
Voorjaar 2000 59

tutorial
Literate Programming

Michael A. Guravage
NLR
Anthony Fokkerweg 2
1059 CM Amsterdam NL
guravage@nlr.nl

abstract
This article is a short introduction to the theory and practice of

a programming style known as Literate Programming; a style
that changes the focus of writing programs away from telling a
computer what to do and toward explaining to a person what
it is we are telling the computer to do. Literate Programming
overcomes the limitations inherent in presenting traditionally

structured program text. Using a balanced mix of informal and
formal methods, literate programs are presented in a way suit-

ed for human understanding. Processing a literate program
source results in both a nicely typeset document describing

the parts of the program in an order that elucidates their de-
sign, and source code in an order in which it will compile.

keywords
Literate Programming, Structured Programming, WEB

Introduction

Writing good programs is hard; so is writing good program
documentation.

Structured programming in the1970’s and Object Ori-
ented Technologies in the1980’s are methods that help
us capture and organize the design and implementation of
complex software. However, though our design decisions
are embodied in the code we write, they are often obscured
by the code itself. Few people enjoy navigating through
pages of curly-braces, control-structures, and function calls
in unfamiliar code. Literate Programming provides a way
to expose and elucidate a program’s design by presenting
its parts in an order and at a level of abstraction that places
a premium on understanding.

The tasks of writing a program and writing program
documentation are often seen as separate and sequential.
There are several undesirable consequences of this separa-
tion. First is that their writing does not inform each oth-
er. If the program is written before its documentation, the
program’s relationship to its documentation is merely co-
incidental. Second is that separate code and documentation
tend to diverge over time. As a consequence, the code and
documentation do not cooperate as well as they could to-
ward either maintenance or reuse. Literate Programming

tries to address these issues by integrating, or if you prefer
- blurring the distinction between, code and documenta-
tion in such a way that code and documentation contribute
to and complement each other.

The remainder of this article will be arranged as follows:
we begin by discussing the motives for and ideas behind
literate programming. Next, we identify the properties that
characterize literate programs. The process of transform-
ing literate programs into running code and typeset docu-
ments is explained. We compare language dependent and
language independent literate programming tools and enu-
merate the benefits and liabilities of each. Lastly, the costs
of using literate programming are estimated.

Motivation for Literate Programming

Literate Programming originated in the early1980’s as part
of Knuth’s work on TEX and digital typography. By this
time, the concept ofstructured programmingwas already
well established. Structured programming advocates de-
composing a problem into a hierarchy of smaller problems
according to some subordinating principle. The level of ab-
straction proceeds from generalities to specifics until each
task at the bottom of the hierarchy admits a solution. One
useful criteria for subdividing tasks into smaller ones is
that it should be possible at each level of abstraction to
give an informal description of its subtasks.

Marc van Leeuwen (van Leeuwen,1990) observed that,
“Although the composition of a structured program should
reflect the design decisions that led to its construction, the
traditional way of presenting such programs, e.g. listings
of code containing comments, lacks the appropriate facil-
ities for communicating this information effectively to the
readers of the program, seriously limiting the readability,
especially to people other than the programmer of the code.
Yet readability is of vital importance, because it is only by
careful reading that we can verify that the design of a pro-
gram is sound and well-implemented, and to understand
where and how changes can be made when such a need
arises.”

Knuth expressed what many have long recognized, that
the order in which a traditional program is written is a con-
cession to the computer. A Euclidean proof begins with
first principles, and builds a consistent hierarchy of def-
initions, postulates, and theorems in service of a proof.
Likewise, a computer program is written as a hierarchy

tutorial Michael A. Guravage

60 MAPS

of definitions, function prototypes, data structures, and in-
structions whose order satisfies the demands of a comput-
er. While the Euclidean style of proof is unparalled for its
completeness, its style is less applicable when the goal is
to convey a general appreciation for a subject to the unini-
tiated. Though a computer program implementing an al-
gorithm is sufficient to instruct a computer how to perform
the algorithm, a listing of the program may be, and often
is, insufficient to explain the workings of the algorithm to
a person. Vice versa, an informal description of an algo-
rithm can reveal to a person how the algorithm works, the
same description is useless to a computer. It is apparent
that there is one way a program must be ordered in order
to be parsed and compiled by a computer, but there may be
many different ways to arrange the program to explain its
workings to a person.

“Literate Programming is a natural sequel to structured
programming (van Leeuwen,1990)”, and overcomes the
shortcomings of the latter by combining informal natural
language, a formal programming language, and a flexible
order of elaboration in such a way that places a premium
on exposition and understanding. By tightly coupling pro-
gram code and program documentation, a literate program-
mer strives to write programs that are comprehensible be-
cause their concepts have been introduced in an order and
at a level of detail that is suited for human understanding
(Knuth,1992a).

What’s in a name?

The origin of the termliterate programminghas both a se-
rious and a light side. On a serious side, Knuth found that
the more he concentrated on developing a programming
style that concentrated on clarity of exposition, the more
he treated his programs as works of literature, the better
his programs became. Their designs were improved, their
implementations had less bugs than their traditional coun-
terparts; and they were readable. Like an author writing
a story or a researcher writing a technical article, the pro-
grammer adopts the common goal of tell his audience just
what they need to know, just when they need to know it.

On the lighter side, Knuth wrote, “I must confess that
there may also be a bit of malice in my choice of a title.
During the1970s I was coerced like everyone else into
adopting the ideas of structured programming, because I
couldn’t bear to be found guilty of writing unstructured
programs. Now I have a chance to get even. By coining the
phrase literate programming, I am imposing a moral com-
mitment on everyone who hears the term; surely nobody
wants to admit to writing an illiterate program (Knuth,
1992a).”

Knuth also coined the termWEB to describe a literate
program. He thought that a complex piece of software is

best regarded as a web that has been delicately pieced to-
gether from simple materials (Knuth,1992a).

To complete the literate programming nomenclature,
TANGLE is the name of the processes that rearranges a lit-
erate program in an order that is easier for a computer to
understand; whileWEAVE is the name of the process that
rearranges a literate program into an order that is easier
for a person to understand. Throughout this article, the
namesWEB, TANGLE, andWEAVE will refere to these pro-
cesses; without reference to specific literate programming
tools with the same names.

Properties of Literate Programs

A program has to exhibit three properties before it can be
called a literate program. The first property is that a single
literate program source should, when processed, produces
both a runnable program and a nicely typeset document.
The work oftangling the code andweavingthe document
will be explained in detail in the following sections. The
second property is that a literate program must exhibit a
flexible order of presentation. As has already been men-
tioned, the order of presentation to a person is indepen-
dent of the order of compilation by a machine. The third
and last property is that a literate program, and the tools
that process it, should facilitate the automatic generation of
cross-references, indices, and a table of contents.

Anatomy of Literate Programs

Knuth (Knuth,1992a) describes a literate program as, “A
traditional computer program that has been cut up into
pieces and rearranged into an order that is easier for a per-
son to understand. A traditional computer program is a
literate program that has been rearranged in an order that
is easier for a computer to understand. Literate and tra-
ditional programs are essentially the same kind of things,
but their parts are arranged differently. You should be able
to understand the traditional program better in its literate
form, if its author has chosen a good order of presentation.”

A literate program consists of numberedsectionsor
chunks. A section can be either named or unnamed and
corresponds to a paragraph in written language. Within a
section, a single idea is developed. A section is divided
into two parts: an informal specification in a natural lan-
guage, and a formal specification in a programming lan-
guage. The informal half contains a written description of
the idea which is the focus of the section. The formal half
contains the code implementing that idea.

To earn the title of literate programmer, one needs to add
a handful new control sequences to his repertoire of pro-
gramming tools. Most begin with an ‘@’ and control such
things as sectioning, cross-references, and layout. Figure

Literate Programming tutorial

Voorjaar 2000 61

2 shows a portion of literate C source code extracted from
the word count example program that comes with theCWEB

literate programming package. The section begins with an
‘@’ followed by several lines of commentary. Next is the
section name which appears between angle brackets: ‘@<
Name of section @>=.’ The section name delimits the in-
formal commentary from the formal code - ‘also called the
replacement text.’

In this example the code is dominated by a ‘do . . .
while’ loop; which contains several references to other
sections whose names each appear between ‘@<’ and ‘@>’
pairs. Notice that, at this level of abstraction, the program
text for the inner levels are suppressed, making the outline
of the outer level more clear.

Processing a WEB

A literate programmer writes code that serves as the source
for two different system routines. Figure1 shows the two
paths a literate program can take. One path is calledweav-
ing the web; the result of applyingWEAVE and TEX is a
nicely typeset document. The other path is calledtangling
the web; the result of applyingTANGLE is program code
rearranged in an order ready for compilation.

web

weave

tangle

TEX

compiler

document

object
code

Figure 1 Processing a WEB

WEAVE
Figure3 shows the result of passing the previous piece of
literate code throughWEAVE and then typesetting it with
TEX. To enhance readability, reserved words, like ‘do and
while’, are set in boldface type, and identifiers, like ‘argc’,
are set in italics.

Note thatWEAVE has resolved the section numbers, ref-
erences, and cross-references. The footnote at the end of
the section complements the section number by showing
in which other sections the current section is referenced.

TANGLE
TANGLE removes all the commentary from aWEB and rear-
ranges the code into an order in which it will be compiled -
see Figure4. The reordering porceeds as follows: first, all
unnamed sections are collected in relative order; then ref-
erences to named sections are replaced with their replace-

ment text. This continues until all section references have
been replaced.

Like object code, the tangled source code can be con-
sidered incidental. However, to help you navigate through
the code if you venture to read it,TANGLE adds comments
that show which literate section the code originated.TAN-

GLE also can add ‘#line’ directives to allow compilers and
debuggers to map lines in the tangled code back to lines in
the original literate source.

A comparison of the tangled code to either the original
literate source or the woven result should leave no one in
doubt howTANGLE got its name.

Tools for Literate Programming

Literate Programming tools can be divided into two broad
groups: those that are language dependent and those that
are language independent. Members of the first group in-
clude WEB - Knuth’s original literate programming envi-
ronment for Pascal,CWEB - an adaption ofWEB to C by
Silvio Levy, andCWEBx - an implementation ofCWEB by
Marc van Leeuwen.

Language dependent tools tend to be large monolithic
programs. This makes them easier to port but difficult to
modify or extend. Knowing the syntax of the language for
which they are written, language dependent tools provide
native support for pretty-printing. They also recognize lan-
guage specific types, which facilitates the automatic index-
ing of function and variable names.

An example of a language independent literate program-
ming tool isNOWEB written by Norman Ramsey(Ramsey,
1993). The motivation behindNOWEB was that its author
thoughtWEB and its derivatives were too complex and in-
flexible. The result was a literate programming tool that
is simple, extensible, and independent of the target pro-
gramming language. Restricting itself to writing named
chunks of code in any order, with interleaved documenta-
tion, NOWEB provides much of the functionality ofWEB at
a fraction of the complexity.

Unlike monolithic language dependent tools,NOWEB

adopts a pipelined architecture. Like theUNIX notion of
pipes where the output of one program is the input to an-
other, the transformation from literate source to typeset
document, or program code, is achieved via a succession of
distinct steps. BesidesNOWEB’s predefined pipeline, filters
can be added to bothNOWEAVE and NOTANGLE allowing
one to easily change their behavior or add new features.
Filters add such features as pretty-printing, indices, and
cross-references. CurrentlyNOWEB produces TEX, LATEX,
HTML, andTFOFF.

tutorial Michael A. Guravage

62 MAPS

1

@ Now we scan the remaining arguments and try to open a file, if

possible. The file is processed and its statistics are given.

We use a |do|~\dots~|while| loop because we should read from the

standard input if no file name is given.

@<Process...@>=

argc--;

do@+{

@<If a file is given, try to open |*(++argv)|; |continue| if unsuccessful@>;

@<Initialize pointers and counters@>;

@<Scan file@>;

@<Write statistics for file@>;

@<Close file@>;

@<Update grand totals@>; /* even if there is only one file */

}@+while (--argc>0);

Figure 2 A portion of literate source code

Counting the Cost

At the lowest level, where we consider machine time, the
additional time needed to process a literate program is
negligible. With all the mechanics burried in a makefile,
invoking TANGLE takes just slightly longer than the time
it takes to compile the resulting code. Likewise, invok-
ing WEAVE does not take long to produce a file, but type-
setting the result with TEX does take longer by compari-
son. Still, typesetting even a moderate size document goes
rather quickly.

On a higher level there is no consensus on how long it
takes to write a literate program in comparison to writing
a traditional program. Knuth says that the time he needs to
write and debug a literate program is no longer than that for
a traditional program. He contends that any extra time he
spends writing commentary is recovered because the re-
sult needs less debugging. The best one can say is that
the cost of creating a high-quality, well documented liter-
ate program is the same order of magnitude as writing and
documenting an equivalent traditional program.

Literate Programming scales well and can be applied to
everything from one-off disposable examples to complicat-
ed programming projects. The quality of the end result is
a function of how much time and effort you are willing to
expend to achieve it.

Style

What style of writing is best suited to literate program-
ming? Since literate programming grants the programmer
the same freedom of expression as any author, there is no
definitive style. But there are a few useful guidelines to
follow. Choose section names that are long enough to cap-
ture the meaning of the code in that section. Another tip
can be found in the word count program (Figure3) where

Knuth strengthens the section names by begining each with
an imperative verb. Search for a balance between formal
and informal exposition so you can convey the essence of a
section clearly, without distracting the reader with unnec-
essary detail.

For general remarks on writing styles, you will find
some excellent advice in George Orwell’s1946 essay
with the foreboding title: “Politics and the English Lan-
guage(Orwell,1946).” He encourages the scrupulous writ-
er, in every sentence that he writes, to ask the following
questions, “What am I trying to say? What words will ex-
press it? What image or idiom will make it clearer? Is this
image fresh enough to have an effect? Could I put it more
shortly?”

Another indispensable guide to writing is Strunk and
White’s classic “Elements of Style(Strunk and White,
1979)” where Strunk advises us to be, “direct, simple,
brief, vigorous, and lucid.”

Summary

The main points to remember when thinking about literate
programming are:

Literate programs use a balanced mix of formal and
informal methods, and a flexible order of elaboration,
to present information in an order and at a level of
detail suited for human understanding.
Literate Programming does not enforce any one pro-
gramming paradigm.
A single literate program produces both a runnable
program and a nicely typeset document.
Literate Programming tools can be divided into two
broad groups: those that are language dependent and
those that are language independent.
The cost of writing a literate program is usually equal
to or greater than that of writing a traditional one,

Literate Programming tutorial

Voorjaar 2000 63

§8 WC-SNIPPET CWEB OUTPUT 1

8. Now we scan the remaining arguments and try to open a file, if possible. The file is processed and its
statistics are given. We use a do . . . while loop because we should read from the standard input if no file
name is given.
〈Process all the files 8 〉 ≡

argc−−;
do { 〈 If a file is given, try to open ∗(++argv); continue if unsuccessful 10 〉;

〈 Initialize pointers and counters 13 〉;
〈Scan file 15 〉;
〈Write statistics for file 17 〉;
〈Close file 11 〉;
〈Update grand totals 18 〉; /∗ even if there is only one file ∗/

} while (−−argc > 0);
This code is used in section 5.

Figure 3 The result of applying WEAVE

1

#line 106 "wc.w"

argc--;

do{/*10:*/

#line 127 "wc.w"

if(file_count>0&&(fd=open(*(++argv),READ_ONLY))<0){

fprintf(stderr,"%s: cannot open file %s\n",prog_name,*argv);

status|=cannot_open_file;

file_count--;

continue;

}/*:10*/

#line 108 "wc.w"

;/*13:*/

#line 154 "wc.w"

ptr=buf_end=buffer;line_count=word_count=char_count=0;in_word=0;/*:13*/

#line 109 "wc.w"

;/*15:*/

Figure 4 The result of applying TANGLE

but time is often regained since literate programs take
less time to debug.

Resources

If you are interested in learning more about literate pro-
gramming, you should begin with Knuth’s book, “Liter-
ate Programming(Knuth,1992a).” Manuals forCWEB and
CWEBx can be found in their respective distributions. In ad-
dition, the manual forCWEB is published as a book entitled:
“The CWEB System of Structured Documentation(Knuth
and Levy,1994).”

Volumes A and B of Knuth’s series on Computers &
Typesetting describe TEX and METAFONT; volumes C
and D contain their literate Pascal sources(Knuth,1993a,
1992b). A fine example of programming withCWEB is
“The Stanford GraphBase(Knuth,1993b)”, Knuth’s book
on combinatorial data structures and programs.

There are several online resources: the literate pro-
gramming frequently asked questions can be found at:
shelob.ce.ttu.edu/daves/lpfaq/faq.html. The ftp site
for the literate programming archive is:ftp.th-darmstadt.
de, and the literate programming newsgroup’s name is:
comp.programming.literate.

A Trustworthy Opinion

Knuth’s own opinion about literate programming is ex-
pressed in this littleWEB which appears on the cover of
his book of the same name.

tutorial Michael A. Guravage

64 MAPS

〈Emphatic declarations 1 〉;
examples: array [vast] of small . . large ; beauty ; real ;

〈True confessions 10 〉;
for readers (human) do write (webs);
while programming = art do

begin incr (pleasure); decr (bugs); incr (portability);
incr (maintainability); incr (quality); incr (salary);
end {happily ever after }

This code is used in theory and practice.

References
van Leeuwen, M. A. A. (1990). Literate Programming in C. Man-

ual for CWEBx.

Knuth, D. E. (1992a). Literate Programming. CLSI. Lecture
Notes Number27.

Ramsey, N. (1993). Literate-programming tools can be simple
and extensible. .

Orwell, G. (1946). Politics and the english language. essay.

Strunk, W. and White, E. B. (1979). The Elements of Style.
Macmillian,3rd edition.

Knuth, D. E. and Levy, S. (1994). TheCWEB System of Structured
Documentation. version3.0.

Knuth, D. E. (1993a). TEX the program, volume B ofComputers
& Typeseting. Addison Wesley.

Knuth, D. E. (1992b). METAFONT the program, volume D
of Computers & Typeseting. Addison Wesley.

Knuth, D. E. (1993b). The Stanford GraphBase. ACM Press.

