
Voorjaar 1999 148

advanced

Optimizing TEX code
some words on speed and space

Hans Hagen
PRAGMA ADE
Ridderstraat 27
8061GH Hasselt NL
pragma@wxs.nl

abstract
Macros can be collected in macro packages. These packages
can be stored in a form that permits fast loading. Although

TEX is already pretty fast, for demanding applications it makes
sense to speed up TEX to the max. Switching to e-TEX and

beyond is one way to achieve this, another way can be found
in optimizing the macro code by means of a dedicated

program. Currently the combination of both can speed up TEX
runs by at least 10%.

keywords
speeding up, formats, optimizing code, e-TEX , ConTEXt

Wat is TEX?

TEX is a typographic computer language with a strange
character. To mention one: typographical programs and
text to be typeset can be mixed. Therefore the border be-
tween programs and text is not always that clear. Take

1 2 3 \hbox spread 1em{\hss4\hss} 5 6 7

which shows up as

1 2 3 4 5 6 7

This piece of code does not really contain a program, but
the next example does:

\setbox0=\hbox{12}\dimen0=\wd0

1 2 3 \hbox to \dimen0{\hss4\hss} 5 6 7

As long as one digit is used, the result is the same as in
the previous example, because a digit has a width of .5em.
It makes sense to isolate textual input and programming
code, like in:

\def\TwoDigitsWide#1%
{\hbox to 1em{\hss#1\hss}}

1 2 3 \TwoDigitsWide{4} 5 6 7

The \def’d things are called macros. Quite often macros
are collected into so called macro packages. That way we
save ourselves the time of retyping commonly used macros
and at the same time force consistency.

So, TEX is a programming language and a program writ-
ten in such a language should either be compiled into some
low level machine code or interpreted at runtime. Again,
TEX is a strange breed, because it does a bit of both: TEX
the programming language is processed by TEX the pro-
gram. While read in from a file, characters and sequences
of characters are translated into an internal representation
and when not directly typeset, they are stored in appropri-
ate data structures.

In our example, the definition (\def\Two...) is stored
for later use, and called upon while1 2 .. is typeset.

Running TEX

On many computer systems users invoke their prefered
macro package by typing in its name at the command line
and often they think thattex, latex or context is sim-
ply a program. This situation becomes even more vague
when one encounterspdftex and pdflatex. (Be suspi-
cious if you ever encounterpdfcontext, because by nature
CONTEXT is not aware of any specific brand of TEX, ex-
ceptE-TEX!)

What actually happens is that TEX the program is
launched and instantly starts reading in the macro pack-
age one asked for. So, it’s still TEX that one’s running, no
matter in what way it is invoked! On many systems saying:

tex <filename>
latex <filename>
context <filename>

is just the same as:

tex &plain <filename>
tex &latex <filename>
tex &context <filename>

which is the ‘official’ way of calling TEX with some kind
of macro package.



advanced Hans Hagen

149 MAPS

Formats

The macros normally are not stored inASCII format, but in
a so called memory dump, a sort of precompiled format.
One can generate such a format by saying:

tex --ini plain.tex \dump
tex --ini latex.ltx
tex --ini context.tex

When run in ini (also called virgin) mode, TEX reads in the
macro package and when finished, it dumps its memory on
disk. Such a dump normally has the suffixfmt and can
be reloaded fast:&plain refers to the format. It does not
hurt to know this! Try it, if only to be able to generate an
updated format.

So, to summarize, we have TEX the programming lan-
guage, TEX the program, and all kinds of macro packages,
that can be packed into memory dumps for fast loading.

When generating anPDFTEX format, orE-TEX or PDF-
E-TEX format, a slightly other method applies:PDFTEX
has it own configuration information, whileE-TEX on-
ly has additional functionality when the filename is pre-
fixed by a*. To ease the life of CONTEXT users, there is
TEXEXEC. This PERL script wraps all brands of TEX in a
shell, so there we say:

texexec --make en

to generate a format with an english user interface. Run-
ning CONTEXT is done by saying something like:

texexec myfile
texexec --pdf myfile

So, when you’re using CONTEXT, don’t worry if all this
formatting talk is beyond you: TEXEXEC is there to guide
you. So far for this interlude.

Tokens

TEX thinks in terms of tokens. Let’s for this moment forget
about the sometimes pretty confusing way TEX reads and
interprets the characters, and consider the next example:

\expandafter
1

\def
2

\csname
3

n
4
a
5
m
6
e
7
\endcsname

8
{
9
..
11
.}
13

Once read in memory, this example is represented in13 to-
kens. The names of macros as well as the{, } and.’s each
become one internal quantity. The space after\csname
ends the control sequence and does not count. I will not
go into details on the amount of memory each token takes,
but in general, one can say that TEX tries to minimize the
amount of memory used. A macro name is stored in the so
called hash table (a lookup table) and after that only refer-

ences to this table are used. In the TEX that I’m currently
running, a reference to a macro name takes8 bytes:4 bytes
for the index, a pointer to the next token, some space for
an additional index (used by\charsubdef) and a rounding
byte for efficient internal representation.

The main point of this short story is that once read in,
TEX does not need to translate macro names, but simply
uses pointers to reach the meaning of this macro. This is
not only faster, it also takes less memory. And this is why
it makes sense to use memory dumps instead of reading
in a macro package each time. TEX loads faster and runs
faster.

One should be aware of the fact that we’re only talking
of a clever way of storing data. Opposite to for instance
high level programming languages like Pascal and C, no
compilation is done. The meaning of the macro is stored
as it is, even if its meaning is wrong in some way or an-
other. Nearly nothing is checked and nothing is optimized.
And this is one of the reasons why TEX, while being an
interpreter, is so fast.

The main reason why I could give CONTEXT a mul-
ti lingual interface without having to recode those tens of
thousands lines of code, is that I used a rather high level
of abstraction. Keywords and values are stored as macros.
This is a sort of lucky coincidence: when CONTEXT grew,
TEX’s were still pretty small, so I ran out of string mem-
ory (the total length of all strings used) before I ran out of
hash memory (the number of macros). So, I was forced to
use macros, which after all is not that bad, because it also
forced and garantees consistent use of keywords.

\def\NameKey{name}

So,name is stored once, and can be accessed by\NameKey,
not only many times without taking string memory, but
also pretty fast. This is only true in CONTEXT deepest
inners, because at the user level, one does not type in
macroded keys, but verbose ones:name=hans.

1: \def
1

\Name
2

{
3
H
4
a
5
n
6
s
7
}
8

2: \def
1

\SurName
2

{
3
H
4
a
5
g
6
e
7
n
8
}
9

3: \def
1

\FullName
2

{
3
H
4
a
5
n
6
s
78
H
9
ag
11
en
13
}

This is one way of storing names, but when one wants to
save space, the next alternative is more efficient.

4: \def
1

\FullName
2

{
3
\Name

4
\space

5
\SurName

6
}
7

Counting tokens is not the way to determine this, because
several types of memory are involved: the hash table, the
string pool with string pointers, main memory, etc. There-
fore we only really save space when more than one refer-



Optimizing TEX code advanced

Voorjaar 1999 150

ence is made.
Coding keywords in macros can also be faster, espe-

cially when passing large arguments, skipping branches in
conditionals and while doing certain low level lookups.

Optimizing code

One can sqeeze quite some speed from clever coding
macros and using memory as efficient as possible, but
when one hits the frontiers of coding itself, other methods
are needed.

I started experimenting with optimization when rewrit-
ing part of the system modules. I found out that in one
occasion grouping speeds up, while in another rather sim-
ilar situation doing the housekeeping myself was to be
prefered. Potential slow--downers are: passing long argu-
ments, all kind of tests, especially string comparisons, list
processing, and rather massive catcode changes.

Original TEX is frozen. NamedE-TEX, its successor
offers some basic programming features that are meant to
speed up TEX as well as provide more control to macro
programmers. Being rather curious, I decided to change
some low level code and look to what extendE-TEX would
speed up a large package like CONTEXT. (Notice that
speed was not the primary target of theE-TEX project.)

Although currently most of the critical parts of CONTEXT

are rather well optimized —I’m still documenting, opti-
mizing and sometimes recoding the source— I consider
the measurements to be be rather representative. It is, by
the way, always an interesting dilemma: do I code for
speed or for readability. It’s one of the reasons why font
handling routines often look rather obscure: a pretty com-
plex font mechanism demands dirty coding to get accept-
able speed.

When testing for speed, it can be tempting to put some
critical code in a loop, and execute this code for instance
50.000times. Such experiments demonstrate that individu-
al pieces of code can be rewritten in newE-TEX primitives
to run much faster. Bringing down runtime from10 sec-
onds to5 seconds is fine, but in practice those fragments
are not executed that many times, so the gain in normal
production runs is minimal. When the protection mecha-
nisms that CONTEXT uses for savely testing keywords are
rewritten in a forE-TEX more natural way, there is even a
speed penalty!

I therefore tend to conclude that it does not make much
sense to recode a large macro package inE-TEX (version2)
for the sake of speed alone. This is mainly due to the fact
that the critical components of CONTEXT are already cod-
ed rather efficient. Later on I will show that in one area,
E-TEX beats TEX pretty well. Keep in mind that we are
discussing speed and space. Much ofE-TEX’s new func-
tionality goes beyond that and concerns better typography.

This gives us another reason to useE-TEX.
An interesting observation is that using the new primi-

tives\protected and\ifcsname saves about500hash en-
tries in the current version of CONTEXT. However, mak-
ing the specific pieces of macro code usefull for normal
TEX and E-TEX, costs about500 entries in normal TEX.
Alas, that’s the price original TEX users have to pay for
progress.

Being parameter driven, CONTEXT does a lot of string
and list processing and unfortunately TEX lacks low level
support for this. When I discussed this with Taco Hoek-
water, we came to the conclusion that some more straight-
forward support for string and list handling could speed up
CONTEXT considerably, and Taco decided to extend TEX
the program. That way we can present theE-TEX team
with well defined and tested functionality for future ver-
sions.

When testing some first versions of Taco’s binaries, I
wondered if it would make sense to optimize TEX macro
code in another way. To understand what I mean, I refer
to a few pages back, where I introduced those hash entries
and pointers. In writing macros, I try to be as clear as
possible, so instead of

\csname
1

h
2
e
3
l
4
l
5
o
6
\endcsname

7

I code

\getvalue
1

{
2
h
3
e
4
l
5
l
6
o
7
}
8

and not

\doifelse
1

\Alpha
2

{
3
B
4
e
5
t
6
a
7
}
8

but, at the cost of16 bytes overhead and a two more
‘lookups’:

\doifelse
1

{
2
\Alpha

3
}
4
{
5
B
6
e
7
t
8
a
9
}

Did you notice the difference in the number of tokens
used? Using a syntax highlight editor,

\dimen
1

0
2
=
3
0
4
p
5
t
6

just looks better and more readable than

\dimena
1

\z@
2

Currently, and this is of course due to the fact that we are
dealing with macros, we are also more talking of trans-
lating than of compiling. Some first experiments with an
optimizer written in PERL were promising, but fearing un-
wanted side effects I decided to let this rest for a while.



advanced Hans Hagen

151 MAPS

The optimizer

And then Han The Thanh asked me to test his first version
of PDF-E-TEX. This merge of two rather important devel-
opments in the TEX world: E-TEX andPDFTEX, drove me
into making CONTEXT more permanentlyE-TEX aware as
it was already prettyPDFTEX aware. While testing, I also
picked up the optimization thread.

Using the timing build into TEXEXEC I found out that on
a document of average complexity, the interactive MAPS

bibliography, with700simple pages and50 pages of cross
linked indexes and lists, rewriting some core macros to use
E-TEX functionality saves about5% run time and the opti-
mizer gives us an additional5%: not impressive, but useful
when one considers that I quite often run jobs that take an
hour or more. And, apart from more efficient coding, I
expect to gain another10% in due time.

Before I will mention some characteristics of the
CONTEXT optimizer, I need to giveE-TEX some more
credit. When I first timed the test run, I found out that
E-TEX took 65% of the time the normal run needed. This
proved to be due to the fact that outsideE-TEX one has
to fake multiple marks, and this fake can slow down a
run with many color changes on a page considerably (due
to lots of list manipulations). When using normal TEX,
CONTEXT spends half of the run time on the50 pages
mentioned before. Because marks are used for keeping
track of color, and because these pages have colored hyper-
links in multiple columns, a speed penalty is paid. Unless
one heavily uses color in rather complicated documents,
one will probably never notice.

When color does not cross pages, which did not really
happen in this document, CONTEXT can be told to switch
to local color mode. In local mode,E-TEX’s gain in speed
is reduced to the mentioned5%.

Some details

Back to the optimization. Apart from a few critical files,
100modules that are part of the distribution are optimized
in four converging passes (doing it in one pass is much
slower). In the process, over7.000lines out of80.000lines
of macro code are optimized, in many occasions, more
optimizations per line. All changes are logged and some
statistics are kept. Dubious and potential dangerous situ-
ations are skipped. Of course,E-TEX optimizations are
optional. Don’t confuse this optimization with rewriting
core macros.

Some lines are skipped. Think of macro headings and
calls that use delimiters like\box. Optimizing macro head-
ings is ‘not done’ anyway, but the next substitutions are
quite legal:

removing redundant equal signs
using\empty instead of{}
using\z@ instead of0pt
changing2, 4, 6 and8 into constants in box
primitives
changing2, 4, 6 and8 registers into predefined ones
using macro constants where possible
substituting TEX keywords by macros
changing\getvalue cum suis into\csname
optimizing all kind of\doif... macros
applying E-TEX’s \ifcsname and\ifdefined
removing redundant{} in arguments
removing redundant TEX keywords

As said, sometimes substituting can be dangerous. Chang-
ing for instance

\expandafter\ifx\csname...\endcsname\relax

into E-TEX’s sequence:

\unless\ifcsname...\endcsname

can lead to unwanted side effects. The pure TEX alterna-
tive creates a hash entry, that defaults to\relax, which is
why we test for\relax. We just consider\relax to repre-
sent undefined. The second one does not create an entry.
Consider for instance that at a certain moment, for instance
in the process of font switching,

\csname...\endcsname

is expanded. This leads to... being set to\relax. Now,
when in pure TEX, we test for existance, as expected we
get reported back that the control sequence does not exist.
In E-TEX however,\ifcsname is unrelated to\relax, and
therefore,E-TEX reports that the control sequence does
exist. Even if you don’t completely understand what I’m
talking about, you can imagine that macros that until now
work perfectly ok, fail underE-TEX.

The size of the format file (the memory dump) when
optimized is currently about75 KB less than the non--
optimized file (about2.8 MB) and some quick tests show
that another similar saving is possible. It’s not that much a
problem to save far more bytes, but sometimes speed goes
over space:

1: \setbox
1

0
2
=
3
\hbox

4
{
5
s
6
o
7
m
8
e
9
th
11
in
13
g}
15

2: \setbox
1

0
2
\hbox

3
{
4
s
5
o
6
m
7
e
8
t
9
hi
11
ng
13
}

3: \setbox
1

\boxa
2

\hbox
3

{
4
s
5
o
6
m
7
e
8
t
9
hi
11
ng
13
}

4: \setboxa
1

\hbox
2

{
3
s
4
o
5
m
6
e
7
t
8
h
9
in
11
g}
13

5: \sethboxboxa
1

{
2
s
3
o
4
m
5
e
6
t
7
h
8
i
9
ng
11
}



Optimizing TEX code advanced

Voorjaar 1999 152

The third alternative, with\boxa being\chardef’d to ze-
ro is the fastest. The last two alternatives save memory
(8 bytes per macro name). It does not take much fanta-
sy to see that the third alternative involves the two tokens
\setbox and \boxa, while the fourth one takes only one
(\setboxa). When resolved, this indirect reference itself
takes two, therefore totalling up to three.

\def\setboxa{\setbox\boxa}

Some gain in speed inE-TEX is due to optimizing existing
TEX code. I did not compare the results to original TEX,
but especially saving and restoring and in some situations
more clever\aftergroup handling has proved to be a wel-
come extension.

Conclusion

What can we conclude. First that15 years of TEX has
proven that using memory dumps makes sense. Next that
for gaining some speed, developments likeE-TEX make
sense too. For me however the most interesting conclusion

is that some sort of preprocessing makes much sense too.
Because this optimization is in many respects dependant
of the way the macro package is written, it is not possible
to bring this intoE-TEX the program. Anyhow, given this
10% speed gain, makes me very optimistic about Taco’s
estimations on string and list processing. It can also be a
step towards a higher level of typographic programming
in TEX, where more readable definitions are compiled into
their lower level TEX equivalents.

Literature

The E-TEX manual, version2, February1998, Peter
Breitenlohner.
E-TEX, a 100% compatible successor to TEX, Philip
Taylor, EuroTEX 1995 proceedings.
Examples: especially the CONTEXT modules
syst-gen, supp-mrk, font-ini.
Unpublished e-mails, Taco Hoekwater.


