
Occam's Razor and macro management

Laurent Siebenmann

Universit�e de Paris-Sud

Mat�ematiques, Bâtiment 425

F-91405, Orsay, France

lcs@topo.matups.fr

Abstract

The philosophical principle known as Occam's Razor asserts that entities should not be

multiplied beyond necessity. The TEX utility OCCAM is a tool to eliminate from a collection

of supporting TEX macros (composite commands) those that are unnecessary in a given

typescript. Hopefully, it will serve to (a) let Plain TEX users produce typescripts which can

be electronically posted in a compact form that is nevertheless autonomous and perfectly

archival, and (b) to simplify a macro package before making modi�cations for a special

purpose.

The OCCAM utility will ultimately be programmed entirely in TEX language to assure that it

is universally available. Today it is just an evolving prototype implemented with a bit of help

from an editor (on Macintosh) that has a programmable control language based on GREP.

To achieve reasonably automatic functioning of OCCAM, not requiring surveillance by a TEX

programmer, it is necessary to maintain a carefully structured master version of each macro

package involved; this .occ version can double as the documented source version of the

package.

Keywords: Occam's Razor, macro management, Plain TEX, .tex typescripts, electronic

publication, docstrip, LATEX.

1 The aphorism

At this European congress, let me remind you that the English philosopher William of

Occam (or Ockham) was, like Abelard or Erasmus, a consummate European; he worked

successively in Cambridge, Avignon, and Munich.

Occam's Razor is

317

318 Laurent Siebenmann

entia non sunt multiplicanda praeter necessitudinem

entities should not be multiplied beyond necessity

William of Occam 1285-1349(?)

Experts believe that Occam did not formulate it in exactly these famous words, but

rather as

What can be done with fewer assumptions

is done in vain with more.

or

Plurality is not to be assumed without necessity.

The Razor is sometimes called the `Principle of Parsimony'.

2 Introduction

Have you ever felt guilty about burdening a friend with macros that are not really nec-

essary for composing your typescript? I certainly have; and would ideally like to follow

Knuth's example of using macro �les that de�ne exactly what is necessary for a document

and nothing more.

However, pruning a macro �le that has served for other purposes is a pain. Most of

us respond to this pain by adopting a rather messy maximalist approach in which all the

macros that have a genealogy related to the necessary macros are transmitted.

But there is another approach! One can seek e�cient mechanisms to ease the task

of weeding out unnecessary macros.

One such mechanism is auditor.tex, which makes a list of names of those macros

of macro �le that turn out to be unnecessary in a given typescript.

A complementary tool is DEFSTRIP. This utility exploits a specially arranged OCCAM

version of the macro �le to be cleaned up, in conjunction with the list of unused macros

provided by auditor.tex in order to delete the macros listed (and some annexed

material).

Ultimately, DEFSTRIP will hopefully be a .tex program defstrip.tex resembling

the docstrip.cmd utility of LATEX fame. Today, there exists only a QUED/M command

script called \DefStrip-QUEDCmds". (QUED/M is an inexpensive editor with conve-

nient composite command capabilities, its own `macros'. It is available on Macintosh

computers, distributed by Nisus Software Inc. of Solano Beach Calif.) Methods suitable

for programming defstrip.tex are described in [2].

AUDITOR and DEFSTRIP together make up the system called OCCAM. Let us consider

two classes of situation where the OCCAM system will be useful.

Occam's Razor and macro management 319

2.1 Weeding one's personal macro �les

Many TEX users build up a cumulative personal macro �le through composing many

articles with TEX. A time inevitably comes when it is embarrassing, cumbersome, or

confusing to submit (or post electronically) the whole macro �le along with the article.

The OCCAM system makes the pruning of the macro �le painless. It is necessary to

tidy up the total macro �le and maintain it with `OCCAM structure', which is usually

distinguished by the extension .occ; this structure will be described in Section 4. Then,

and only then, will auditor.tex and DEFSTRIP collaborate to automatically produce a

minimal version of the macro �le suitable for the article at hand.

2.2 Preparing autonomous and archival \.tex" postings

Suppose that one proposes to post in electronic .tex form an article prepared using a

remarkable but not really standard package such as the harvmac.tex macro package

of Paul Ginsparg for Plain TEX.
1 Such a macro package is not immune to alteration

with time, and unfortunately the principles of upward compatibility are just pious hopes,

not laws. Consequently, one is well advised to post, along with the .tex version, the

macros necessary to compile it { especially if modi�cations to the macros have been

used. Unfortunately, the harvmac.tex macros are as voluminous as a 10 page article.

This is an unfortunate obstacle to electronic posting of shorter.tex typescripts.

The solution proposed requires harvmac.occ, which is harvmac.texmacros set out

in a form designed for use with OCCAM. Then the necessary macros for a given article

can be extracted by OCCAM. This is illustrated (in the OCCAM distribution) for a famous

article by Edward Witten posted electronically in November 1994. The resulting archival

posting (Plain based) requires only 6Ko of macros rather than the original 20Ko. The

68Ko body of Witten's article is unmodi�ed.

Recently harvmac.tex has been enhanced by inputting hyperbasics.tex, the

hyper-reference macros of Tanmoy Bhattacharya, (and the new name is lanlmac.tex).

The archival nature of the TEX postings that have been minimized using OCCAM still

depends on Knuth's Plain format being archival. Plain TEX will probably forever remain

unchanged, or at least be upwardly compatible in the best sense. If this does not seem

a sure bet to you, your posting could be made archival on the scale of the life of TEX

by subjecting the Plain macros to standard OCCAM discipline to produce plain.occ.

An article might require half the macros of plain.occ (or 20Ko) to have its own

format built from INITEX. This may seem needlessly radical to an English speaking user;

however, for longer works in the many other languages that in any case require a special

compilation from INITEX, I consider bootstrapping from INITEX the best approach to fully

archival .tex postings.

1. The alternative .dvi form is undeniably convenient, but also less
exible. For instance, the .tex version

can be redimensioned and then retypeset to be read in comfort on any computer screen whereas a .dvi

version (or anything derived from it) often has lines too long for the viewer. Other output formats like .ps,

being derived from the .dvi, are similarly in
exible.

320 Laurent Siebenmann

There are many other macro packages that might bene�t from OCCAM's .occ struc-

turing. The `picture' macro package embedded in LATEX is an example; interestingly these

macros run on Plain. The amssym.tex math symbol de�nition package for AMS fonts

is another; it de�nes hundreds of control sequences, of which precious few are used in

any given article. Both will be included in .occ form in the OCCAM distribution.

Would it be reasonable to convert AMS-TEX into a Plain macro package with .occ

structuring, much as it has been converted by the AMS into a documented LATEX

package? This would be a move toward abandoning AMS-TEX's status as a full-
edged

format. In particular the AMS-Plain package would have no in
uence outside of math

mode.

In the long term, the structuring of a macro package for use with OCCAM will be the

responsibility of the author of the package. Clearly such structuring will catch on only if

OCCAM performs well as a fully portable TEX utility.

3 How Auditor operates

The �rst utility, AUDITOR, of the OCCAM package is already a perfectly portable TEX

program auditor.tex. On a small scale, AUDITOR is independently useful, so it should

help you learn about OCCAM interactively.

Suppose you have a Plain TEX typescript x.tex that inputs a macro �le x.sty whose

size and history lead you to suspect it to be full of unused macros. AUDITOR serves to

provide a list of macros de�ned in x.sty that are not used in x.tex.

The basic idea used by AUDITOR is easy to grasp if described in a simpli�ed form as

follows. Auditor changes the de�nition of many a new (top level) macro \mymacro in

x.sty so that its expansion includes an `auditing' device able to report whether \mymacro

has been been used in x.tex. If the expansion of \mymacro is originally blablabla then

during use of AUDITOR it becomes:

\global\let_mymacro_\@Used blablabla

Here \@Used is a macro with some arbitrary expansion such as @@Used. With a bit of

luck, a use of \mymacro with this new de�nition will cause an arti�cial macro whose

name string is _mymacro_ to become de�ned and have expansion @@Used { and do so

without disturbing the normal functioning of \mymacro.2

The arti�cial macro _mymacro_ can clearly be polled after typesetting x.tex; that

will record whether \mymacro has been used. Of course, AUDITORmust somehow �nd out

which macros _mymacro_ should be polled. That is easy, and is done as follows, along

with the above rede�nition of \mymacro. Before the audit, \def\mymacro is replaced by

\Def\mymacro; this \Def �rst stores _mymacro_ in a token sequence for later polling,

and then makes the modi�cation of the expansion of \mymacro we have exhibited above.

2. Variants are possible. To identify macros that are little used, one could count how many times \mymacro

is used.

Occam's Razor and macro management 321

We have seen the simple idea behind auditor.tex. Programmers will have also

noticed that the idea can fail to work in unfortunate cases; we shall return to that.

3.1 How to make \audit.tex" list unused macros

Here now is a user-oriented recipe to get a list of unused macros { they can often be

quickly eliminated by hand. Recall that the typescript is x.tex and its macro �le is

x.sty.

� make a copy x.occ of x.sty.

� temporarily have x.tex \input x.occ in place of m
ogo.dtxx.sty.

� at the top of x.occ add: \input auditor.tex

� wherever an `outer' (top level) de�nition \def\mymacro... occurs in x.occ, replace

\def by \Def. The latter is a special auditing version of \def, which is de�ned in

auditor.tex.

� typeset x.tex; this will produce a �le audit.lst containing a list of all the macros

de�ned using \Def; in it the macros that are unused by x.tex are specially marked.

Using audit.lst to eliminate from x.sty the unused macros is sometimes tiresome to

do by hand; the chief role of the DEFSTRIP utility described in the next section 4 is to

automate this.

AUDITOR is a bit more general than indicated so far: \Def has a number of cohorts

that behave similarly:

\Def (variant of \def)

\gDef (variant of \gdef or \global\def)

\Let (variant of \let)

\gLet (variant of \global\let)

\Mathchardef (variant of \mathchardef)

\Newsymbol (variant of \newsymbol)

These replace corresponding uncapitalized control sequences in the �le x.occ. Here,

\newsymbol (from amssym.def) is a macro used copiously for declaration of sym-

bols from the AMS math fonts msam� and msbm�, as in amssym.tex. Note that

\mathchardef and \newsymbol de�ne a `mathchar' not a macro; but the capitalized

versions de�ne macros.

As has been mentioned, auditor.tex is not bullet-proof. Any change whatever

in the expansion of a macro can in principle alter its behavior. For example, TEX can

use \ifx and many other means to examine the expansion of a macro; a `perverse'

x.tex can always be constructed that stops compilation if there is any tampering with

de�nitions.

However, if one exercises prudence this is unlikely. Here is some cautionary advice:

322 Laurent Siebenmann

� Use \Let only with macros; e.g. \Let\mymacro\thymacro is allowable only when

the control sequence \thymacro is a macro; the test command \show\thymacro

will tell you if it really is one.

� Do not modify \def's etc. within other de�nitions. This would often be pointless

and perhaps dangerous. (But see section 5.)

� Avoid de�nitions involving \\outer" and \\long" macros; (But perhaps \outerDef

and \longDef will be introduced to handle them.)

If there is trouble in using x.occ, then opt (by dialog) to compose without an audit.

There should be no change from the original behavior of x.tex. Correct any misbehavior

{ often simply arising from a typing error in constructing x.occ. Sometimes, here and

there in x.occ, one has to change \Def back to \def etc; (in that case the macro in

question is clearly used!).

4 Occam structuring for macro packages, and the action of

DefStrip

As described in the last section 3 above, the AUDITOR half of OCCAM uses both the

macros x.sty and the typescript x.tex to establish a list audit.lst indicating macros

unused in x.tex. OCCAM's second half, DEFSTRIP, serves to delete them from x.sty

in a quite automatic way. The �le x.tex is not further used but the specially structured

version x.occ of x.sty is required. In addition, more structuring must be added to

x.occ than was necessary for AUDITOR { the fully structured macro �le is said to be

OCCAM structured.

The goal of this section is to specify the syntax of the more basic OCCAM structuring,

and indicate how DEFSTRIP should interpret it.

This structuring is less simple than the easy description of the action of AUDITOR in

the last section 3 above might lead one to expect. It is true that DEFSTRIP ultimately

merely serves to delete selected lines of the �le x.sty. However, the result would be

rather messy and less than minimal if only the lines occupied by the unused de�nitions

were deleted. For example, one wants to delete comments attached to deleted macros,

and possibly some auxiliary commands like \newif... not mentioned in audit.lst.

We now make this more precise through describing the syntax by which these blocks

are unambiguously speci�ed, and the rules for block deletion.

4.1 Main speci�cations of the OCCAM syntax

Two composite symbols %^ and %_ are employed in conjunction with \Def etc. to delimit

possible deletions; the percentage sign % makes them invisible to TEX. On its line, %^ is

always preceded by spaces only (zero or more); similarly %_ is always followed by spaces

only.

Occam's Razor and macro management 323

Unconditionally deleted material

%%^_ <delete me>

The block of lines from %%^_ to the end of �le is then deleted. To delete just a segment

use

%^ <delete me> %_

The block of � 1 lines deleted must include no blank line. Note that it may well contain

\Def etc. but not %^, %_.

The unconditional deletions will occur as if done in the order described, and before

conditional deletions (described below) are considered.

Conditionally deleted material

\Def \somemacro ...

...%_

may cause deletion of the block of lines beginning with \Def etc. and ending with %_.

This material is really deleted, precisely if the macro \somemacro is marked for deletion

in the the �le audit.lst.

The material <maybe delete me> must contain no blank line nor %^, %_, \Def etc;

but it is otherwise arbitrary; in particular, macro arguments, comments, and auxiliary

de�nitions are permissible.

Along with this material some additional preceding material is deleted, namely con-

tiguous preceding lines (if any) that (a) are nonempty and (b) contain no %_ (but \Def

etc; are allowed). Typically, such preceding material might be comments or commands

`owned' by the macro being deleted. For example the whole block

%_

\ifx\undefined\eightpoint

\Def\eightpoint{}

\fi %_

will be deleted, precisely in case \eightpoint is marked as unused in audit.lst. (The

�rst %_ could be replaced by a blank line.)

Note that %_ is not really a closing delimiter since it can exist in arbitrary numbers

without belonging to a matching pair. For another example, consider:

\Def\amacro ...%_

\newtoks\btoks %_

\Def\cmacro ...%_

Here, the the �rst two %_ prevent \newtoks\btoks being deleted { in all circumstances.

The example

\Def\amacro ...

324 Laurent Siebenmann

\Def\bmacro ...%_

is incorrect because the block beginning with \Def\amacro ... contains \Def\bmacro.

Sentinels

There is a second type of conditional deletion. Suppose \amacro is not used and is so

designated in audit.lst. It often occurs that several disjoint blocks of lines should be

deleted along with the block containing the de�nition of \amacro. These blocks should

each be designated as follows:

%/^\amacro

<stuff>

%/_

\amacro is called the sentinel (watchman) for the block. The sentinel's line %/^...

must contain nothing more than %/^\amacro and blank space. The initial and terminal

lines will vanish along with <stuff>.

Summary of primary deletions by DefStrip

Any block %^...%_ is unconditionally deleted, while a block signalled by \Def, \gDef,

etc. with the help of %_ and/or blank lines is deleted or not according as the macro

following \Def etc. is or is not marked for deletion in audit.lst. Similarly for blocks

with sentinel macro. None of these blocks for conditional or unconditional deletion is

allowed to contain an empty line nor any extraneous %^, %_, %/^, %/_, %%^_, \Def,

\gDef, etc. The blocks introduced by \Def, \gDef, etc. include material extending

backward as far as (but not including) a preceding line that is blank or terminated by

one of %_, %/_. No such extension for blocks introduced by %^, %/^ is allowed { nor

would it be helpful.

Secondary cleanup by DefStrip

Beyond these primary deletions, the utility DEFSTRIP performs a few auxiliary tasks:

� All remaining \Def, \gDef, etc. are converted to \def, \global\def, etc. Also, if

a remaining %_ is alone on its line (spaces ignored), the whole line disappears. And

each remaining %_ not alone on its line becomes % (this is the only deletion that can

a�ect a line that survives, and TEX is una�ected).

� Any empty line sequence (usually created by the deletion of blocks of lines) is reduced

to a single empty line.

� Residual appearances in x.occ of macros marked for deletion in audit.lst will be

marked by %%[VESTIGE] (on a new following line).

Such an occurrence of %%[VESTIGE] should be considered an error warning concerning

the OCCAM structuring of x.occ. Users may �nd such vestiges hard to deal with. Thus

the programmer should enquire whether (for example) the vestige could be automatically

Occam's Razor and macro management 325

deleted using the sentinel mechanism. For their part, users should report vestiges to the

programmers along with the involved audit.lst �le from auditor.tex.

In most cases, anyone who programs TEX macros at an intermediate level will �nd it

an easy task to provide OCCAM structuring for any simple macro �le. However, as soon

as the macro �le has interdependent macros, and de�nitions of control sequences other

than macros3, attention from a programmer will be needed { plus testing.

The author of the macro package himself is the most appropriate person to introduce

Occam structuring:

� The author has the opportunity to add extra documentation to the .occ version

and make of it a fully documented master copy of the package. Using conditional

deletions, one has
exible control of which documentation is passed on by DEFSTRIP

to the user.

� The author can often remodel the macro package to allow OCCAM to do a better

job more simply.

� The author protects his work against the erosion of time; it becomes unimportant

that large parts of a package become antiquated; only the parts that remain viable

will be exported by OCCAM into users typescripts.

� Once committed to OCCAM (or similar means of macro distillation) the author can

out the usual rules of upward compatibility, provided it is made clear from the outset

that the package is to be used exclusively to produce autonomous typescripts.

5 Nested macros

Unused macros whose de�nitions are nested within those of other macros that are used

can often be be eliminated, although that would be very di�cult on the basis of features

of OCCAM described thus far.

We now describe suitable additional syntax. It was was implemented in 1995 through

modifying both auditor.tex and DEFSTRIP. This is probably more subject to change

than features in earlier sections.

Where DEFSTRIP is concerned, the new syntax is currently implemented quite trivially

by making several passes, and the example below is conveniently explained in this way.

However, the TEX version defstrip.tex will almost certainly reduce this to a single

pass; the audit.tex utility already acts in a single pass.

Here is a generic `example'. The original macro �le contains:

\def\MACRO{<stuff1>%

<stuff2>

\def\macro{<stuff3>}%

<stuff4>%

<stuff5>}

3. For example, unused fonts are hard to eliminate.

326 Laurent Siebenmann

An OCCAM structured version is:

\Def\MACRO{<stuff1>%#_

<stuff2>

\DDef\macro{<stuff3>}%

<stuff4>%#_

<stuff5>}%_

The macro \DDef, de�ned in audit.tex, behaves much like \Def except that the associ-

ated sign distinguishing unused macros in audit.lst is *# in place of *.

Note that if \MACRO is unused then the whole block vanishes.

We are interested in the case where \MACRO is used. Then, on �rst pass of the

macro �le through DEFSTRIP, \DDef is converted to \Def; and the marks %#_ therein

are converted to %_. At the same time, the �le audit.lst undergoes one wave of

changes *#\) #*\ and *\) #\, i.e. asterisks move right or die on backslash.

On the second pass through DEFSTRIP, one is treating:

\def\MACRO{<stuff1>%_

<stuff2>

\Def\macro{<stuff3>}%

<stuff4>%_

<stuff5>}%

and, in response to an entry #*\macro in the current audit.lst, DEFSTRIP will delete

the block

<stuff2>

\Def\macro{<stuff3>}%

<stuff4>%_

i.e. this block is deleted precisely if \macro is unused. (Only a programmer can guess

whether this elimination is safe!)

5.1 Nested Sentinels

The macros in such nested de�nitions are allowed to be sentinels for blocks, as follows.

Often, one wants to delete other material along with the block surrounding \macro.

The syntax for a block to be eliminated along with \macro is:

%#/^\macro

<stuff6>

%#/_

It is permissible to use _ in place of /_ on the above syntax. But not ^ in place of /^

since that would give an unconditional deletion.

Occam's Razor and macro management 327

5.2 Nested unconditional deletions

There is also a notion of nested unconditional deletion. The syntax is:

%#^

<stuff6>

%#_

The developments of this section �rst proved desirable in harvmac.occ, which is a

`worked example' in the OCCAM package.

Until the TEX program defstrip.tex is built, I would particularly welcome sugges-

tions for improvements of OCCAM structuring.

6 Afterthoughts

6.1 Is Occam's Razor now dull?

Occam's Razor was one of the guiding principles of scienti�c thought for several hundred

years before the coming of age of computers. However, I suspect the philosophy of

Aristotle or Descartes is far more likely to appeal to computer scientists. One might

go so far as to say that programmers have discarded Occam's Razor. Indeed, in object

oriented programming they consciously cultivate the art of multiplication of entities, and

even LATEX users do this sort of thing with commands such as \newheading. What can

the minimalism of Occam's Razor o�er TEX users at this late date? Probably just a few

things.

� Friendliness to human beings. Unnecessary entities that cost a microprocessor only

microseconds can cost the human mind a signi�cant amount of time.

� Extra storage space and computing power. Both are in a period of exponential

growth. But so is the TEX related software we use. Thus performance in a �xed

task can occasionally decline. When this happens, the old-fashioned minimalism of

Occam's Razor can prove essential to derive pleasure and pro�t from progress.

6.2 Plain versus LATEX

The goals of OCCAM do not make much sense in the LATEX world. The LATEX group

is building o�cial LATEX macro modules that cover more and more territory, and are

universally available. If upward compatibility is fully maintained, there will be little reason

to use OCCAM in the everyday LATEX world since all macros used will be standard. This

is LATEX's greatest strength. It assures LATEX an important and possibly dominant role in

electronic scienti�c publication based on .tex typescript format. The role OCCAM seeks

to play in this sort of electronic publication lies mostly within the realm of Plain TEX

and INITEX.

328 Laurent Siebenmann

However, I have been alarmed by the growing di�culties facing an individual when

programming LATEX beyond its current capabilities { I mean more than routine reparam-

eterizing and renaming. It is not just LATEX's exponentially growing internal complexity

that is alarming, nor the fact that LATEX runs slower and slower relative to Plain. The

most debilitating problem is that internal macros should probably not be reprogrammed

since (unlike the user macros) they are open to change. Thus the results of such indi-

vidual programming e�orts risk being electronically `unpublishable' even if the macros

involved are posted along with the article they produce { indeed the version of LATEX's

internal macros on which they were based may vanish from the next LATEX update,

and that may well invalidate the posting. A related fundamental di�culty is that TEX

primitives are not guaranteed to be/remain accessible from within LATEX. The logical

conclusion would seem to be that all programming of LATEX su�ciently deep to modify

LATEX internals should be left to the o�cial LATEX group.

Don Knuth seems to have had similar premonitions and takes a possibly more doubt-

ful attitude. I repeat what he said on the occasion of the 10 th anniversary celebration

of TEX 82.

Suppose you were allowed to rewrite all the world's literature; should you try to

put it all into the same format? I doubt it. I tend to think such uni�cation is a

dream that's not going to work.

[TuGboat, vol 13 (1992), page 424]

I (and Knuth?) may be unduly alarmed. OCCAM is nevertheless to some extent my

attempt to stop the decline of Plain. (There is nothing signi�cant I know how to do for

this real or imaginary malady of LATEX.)
4

LATEX continues to perform well for an expanding palette of routine tasks, and I am

happily using it to prepare this article! The most favorable outcome would be for both

approaches to work well. If this comes about, I expect the \look and feel" of Plain and

LATEX to nevertheless steadily diverge.

In summary, the TEX utility OCCAM o�ers a novel response to the most debilitating

problem of Plain TEX, namely the confusion and incoherence that come from contin-

ual and uncoordinated accretion of macros. Naturally, this weakness of Plain is clearly

perceived by Leslie Lamport who stated (on the net in 1994):

Because Plain TEX is �xed, it seems likely that the Plain TEX community will

fragment into numerous small islands in a sea of incompatibility.

The LATEX programming group deals with the accretion of macros by constantly improv-

ing infrastructure while selectively enlarging LATEX, whereas my partial answer for Plain

TEX is to use OCCAM to cull out inessential macros, restoring simplicity in the macro

4. An author who absolutely needs many of the basic talents of LATEX and new performance, might consider

using a frozen but hopefully permanent format like LAMS-TEX or `classic' LATEX 2.09 and macros distilled by

OCCAM from personal of public packages whose permanence is in doubt.

Occam's Razor and macro management 329

set actually used in each document, and thereby making new infrastructure and stan-

dardization largely unnecessary. OCCAM's action has a parallel in classical programming,

namely the use of a compiler { whereas the LATEX approach is parallel to the use of a

big and constantly evolving interpreter.

My hope is that, with OCCAM's help, Plain TEX will regain vigor and prove as viable

as LATEX, and indeed complementary to it.

References

[1] L. Siebenmann. Elementary text processing and parsing in TEX { the appreciation

of tokens. TUGboat, 13:62{73, 1992.

[2] L. Siebenmann. OCCAM, a TEX utility. the electronic master posting in 1995 is on

ftp://matups.math.u-psud.fr://the CTAN archives, 1993-5.

