
42 MAPS

Bijlage 8
Minimal markup

expansion in the gullet, aha!

Kees van der Laan
cgl@hetnet.nl

abstract
A plea is made for a reappraisal of TEX’s capabilities of

expansion in the gullet of minimal marked up scripts into
complete marked up scripts. Attention is focused on expansion

of implicitly marked up table data by spaces and e-o-l-s into
data separated by \cs and \rs , the abstract but explicit

column and row separators, respectively. The ultimate aim is
that the processing tool can’t be distilled from the ‘marked up’

script.

keywords
BLUe, crosswords, expansion, fifo, look ahead, macro writing,
minimal markup, mouth processing, preprocessing, tables, tail

recursion

Introduction

Who cares about minimal markup as long as the results in
print look beautiful?

Well, . . . I do.
The reason why I care about minimal markup comes

from various experiences.
The main reason is: it’s elegant, IMHO with all respect,
when a user can prepare his copy in such a way that we can
hardly tell that he works with (La)TEX. This comes close
to abstraction from the processing tool, and I for one con-
sider this beneficial, if not for the entailed flexibility, or the
ease in converting a BLUe script into aMAPS submission,
with the ultimate goal that conversion is no longer needed.
Second, I like to read marked up scripts next to the results
in print. Redundancy, to say the least, in markup does not
contribute to readability nor clean scripts.
Third,many a (La)TEX result does not look beautiful at all,
and maybe because authors got lost in the complexity of
too much and redundant markup.
Fourth, now and then I could just generate the data for ta-
bles as function of its size by TEX, and so the user does
not have to supply the data for those tables, let alone the
markup.1

And last but not least, it allows you to become ‘lazy,’ to
be able to forget about most of the details of the tool, but
. . . only after you have matured, gained a thorough under-
standing.

In BLUe I adopted, similar to Knuth, that the\blueheads

take as end separator of the heading title a blank line, and
so on.2

There is one example I’m particular fond of: the minimal
markup for crosswords.3 For crosswords I considered it
particularly convenient that a user only has to provide the
data between the tags\bdata and\edata,4 without explicit
separators. Just the letters and the * to denote a black cell,
with the column separators implicit because the elements
consist of only one character, and as row separators the
end of lines, e-o-l-s for short. TEX’s mouth–gullet while
expanding should insert the tags required by subsequent
macros.5 In general I found it beneficial to abstract from
the markup of the table data in\cs and\rs, the column
and row separators, respectively.
Disclaimer. Alas, as yet I can’t read the TEX WEB source6

so I don’t know what\noexpand\cs really entails. Obvi-
ously, the gullet refrains from expansion. But eventually it
has to be expanded and processed, of course. All below is
biased by my intuition and has been verified, interactively.

Example (Crosswords) For the discussion at the moment
concentrate your attention on how the data between\bdata
and\edata, are specified, that is each row as such on a
line.

1 See my note ‘Parameterized data for tables in TEX.’
2 A trifle in markup, but it paved the way towards the approach

of starting without markup. More advanced is the need for pro-
cessing on-the-fly, that is with catcodes to be fixed while pro-
cessing. For that some more markup is needed: the two-part
variant consisting of the pair\beginhead \endhead, with its
\head{. . . } variant.

3 I know of work done and published inTUGboat by Brian Hamil-
ton Kelley, and I myself published a note about it in the Eu-
roTEX’ 92 proceedings, in MAPS92.2, and included a cross-
word example in the Publishing with TEX user guide, PWT for
short, which comes with BLUeTEX. Crossword macros are in-
cluded as one of the tools in BLUe’s tools.dat.

4 An even more minimal variant, a\bluedata macro with a blank
line as end separator of the data can be provided on top as fol-
lows: \def\bluedata#1\par{\bdata#1\edata}.

5 A white lie. TEX has coupled the mouth–gullet–stomach–
gastro-intestinal track by ‘pipes.’ As soon as some expansion
has been done the stomach already starts promulgating it, and
so on. In the old computer terminology TEX’s mouth function-
ing can be seen as a preprocessor.

6 METAFONT and PostScript ranked higher on my priority list.

Minimal markup Bijlage 8

Najaar 1998 43

1 2

3 4

5

6

P O N
D E K

N S
E D I T

The (left) puzzle above is obtained essentially via7

\bdata%
P*On
DEk*
*n*S
Edit
\edata \crw

Note that the numbers for the clues in the puzzle are gener-
ated automatically. The user must take care that these num-
bers correspond with the clues by using capital characters
in the data at the right places—these places get their num-
bers on turns, rowwise—and that the clues take the correct
numbers.

While glancing through this note the markup for the
crossword might look so natural to you that you might
wonder

Is that all?

Indeed for a typewriter the above supplied data, for exam-
ple, is all what is needed, if we consider * as black cell.
However, for the puzzle with numbers for the clues insert-
ed we are at loss, definitely when we wish not to bother
about it as user. But,. . . it needs a touch of knowledge,
awareness, wisdom and discipline not to pollute the data by
markup, while TEXing for beautiful results, such as black
cells, automatic generation and typesetting of numbers for
the clues, rules, scaled variants to be placed anywhere on
the page, and so on, while preserving simplicity and flexi-
bility.

Because the minimal markup approach in TEX is not
widespread, we have to push advanced (plain) TEXies to
write the macros for minimal markup. To use the macros
once they are there is simple by nature. Although this note
also deals with how to write these macros I hope this will
not put off the push-the-button type of user.

Why?
In the preface ofThe TEXbookKnuth already stated

If you are preparing a simple manuscript, you
won’t need to learn much about TEX at all;

with the consequence of few markup.
Apart from the lovesong on the elegance of minimal

markup, I’ll unevitably touch on the subject of macro writ-
ing. To my experience there are no two TEXies alike who

write macros in the same spirit.8 This is a weakness of
macro writing in TEX, IMHO with all respect, because it is
much easier to write macros from scratch of your own than
to understand the (perceived) idiosyncrazies of your col-
leagues. Some would call this the strength of TEX’s macro
language, this richness of possibilities, but I think it really
inhibits to create for example a library of TEX macros.9

I favour a discipline in TEX macro writing and I hope
that this note will contribute towards the macro writing for
generating markup automatically, if not for a library of TEX
macros. In absence of this library10 I collect these tools
and macros in BLUeTEX, all within the framework of a
coherent spirit and consistent philosophy.
I like to code macros for general paradigms in program-
ming, such asFIFO—First-In-First-Out. TheFIFO princi-
ple implemented as an expandable macro, together with its
variants with looking ahead functionality, will be the main
TEXniques to be used in this note.11

Disclaimer. The quotation taken from the preface ofThe
TEXbookcontinues with

. . . on the other hand some things that go into print-
ing of technical books are inherently difficult, and if
you wish to achieve more complex effects you will
want to penetrate some of TEX’s darker corners.

So, what we can reasonably go for is that

simple scripts should be marked up simple

and that for inherent difficult scripts complexity will cross
our way. But,. . . IMHO, with all respect, do hide com-
plexity in macros, such that only the invokes will appear
in the markup, or even better that these invokes be insert-
ed automatically by TEX’s expansion mechanism, wherever
feasible.

7 With default \puzzletrue. With \puzzlefalse the right
figure—the solution—will be obtained.

8 Except for the LATEX team, I presume.
9 The LATEX users are not so much interested in how it is done as

long as it does what you want. That is different from what I’m
up to. I like to understand and be able to read the code as well.

10 The TEX archive—CTAN—provides mostly style files for
LATEX, or other collections like my BLUe. A detailed taxon-
omy for a library is still lacking. How would you classifyFIFO

macros for example? (Of course under fifo, but. . .)
11 Knuth already had his\dolist macro, but because of assign-

ments it is not completely processed in the mouth. Maybe that
is not so relevant because of the coupling via pipes of TEX’s di-
gestive phases. Knuth’s\dolist is more general for sure, but
for down to earth use my straight implementation of fifo can
do a lot. SeeThe TEXbook, ex11.5, or \ctest The TEXbook,
376. In MAPS92.2, I have recasted\dolist in FIFO terminol-
ogy, while preserving its assignments, of course, in ‘FIFO and
LIFO sing the BLUes.’

Bijlage 8 Kees van der Laan

44 MAPS

What is on?
I aim at that the reader after completion will understand
how TEX can be used for expansion, to transform for ex-
ample

ABC −→ \ls A \ls B \ls C

or
ABC −→ A \cs B \cs C

That is, to insert before each element a list separator—
\ls—or to insert between elements a control sequence—
\cs. These eventually nested, which is actual for the case
of crosswords, and for the data proper part of tables.12

Expansion in TEX’s mouth, well gullet, is a very power-
ful tool for transforming the minimal, or implicit, markup
into the complete representation as required by subsequent
macros, such as\halign. In other words to get the script
ready for further execution.

I assumed that the reader starts from the same viewpoint
as me: to supply data is one thing, to format them is anoth-
er. TEX’s expansion in the mouth–gullet is a way to bridge
the gap.

Minimal markup by Knuth

Knuth in his markup has amply made use of blank lines,
see for exampleThe TEXbook file. Nice because of the
implicit structure, pleasing for the eye.

A TEX paragraph starts usually by its first character and
is ended by the first blank line.13 No explicit markup at all,
not to mention that kerning goes automatically!

The markup for a chapter ofThe TEXbook starts with
\beginchapter followed by the chapter title and ended by
a blank line.

Another occurrence of minimal markup has to do with
options. Knuth’s\begindisplay \endisplay pair is quite
flexible with variations there when needed, which other-
wise won’t hinder. Just one line? That is fine. More lines?
Separate them just by\cr. More columns? OK too, sepa-
rate columns by &. Then there is the possibility for inclu-
sion by supplying after\begindisplay on the same line.

In general Knuth implemented options via the use of to-
ken variables—his\every...-s—to be inspected at appro-
priate places.

If you don’t need options, Knuth’s implementation
of them won’t hinder, you don’t have to pay for
what you don’t use, also known as Samelson’s prin-
ciple.14

Maybe you will consider the above not so relevant, but
IMHO, with all respect, when paying attention to minimal
markup your scripts will become cleaner and cleaner, if not
for clearer and clearer. Moreover, it gives more and more

pleasure in (re)reading them. You won’t no longer be a
victim of the curley braces mania, with its drawback of the
‘non-matching braces’ error message.

Disclaimer. There is one approach of Knuth which
IMO is not minimal. It is about that input has to be re-
peated when the result in print as well as how this was
achieved are displayed, as is the case on many places in
The TEXbook.

Automatic inclusion of markup for list
processing

I needed this for the first time when typesetting the Tow-
er of Hanoi game.15 Knuth used the active list separator
on several occasions, see for exampleThe TEXbook, Ap-
pendix D.2 List Macros. Maybe, the most notorious practi-
cal use is his writing of the answers of the exercises to a file
preceded by the list separator\ansno, seeThe TEXbook,
422. As we all know this file is the input for the Appendix
A: Answer to All the Exercises. I used the (active) list sep-
arator in my database approach of TEX tools and formats,
not to mention my literature database, from where refer-
ences can be selectively loaded, and of course in selecting
addresses from my ‘addressbook.’

Maybe, the viewpoint that this functionality is of impor-
tance to allow minimal markup has not been recognized at
large.

Within NTG, next to myself, Piet Tutelaers has used the
active list separator, to name but one. He prescribed chess
positions in a minimal way, with TEX to expand these into
the complete markup. See later on.

12 A prerequisite is to distinguish between the header, first col-
umn and the data proper, for the markup of tables. In doing
this the generally more complex header part of a table—the
legenda—is separated from the data.

13 My Polish friends nicknamed paragraphs by ‘From\indent
to \par,’ in their contribution about how paragraph parameters
work for a EuroTEX some years ago.

14 This in contrast with the handling of options by parsing of ar-
guments. In the old LATEX for example markup for options
requires embracing them by square brackets. The disadvan-
tage is that these square brackets must be there whether you
need an option or not. Definitely redundant, IMHO, with all
respect. (I was told that this no longer the case.) In LATEX’s
graphics chapter brackets like (and) are used to embrace op-
tional items, which is inconsistent and confusing. Inconsisten-
cy is inevitable with macros emerging from allover the world.
What I borrowed I generally recasted in my BLUe’s philoso-
phy in order to enhance consistency, and to allow myself to
forget about the details of the tool.

15 An predecessor paper on the issue overlooked the inclusion
of (active) list separators and therefore the author had to go
explicitly through the data recursively again, all within a LISP
flavour. Definitely unintelligible, especially for a non-LISP
programmar like me.

Minimal markup Bijlage 8

Najaar 1998 45

What is the problem?
The problem in its simplest form is that we have for exam-
ple the string ‘ABC’ and we wish to replace this by ‘\ls A
\ls B \ls C.’

How to do this?
The algorithm is straightforward: walk along the elements
and insert\ls before each element. The programming
details are a bit tricky in TEX, however.16 Let us assume
that ‘ABC’ is stored as replacement text of the definition
\data, and that we’ll deliver the result under the name
\markedupdata for educational purposes. The latter allows
to use TEX’s \show for inspecting the result. For simplicity,
I assume further that the elements are not expandable and
consist of only single characters.17

Example (Insertion of control sequences before)

\def\fifo#1{\ifx\ofif#1\ofif\fi
\noexpand\ls{#1}\fifo}

\def\ofif#1\fifo{\fi}
\def\data{ABC} \show\data
\xdef\markedupdata{\expandafter\fifo\data\ofif}
\show\markedupdata

Explanantion. I implemented going through the list by tail
recursion, via the\fifo macro. Once you understand this
macro you are able to program tail recursion on-the-fly.
It might be handy to forget about termination first—yes,
the infinite loop nightmare—and next concentrate on the
termination. I presume that the infinite situation is rather
straightforward: all what follows\fifo in the markup is
taken one argument at a time, and reinserted preceded by
\ls. In order to terminate\fifo we have to append a to-
ken to the data, a so-called sentinel in these kinds of loop
programming, for the moment without a specific meaning.
I chose\ofif. If this \ofif token as argument is recog-
nized then the tail recursion is ended by an invoke of—why
not \ofif?—in the true branch. Only now the meaning of
\ofif becomes relevant. It should be defined with\fifo
as end separator of its argument, in order to ‘eat’ all tokens
up to and including the\fifo token, meaning no next level
of tail recursion will take place. However, also the closing
\fi is eaten and therefore the replacement text of\ofif
must reinsert this token, et voil`a.

Remark. TEX’s \show control sequence displays the (re-
placement text of the) macro, supplied as argument, in the
log file. By the use of\show we can verify what happened.

Minimal markup in chess
Tutelaers1992, as mentioned by Eijkhout1991, faced the
problem of inputting a chess position. The problem is char-
acterized by an unspecified number of positions of pieces,
with for the pawn positions the identification of the pawn

generally omitted. Let us denote the pieces by the capital
letters K(ing), Q(ueen), B(ishop), (k)N(ight), R(ook), and
P(awn), with the latter symbol, P, default. The position on
the board is indicated by a letter a, b, c,. . . , or h, followed
by a number,1, 2, . . . , or 8. The goal is that, for example

\pieces Ke1 e2 e4

should expand into

\piece Ke1 \piece Pe2 \piece Pe4

with \piece to be defined for further processing, which
is not relevant for our purpose in this note. I assumed a
meanest-and-leanest one line input.

The transformation can be done by an appropriate defi-
nition of \pieces, and an adaptation of the\fifo template,
as follows.

\def\pieces#1\par{\xdef\markeduppieces
{\fifo#1{\ofif} }}

\def\fifo#1 {\ifx\ofif#1\ofif\fi
\process#1\ssecorp\fifo}

\def\ofif#1\fifo{\fi}
\def\process#1#2#3\ssecorp{\if\relax#3\relax
\noexpand\piece P#1#2\else
\noexpand\piece#1#2#3\fi}

%Test
\pieces Ke1 e2 e4 Ra1

\show\markeduppieces
\bye

Remarks. A few subtilities have been introduced in the
adaptation of the\fifo template. Use has been made of
the implicit e-o-l, which is converted by TEX into a space.
Therefore the added sentinel\ofif in the replacement text
of \pieces must immediately follow #1, no space in be-
tween, because this space has already been added by TEX.
On the other hand we need a space after the sentinel\ofif
and therefore the sentinel is embraced and followed by a
space.18 The argument,#1, as seen by\process is fol-
lowed by\ssecorp as end separator to cope with the de-
fault, implicit identification for pawns. Only recently I pol-
ished this variant, sigh,. . . details matter.19

16 . . . not that difficult really, once you get the hang of it.
17 Of course there are a lot of variations thinkable, but not so rel-

evant for the basic part, I guess. For example accented charac-
ters can be accounted for via modifications, such as enclosing
them between braces at the appropriate places. I have omit-
ted those confusing details and will concentrate on the main
issues.

18 This sentinel is debraced when taken as argument.
19 This note is all about expanding minimal markup into explicit

markup. In practice the creation of an explicit\markeduppieces
can be omitted.

Bijlage 8 Kees van der Laan

46 MAPS

Automatic inclusion of markup between
elements
Inclusion of markup in between is a little more cumber-
some. If we think of processing each element and to in-
sert the in between token after each element, except for the
last, then this entails that we must decide for each element
whether it is the last one or not, that is to look ahead for the
sentinel. Below the control sequence,\cs, will be inserted
in between.

Example (Insertion of control sequences in between)

\def\fifo#1#2{#1\ifx\ofif#2\ofif\fi
\noexpand\cs\fifo#2}

\def\ofif#1\ofif{\fi}
\def\data{ABC} \show\data
\xdef\markedupdata{\expandafter\fifo\data\ofif}
\show\markedupdata

Explanation. As usual\ofif has to be appended as sen-
tinel to the data,\fifo has two arguments, the second is
used to look (ahead) for the sentinel. The first is reinsert-
ed and processed—in this simple case just reinserted—and
the second is tested against\ofif and reinserted at the end
of the replacement text. If the test yields true,\ofif is in-
voked which in this variant of looking ahead must ‘eat’ all
tokens up to and including the\ofif, that is the reinserted
#2. Again a\fi must be inserted to compensate for the
eaten\fi.
Remark. A variant implementation—albeit, more clum-
sy and less efficient—of the above is to ‘look ahead’ not
just by one element, but to split the total list into the
first element and the rest—also called head and tail in
programming—where the (shrinking) rest has to be copied
each time. This opens the Pandora box of coding variants.
For an average TEXie these kinds of variants are quite con-
fusing, I guess. I pay so much attention to as straight as
possible implementations in order to use them over and
over in my macros, with confidence, enhancing concise-
ness and more importantly, correctness.

Example (Splitting into head and tail)

\def\fifo#1#2\ofif{#1\ifx\empty#2\empty\ofif\fi
\noexpand\cs\fifo#2\ofif}

This clumsy code is not only less efficient but also more
tricky, see the test for the empty argument, which by the
way can be a useful trick at times.

Automatic inclusion of markup for tables
Starting from data as such it will be shown how TEX can
insert the markup tags\cs and\rs, to separate columns
and rows.

The basic idea has been borrowed fromThe TEXbook,
249, from the dubble dangerous bend remark about omis-
sion of \cr in the input data. I have extended this with
omission in the input of &.

One-character data with implicit row separators
The idea in its simplest form is to transform for example20

P*On
. . .

Edit
−→

P\cs *\cs O\cs n\rs
. . .

E\cs d\cs i\cs t

In each row elements are not separated, the elements
consist of just one character. Macros for the above read
as follows.

\def\fifol#1 #2 {\fifo#1\ofif
\ifx\lofif#2\lofif\fi
\noexpand\rs\fifol#2 }

\def\lofif#1\lofif{\fi}
\def\fifo#1#2{%\prc

#1\ifx\ofif#2\ofif\fi
\noexpand\cs\fifo#2}

\def\ofif#1\ofif{\fi}
\def\bdata#1\edata

{\xdef\markedupdata{\fifol#1{\lofif} }}
\bdata P*On

DEk*
*n*S
Edit

\edata%\show\markedupdata%check it
\framed\ruled\btable\markedupdata

Explanation. The storing of the (marked up) data is done by
\bdata, with the sentinel{\lofif} added, that is embraced
and followed by a space.21 added. Each row to be further
processed by\fifo ends by a space, because TEX converts
e-o-l-s into spaces, and the sentinel is also followed by a
space. The rows, two at a time, are arguments of\fifol.
The first row is processed. The second row (debraced one
level) is tested whether it is the sentinel or not,22 and rein-
serted, appended by a space. If the test yields false the
process is recursively repeated. If the test yields true the

For fun compare this recent minimal variant with the one I
launched in ‘FIFO andLIFO sing the BLUes.’ Of course I have
updated my version of that note, with some more examples I
found interesting since then. I’m pondering about myWWW

page with all my notes and BLUe’s format. Keep fingers
crossed.

20 I abstracted & into\cs and\cr into \rs.
21 If the braces are omitted the space is neglected because TEX

neglects spaces after control sequences.
22 Note that the order of the arguments to the test matter.

Minimal markup Bijlage 8

Najaar 1998 47

invoke of \lofif eats all tokens up to and including the
(reinserted)\lofif, that is the#2, and compensates for the
eaten\fi by the replacement text of\lofif. Similar is the
processing of each row, via the invoke of\fifo#1 with the
sentinel\ofif added. I like to call the latter nested use of
theFIFO idea.
The next step towards typesetting crosswords is that\prc
formats the cells in each row, that is insert a\prc before
the reinserted element, and give meaning to\prc.

However, in the PWT version of my crossword macros I
decided that I could better not use\haling, or my\btable,
but process each element directly within a box, and stagger
these boxes appropriately, with the total framed. But, the
typesetting is not of our concern for the moment, we are
concentrating on the expansion of minimal markup, aren’t
we?

I think that the insertion of the\cs-s and\rs-s by TEX,
can be useful. Whatever the value might be, the thinking
along the lines I have elaborated on above helped definitely
to develop much nicer and clearer codes.

Remarks.
\btable is BLUe’s (bordered) table macro on top of

plain’s \halign. It abstracts from\halign’s & and \cr
into \cs and \rs, allowing for example the use of flags
like \ruled. It is beyond the scope of this note to explain
\btable or its use. Roughly speaking,\btable formats the
data as you would expect. The above code is not robust
with respect to extra blank lines in the data, however.

The code is biased by the e-o-l→ substitution of TEX.

Data with implicit column and row separators
Sometimes it is convenient to supply data for a table as
such, row by row with the columns separated by spaces.

To expand table data without markup23 into marked up
data ready for use with TEX, is a bit more cumbersome.
Have a try.24

Example (Young tableaux) The Young tableaux as giv-
en for example in the PWT guide, could have been provid-
ed, marked up simply, as follows.

\bdata 7 8 9 10
9 11
16

\edata

with (aimed at) results

7 8 9 10
9 11

16

The coding for transforming the input as supplied
between \bdata and \edata reads as follows, where

\obeylines has been used.

{\obeylines%
\gdef\fifol#1

#2
{\fifo#1 {\ofif} \ifx\lofif#2\lofif\fi%

\noexpand\cr\fifol#2
}%
\gdef\lofif#1\lofif
{\fi}%
}
\def\fifo#1 #2 {#1\ifx\ofif#2\ofif\fi

\noexpand&\fifo#2 }
\def\ofif#1\ofif{\fi}
\def\bdata{\bgroup\obeylines\store}
{\obeylines
\gdef\store#1\edata{\egroup%
\xdef\markedupdata{\fifol#1\lofif
}}}
\bdata 7 8 9 10

9 11
16

\edata \show\markedupdata
$$\young\markedupdata$$

Explanation. The new issues here are the recognition of
e-o-l-s within\obeylines’ reign. Maybe you don’t know
what \obeylines does precisely. Don’t worry, whatever
it does is fine, as long as we apply its use consequent-
ly it should work fine. That is what has been done in
the code above, and indeed it works fine, though I know
what\obeylines does. The rest is similar to and discussed
along with the earlier provided codes.

Remarks. The use of %-s is critical. Extra blank lines
are handled robustly: blank cells will show in the table.
Because this note is not about formatting of tables but only
on minimal markup and inserting markup automatically,
consult the PWT guide for the source and use of\young.
Again, its result in print is what you expect, in agreement
with tradition.

Table data from a database

As suggested by Wietse Dol the inclusion of markup by
TEX can be of practical value too. He told me of his
database of table data, which he typesets for the time being
by Pascal. Is it feasible to do this by TEX?

The idea is that for example a file contains

23 Meaning just visual ASCII: line by line and within each line
elements separated by (one or more) spaces.

24 Hint: In order to discriminate between ordinary spaces
and spaces coming from converted e-o-l-s, make use of
\obeylines.

Bijlage 8 Kees van der Laan

48 MAPS

11 12
21 22

and that you will end up with let’s say

\def\markedupdata{11\cs12\rs21\cs22}

That is the data together with markup is the replacement
text of\markedupdata ready to be used by\btable

In principle solution
The insertion of markup is done similar to the example
treated above. However, the extra complication is that the
data are on a file. Below I read the file line-by-line, and
could therefore insert\rs naturally, well,. . . more or less.

Assume that the data are in a file called data.

\openin1=data
\def\markedupdata{}
\def\addrs{\def\addrs{\ea
\def\ea\markedupdata\ea{\markedupdata\rs}}}

\loop\read1 to\data
\ifeof1 \break\fi
\addrs
\edef\mdata{\ea\fifo\data{\ofif} }
\ea\ea\ea\def\ea\ea\ea\markedupdata\ea\ea\ea

{\ea\markedupdata\mdata}
\pool
\framed\ruled\btable\markedupdata
\bye

The above requires the following auxiliaries.

\let\ea\expandafter
%Loop macros due to van der Goot
\def\loop#1\pool{#1\loop#1\pool}
\def\break#1\pool{\fi}
%FIFO variant for this case
\def\fifo#1 #2 {#1\ifx\ofif#2\ofif\fi

\noexpand\cs\fifo#2 }
\def\ofif#1\ofif{\fi}

For those who don’t have BLUeTEX available what is go-
ing on can be followed in the log file.25 Therefore insert
\show\markedupdata before the\pool, and don’t forget to
push the return key after the def has been shown in order
to continue.

The results for the data

1 2 3
21 22 23
31 32 333

are
1 2 3

21 22 23

31 32 333

Remarks. Because of the loop I had to do something spe-
cial with \addrs. Maybe it is possible to read the file and
deliver the data, with an appropriate separation between
the ‘rows,’ as replacement text of\data, let’s say. If so
we can apply the earlier treated mechanism for inserting
markup.26

At a lower level there is flexibility in handling the look-
and-feel of the typeset data. But as said earlier this is not
our concern at the moment. Consult the PWT guide chap-
ter about tables.

Acknowledgements

As usual Jos Winnink proofed the paper and helped me in
coercing the note into MAPS format. His remarks and sug-
gestions are always well-taken. To say the least, he reflects
what despite the intention did not come across. I consid-
er the approach of a friendly eye better than a referee in
warranting quality.

Wietse Dol suggested to consider data stored in a file, or
as he put it to typeset tables from a database of table data.

Conclusions

It’s hoped for that the use of theFIFO principle, implement-
ed as an expandable macro, for inserting markup during
TEX’s mouth-gullet processing, will contribute to a more
general use of minimal markup.

Minimal markup is the royal road to more readable
scripts and alleviates conversion problems such as from a
BLUe script into aMAPS submission.

The expansion by TEX’s gullet of minimal marked up
scripts into completely marked up scripts, made me realize
the power and relevance of TEX’s gullet expansion capa-
bilities.

Although TEX has been used abundantly and inten-
sively for nearly20 years already, the awareness of
the elegance and convenience of minimal markup
to be expanded by TEX is only just emerging.

What astonishes me still is that it is very hard to really get
at the simplests codes. Apparently Knuth had the same
experience as can be distilled from the following from the
preface inThe TEXbookand. . . TheMETAFONTbook

. . . and there are always better ways to do what
you’ve done before.

My case rests. Have fun, and all the best.

25 It’s all about insertion of\cs and\rs at the appropriate places.
26 A request for this on TEX-nl did not provide an answer; even

stronger it was believed it was not possible. Hmmm. . .

