
Voorjaar 1998 305

Hans Hagen
pragma@pi.netBijlage 35

Some funny macro’s

Keywords
dropped caps, CONTEXT

abstract
Sometimes documents can be enhanced with special typography for first characters or lines
of chapters. In this article I present some macros for dropped caps and first line treatment.
Although more advanced solutions are possible, the examples show at least how things work.
Users can derive their own macros from them.

1 \unprotect

This module implements some typographics tricks that can be fun when designing docu-
ment layouts. The examples use macros that are typical to CONTEXT, but non CONTEXT
users can use the drop caps and first line treatment macros without problems. This mod-
ule will be extended when the need for more of such tricks arises.

2 \ifx \undefined \writestatus \input supp-mis.tex \relax \fi

3 \writestatus{loading}{Context Support Macros / Fun Stuff}

L
et’s start with dropped caps, those blown up first characters of a paragraph. It’s hard\DroppedCaps

to implement a general mechanism that suits all situations, but dropped caps are so
seldomly used that we can permit ourselves a rather user unfriendly implementation.

\DroppedCaps
{\color[green]} {cmbx12}
{2.2\baselineskip} {2pt} {\baselineskip} {2}
Let’s start

As we will see, there are7 different settings involved. The first argument takes a com-
mand that is used to do whatever fancy things we want to do, but normally this one will be
empty. The second argument takes the font. Because we’re dealing with something very
typographic, there is no real reason to adopt complicated font switching schemes, a mere
name will do. Font encodings can bring no harm, because the alphanumeric characters
are nearly always located at their natural position in the encoding vector.

This simple case shows us what happens when we apply minimal values. Here we used:

\DroppedCaps
{\color[red]} {cmbx12}
{\baselineskip} {0pt} {0pt} {1}
This simple

I
n this ugly example the third argument tells this macro that we want a dropped cap-
ital scaled to the baseline distance. The two zero point arguments are the horizontal

and vertical offsets and the last arguments determines the hanging indentation. In this
paragraph we set the height to two times the baselinedistance and use two hanging lines:

\DroppedCaps
{\color[red]} {cmbx12}
{2\baselineskip} {0pt} {\baselineskip} {2}
In this ugly



Bijlage 35 Hans Hagen

306 MAPS

Here, the first character is moved down one baseline. Here we also see why the horizontal
offset is important. The first example (showing the L) sets this to a few points and also
used a slightly larger height.

Of course common users (typist) are not supposed to see this kind of fuzzy definitions,
but fortunately TEX permits us to hide them in macros. Using a macro also enables us to
garantee consistency throughout the document:

\def\MyDroppedCaps%
{\DroppedCaps

{\color[green]} {cmbx12}
{5\baselineskip} {3pt} {3\baselineskip} {4}}

\MyDroppedCaps The implementation

T
he implementation of the general macro is rather simple and only depends
on the arguments given and the dimensions of the strut box. We explicitly
load the font, which is no problem because TEX does not load a font twice.
We could have combined some arguments, like the height, vertical offset and

the number of lines, but the current implementation proved to be the most flexible. One
should be aware of the fact that the offsets depend on the design of the glyphs used.

4 \def\DroppedCaps#1#2#3#4#5#6#7%
{\par
\vskip#6\baselineskip
\penalty-200
\vskip-#6\baselineskip
\setbox0=\hbox

{\font\temp=#2 at #3%
\temp#1{#7}\hskip#4}%

\setbox0=\hbox
{\lower#5\box0}%

\ht0=\ht\strutbox
\dp0=\dp\strutbox
\hangindent\wd0
\hangafter-#6%
\noindent
\hskip-\wd0
\vbox{\forgetall\box0}%
\nobreak}

Before we go to the next topic, we summarize this command:

\DroppedCaps
{command} {font}
{height} {hoffset} {voffset} {lines}

INSTEAD OF LIMITING ITS ACTION TO ONE TOKEN, THE NEXT MACRO TREATS THE\TreatFirstLine

whole first line. This paragraph was typeset by saying:

\TreatFirstLine {\sc} {} {} {}
Instead of limiting its action to one token, the next macro
treats the whole first line. This paragraph was typeset by
saying:

The combined color and font effect is also possible, although one must be
careful in using macros that accumulate grouping, but the commands used here are pretty
save in that respect.

\TreatFirstLine {\startcolor[red]\bf} {\stopcolor} {} {}
The combined color and font effect is also possible,



Some funny macro’s Bijlage 35

Voorjaar 1998 307

although one must be careful in using macros that accumulate
grouping, but the commands used here are pretty save in that
respect.

Before we explain the third and fourth argument, we show the implementation. Those
who know a bit about the way TEX treats tokens, will probably see in one glance that
this alternative works all right for most text--only situations in which there is enough text
available for the first line, but that more complicated things will blow. One has to live
with that. A workaround is rather trivial but obscures the principles used.

5 \def\TreatFirstLine#1#2#3#4% before, after, first, next
{\leavevmode
\bgroup
\forgetall
\bgroup
#1%
\setbox0=\box\voidb@x
\setbox2=\box\voidb@x
\def\grabfirstline##1 %

{\setbox2=\hbox
{\ifvoid0

{#3{\ignorespaces##1}}%
\else

\unhcopy0\ {#4{##1}}%
\fi}%

\ifdim\wd2=\!!zeropoint
\setbox0=\box\voidb@x
\setbox2=\box\voidb@x
\let\next=\grabfirstline

\else\ifdim\wd2>\hsize
\hbox to \hsize{\strut\unhbox0}#2\egroup
\break##1\
\egroup
\let\next=\relax

\else
\setbox0=\box2
\let\next=\grabfirstline

\fi\fi
\next}%

\grabfirstline}

The third and fourth argument can be used to gain special effects on the
individual words. Of course one needs ... to know a bit more about the macro package
used to get real nice effects, but this example probably demonstrates the principles well.

\gdef\FunnyCommand
{\getrandomfloat\FunnyR{0}{1}%
\getrandomfloat\FunnyG{0}{1}%
\getrandomfloat\FunnyB{0}{1}%
\definecolor[FunnyColor][r=\FunnyR,g=\FunnyG,b=\FunnyB]%
\color[FunnyColor]}

\TreatFirstLine {\bf} {} {\FunnyCommand} {\FunnyCommand}
The third and fourth argument can be used to gain special
effects on the individual words. Of course one needs ...

Like in dropped caps case, one can hide such treatments in a macro, like:



Bijlage 35 Hans Hagen

308 MAPS

\def\MyTreatFirstLine%
{\TreatFirstLine{\bf}{}{\FunnyCommand}{\FunnyCommand}}

When using CONTEXT, one can also apply this funny command to whole lines by using\reshapebox

the reshape mechanism. Describing this interesting mechanism falls outside the scope
of this module, so we only show the trick. This is an example of low level CONTEXT
functionality: it’s all there, and it’s stable, but not entirely meant for novice users.

\beginofshapebox
When using \CONTEXT, one can also apply this funny command
to whole lines by using the reshape mechanism. Describing
this interesting mechanism falls outside the scope of this
module, so we only show the trick. This is an example of
low level \CONTEXT\ functionality: it’s all there, and it’s
stable, but not entirely meant for novice users.
\endofshapebox

\reshapebox{\FunnyCommand{\box\shapebox}} \flushshapebox

This mechanism permits hyphenation and therefore gives better results than the previ-
ously discussed macro\TreatFirstLine.

Just to be complete we also offer a very simple one character alternative, that is not that\TreatFirstCharacter

hard to understand:

6 \def\TreatFirstCharacter#1#2% command, character
{{#1{#2}}}

A previous paragraph started with:

\TreatFirstCharacter{\bf\color[green]} Just to be

The next hack deals with vertical stacking.\StackCharacters

7 \def\StackCharacters#1#2#3#4% sequence vsize vskip command
{\vbox #2

{\forgetall
\baselineskip0pt
\def\StackCharacter##1{#4{##1}\cr\noalign{#3}}%
\halign

{\hss##\hss&##\cr
\handletokens#1\with\StackCharacter\cr}}}

Such a stack looks like:

T
E
X

C
O
N

T
E
X
T

C
O
N
T
E
X
T

and is typeset by saying:

\StackCharacters{CONTEXT}{}{\vskip.2ex}{\FunnyCommand}

An alternative would have been

\StackCharacters {CONTEXT} {to 5cm} {\vfill} {\FunnyCommand}



Some funny macro’s Bijlage 35

Voorjaar 1998 309

At a lower level horizontal and vertical manipulations are already supported by: \processtokens

\processtokens {begin} {between} {end} {space} {text}

This macro is able to typeset:

L E T ’ S H A V E

F
U
N

which was specified as:

\processtokens
{\hbox to .5\hsize\bgroup} {\hfill}
{\egroup} {\space} {LET’S HAVE}

\processtokens
{\vbox\bgroup\raggedcenter\hsize1em}
{\vskip.25ex} {\egroup} {\strut} {FUN}

Next we introduce some font manipulation macros. When we want to typeset some text\NormalizeFontHeight
\NormalizeFontWidthspread in a well defined area, it can be considered bad practice to manipulate character

and word spacing. In such situations the next few macros can be of help:

\NormalizeFontHeight \name {sample text} {height} {font}
\NormalizeFontWidth \name {sample text} {width} {font}

These are implemented using an auxilliary macro:

8 \def\NormalizeFontHeight%
{\NormalizeFontSize\ht}

9 \def\NormalizeFontWidth%
{\NormalizeFontSize\wd}

10 \def\NormalizeFontSize#1#2#3#4#5%
{\setbox0=\hbox{\font\temp=#5 at 10pt\temp#3}%
\dimen0=#10
\dimen2=10000pt
\divide\dimen2 by \dimen0
\dimen4=#4%
\divide\dimen4 by 1000
\dimen4=\number\dimen2\dimen4
\edef\NormalizedFontSize{\the\dimen4}%
\font#2=#5 at \NormalizedFontSize}

Consider for instance:

\NormalizeFontHeight \tmp {X} {2\baselineskip} {cmr10}

{\tmp To Be Or Not To Be}

This shows up as (we also show the baselines):

1 To Be Or Not To Be
The horizontal counterpart is:

\NormalizeFontWidth \tmp {This Line Fits} {\hsize} {cmr10}

\hbox{\tmp This Line Fits}



Bijlage 35 Hans Hagen

310 MAPS

The calculated font scale is avaliable in the macro\NormalizedFontSize.

This Line Fits
One can of course combine these macros with the ones described earlier, like in:

\NormalizeFontHeight \DroppedFont {2\baselineskip} {cmbx12}

\def\NicelyDroppedCaps%
{\DroppedCaps

{\kleur[groen]}
{\DroppedFont}
{2pt}
{\baselineskip}
{2}}

It’s up to the reader to test this one.

11 \protect

12 \endinput


