
Bijlage 11
DVIview, a new previewer

Gilbert van den Dobbelsteen
email gilbert@login.iaf.nl

abstract
DVIVIEW is a new viewer for the Windows platform. Key

features: virtual fonts, rotated and colored text and
performance. This article focuses on the development process

and hilights some features of the software.

Introduction
About a year ago I met some other TEX users who com-
plained there was no decentDVI viewer available for Mi-
crosoft Windows. The development for dviwin stopped,
and most of all, dviwin didn’t do virtual fonts. So I
wondered ‘how difficult can it be to develop a viewer?’.
At that time I truely believed it couldn’t be that difficult.
So I waited a few months, thought things over and started
programming in December1997. I planned to release the
first beta within six months. The beta will be released to
a few people who have lots of experience using TEX, and
lots of experience in crashing viewers (big grin here). This
is needed since I only create small documents using TEX.

After the beta-test a final release will be made. At the
time of this writing (april1998) the viewer is in alpha test
(no no, not beta yet) and I am making progress. I hope the
beta is released when you read this.

A new viewer
Why anotherDVI viewer one might ask? There are several
products and all have there advantages and draw-backs.
Probably the best viewer available is Y&Y’s DVIWINDO.
I’ve seen it compared it with mine, and I must confess
Y&Y has a very good product here. It only costs money.
You can’t buy the viewer, you must buy their complete TEX
system (which is good I’ve been told). The best feature of
DVIWINDO is the re-encoding on the fly. I don’t know
how they do that, because it’s not simple.

The main drive for me to develop such a beast was the
challenge and of course there isn’t a suitable free viewer.
The DVI file format is pretty straight forward and excel-
lent when sending data to the printer. So I thought ‘this
is pretty easy to interpret’ let’s do something nice with it.
After studying the Windows API (Application Program-
mers Interface) I still thought it would be a fairly easy job.

So you might ask ‘tell me, what does this new viewer
bring me’. At the moment I can only say ‘nothing you
haven’t got’. But I hope to include lots of functionality in
a single product so you won’t have to use another viewer.

Developing this program came with a few problems:

I never wrote a program for the Microsoft Windows
environment. I am a reasonably experienced C/C++
software engineer, and my work deals mostly with
embedded applications1.
I am quite new to TEX. I knew almost nothing about
DVI files and nothing about processing them.
How well will it perform. I hate slow programs and
Windows programs tend to be slow, memory hungry,
and always contain severe bugs.

Development process
How to develop such a program? The easiest way is to
use Delphi, C++builder, or MS Visual C++, generate a
frame-work and fill in the gaps. This was not my inten-
tion, as I’ve seen dozens of programs built this way and the
result is almost always bad performance. So I wanted no
luxurious development environment or supurb foundation
classes. This resulted in good oldANSI C.

Since I almost forgot how to do things inANSI C (I use
C++ most of the time) I looked up someCWEB sources. A
splendid source of information is the Stanford GraphBase
(also from D.E.K.). Though most of the algorithms are
beyond my understanding, it provides good examples of
ANSI C programming. Especially for programs that are a
bit larger than ‘Hello world’.

I started with linked lists and some basic windows pro-
gramming. A friend borrowed me his copy of Program-
ming Windows3.1 by Petzold2. I asked my employer if
I could use the Borland C compiler, since we had a copy
which has never been used in any project.

That’s how things got started. After muddling around
with Windows3 I decided how to proceed. Since develop-
ing a user interface inANSI C is a lot of work I kept it

1. Embedded applications: software things you see all around you but
don’t notice, like remote controls, cordless phones, your dish-washer
and off-course your internet aware watch.
2. If you intend to program for Windows inANSI C this is one of the
best books available.
3. Ok, I am a stubborn guy, but Windows does a better job which is
almost impossible to believe.

120 MAPS



DVIview Bijlage 11

clean and simple. So there are not a lot of dialog boxes
and menu’s. Currently some things can be customized by
menus and dialog boxes, other features must be custom-
ized by editing the ini file. I am working on that so don’t
be afraid. Programming dialog boxes for data-structures is
straight forward but a lot of work.

I decided to useATM (Adobe Type Manager) for ras-
terizing. I have no knowledge ofPK fonts and currently I
don’t need them. The Computer Modern and AMS fonts
are freely available in type1 format andATM does a reaso-
nable job here. PrintingDVI files is also easier this way.

I also decided to do my own scaling. Windows can’t
be trusted on that. I’ve seen numerous applications with1
pixel round-off errors when scrolling and that’s not what
I wanted. Since I had to scale anyway (DVI units are way
too large for Windows to handle) I do the complete job my-
self. All scaling is done through fixed-point arithmetic. No
floating point is used in calculating positions of characters.
This results in great accuracy although the current results
leave some wishes.

Fast viewing
The main problem is how to get things fast. TEX can pos-
ition characters anywhere in theDVI file and you’re never
sure what you’re up against. Furthermore, re-organizing
characters (e.g. drawing them in a different order than TEX
did put them in theDVI file) is risky business.

The easiest way to display aDVI file is to draw it charac-
ter by character. This approachalwaysworks, and you are
sure the characters are positioned correctly. But drawing
each character separately takesa lot of overhead. Why?
Because you have to call a Windows function for each
single character. Calling Windows functions involves call-
ing overhead and processing overhead for the drawing en-
gine inside windows. So the trick here is to avoid calling a
GDI function for each single character.

Figure 1. TEX demo (original)

I needed a function which could draw several characters in
one call, but whereI could determine the spacing between
the characters. Fortunately Windows provides the function
ExtTextOut. It takes a string, a position and an array of

distances between the characters in the string. After doing
several experiments with this function I decided this was
the way to go.

Figure 2. TEX demo (with bounding boxes)

Now take a look at the figures with this article. The first one
(figure1) shows a typical text string. The second (figure2)
shows the boxes calculated by DVIVIEW. The rectangles
around the text show the actual internal data-structures in
the program. Each rectangle results in exactlyonecall to
theExtTextOut function. So this piece will result in two
calls, one for the stringTX does TX and one forEE. Thus
as long as things don’t get too bad in respect to positioning,
the program optimizes the output pretty well.

Gathering characters
ProcessingDVI files is similar to whatDVItype does. In
fact almost everything in the processing functions comes
from DVItype4 .

Figure 3. Excerpt from math.dvi (orignal)

When processing aDVI file I keep track of the position of
the characters. DVIVIEW gathers characters which have
the same vertical position so they can be written in one
function call. This gathering process has some side ef-
fects. Currently the program has ten rectangular structures

4. I am quiet sure thatDVItype does a good job here, since it was
meant as a reference for people developingDVI processing software.

Voorjaar 1998 121



Bijlage 11 Gilbert van den Dobbelsteen

to keep track of vertical positions. This is a reasonable
amount for normal documents. However when the same
technique is applied to documents containing a lot of math
(especially display math) the optimizations don’t come out
too well. See figure3 and 4 for a example of math.dvi
made by Kees van der Laan. As you can see several things
are not correct here. First of all the sloped lines are drawn
using dots. Although this is a valid TEXnique it isn’t very
fast for displaying. Also, when looked at high resolutions
(1200 dpi in the figure) things are not completely correct.
This originates from theDVI file.

Figure 4. Excerpt from math.dvi (with bounding boxes)

Take a look at figure5 and6. The parentheses are gathered
into a group, and the stringedxπ is gathered here. This fig-
ure also shows another peculiar thing of TEX. The bound-
ing box of the integral sign looks incorrect. This is not
exactly true, but TEX uses the bounding box of characters
to calculate where to put the limits. You can clearly see
that the positioning of the limits is correct (horizontally and
vertically). The upper limit is placed to right by using the
italics correction. Is this clever or not?

Figure 5. Excerpt from math.dvi

For viewing this leads to all kind of problems which are
not there when you create a simpleDVI printer driver. For
example, the program uses the bounding box to determine
what to update on the screen. So if you carefully scroll

the window you would get incorrect results. This is shown
in figure 7. This is easily solved by redrawing the entire
screen but it would be nicer if the program could detect
this.

Figure 6. Excerpt from math.dvi (with bounding boxes)

There are many math characters which have inproper
bounding boxes. This is due to the fact that TEX uses the
bounding box information to position accents, limits or ex-
tensions (for ellipses). A solution for DVIVIEW would be
to let Windows calculate the actual bounding box. I’ll prob-
ably implement that sometime. For now it doesn’t bother
me too much.

Figure 7. Excerpt from math.dvi (with bounding boxes)

The character gathering technique I use has a disadvantage:
The characters are drawn in a different order than they ori-
ginally had in theDVI file. Is this bad? Well I didn’t en-
counter any problems yet, but that’s because the rectangular
arrays are flushed on some conditions:

When a rule (rectangular black area) is typeset. It is
possible to obscure some text by placing a rule on top
of it. This has particular disadvantages when drawing
mathematics. Many mathematics commands use rules
to extend characters. For example\sqrt is a good
example.
Some\special commands. Especially the drawing
commands. You could draw an oval box obscuring some

122 MAPS



DVIview Bijlage 11

text. The text must be drawn first, so all the gathered
information should be flushed into the drawing-list.
This also holds for\specials involving figures.
When using different colors to create shadowed text.
You could draw a drop-shadow for a character string. If
things are misinterpreted, the shadow is drawn too late.

Not every condition has to result in flushing the rectangu-
lar list, some intelligence could be built in. I am currently
working on that but it’s not always obvious what was meant
by examining theDVI file.

I could for example check where things are drawn, and if
some text is obscured or overlapped. Based on that I could
generate things in the correct order. Since this is highly
complicated and involves a lot of calculation, it will take
time.

Current status
So how far am I? Well, not far. The first alphas are out and
I locate bugs every day. The program is reasonably stable
and doesn’t generate too many General Protection Faults.
I hope it will be bugfree some day. There’s a lot on my
wish-list and probably the program is never finished.

The performance is excellent. I compared the program
with DVIWINDO and with xdviwin32. DVIview is two
to three times faster. It is also a small program so there’s
hardly any startup time involved. As features will be added
the performance will probably degrade, but I think I’ll keep
ahead of xdviwin32 and DVIWINDO.

The quality of the output is good. Ok, xdvwin32 does
a better job because you can’t beat anti-aliasedPK fonts.
Every time I see the results ofPK-fonts I am astonished by
the quality. We live in the late90s and some15 years ago
Knuth set a standard which still has superior quality than
currently available commercial stuff from Adobe. I some-
times wonder what these guys at Adobe are actually doing.
Even withATM4 (which does anti-aliasing) the quality of
resolution specific font-rasterizing (likeMETAFONT does)
is unsurpassed. Way to go Don.

Current features
What features are there in this program? The beta provides
support for:

Full DVI 2 support with almost no limitations. No font
loading limits. I have previewed files with over300
fonts in a singleDVI file. Current TEX implementations
cannot generate that many, so I guess it covers it.
User interface: Similar to dviscr from Eberhard Mattes.
I use this viewer for reference and I am pleased with
this product. It’s a good product.

Dynamic reloading. The viewer keeps the file closed as
much as possible and if the file is updated (e.g. re-run
through TEX) it re-reads theDVI file and repositions to
the same page.
Caching. All tfm files are cached. So when you load
another file the viewer will only load the tfm files which
are not present. Already loaded tfm files are re-used.
Customizable paper sizes. You can create your own list
of favorite paper sizes. So American users will not be
bothered by A4 like stuff, and the European users can
zip out the Letter/Legal sizes.
Drag and drop. Just drop a file on DVIview from
Explorer.
Customizable zoom factors. Set up your favorite zoom
factors.

What features will be in the first release? Here’s a list:

virtual fonts. Since the program was designed with
this in mind it isn’t too difficult. The main problem
here is font-encoding. You don’t want virtual fonts sec,
but you want to re-encode the font as well. Postscript
supports font re-encoding and so should the viewer.
ATM supports font encoding but it is not documented by
Adobe. When I asked them they said it’sATM private
and they will not publish the interface. I even asked
the developer of DVIWINDO but he said he couldn’t
tell me that because it would harm Y&Y’s commercial
product5. He advised me to hackATM so this will
probably take a lot of time.
Color support. I’ll start with macros forCONTEXT and
LATEX 2ε. color support will be similar to Rockiki’s
dvips.
Transformated text. Each font can have its own
transformation matrix. So you can slant, extend, rotate
or skew text. This is a powerfull feature which is not
found in viewers which usePK fonts. Furthermore, you
can generate font definitions which are dvips alike. For
example:

rptmro Times-Roman ".167 SlantFont"

can easily be made available for DVIVIEW.
Simple graphics commands. Needed to support some
special features of theCONTEXT package. Things like
drawing rounded rectangles and the like.
Printing. Seems like a nice feature to have. You can
print a hardcopy of your document to a Windows printer
driver. You should even be able to print to the PDF
writer, so generating pdf is a simple step.

5. Ok, he’s right, but I tried anyway

Voorjaar 1998 123



Bijlage 11 Gilbert van den Dobbelsteen

And what is planned to include:

Facing pages view. Some people want this very badly.
Colored fonts. Each used font can have it’s own color.
This is mainly for locating fonts in yourDVI file (where
did I use cmr10 at 12 pt, I can’t see the difference
between that one and cmr12).
PK fonts. It seems TEX users can’t live without them.
Not all metafonts are available as type1 soPK fonts must
be included anyway. Don’t expect too much of this.
Transformation matrices will definitely not work forPK
fonts, or at least be limited.
Hyper stuff. Clickable links and launching programs
from the viewer. This is needed since I use this a lot
myself.
Custom paper sizes. Through specials you can give
every page a different size than the default. It also
includes paper color. Currently the viewer has already
support for this, but I haven’t worked out the\special
interface yet.
Graphics. EspeciallyEPSgraphics. The program should
use GhostScript to render theEPS files. I hope to
include decent TIFF support as well. Perhaps some
other formats through the use of DLLs. This way
one can easily extend the viewer with his or her own
graphics format. The dviwin viewer does graphics
support through DLLs so it seems logical to use that
too.
Inline METAPOST. No Ghostscript is needed for
Metapost graphics, the viewer can draw this direct.
METAPOSTuses a simple subset ofPScommands which
is easy to interpret. Directly drawing mftoeps6 output
should also be possible as well as other simplePS

output formats. This will save you from installing and
maintaining Ghostscript. Besides that, direct drawing is
probably faster than using GhostScript.
Reader profiles. This is similar to Acrobat’s article
feature. The functionality Acrobat provides is a bit
simplistic.
Scripting language and input fields. You could actually
write a program in TEX. I am not sure about the
scripting environment. JavaScript seems a logical
choice here. The main problem here is time to get a
basic understanding of things. I know nothing about
JavaScript, and how I could implement an interface to a
Java virtual machine (or something like that).
Clipboard support. You can mark a rectangular area
and copy it to the clip-board as a Windows MetaFile. It
would probably be nice to create anEPSfile as well.
Simple editing. Since the internal structures I use are
suited for fast viewing (and definitely not editing) this
will take a lot of time for me.
Foreign language support. The user interface (menu’s

dialogs and the online help) can be customized for any
language. The log file will always be English so I can
understand what’s in it.
Custom printer interface. Interfacing directly to dvips
and DVIPSONE. The viewer is not as accurate as these
programs. Furthermore I don’t want to implement all
200 features these programs provide. DVIPSONE does
a far better job generatingPS code than the Windows
printer driver does.
Gzip support. Just gzip yourDVI-file. The viewer
automatically unzips it. This is done through zlib.

When can you have it
I am sorry to say, but it will take some time. I hope to
release it somewhere in October. Currently I spend five
hours on the program every week. So that’s not a lot, but
it’s all the time I have. I hope I can distribute the program
through CTAN. Don’t worry too much, I’ll let you know
when it is good enough to go public.

Will it cost you?
Yes it will, but not what you expect. No, I am not charging
money here but you’ll probably spend some time configur-
ing the tool. As in good TEX tradition it comes with many
options and they probably don’t suit your personal needs.
For emTEX users it should be fairly easy to set up since
some settings are similar. There will be no registration fee,
the program is absolutely free (and with no warranty). The
first version will also include the full source code.

O yeah, for all you users who are getting tired of re-
configuring Ghostscript’sfontmap file, be prepared. The
viewer also uses a font map file and yes you must adapt it to
your personal needs. You’ll probably need to do this when
you update the program (as in Ghostscript). I hate this too
and I hope to find some solution for this some day. I will
try to include all the fonts that are on the4AllTEX cd, but
you probably have to customize things. At least the com-
plete Computer Modern family and the AMS fonts. Also
some support for basic postscript fonts.

So that’s it. I hope you’re a bit enthousiastic about the
viewer-to-be-born. Again I hope to have the features imple-
mented as soon as possible but as it is with these freeware
tools, there are no guarantees. I’ll come back to it in the
nextMAPS.

Needless to say but there are many people on the back-
ground supporting and motivating me. Special thanks to:
Hans Hagen, Taco Hoekwater and Erik Frambach.

6. mftoeps is a package from Jackowski to create eps files from meta-
font code.

124 MAPS


