \Table of Contents".

Currently, \french" and \english" are the only languages supported. It is not di�cult,

however, to add support for other languages in the �le latex2html.config. As an

example, below is shown the entry for French titles:

sub french_titles {
$toc_title = "Table des mati�eres";

$lof_title = "Liste des figures";

$lot_title = "Liste des tableaux";

$idx_title = "Index";

$bib_title = "R�ef�erences";

$info_title =

"�A propos de ce document...";

}

In order to provide full support for another language you may also want to replace

the navigation buttons which come with LaTeX2HTML (which are by default in English)

with your own. As long as the new buttons have the same �lenames as the old ones

there should not be a problem.

10. More information on active image maps is at the URL http://wintermute.ncsa.uiuc.edu:8080/

map-tutorial/image-maps.html.

From LATEX to HTML and back 135

3.10 Known problems

Users of LaTeX2HTML should take note of the following shortcomings of the translator.

� Unrecognized commands and environments.

Unrecognized commands are ignored and any arguments are left in the text. Unrec-

ognized environments are passed to LATEX and the result is included in the document

as one or more inlined images. Users can take care of this by providing information

to LaTeX2HTML on how to handle such cases, either by deciding to ignore them (see

Section 3.5 on page 117), or by de�ning a perl procedure (see Appendix C).

� Cross-references.

References in environments that are passed to LATEX for processing (such as \cite

or \ref commands), are not processed correctly. On the other hand, \label

commands are handled satisfactorily.

� Order-sensitive commands.

Commands a�ecting global parameters during the translation that are sensitive to

the order in which they are processed may cuase problems. In particular, counter

manipulation with commands such as \newcounter, \setcounter, \stepcounter

should be watched.

� Index.

LaTeX2HTML generates its own index by saving the arguments of the \index com-

mand. The contents of the \theindex environment are ignored.

� New de�nitions.

New de�nitions (with the commands: \def, \newcommand, \newenvironment,

\newtheorem) will not work as expected if they are de�ned more than once. Indeed,

only the last de�nition will be used throughout the document.

� Scope of declarations and environments.

LaTeX2HTML processes sections as independent units. Thus, when the scope of a

declaration or environment crosses section boundaries, the output may not be as

expected.

4 HTML3 extensions to LATEX2HTML

4.1 The MATH2HTML program

The simple notation for even complex mathematics and the diversity of the symbols and

characters sets available makes LATEX the typesetting system of choice in many of the

scienti�c �elds. Tens of thousands of articles, theses, and reports have been written in

LATEX and most publishing houses that deal with scienti�c papers use LATEX for handling,

storing and archiving their documents. Therefore it is to be expected that all these parties

wish to protect their investment and prefer not to have to recode their mathematics

formulae for hypertext purposes only.

The LaTeX2HTML translator solves the problem of presenting mathematics in HTML

by converting each mathematical sentence into a bitmap image. Although simple and

136 Michel Goossens and Janne Saarela

straighforward, this approach seems a little unreasonable in general, since in many cases

an article of a few pages can generate many hundreds of bitmap images, which have to be

stored with the document, kept up to date, and transmitted with the document over the

Internet, thus wasting an enormous amount of bandwidth. Therefore, a clear need for a

translator from LATEX mathematics into HTML3's primitive mathematics was considered

an important goal. Thanks to the increased displaying capabilities of HTML3 complyable

browsers, most inline mathematics and a fair proportion of display equations can be

translated into HTML3 source code and hence transmitted in textual format together

with the rest of the document, doing away with well over 90% of the images that

are created in the HTML2 case where only bitmap images are generated. In addition,

mathematics text can be searched for keywords as the rest of the document, thus

increasing the value of the HTML document.

The math2html program has been interfaced to the LaTeX2HTML program via a

new option -html3. When this option is speci�ed, LaTeX2HTML will �rst pass the LATEX

input source code through the math2html translator. In this case, native HTML3 code

will be generated for mathematics and tables when math2html can handle the input.

In case math2html cannot parse the given LATEX input, it gives an error message and

LaTeX2HTML creates an image as usual.

At CERN we have translated thousands of pages of manuals and hundreds of physics

articles. We found that math2html successfully translates on average 95% of all math-

ematics present in the input �les, thus reducing by a substantial amount the number of

generated bitmap images.

A few examples

The HTML3 extensions translate quite a large fraction of not-too-complex LATEX math

constructs (for as far as they can be handled by the HTML3 DTD, of course).

A �rst explicit example is the code representing the di�erential cross-section of �-ray

production. The original LATEX code and its result as typeset by LATEX are shown in parts

(a) and (b) of Figure 11, while the result of the translation by math2html of the LATEX

source in (a) into HTML3 is shown in (c), yielding the output with the arena browser

shown in (d). Part of the tree constructed by math2html when parsing this LATEX input

is shown in Figure 18 on page 165.

Multi-line mathematical constructs, such as arrays (array and eqnarray environ-

ments), are also handled without too many problems, and the present limits of the

translation are due more to shortcomings of the (only) HTML3 browser arena (which

is, after all, merely a beta-test version), than to intrinsic limitations in the approach.

In Figure 12 we show the LATEX source and result as seen with arena of two multi-line

environments.

From LATEX to HTML and back 137

(a) LATEX source that has to be translated:

\frac{d\sigma}{d\epsilon}=\frac{2\pi Z r_0^2m}{\beta^2(E-m)}%

\left[\frac{(\gamma-1)^2}

{\gamma^2}+\frac{1}{\epsilon}\left(\frac{1}{\epsilon}-%

\frac{2\gamma-1}{\gamma^2}\right)+\frac{1}{1-\epsilon}%

\left(\frac{1}{1-\epsilon}\frac{2\gamma-1}{\gamma^2}\right)\right]

(b) Result of the above source as typeset with LATEX:

d�

d�
=

2�Zr 2
0
m

�2(E �m)

[
(
 � 1)2

2
+

1

�

(
1

�
�

2
 � 1

2

)
+

1

1� �

(
1

1� �

2
 � 1

2

)]

(c) Result of the translation of the code in (a) into HTML3:

<math><box>dσ<over>dε</box>=<box>2πZr₀²m<over>β

²(E-m)</box>[<box>(γ-1)²<over>γ²</box>+

<box>1<over>ε</box>(<box>1<over>ε</box>-<box>2γ-1<over>γ<sup>2

</sup></box>)+<box>1<over>1-ε</box>(<box>1<over>1-ε</box>

<box>2γ-1<over>γ²</box>)]</math>

(d) Result of viewing of the HTML3 code of (c) with the arena browser:

Figure 11: Example of transforming LATEX code to HTML3 with math2html

Writing convertible LATEX

By following the rules below, one can expect the LaTeX2HTML translator enhanced with

math2html to produce good output in terms of a low number of bitmap images.

� Do not write the base of a superscript or a subscript outside the mathematics

markup, i.e., a2 is not converted correctly but creates a bitmap image. The

correct way is to write it a^2 or $\mathrm{a}^$ depending, on whether or not

one wants the letter \a" in math italic or in a roman font. When you leave the

base outside of the math markup (the $ signs) the text between the mathematics

delimiters is passed to the math2html translator and the latter does not know where

to place the mathematics start (<math>) tag.

138 Michel Goossens and Janne Saarela

\begin{eqnarray}

a & = & \sin \alpha_2 \\

b & = & \cos \omega_3 \\

\Gamma & = & \Phi + \Theta\\

\end{eqnarray}

\[

\begin{array}{cccccc}

a_{11} \\

a_{21} & a_{22} \\

a_{31} & a_{32} & a_{33} \\

a_{41} & a_{42} & a_{43} &

a_{44} \\

a_{51} & a_{52} & a_{53} &

a_{54} & a_{55} \\

a_{61} & a_{62} & a_{63} &

a_{64} & a_{65} & a_{66}\\

\end{array}

\]

Figure 12: How math2html translates LATEX multi-line mathematics into HTML3

� Do not write nested array/tabular environments. The math2html translator can-

not create an HTML3 counterpart for that markup since the HTML3 table model

does not allow nested tables. Keeping the tables simple (not nested, for example)

will improve their reusability.

4.2 Tables to HTML3 conversion

Hennecke recently developed some code for treating LATEX's tabular environment with

LaTeX2HTML by translating it into HTML3-compliant tables. His patches11 allow LaTeX2-

HTML to translate most LATEX tables reasonably well. There are a few things it cannot

do, but mainly because HTML tables are not quite as powerful as LATEX tables. Most

importantly, HTML tables are quite limited when it comes to borders, since they are not

nearly as
exible in specifying borders as LATEX tables. In his implementation, when a

LATEX table has a border anywhere, the resulting HTML table will have borders around

all cells. LATEX commands inside cells are treated as they should and declarations are

limited in scope to the cell in which they appear (just as in LATEX itself).

His additions can be placed in the LaTeX2HTML perl code itself, or in the customiza-

tion �les. In any case to leave open the possibility of generating tables with and without

11. Available from the URL ftp://ftp.crc.ricoh.com/pub/www/l2h/tables.tar.gz. The author Mar-

cus E. Hennecke can be reached by email at marcush@crc.ricoh.com.

From LATEX to HTML and back 139

this feature turned on, a new command line option -html_level can be used to specify

the level of HTML to be produced.

Examples

First, we look at a simple table with di�erent alignments:

\begin{tabular}{|l|c|r|} \hline

first column & second column & third column \\\hline

111 111 & 22 22 22 & 3 3 3 3 \\\hline

\end{tabular}

The result is seen at the top of Figure 13.

Math can also be handled (in this case it will be translated into images). With a

little bit if \hand-work" it could be translated into native HTML3:

\begin{tabular}{|ll|} \hline

$10^{10^{10}}$& a big number \\\hline

10^{-999} & a small number\\\hline

\end{tabular}

The result is seen in the second table from the top in Figure 13.

Modi�cations to text inside cells remain limited to that cell (as it should). In the

present version only one \multicolumn command is recognized (when more than one

such command is encountered inside a row, only the �rst one is taken into account):

\begin{tabular}{|ll|}

\multicolumn{2}{c}{\bf PostScript type 1 fonts} \\

\em Courier &

cour, courb, courbi, couri \\

\em Charter &

bchb, bchbi, bchr, bchri \\

\em Nimbus &

unmr, unmrs \\

\em URW Antiqua &

uaqrrc \\

\em URW Grotesk &

ugqp \\

\em Utopia &

putb, putbi, putr, putri

\end{tabular}

The result is seen in the third table from the top of Figure 13. Note that, even though

only vertical rules were speci�ed in the tabular's preamble, rules are drawn everywhere.

This is because the BORDER attribute of the <TABLE> tag in HTML3 has only one value,

i.e., borders are present or absent everywhere.

140 Michel Goossens and Janne Saarela

Figure 13: Four examples of tabular environments translated automatically to HTML3

as viewed with the arena browser

From LATEX to HTML and back 141

Our �nal example has again a few \multicolumn commands, but also shows that

non-speci�ed cells are treated gracefully (this can be compared to the example in Section

4.1, where a similar table was built as an array inside math mode):

\begin{tabular}{cccccc}

\multicolumn{6}{c}{\bf global top title}\\

a11 \\

a21 & a22 \\

a31 & a32 & a33 \\

a41 & a42 & a43 & a44 \\

a51 & a52 & a53 & a54 & a55 \\

a61 & a62 & a63 & a64 & a65 & a66 \\

\multicolumn{6}{c}%

{\em columns 1-6 bottom title}

\end{tabular}

The result is seen as the bottom table of Figure 13. As no vertical nor horizontal rules

were speci�ed in the input, the resulting table has no borders.

5 Caml based LATEX to HTML translation

Xavier Leroy (INRIA, France) developed a LATEX to HTML translator based on the Caml

language.12

What was needed was to translate a 200-page technical document (the reference

manual and user's documentation for their implementation of the Caml Light pro-

gramming language). This manual was written in LATEX and contained some rather

non-standard environments and macros written directly in TEX. Parts of the document

were automatically generated: syntactic de�nitions (typeset from BNF descriptions) and

descriptions of library functions (extracted from commented source code).

5.1 Why not just use LATEX2HTML

When LaTeX2HTML �nds a LATEX construct that it does not know how to translate into

HTML, it simply turns it into a bitmap. This approach was considered inappropriate by

Leroy et al., since

� information transformed into a bitmap is not searchable;

� bitmaps cannot easily be integrated into Macintosh or Windows online documenta-

tion systems;

� bitmaps are generally hard to read, since their resolution usually does not match

that of the HTML viewer;

� as bitmaps can be quite large, transmission times increase and network bandwidth

su�ers.

12. More information can be found at the URL http://pauillac.inria.fr/~xleroy/w4g.html.

142 Michel Goossens and Janne Saarela

In order to minimize the generation of bitmaps and to allow the production of a better

quality HTML source, the information in the LATEX source was tagged by LATEX macros to

explicitly show its semantics meaning. Special care was taken to avoid inline mathematics

constructs, since they result in bitmap images, for example, \var{x} was preferred to

its typographic equivalent x (denoting a meta-variable), and \nth{v}{n} was used to

mean the n-th component of v, rather than writing v_n. The same technique was also

used to eliminate \low-level" typesetting constructs and environments such as center

and tabular.

When typesetting the document with LATEX these new commands were simple trans-

lated into the needed typographic representation, but during the translation into HTML

they were explicitly recognized and individually translated into a form that corresponds

with the possibilities of HTML. For instance, \nth{v}{n} would become something like

<i>v(n)</i>, showing <i>v(n)</i>.

The programs that automatically generated BNF or program fraction for inclusion in

the LATEX source were adapted so that its contents could now also be included without

problems in the HTML source by \hiding" the generated material inside a rawhtml

environment.

Finally, the few places where more complex mathematical constructs were needed

were hand-translated into a form acceptable to HTML and stored inside a rawhtml envi-

ronment, leaving the original mathematics expressions inside a latexonly environment.

Thus both the LATEX and HTML views of the document were optimized. Although in

principle such an approach can lead to synchronization problems between the LATEX and

HTML parts of the information, it was found that, due to the care that was taken in

using the generic markup approach outlined above, only about 0.2% of the source had

to be manually translated.

Although Leroy and his collaborators originally planned to use LaTeX2HTML for trans-

lating their document into HTML, they found that some commands (especially those

using verbatim-like constructs, most notably the alltt environment) cannot be de-

�ned in perl in an easy way using the interface of init �les described earlier. Therefore

modi�cations have to be made inside the body of the LaTeX2HTML program itself, and

this is very complicated since the inner workings of LaTeX2HTML are undocumented and

scarcely commented, so that the perl code is not always clear to follow. Also, the mem-

ory requirements of LaTeX2HTML (especially the pre-1995 versions, when the tests were

done) can be huge, exhausting all the memory available on the machine and causing

the program to crash (this should no longer be a problem with the current version of

LaTeX2HTML if the LATEX source in divided into a set of smaller �les). They therefore

decided to write their own LATEX-to-HTML translator for the extended subset of LATEX

commands they used.

This translator works in two main stages:

� The translator �rst reads the whole LATEX document and outputs one large HTML

document. It is written in Caml Light and uses the lexical analyzer generator

From LATEX to HTML and back 143

camllex (the Caml equivalent of lex for C) heavily. Note that Caml is a mod-

ern, type-safe high-level programming language with good memory management,

so that the translator has negligible memory requirements, runs quickly, is easy to

extend, and took little time to develop.

� The output of the translator is then split into smaller parts (for instance at the

<H1> or <H2> heading levels), and these parts are linked together using \Next" and

\Previous" buttons. This linking is performed by two simple perl scripts.

In order to get a feeling of the result of the translation, one can look at a randomly

chosen page from the manual that was converted. Figure 14 shows the result of LATEX

(viewed with xdvi) and Figure 15 is the result of the HTML conversion, as shown by

Mosaic.13 Appendix E takes a closer look at how the Caml system translates LATEX

commands into HTML.

5.2 Discussion

Based on their experience with writing and using their translator Leroy and collaborators

draw the conclusions summarized in the next sections.

About the HTML language

Despite its apparent simplicity, the HTML language is almost rich enough to format

TEX-intensive technical documentation. The sole features that were badly missed were

tables, subscripts, and superscripts. This is much less true today, since HTML3 already

contains an interesting table model, and allows for super and subscripts. Moreover, the

latest versions of Mosaic and Netscape support these functions.

About HTML viewers

The quality of the typesetting performed by popular HTML viewers (such as Mosaic

and Netscape) is very often insu�cient. It seems especially di�cult to ensure font

consistency throughout a document.

The di�culty in �nding good translators and adequate viewers probably has to do

with the immaturity of the �eld. Leroy et. al. are convinced that the widespread use

of perl for programming translation tools is partly responsible for this situation. They

state that perl is inherently not suited to the parsing and transformation of structured

languages, such as LATEX and HTML, and go on to say that languages with high-level

parsing capabilities, real data structures and clean semantics are much more suited for

these tasks.

They also ask the question: what is the best markup language for preparing doc-

umentation so that it can be nicely printed but also easily transformed into HTML for

publishing on the Web? They accept that, LATEX presently being the de facto standard

markup language used in computing and other science �elds, it will be di�cult in the

13. The complete manual { HTML and dvi �les { are at the URLs http://pauillac.inria.fr/~xleroy/

man-caml/ and ftp://ftp.inria.fr/lang/caml-light/Release7beta/cl7refman.dvi.gz, respectively.

144 Michel Goossens and Janne Saarela

Figure 14: Example page of Caml manual (LATEX viewed with xdvi)

short term to propose a solution other than to invest more e�ort in developing cleverer

and more comprehensive LATEX-to-HTML translators.

6 Converting HTML to LATEX

Although utilities for obtaining PostScript representations from HTML �les are readily

available, either using HTML browsers, such as Mosaic, that o�er PostScript as one

of their output formats, or directly (for example, htps14) the visual layout of these

documents is often appalling, and the structuring of the information has been made

almost completely invisible. Often one would like to obtain a nicely typeset document

that presents the information marked up in HTML in a structured way, with all document

elements clearly identi�able. A translation into LATEX allows one to combine the power

of the TEX typesetting engine while at the same time exploiting the structural similarities

between HTML and LATEX as explained in Section 1 and Table 1.

14. More information is at the URL http://info.cern.ch/hypertext/WWW/Tools/htps.html.

From LATEX to HTML and back 145

Figure 15: Example page of Caml manual (HTML converted with Caml based translator

viewed with Mosaic)

A �rst program HTML2LaTeX translates a large fraction of the HTML commands into

LATEX, while SGML2TeX takes a more general approach and allows the transformation of

an arbitrary SGML source into LATEX.

6.1 HTML2LATEX, an HTML-to-LATEX converter

HTML2LaTeX is a C-program written by Nathan Torkington (New Zealand). Basically,

the HTML parser of the NCSA Mosaic HTML browser is used for the translation. The

calling sequence of the program is:

html2latex [options] [�lenames]

For each input �le speci�ed, HTML2LaTeX transforms the HTML markup in the source

into the equivalent LATEX markup. When no �lenames are speci�ed, HTML2LaTeX will

display a short description of how to use the program. If �lenames is equal to -, then

the input text is read on standard input stdin. For each input �le an output �le with

the same name, but with the extension .tex instead of .html is generated.

146 Michel Goossens and Janne Saarela

Options

HTML2LaTeX has a number of options that modify its way of operation. The more

important are:

-n number the sections;

-p start a new page after the titlepage (if present) or the table of contents

(if present);

-c generate a table of contents;

-s write output information on stdout;

-t Title generate a titlepage containing the title Title;

-a Author generate a titlepage containing the author(s) Author ;

-h Start-Text introduce the text Start-Text immediately following the command

\begin{document};

-h End-Text introduce the text End-Text immediately preceding the command

\end{document};

-o options specify the options options on the \documentclass command.

Examples

Let us consider the following command:

html2latex -n - < file.html | more

In this case the �le file.html is transformed into LATEX and the result is shown on the

screen. The option -n makes sure no section numbers are generated.

A more complex example is shown below:

html2latex -t 'HTML for Pedestrians' \

-a 'First Last' -p \

-c -o'[12pt,twoside]{article}'\

my-article.html

In this case �le my-article.html will be read, and the output written to the �le

my-article.tex. A titlepage (using the text \HTML for Pedestrians" as title and

\First Last" as author) will be output on a separate page (option -p). A Table of

contents (option -c) followed by a new page (option -p again) will also be generated.

Sections will be numbered (default behavior). The LATEX document will be typeset at 12

point using the document option twoside, to allow two-sided printing.

Limitations

The present version of HTML2LaTeX recognizes the following HTML tags: <TITLE>, <H1>

to <H6>, for lists ,, <DT>, <DD> and , plus the presentation tags , <I>,

<U>, , <CODE>, <SAMP>, , <KBD>, <VAR>, <DFN>, <CITE>, and

<LISTING>. Of the entities only &, < and > are handled correctly. The

content �elds of the tags <ADDRESS>, <DIR> and <MENU> are not handled correctly.

Moreover, the COMPACT attribute of the <DL> tag is not honored and the text of the

From LATEX to HTML and back 147

<TITLE> tag is ignored. Even worse, the body of the <PRE> elements are completely

ignored.

Note that the complete HTML �le is read into memory; this can lead to problems

when handling large �les on machines with limited memory capabilities.

6.2 SGML2TeX, a General-Purpose SGML to LATEX Converter

SGML2TeX15 is a program written by Peter Flynn (Cork, Ireland) that translates SGML

tags into TEX instructions. At present the system is only implemented in PCL16 running

runs under ms-dos on a PC but the author has plans to rewrite it in a more portable

programming language.

SGML2TeX does not verify the SGML source for correctness but accepts all SGML

documents marked up using the reference concrete syntax. It is up to the user to de�ne

a LATEX equivalent for each of the SGML document elements, their attributes, and the

entities used in the source. A con�guration �le that contains a set of such prede�ned

correspondences for certain elements, attributes, or entities, can be read by SGML2TeX,

thus substantially alleviating the task of the user, who will only have to provide the miss-

ing de�nitions. By default, i.e., in the absence of an explicit translation, SGML elements

are translated in a form acceptable to LATEX by adopting the following conventions:

� start tags get the pre�x \start and end tags the pre�x \finish followed by the tag-

name in upper case, followed by a pair of braces ({}). This pair of braces corresponds

to a do-nothing de�nition for each of the tags thus handled;

� SGML entities of the form &ent; are translated into \ent{} and written into the

output �le;

� attributes are handled in the same way, but their value is speci�ed between curly

braces like a LATEX argument.

Acknowledgments

We sincerely thank Nelson Beebe (Utah University, beebe@math.utah.edu) for e-mail

discussions and for his detailed comments of the compuscript. His many suggestions

improvements have without doubt substantially increased the readability and quality of

the article. We also want to acknowledge Steven Kennedy (CERN) for proofreading the

article.

References

[1] M. Goossens, F. Mittelbach, and A. Samarin. The LATEX Companion. Addison-

Wesley, Reading, 1994.

15. For more information see the URL http://info.cern.ch/hypertext/WWW/Tools/SGML2TeX.html.

16. PCL stands for Personal Computer Language, an interpreted language for dos on the *86 chips. It is a

very fast prototyping tool, not a production language since it cannot link executable images.

148 Michel Goossens and Janne Saarela

[2] M. Goossens and E. van Herwijnen. The elementary particle entity notation (pen)

scheme. TUGboat, 13(1):201{207, July 1992.

[3] L. Lamport. LATEX, User's Guide and Reference Manual (2nd Edition). Addison-

Wesley, Reading, 1994.

[4] J.K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, 1994.

[5] Rumbaugh et al. Object-Oriented Modeling and Design. Prentice Hall, Inc.,

Englewood Cli�s, N.J., 1991.

[6] J. Schrod. Towards interactivity for TEX. TUGboat, 15(3):309{317, September

1994.

[7] R.L. Schwartz. Learning Pearl. O'Reilly & Associates, Inc., Sebastopol, CA, USA,

1993.

[8] D. Till. Reach yourself perl in 21 days. Sams publishing, 1995.

[9] L. Wall and Schwartz R.L. Programming Pearl. O'Reilly & Associates, Inc.,

Sebastopol, CA, USA, 1991.

A complete and up-to-date list of titles of books on HTML and perl is maintained by

Nelson Beebe (Utah University, beebe@math.utah.edu) and can be found in his BibTEX

databases sgml.bib and unix.bib, respectively, in the directory with URL address

ftp://ftp.math.utah.edu/pub/tex/bib/.

Appendices

Appendices A and B present a few practical details that we found particularly relevant

when installing or troobleshooting LaTeX2HTML.17 Appendix C then provides some more

information about the internal workings of the LaTeX2HTML program and how it can be

extended by writing perl procedures. Finally, AppendixD contains technical information

about the math2html extension to LaTeX2HTML, while Appendix E takes a closer look

at Leroy's Caml-based LATEX-to-HTML translator.

Appendix A: LATEX2HTML { Installation

A.1 Requirements to run LATEX2HTML

LaTeX2HTML uses several publicly available tools that can be readily found on most

computer platforms, namely:

� LATEX (of course).

� perl (version 4 from patch level 36 onward, or, even better, version 5).

� DBM or NDBM, the Unix DataBase Management system.

� dvips (version 5.516 or later) or dvipsk.

17. These sections are adapted from the LaTeX2HTML manual that is available at the URL http://cbl.

leeds.ac.uk/nikos/tex2html/doc/latex2html/latex2html.html.

From LATEX to HTML and back 149

� gs (Ghostscript version 2.6.1 or later).

� The pbmplus or better still the netpbm libraries; some of the �lters in those libraries

are used during the postscript to GIF conversion.

� For making transparent inlined images one needs giftrans.c18 by A. Ley together

with pbmplus. Alternatively, netpbm will do the trick.

To reduce the memory requirements of the translation, LaTeX2HTML spawns o� separate

Unix processes to deal with each of the input'ed or include'd �les. As each process

terminates, all the space that it used is reclaimed. Asynchronous communication between

processes takes place using the Unix DataBase Management system (DBM or NDBM)

which should be present. To take advantage of these changes it is necessary to split the

source text into multiple �les that can be assembled using LATEX's \input or \include

commands.

When gs or the pbmplus (netpbm) library are not available, one can still generate

HTML output, but without images (using the -no_images option). Also, do not forget

to include the html package with the \usepackage command if you want to include any

of the hypertext extension commands described in Section 3.6.

A.2 Installing LATEX2HTML

Those intending to install LaTeX2HTML on their system should read the manual in detail.

Below we describe only the main steps.

� Specify where perl is on the system.

In the �les latex2html, texexpand, pstogif, and install-test modify the �rst

line saying where perl is on your system.

� Specify where the external utilities are on the system.

In the �le latex2html.config give the correct pathnames for some directories (the

latex2html directory and the pbmplus or netpbm library) and some executables

(latex, dvips, gs).

Note that LaTeX2HTML can be run even if one does not have some of these utilities.

One can also include the following supplementary customization:

� Setting up di�erent initialization �les.

One can customize on a \per user" basis the initialization �le. To this e�ect

one should copy the �le dot.latex2html-init into the home directory of any

user who wants it, modify it according to the user's preferences and rename it to

.latex2html-init.

At runtime both latex2html.config and $HOME/.latex2html-init �les will

be loaded, but the latter will take precedence. Moreover, one can also set up

a \per directory" initialization �le by copying a version of the initialization �le

.latex2html-init into each directory where it should be e�ective. In this case

18. ftp://ftp.rz.uni-karlsruhe.de/pub/net/www/tools/giftrans.c.

150 Michel Goossens and Janne Saarela

an initialization �le /X/Y/Z/.latex2html-init takes precedence over all other

initialization �les if /X/Y/Z is the \current directory" when LaTeX2HTML is invoked.

� Make local copies of the LaTeX2HTML icons.

The icons subdirectory should be copied to a place in the local WWW tree where

it can be served by the local server. Therefore, in the �le latex2html.config �le

the value of the variable $ICONSERVER should be changed accordingly.

Appendix B: LATEX2HTML { Troubleshooting

This section gives a few hints about how to solve problems with LaTeX2HTML. As a

general rule, if one gets really lost, one can obtain a lot of information from the perl

system by setting the environment variable DEBUG to 1. In particular it will point out

missing �les or utilities. Below we present some often occurring problems and propose

a way how to deal with them.

LATEX2HTML just stops without further warnings

Check the package �les that are included, since they might contain raw TEX commands,

which cannot be handled. In this case start LaTeX2HTML with the option -dont_include

followed by the name of the package �le in question. Alternatively, one can add the name

of the package �le to the variable DONT_INCLUDE in the HOME/.latex2html-init �le,

or create one in the current directory containing the following lines:

$DONT_INCLUDE = "$DONT_INCLUDE:<name-of-package-file>";

1; # This must be the last line

Similarly, when the LATEX source �le itself contains raw TEX command (\let is a common

example!) LaTeX2HTML might also stop. Such commands should therefore be introduced

inside a latexonly environment.

LATEX2HTML gives an \Out of memory" message and crashes

Divide the LATEX source �le into several �les that can be input using \include com-

mands. One can also try the -no_images option.

The \tilde" (~) does not show.

The easiest solution is to use the command \~{}. Alternatively it is possible to write

something like:

\htmladdnormallink{mylink}

\begin{rawhtml}

{http://host/~me/path/file.html}

\end{rawhtml}

From LATEX to HTML and back 151

Macro de�nitions do not work correctly

As already mentioned, plain TEX de�nitions are be converted. But there can be problems

even when using LATEX de�nitions (with the \newcommand and \newenvironment com-

mands) if such de�nitions make use of sectioning or verbatim commands, since these

are handled in a special way by LaTeX2HTML and cannot be used in macro de�nitions.

LATEX2HTML behaves di�erently when running on the same �le

When noticing strange side-e�ects due to �les remaining from previous runs of LaTeX2-

HTML one can use the option -no_reuse and choose (d) when prompted. This deletes

intermediate �les generated during previous runs. One can also delete those �les oneself

by removing the complete subdirectory created by LaTeX2HTML for storing the translated

�les. Note that in this case the image reuse mechanism is disabled.

> latex2html -no_reuse myfile.tex

This is LaTeX2HTML Version 95.1 (Fri Jan 20 1995) by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/user/goossens/myfile.tex

Cannot create directory ./myfile: File exists

(r) Reuse the images in the old directory OR

(d) *** DELETE *** ./myfile AND ITS CONTENTS OR

(q) Quit ?

:d

Cannot convert PostScript images included in the LATEX �le

It is likely that the macros used for including PostScript �les (for example, \epsffile or

\includegraphics) are not understood by LaTeX2HTML. To avoid this problem enclose

them in an environment which will be passed to LATEX anyway, for instance:

\begin{figure}

\epsffile{<PostScript file name>}

\end{figure}

Another reason why this might happen is that the shell environment variable TEXINPUTS

is unde�ned. This is not always fatal but if you have problems you can use full path-

names for included postscript �les (even when the PostScript �les are in the same

directory as the LATEX source �le). Therefore it is important to check the setting of the

TEXINPUTS environment variable and make sure that it ends in a colon \:", for example,

\.:/somedir:".

Some of the inlined images are in the wrong places

This occurs when any one of the inlined images is more than a (paper) page long.

This is sometimes the case with very large tables or large PostScript images. In this

152 Michel Goossens and Janne Saarela

case, one should specify a larger paper size (such as \a3", \a2", or even \a0") in-

stead of the default (\a4") using the LaTeX2HTML variable PAPERSIZE in the �le

latex2html.config.

The labels of �gures, tables or equations are wrong

This can happen if inside �gures, tables, equations or counters are used inside conditional

text, i.e., inside a latexonly or a htmlonly environment.

With Ghostscript 3.X inline images are no longer generated for equations, etc.

One can run the installation script install-test again, or else change the way gs is

invoked in the �le pstogif, using something like:

open (GS, "|$GS -q -sDEVICE=ppmraw -sOutputFile=$base.ppm $base.ps");

Cannot get it to generate inlined images

Try a small test �le for example,

% image-test.tex

\documentclass{article}

\begin{document}

Some text followed by \fbox{some more text in a box}.

\end{document}

One should get something like the following:

> latex2html image-test.tex

This is LaTeX2HTML Version 95.1

(Fri Jan 20 1995) by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/usr/goossens/image-test.tex

Reading ...

Processing macros ...

Translating ...0/1.....1/1.....

Writing image file ...

This is TeX, Version 3.1415 (C version 6.1)

(images.tex

LaTeX2e <1994/12/01>

Generating postscript images using dvips ...

This is dvipsk 5.58e Copyright 1986, 1994 Radical Eye Software

' TeX output 1995.05.08:1958' -> 6666_image

(-> 6666_image001) <tex.pro>[1]

From LATEX to HTML and back 153

Writing 6666_image001.ppm

Writing img1.gif

Doing section links

Done.

Problems encountered during the conversion from PostScript to GIF can be located

by doing the translation manually, as shown below for a generation using gs 3.33.

> latex image-test

This is TeX, Version 3.1415 (C version 6.1)

(image-test.tex

LaTeX2e <1994/12/01>

(/usr/local/lib/texmf/tex/latex/base/article.cls

Document Class: article 1994/12/09 v1.2x Standard LaTeX document class

(/usr/local/lib/texmf/tex/latex/base/size10.clo))

No file image-test.aux.

[1] (image-test.aux))

Output written on image-test.dvi (1 page, 348 bytes).

Transcript written on image-test.log.

> dvips -o image-test.ps image-test.dvi

This is dvipsk 5.58e Copyright 1986, 1994 Radical Eye Software

' TeX output 1995.05.08:2006' -> image-test.ps

<tex.pro>. [1]

cblelca% gs -dNODISPLAY pstoppm.ps

> gs -dNODISPLAY pstoppm.ps

Aladdin Ghostscript 3.33 (4/10/1995)

Copyright (C) 1995 Aladdin Enterprises, Menlo Park, CA. All rights reserved.

This software comes with NO WARRANTY: see the file PUBLIC for details.

Usage: (file) ppmNrun

converts file.ps to file.ppm (single page),

or file.1ppm, file.2ppm, ... (multi page).

N is # of bits per pixel (1, 8, or 24).

Examples: (golfer) ppm1run ..or.. (escher) ppm8run

Optional commands you can give first:

horiz_DPI vert_DPI ppmsetdensity

horiz_inches vert_inches ppmsetpagesize

(dirname/) ppmsetprefix

page_num ppmsetfirstpagenumber

GS>(image-test) ppm1run

Writing image-test.ppm

GS>quit

> pnmcrop image-test.ppm >image-test.crop.ppm

pnmcrop: cropping 74 rows off the top

pnmcrop: cropping 139 rows off the bottom

pnmcrop: cropping 149 cols off the left

pnmcrop: cropping 249 cols off the right

> ppmtogif image-test.crop.ppm >image-test.gif

ppmtogif: computing colormap...

ppmtogif: 2 colors found

Still no inlined images are obtained

When there have been no problems with the above �le image-test.tex but some

images have still not been successfully converted in some of the �les then one should

look in the directory with the generated HTML �les for the two �les images.tex and

154 Michel Goossens and Janne Saarela

images.log. In particular, one should check whether there is something unusual in these

�les. One can copy the source images.tex into the directory of the original LATEX �le,

run LATEX on images.tex and check for any errors in the log �le images.log. If errors are

found then one should �x images.tex, put it back into the subdirectory with the HTML

�les, and run LaTeX2HTML on the original document using the option -images_only.

If one gets into trouble, then one should rerun LaTeX2HTML with the options

-no_reuse and -no_images, for example,

> latex2html -no_reuse -no_images image-test.tex

This is LaTeX2HTML Version 95.1 (Fri Jan 20 1995) by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/user/goossens/image-test.tex

Cannot create directory ./image-test: File exists

(r) Reuse the images in the old directory OR

(d) *** DELETE *** ./image-test AND ITS CONTENTS OR

(q) Quit ?

:d

Reading ...

Processing macros ...

Translating ...0/1.....1/1.....

Writing image file ...

This is TeX, Version 3.1415 (C version 6.1)

(images.tex

LaTeX2e <1994/12/01>

Doing section links

*********** WARNINGS ***********

If you are having problems displaying the correct images with Mosaic,

try selecting "Flush Image Cache" from "Options" in the menu-bar and

then reload the HTML file.

Done.

Now one should look into the �le images.tex (as described above) and correct

possible problems. Once everything seems alright, LaTeX2HTML should be run again with

the option -images_only.

Some problems in displaying the correct inlined images may be due to the image-

caching mechanisms of the browser. With some browsers, a simple \Reload Current

Document" will be enough to refresh the images, but with others (including Mosaic)

one may need to refresh the cache explicitly. With Mosaic one should select \Flush

Image Cache" in the Options menu, then reload the HTML �le.

From LATEX to HTML and back 155

Read the whole LaTeX input into memory

verb commands with markers
Replace verbatim environments and

Split document into several parts

<<id>..<<id>> internal tagging
Replace brackets with

Are there nested environments?
Find environments

environment. Exists?
Find a predefined routine for this

commands in this environment. Exists?
Find a predefined routine for all If command has parameters, leave them.

Generate an error message

contents.
Replace verbatim markers with original

Add navigation tools and headers

do_env_NAME
call Perl subroutine

writing each input’ed document into database.

Yes

for image generation
Place the environment into images.tex

do_cmd_NAME
call Perl subroutine Yes

Yes No

No

No

Figure 16: Flow diagram of the LaTeX2HTML system

Appendix C: For PERL hackers only { Inside LATEX2HTML

The basic principle of LaTeX2HTML is that it reads a LATEX source code document,

converts the parts it recognizes into HTML and passes unknown parts to LATEX, which,

in turn, creates pictures out of them. These pictures are then placed inside the �nal

hypertext document.

As discussed in Section 3.3, the program is started by specifying the LATEX source

code document together with a set of parameters. The result is a number of HTML

documents and images as GIF or PostScript �les. An overall
ow-diagram is shown in

Figure 16

Unknown environments, tables, or pictures are also passed on to LATEX and trans-

formed into GIF or PostScript images, and kept inline or outside the hypertext docu-

ments.

C.1 The translation process

Below are shown the various phases that a document goes through when translated from

LATEX into HTML. Let us �rst consider the original LATEX source document:

\documentclass{article}

\begin{document}

156 Michel Goossens and Janne Saarela

\section{test}

This is a list of two items:

\begin{itemize}

\item{First item}

\item{Second item}

\end{itemize}

\begin{verbatim}

This section includes some special characters such as $, <, >, _.

\end{verbatim}

\end{document}

This LATEX source is �rst preprocessed by removing parts which have a special mean-

ing in LATEX, such as the verbatim and \verb constructs. In this example the verbatim

part is stored in a separate �le for later reference and a marker is placed inside the

document together with a unique identi�cation number \<id>" that will later be used

to �nd the original text.

\documentclass{article}

\begin{document}

\section{test}

This is a list of two items:

\begin{itemize}

\item{First item}

\item{Second item}

\end{itemize}

<tex2html_verbatim_mark>verbatim1

\end{document}

At the end of preprocessing in the mark_string procedure, all the bracketed areas

are replaced by <<id><<id>> tags where \id" is identical at both ends of the originally

bracketed text.

\documentclass<<1>>article<<1>>

\begin<<2>>document<<2>>

\section<<3>>test<<3>>

This is a list of two items:

\begin<<4>>itemize<<4>>

From LATEX to HTML and back 157

\item<<5>>First item<<5>>

\item<<6>>Second item<<6>>

\end<<7>>itemize<<7>>

<tex2html_verbatim_mark>verbatim1

\end<<8>>document<<8>>

Next, the document is split into sections. The LATEX sectioning commands \chapter,

\section, \subsection, etc. work as search-patterns used to split the document into

items in an perl array. In our example, the conversion is con�gured to create a single

document (i.e., no splitting).

For each section, the conversion rules are applied. These rules are implemented as

procedures that have names like do_env_X or do_cmd_X, depending on whether one

is dealing with a LATEX environment or command, where X stands for either the envi-

ronment or command name. For instance, our example document includes an itemize

environment, and LaTeX2HTML will thus call the perl procedure do_env_itemize, that

will receive as its parameter the contents of the environment, and will then parse that

information.

Similarly a procedure do_cmd_chapter exists for converting a chapter command,

and so on for the other sectioning commands. The resulting document after applying

these conversion rules looks as follows.

<H1> test</H1>

This is a list of two items:

<#5#>First item<#5#>

<#6#>Second item<#6#>

<tex2html_verbatim_mark>verbatim1

After this each document is enhanced with headers and navigation tools.

<!DOCTYPE HTML PUBLIC "-//W3O//DTD W3 HTML 2.0//EN">

<!Converted with LaTeX2HTML 95.1 (Fri Jan 20 1995) by Nikos

Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds >

<HEAD>

<TITLE> test</TITLE>

</HEAD>

<BODY>

<meta name="description" value=" test">

<meta name="keywords" value="example">

<meta name="resource-type" value="document">

<meta name="distribution" value="global">

<HR>

<tex2html_next_page_visible_mark>

158 Michel Goossens and Janne Saarela

<tex2html_up_visible_mark>

<tex2html_previous_page_visible_mark>

 Next: About this document

Up: No Title

 Previous:No Title

<HR>

<P>

<H1> test</H1>

This is a list of two items:

<#5#>First item<#5#>

<#6#>Second item<#6#>

<tex2html_verbatim_mark>verbatim1

<HR>

Finally, the markers are replaced with the contents to which they point. Extraneous

tags are removed and the address of the author is appended to the �le.

<!DOCTYPE HTML PUBLIC "-//W3O//DTD W3 HTML 2.0//EN">

<!Converted with LaTeX2HTML 95.1 (Fri Jan 20 1995) by Nikos

Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds >

<HEAD>

<TITLE> test</TITLE>

</HEAD>

<BODY>

<meta name="description" value=" test">

<meta name="keywords" value="example">

<meta name="resource-type" value="document">

<meta name="distribution" value="global">

<P>

<HR>

<IMG ALIGN=BOTTOM ALT="next"

SRC="http://asdwww.cern.ch/icons/next_motif.gif">

<IMG ALIGN=BOTTOM ALT="up"

SRC="http://asdwww.cern.ch/icons/up_motif.gif">

<IMG ALIGN=BOTTOM ALT="previous"

SRC="http://asdwww.cern.ch/icons/previous_motif.gif">

 Next: About this document

Up: No Title

 Previous: No Title

<HR>

<P>

<H1> test</H1>

<P>

This is a list of two items:

First item

From LATEX to HTML and back 159

Second item

<P>

<PRE>This section includes some special

characters such as $, <, >, _.

</PRE>

<P>

 <HR>

C.2 Enhancing the translator

From the previous section it is evident that the way to handle user commands and

environments is to add perl code into the system or personal con�guration �les, as

also discussed in Section 3.5. One can include as well a �le with new de�nitions on the

command line using the -init_file option.

To give a taste of how commands and environments are handled by LaTeX2HTML,

we provide a few simple examples that nevertheless clearly show the powerful techniques

used to generate HTML documents that preserve the information present in the original

LATEX document.

Let us �rst consider a LATEX command (\Ucom) used to tag commands that have to

be typed by the user on the keyboard. A possible de�nition using the HTML tag <KBD>

for keyboard input is:

sub do_cmd_Ucom {

local($_) = @_;

s/$next_pair_pr_rx//o;

join('',qq+<KBD>$&</KBD>+,$_);

}

The perl variable $next_pair_pr_rx contains the substitution pattern that extracts

the string of characters surrounded by the following pair of delimiters. The string of

characters and the delimiters are eliminated and the string is then copied between the

HTML <KBD> and </KBD> appended to the output stream.

Similarly, one can translate the argument of a \URL command (containing a Universal

Resource Locator) into an HTML anchor, as shown below:

sub do_cmd_URL {

local($_) = @_;

s/$next_pair_pr_rx//o;

join('',"$&",$_);

}

This procedure creates a link to the speci�ed URL by returning an anchor with the URL

as its target and an anchor description along with the rest of the as yet unprocessed

document.

Our next example shows an enumerated list EnumZW of a special type whose \num-

bers" are icons available on a www server. The name of the icon depends on the value

160 Michel Goossens and Janne Saarela

of the perl variable count, which is incremented for each \item command used inside

the EnumZW environment. Everything takes place inside an HTML description list <DL>.

sub do_env_EnumZW {

local($_) = @_;

local($count) = 0;

s|\\item|do {++$count; qq!<DT><IMG ALIGN=TOP ALT=""

SRC="http://somewhere/icons/circled$count.xbm"><DD>!}|eog;

"<DL COMPACT>$_</DL>";

}

Two or more arguments can also be handled graciously, as shown by the following

two commands, which have two and three arguments, respectively, and are typeset by

LATEX as follows:

\Command{arg1}

\Command[arg1]{arg2}

The translation in perl is straighforward, since one must merely extract the relevant

arguments from the input stream, one after the other.

sub do_cmd_BDefCm { # \BDefCm{Command}{arg1}

local($_) = @_;

s/$next_pair_pr_rx//o; $command = $&;

s/$next_pair_pr_rx//o; $mandatory1 = $&;

join('',"\\$command\{$mandatory1\}<\/strong>", $_);

}

sub do_cmd_BDefCom { # \BDefCom{Command}{arg1}{arg2}

local($_) = @_;

s/$next_pair_pr_rx//o; $command = $&;

s/$next_pair_pr_rx//o; $optional1 = $&;

s/$next_pair_pr_rx//o; $mandatory1 = $&;

join('',"\\$command\[$optional1\]\{$mandatory1\}<\/strong>", $_);

}

Explaining all this perl code would lead us a little too far, but it should be fairly

clear by now that before trying to develop new code for LaTeX2HTML it is a good idea

to study in detail the way Nikos Drakos coded his program, not only in order to write

perl code compatible with his conventions, but also as a source of inspiration for one's

own extensions. Below we show de�nitions for frequently-occurring regular expressions

in the LaTeX2HTML perl code.

$delimiters = '\'\\s[\\]\\\\<>(=).,#;:~\/!-';

$delimiter_rx = "([$delimiters])";

$1 : br_id

$2 : <environment>

$begin_env_rx = "[\\\\]begin\\s*$O(\\d+)$C\\s*([^$delimiters]+)\\s*$O\\1$C\\s*";

$match_br_rx = "\\s*$O\\d+$C\\s*";

From LATEX to HTML and back 161

$optional_arg_rx = "^\\s*\\[([^]]+)\\]"; # Cannot handle nested []s!

Matches a pair of matching brackets

$1 : br_id

$2 : contents

$next_pair_rx = "^[\\s%]*$O(\\d+)$C([\\s\\S]*)$O\\1$C";

$any_next_pair_rx = "$O(\\d+)$C([\\s\\S]*)$O\\1$C";

$any_next_pair_rx4 = "$O(\\d+)$C([\\s\\S]*)$O\\4$C";

$any_next_pair_rx5 = "$O(\\d+)$C([\\s\\S]*)$O\\5$C";

$1 : br_id

$begin_cmd_rx = "$O(\\d+)$C";

$1 : largest argument number

$tex_def_arg_rx = "^[#0-9]*#([0-9])$O";

$1 : declaration or command or newline (\\)

$cmd_delims = q|-#,.~/\'`^"=|; # Commands which are also delimiters!

The tex2html_dummy is an awful hack

$single_cmd_rx = "\\\\([$cmd_delims]|[^$delimiters]+|\\\\|(tex2html_dummy))";

$1 : description in a list environment

$item_description_rx =

"\\\\item\\s*[[]\\s*((($any_next_pair_rx4)|([[][^]]*[]])|[^]])*)[]]";

$fontchange_rx = 'rm|em|bf|it|sl|sf|tt';

Matches the \caption command

$1 : br_id

$2 : contents

$caption_rx = "\\\\caption\\s*([[]\\s*((($any_next_pair_rx5)|([[][^]]*[]])|[^]])*)[]])?$O(\\d+)$C([\\s\\S]*)$O\\8$C";

Matches the \htmlimage command

$1 : br_id

$2 : contents

$htmlimage_rx = "\\\\htmlimage\\s*$O(\\d+)$C([\\s\\S]*)$O\\1$C";

Matches a pair of matching brackets

USING PROCESSED DELIMITERS;

(the delimiters are processed during command translation)

$1 : br_id

$2 : contents

$next_pair_pr_rx = "^[\\s%]*$OP(\\d+)$CP([\\s\\S]*)$OP\\1$CP";

$any_next_pair_pr_rx = "$OP(\\d+)$CP([\\s\\S]*)$OP\\1$CP";

This will be used to recognise escaped special characters as such

and not as commands

$latex_specials_rx = '[\$]|&|%|#|{|}|_';

This is used in sub revert_to_raw_tex before handing text to be processed by latex.

$html_specials_inv_rx = join("|", keys %html_specials_inv);

This is also used in sub revert_to_raw_tex

$iso_latin1_character_rx = '(&#\d+;)';

Matches a \begin or \end {tex2html_wrap}. Also used be revert_to_raw_tex

$tex2html_wrap_rx = '[\\\\](begin|end)\s*{\s*tex2html_wrap[_a-z]*\s*}';

$meta_cmd_rx = '[\\\\](renewcommand|renewenvironment|newcommand|newenvironment|newtheorem|def)';

Matches counter commands - these are caught early and are appended to the

file that is passed to latex.

$counters_rx ="[\\\\](newcounter|addtocounter|setcounter|refstepcounter|stepcounter|".

"arabic|roman|Roman|alph|Alph|fnsymbol)$delimiter_rx";

Matches a label command and its argument

$labels_rx = "[\\\\]label\\s*$O(\\d+)$C([\\s\\S]*)$O\\1$C";

Matches environments that should not be touched during the translation

$verbatim_env_rx = "\\s*{(verbatim|rawhtml|LVerbatim)[*]?}";

Matches icon markers

162 Michel Goossens and Janne Saarela

$icon_mark_rx = "<tex2html_(" . join("|", keys %icons) . ")>";

Frequently used regular expressions with arguments

sub make_end_env_rx {

local($env) = @_;

$env = &escape_rx_chars($env);

"[\\\\]end\\s*$O(\\d+)$C\\s*$env\\s*$O\\1$C";

}

sub make_begin_end_env_rx {

local($env) = @_;

$env = &escape_rx_chars($env);

"[\\\\](begin|end)\\s*$O(\\d+)$C\\s*$env\\s*$O\\2$C(\\s*\$)?";

}

sub make_end_cmd_rx {

local($br_id) = @_;

"Obr_id$C";

}

sub make_new_cmd_rx {

"[\\\\](". join("|", keys %new_command) . ")"

if each %new_command;

}

sub make_new_env_rx {

local($where) = @_;

$where = &escape_rx_chars($where);

"[\\\\]$where\\s*$O(\\d+)$C\\s*(".

join("|", keys %new_environment) .

")\\s*$O\\1$C\\s*"

if each %new_environment;

}

sub make_sections_rx {

local($section_alts) = &get_current_sections;

$section_alts includes the *-forms of sectioning commands

$sections_no_delim_rx = "\\\\($section_alts)";

$sections_rx = "\\\\($section_alts)$delimiter_rx"

}

sub make_order_sensitive_rx {

local(@theorem_alts, $theorem_alts);

@theorem_alts = ($preamble =~ /\\newtheorem\s*{([^\s}]+)}/og);

$theorem_alts = join('|',@theorem_alts);

$order_sensitive_rx =

"(equation|eqnarray|caption|ref|counter|\\\\the|\\\\stepcounter" .

"|\\\\arabic|\\\\roman|\\\\Roman|\\\\alph|\\\\Alph|\\\\fnsymbol)";

$order_sensitive_rx =~ s/\)/|$theorem_alts|/ if $theorem_alts;

}

sub make_language_rx {

local($language_alts) = join("|", keys %language_translations);

$setlanguage_rx = "\\\\setlanguage{\\\\($language_alts)}";

$language_rx = "\\\\($language_alts)TeX";

}

sub make_raw_arg_cmd_rx {

$1 : commands to be processed in latex (with arguments untouched)

$raw_arg_cmd_rx = "\\\\(" . &get_raw_arg_cmds . ")([$delimiters]+|\\\\|#|\$)";

}

Creates an anchor for its argument and saves the information in the array %index;

In the index the word will use the beginning of the title of

the current section (instead of the usual pagenumber).

The argument to the \index command is IGNORED (as in latex)

sub make_index_entry {

local($br_id,$str) = @_;

If TITLE is not yet available (i.e the \index command is in the title of the

current section), use $ref_before.

$TITLE = $ref_before unless $TITLE;

Save the reference

$str = "$str###" . ++$global{'max_id'}; # Make unique

$index{$str} .= &make_half_href("$CURRENT_FILE#$br_id");

"$anchor_invisible_mark<\/A>";

}

From LATEX to HTML and back 163

Appendix D: Technical details of the MATH2HTML program

D.1 Di�erent approaches

Various people have approached the problem of translating LATEX into SGML or HTML

using di�erent programming paradigms. Joachim Schrod of the Technical University of

Darmstadt, Germany has written a lisp parser for TEX code which can also be used for

conversions [6].19 As already discussed in Section 5, Xavier Leroy used Caml to achieve

the same goal, while LaTeX2HTML uses perl (other approaches based on sgmls also use

that language).

Common to all approaches, whether using a procedural or a functional language, is

the basic implementation. A lexer is used to recognize tokens from the input, a parser

to create an internal representation and the conversion process produces the wanted

output.

The major di�erence between functional and procedural languages is the way a

language such as TEX can be parsed. Since the TEX language can at any point in the

input de�ne new rules for delimiters and symbols, the program parsing this input should

also be able to cope with these dynamic features. Functional programming languages

can do this by their nature, easily introducing new rules to the parser at runtime. This

is what the parser written by Joachim Schrod can do. In comparison this cannot easily

be done with a �xed grammar inside a parser.

Xavier Leroy's translator resembles a bison20 input �le. It sees groups of tokens

and reduces the stacked input by given BNF-like rules. When it reduces the tokens it

produces HTML output for LATEX counterparts.

D.2 Implementation of the Translator

The math2html program, written in C++, takes LATEX mathematics input, parses it and

converts it into HTML3 mathematics (if possible). The program consists of the following

components:

� flex, a fast lexical analyzer generator;

� bison, a parser generator;

� C++ code.

The parsing of LATEX source code is, however, non-trivial, since its grammar has been

developed step-by-step to cope with all LATEX syntactical notations. The basic mathe-

matical notation is presented here in detail.

\[...\] Display mathematics.

txt1 $...$ txt2 Inline mathematics.

{abc} Characters a, b and c are grouped into one.

19. The system is available at URL ftp://ftp.th-darmstadt.de/pub/tex/src/etls/.

20. Bison is a parser generator in the style of yacc.

164 Michel Goossens and Janne Saarela

\abc Characters a, b and c are a control sequence.

a^b Superscripts (b can be a group of characters).

a_b Subscripts (b can be a group of characters). Superscripts and

subscripts can be nested.

The lexical analyser recognizes LATEX primitives by generating tokens for the parser.

A control sequence, plain text, superscript, subscript, begingroup, endgroup, fraction,

array, column separators and end of row are examples of typical tokens. These tokens

correspond to classes. These classes are depicted in Figure 17 with the object modeling

technique (OMT) [5].

The class library presents the supported structures of LATEX mathematics as sums,

integrals, fractions, plain input, sequences and groups. These are currently the only

primitives which can be reasonably converted into HTML3 mathematics. A few examples

of basic primitives that can be treated by math2html are shown below:

Sum: \sum_{i=1}^{n}i Integral: \int_0^1f(x)dx

Fraction: \fraction{1}{n} Sequence: \infty

Group: {|x+1|}^2

Table: \begin{table}{lr} Eqntable: \begin{eqnarray}

a & b \\ c & d y&=&x^2\\z&<=& x^3

\end{table} \end{eqnarray}

The parser analyzes the tokens using an ad-hoc BNF grammar generated speci�cally

to parse LATEX code. When reducing the input according to the grammar rules, the parser

generates instances of C++ classes (see Figure 17), which correspond to these LATEX

primitives. Once the whole input has been parsed, the internal representation is linked

together so that all these instances can be reached from one top-level list.

The conversion is implemented by calling a conversion method to each instance in

the list. Each primitive knows how to convert itself and also propagates the conversion

to all its children nodes.

An instance of the runtime organization of the parsing tree corresponding to the

example of Figure 11 is shown in Figure 18 on the next page.

D.3 Mapping of control sequences

Since the wide variety of di�erent control sequences is quite impossible to hardcode

into the program, an external con�guration �le is read every time the program starts.

The mapping between control sequences and HTML3 counterparts is read into a hash

table and in this way the user can con�gure the program to cope with special control

sequences not natively supported by the converter. An example of this is the Particle

Entity Notation scheme [2], a set of standard control sequences for representing ele-

mentary particles. This naming scheme consists of about 240 control sequences and

From LATEX to HTML and back 165

Fraction

List List

Plain Sequence Plain Sequence

BeginMaths

Plain Sequence Plain

PlainPlain

Plain

List

List

List

Fraction

=

Plain

\sigma d \epsilon 2d \pi Z

0 2

m

Figure 17: OMT model of the mathematics conversion program

Fraction

List List

Plain Sequence Plain Sequence

BeginMaths

Plain Sequence Plain

PlainPlain

Plain

List

List

List

Fraction

=

Plain

\sigma d \epsilon 2d \pi Z

0 2

m

Figure 18: Example of a runtime parsing tree

166 Michel Goossens and Janne Saarela

their presentation counterparts. The con�guration �le maps each control sequence into

its HTML3 counterpart using the following format:

\Pgppm π^{±} \Pgpz π⁰

\Pgh η \Pgr ρ(770)

\Pgo ω(783) \Pghpr η'(958)

\Pfz <t>f</t>₀(975)

D.4 Program heuristics

The program uses a few heuristics in order to be able to parse LATEX code successfully.

If these coding rules are not used, parsing may fail.

Optional parameters speci�ed between square brackets ([]) after a control sequence

are not parsed with respect to the control sequence. Therefore, there should be no space

left between the control sequence and the opening bracketwhere optional parameters

are used. Space should be left if the brackets are used as delimiters. An example is the

di�erence between the following two control sequences:

\root[3]{\pi} \left [\pi+2]

It is also worth noticing that all control sequences not supported primitively in math2-

html, apart from integrals, fractions, roots, sums and a few others, are dropped out

during the conversion, for example, no text is produced in the HTML3 version. The only

way to convert them is to create speci�c code or map it in the con�guration �le.

D.5 Interfacing with other programs

This application was built to make it easy for other applications to call it. The program

can either be compiled into a single executable program with a command line interface

or into a library that can be linked with any other applications.

The modular approach has the advantage of being both simple and straightforward.

The object-oriented implementation makes the linearisation of the internal representa-

tion almost e�ortless and eases the future addition of new HTML3 primitives by the

user. The program is quite
exible and, as pointed out above, can be used in di�erent

contexts: embedded or stand-alone.

D.6 Drawbacks of the presented solution

The end-user may �nd extending the program too di�cult, especially if one has no

experience with flex, bison, or C++. The con�guration �le that comes with the

program provides an easy way to do simple mappings, but if one wants to add more

functionality, one must understand the organization of the program.

As trickier tables and equations need to be converted, the program will need ex-

tension for analyzing the internal tree structure and to add, modify or delete speci�c

nodes.

From LATEX to HTML and back 167

If the LATEX input code uses low-level TEX commands the program will not be able

to handle the input.

Appendix E: Using the CAML system for translating LATEX to

HTML

The program works by expressing the LATEX grammar in a YACC-like format and parsing

the LATEX input lines rule by rule, converting all recognized patterns into HTML. An

example of Caml Light grammar rules for LATEX to HTML conversion is given below.

(* Font changes *)

| "{\\it" | "{\\em"

{ print_string "<i>"; upto `}` main lexbuf;

print_string "</i>"; main lexbuf }

| "{\\bf" { print_string ""; upto `}` main lexbuf;

print_string ""; main lexbuf }

| "{\\tt" { print_string "<tt>"; upto `}` main lexbuf;

print_string "</tt>"; main lexbuf }

| `"` { print_string "<tt>"; indoublequote lexbuf;

print_string "</tt>"; main lexbuf }

(* Verb, verbatim *)

| "\\verb" _ { verb_delim := get_lexeme_char lexbuf 5;

print_string "<tt>"; inverb lexbuf;

print_string "</tt>"; main lexbuf }

| "\\begin{verbatim}"

{ print_string "<pre>"; inverbatim lexbuf;

print_string "</pre>"; main lexbuf }

Unlike LaTeX2HTML the program does not pass mathematics on to the TEX engine in

order to create bitmap images for unparsable input, but produces plain text only. As the

LATEX control sequences recognized by the program are read from a separate �le, the

addition of new commands and their HTML counterparts is relatively easy. An example

of such mappings is the following:

def "\\chapter" [Print "<H1>"; Print_arg; Print "</H1>\n"];

168 Michel Goossens and Janne Saarela

def "\\chapter*" [Print "<H1>"; Print_arg; Print "</H1>\n"];

def "\\begin{itemize}" [Print "<p>"];

def "\\end{itemize}" [Print ""];

def "\\begin{enumerate}" [Print "<p>"];

def "\\end{enumerate}" [Print ""];

def "\\begin{description}" [Print "<p><dl>"];

def "\\end{description}" [Print "</dl>"];

def "\\begin{center}" [Print "<blockquote>"];

def "\\end{center}" [Print "</blockquote>"];

The use of this program requires the compilation of the Caml Light distribution,

available for a variety of platforms. The language is compiled with an intermediate step

in the C language. The executable program su�ers from some overhead, mainly a�ecting

execution time.

Because the program does not deal with mathematics and tables, it can only be

used for a restricted set of documents. To be useful for the general user it will have to

be extended to convert mathematics and tables either into bitmaps or into HTML3.

