
♦ ♦ ♦

Instant Preview

and

the TEX daemon
Jonathan Fine

abstract.

Instant Preview is a new package, for use with Emacs and xdvi, that allows the user
to preview instantly the file being edited. At normal typing speed, and on a 225MHz

machine, it refreshes the preview screen with every keystroke.
Instant Preview uses a new program, dvichop, that allows TEX to process small files
over 20 times quicker than usual. It avoids the overhead of starting TEX. This

combination of TEX and dvichop is the TEX daemon.
One instance of the TEX daemon can serve many programs. It can make TEX available
as a callable function. It can be used as the formatting engine of a WYSIWYG editor.
This talk will demonstrate Instant Preview, describe its implementation, discuss its
use with latex, sketch the architecture of a WYSIWYG TEX, and call for volunteers

to take the project forward.
Instant Preview at present is known to run only under GNU/Linux, and is released

under the GPL. It is available at:
http://www.activetex.org

Instant Preview

TEX is traditionally thought of as a batch program that converts text files into typeset
pages. This article describes an add-on for TEX, that in favourable circumstances can
compile a file in a twentieth of the normal time. This allows TEX to be used in
interactive programs. This section describes Instant Preview.1

Types of users
Almost all users of TEX are familiar with the edit-compile-preview cycle that is part
of the customary way of using TEX. Previewing is very useful. It helps avoid wasting
paper, and it saves time. In the early days, it could take several seconds to compile
and preview a file, and perhaps minutes to print it. Today it takes perhaps about a
quarter of a second to compile and preview a file.

1A screen-shot, in PNG format, is available at the author’s website. [It would be nice if it could
be included, but I don’t know how to do this.]



50 jonathan fine

Many of today’s newcomers to computing, and most users of WYSIWYG word
processors, expect to have instant feedback, when they are editing a document. Users
of TEX expect the same instant feedback, when they are editing a source file in a
text editor. Because they have absorbed the meaning of the markup codes, they can
usually imagine without difficulty the printed form of the document. They know when
the markup is right.
Beginners tend to compile the document frequently, because they are uncertain,

and wish to have the positive reinforcement of success. Instant Preview, again under
favourable circumstances, can reduce to a twentieth the time take to compile and
preview a file. This makes it practical to offer preview after every keystroke. Beginners
will be able to see their failures and successes as they happen.
Experienced users do not need such a high level of feedback, and prefer to devote

the whole screen to the document being edited. However, even experts have the same
need for positive reinforcement, when they use a package that is new to them.

Modus operandi
Here we describe three possible ways of using Instant Preview. At the time of writing,
only the last has been implemented. We assume that the document is in the editing
stage of its life cycle, or in other words the location of page breaks and the like is not
of interest.
The expert needs only occasionally to preview the source document. She will select

the region of interest, and ask for it to be previewed. Instant Preview here may
provide a quick and convenient interface, but the operation is uncommon and so the
functionality should be unobtrusive.
When doing something tricky, the user might wish to focus on a part of the doc-

ument, and for this part have Instant Preview after every keystroke. The tuning of
math spacing in a formula is an example. Few if any users invariably know, without
looking, what tuning should be applied to a moderately complicated formula. This ap-
plies particularly to displayed equations wider than the measure, multi-line equations,
and commutative diagrams. It also applies to the picture environment (for which the
special tool TEXcad was written).
For the beginner, everything is tricky, even straight text. The beginner hardly

knows that \{}#^_%$ are all special characters, and that ‘‘ and ’’ are the way to get
open and close double quotes. Even experts, who know full well the rules for spaces
after control sequences, sometimes make a mistake2. The absolute beginner is likely
to want Instant Preview of everything, absolutely all the time. Later, with experience,
the training wheels can be removed.

Implementation
Instant Preview has been implemented using Emacs and xdvi. There seems to be
no reason why another editor and previewer should not be used, provided the editor
is sufficiently programmable, and the previewer can be told to refresh the file it is
previewing.

2In the first draft, the allegedly expert author forgot that & is also special, and also that \verb

cannot be used in a latex footnote.



instant preview and the tex daemon 51

Instant Preview works by writing the region to be previewed, together with suitable
preamble and postamble, to a special place. From there, the TEX daemon picks it
up, typesets it, and writes it out as a dvi file. Once written, the previewer is told to
refresh its view of the dvi file.
The main difference between the three modes is what is written out, and when.

Absolute beginner mode writes out the whole buffer, after every keystroke. Confident
expert mode writes out a selected region, but only on demand.
At the time of writing (mid-June 2001), only absolute beginner mode has been

implemented. Further progress requires above all clear goals and Emacs programming
skills.

The dvichop program

For interactive programs, speed is of the essence. Therefore, we will look at TEX’s
performance. The author’s computer has a 225MHz Cyrix CPU. So that we have a
definite figure, we will say that on this machine a response time of 1/10 seconds is
acceptable.

Typesetting story.tex
There is a file, story.tex, that is part of every TEX distribution. It is described in
The TEXbook. On the author’s computer, the command
time tex ./story \\end

takes .245 seconds to execute3. This seems to make Instant Preview impossible.
However, the command
time tex \\end

takes only .240 seconds to execute. Therefore, it takes TEX almost 1/4 of a second to
load and exit, while typesetting the two short paragraphs in story.tex can be done
about 20 times in the target time of a tenth of a second.
Thus, provided the overhead of loading (and exiting) TEX can be avoided, Instant

Preview is possible.

Remarks on performance
The simple tests earlier in this article show that it takes TEX about 0.005 seconds to
typeset the file story.tex. This subsection gives a more precise result. It also show
some of the factors that can influence apparent performance.
The file 100story.tex is as below.
\def\0{\input ./story }
\def\1{\0\0\0\0\0\0\0\0\0\0}
\def\2{\1\1\1\1\1\1\1\1\1\1}
\2 \end
3To avoid the overhead of X-windows, this command was executed in a virtual console. The same

goes for the other timing data. The input file is placed in the current directory to reduce kpathsea
overheads.



52 jonathan fine

Mode seconds
Console, output to /dev/null .492
Console, output to screen .507
X-windows, output to /dev/null .497
X-windows, output to screen .837

table 1: Time taken to typeset story.tex 100 times

Table 1 gives the time taken to process this file, in the various modes. It shows
that on the author’s machine and in the best conditions, it takes about 0.0025 ≈
(0.492− 0.240)/100 seconds to process story.tex once.
Note that the time taken can be quite sensitive to the mode, particularly X-windows.

We also note that using \input story (so that kpathsea looks for the file) adds about
0.025 seconds to the total time taken.

Starting TEX once
The solution is to start TEX once, and use it to typeset multiple documents. Once
TEX has typeset a page, it uses the \shipout command to write it to the dvi file. The
new page now exists on the file system, and can be used by other programs. Actually,
this is not always true. To improve performance, the system dependent part of TEX
usually buffers the output dvi stream. However, this can be turned off. We assume
that dvi output is unbuffered.
Most dvi-reading applications are unable to process such an ill-formed dvi file. For

example, most immediately seek to the end of the file, to obtain a list of fonts used.
To bridge this gap, and thereby enable Instant Preview, the author wrote a utility
program called dvichop.
This program takes as input a dvi file, perhaps of thousands of pages, and produces

from it perhaps thousands of tiny dvi files. The little files are the ones that the
previewer is asked to reload.
More exactly, dvichop looks for special marker pages in the output dvi-stream

produced by TEX the program. The marker pages delimit the material that is to be
written to the small dvi files. The marker pages also control where the output of
dvichop is to be written, and which process is to be informed once the output page
is ready.

Implementation
The program dvichop is written in the C programming language. It occupies about
800 lines of code, and calls in a header file dviop.h to define the opcodes. A shell
program texd starts TEX and sends its dvi output to dvichop. More exactly, TEX
writes to a named pipe (a FIFO), which is then read by dvichop.

More on performance
In the abstract is is claimed that TEX together with dvichop is over 20 times quicker
that ordinary TEX, when applied to small files. Here is some test data to support this
bold claim.



instant preview and the tex daemon 53

Normally, dvichop is run using a pipe. To simplify matters, we will create the input
stream as a ordinary file. The plain input file listed below does this. It also illustrates
the interface to dvichop.
% 100chop.tex
\newcount\dvicount
\def\0{
\begingroup % begin chop marker page
\global\advance\dvicount 1
\count0\maxdimen \count1 3
\count2 \dvicount \shipout\hbox{}

\endgroup
\input ./story % typeset the story
\begingroup % end chop marker page
\count0\maxdimen \count1 4
\count2 0 \shipout\hbox{}

\endgroup
}
\def\1{\0\0\0\0\0\0\0\0\0\0}
\def\2{\1\1\1\1\1\1\1\1\1\1}
\begingroup % say hello to dvichop
\count0\maxdimen \count1 1
\count2 1 \shipout\hbox{}

\endgroup
\2 % ask dvichop to produce 100 files
\begingroup % say goodbye to dvichop
\count0\maxdimen \count1 2
\count2 0 \shipout\hbox{}

\endgroup
\end

Typesetting story.tex 100 times in the conventional way takes approximately 24.5
seconds. Running TEX on 100chop.tex takes about 0.510 seconds. This typesets the
story for us 100 times. Running dvichop on the output file 100chop.dvi takes 0.135
seconds. Its execution creates files 1.dvi through to 100.dvi that are for practical
purposes identical to those obtained in the conventional way. The conventional route
takes 24.5 seconds. The dvichop route took 0.510 + 0.135 = 0.645 seconds.
This indicates that on story.tex using dvichop is 24.5/0.635 ≈ 38 times quicker.

Some qualifying remarks are in order. In practice, using the pipeline will add overhead,
but this seems to be less than 0.01 seconds. On the other hand, the present version
of dvichop is not optimised.

The TEX daemon

A this point we assume the reader has some basic familiarity with client-server archi-
tecture. A server is a program that is running more or less continually, waiting for



54 jonathan fine

requests from clients. Clients can come and go, but servers are expected to persist.
An operating system is a classic example of a server, while an application is a client.

Thanks for the memory
Normally, TEX is run as an application or client program. It is loaded into memory to
do its job, it does its job, and then it exits. In the mid-1980s, when the author started
using a personal computer, having more than a megabyte of memory was uncommon.
TEX is uncomfortable on less than 512Kb of memory. Thus running TEX as a server
would consume perhaps half of the available memory. For all but the most rabid
TEX-ophile, this is clearly not an option.
Today TEX requires perhaps 2Mb of memory, and personal computers typically

have at least 32Mb of memory. Letting TEX remain in memory on a more or less
permanent basis, much as Emacs and other programs remain loaded even when not
used, is clearly practical. However, even today, for most users there is probably not
room to have more than a handful of instances of TEX resident in memory.

Sockets
The present implementation of Instant Preview uses a named pipe. Sockets provide
a more reliable and flexible interface. In particular, sockets can handle contention
(requests to the same server from several clients). Applications communicate to the
X-server provided by X-windows by means of a socket.
Providing a socket interface to the TEX daemon will greatly increase its usefulness.

The author hopes that by the end of the year he or someone else will have done this.

TEX as a callable function
Over the years, many people have complained that the batch nature of TEX makes it
unsuitable for today’s new computing world. They have wanted TEX to be a callable
function. However, to make TEX a callable function, all that is required is a suitable
wrapper, that communicates with the TEX daemon.
At present the TEX daemon is capable of returning only a dvi file. To do this,

it must parse the output dvi stream. Suppose, for example, that the caller wants
to convert the output dvi into a bitmap, say for inclusion in an HTML page. The
present set-up would result in the dvi pages being parsed twice. Although this is
not expensive, compared to starting up a whole new TEX process, it is still far from
optimal.
If the TEX daemon could be made to load page-handling modules, then the calling

function could then ask for the bitmap conversionmodule to handle the pages produced
by the function call. This would be more efficient. However, as we shall soon see,
premature optimisation can be a source of problems.

TEX forever
An errant application does not bring down the operating system. Strange keystrokes
and mouse movements do not freeze X-windows. In the same way, applications should
never be able to kill the TEX daemon. To achieve this level of reliability is something
of a programming problem.



instant preview and the tex daemon 55

One thing is clear: The application cannot be allowed to send arbitrary raw TEX to
the TEX daemon. TEX is much too sensitive. All it takes is something like
\global\let\def\undefined

and the TEX daemon will be rendered useless.
A more subtle form of this problem is when a client’s call to the daemon results in

an unintended, unwelcome, and not readily reversible change of state. For example,
the latex macro \maketitle executes
\global\let\maketitle\relax

which is an example of such a command. (Doing this frees tokens from TEX’s main
memory. When TEX, macros and all, is shoe-horned into 512Kb, this may be a good
idea.)

Protecting TEX
TEX can be made a callable function by providing an interface to the TEX daemon.
Most applications will want an interface that is safe to use. In other words, input
syntax errors are reported before they get to TEX, and it is not possible to accidentally
kill the TEX daemon. To provide this, the interface must be well defined. For example,
the input might be an XML-document (say as a string) together with style parameters,
and the output would be say a dvi file. Alternatively, the input might be a pointer
to an already parsed data structure.
In the long run, this interface is probably best implemented using compiled code,

rather than TEX macros. Once a function is used to translate source document into
TEX input, there is far less need for developers to write complicated macros whose main
purpose is to provide users with a comfortable input syntax. Instead, the interface
function can do this.
When carried out in a systematic manner, this will remove the problem, that in

general latex is the only program that can understand a latex input file. The same
holds for other TEX macros formats, of course. Note that Don Knuth’s WEAVE (part
of his literate programming system) is similarly compiled code that avoids the need
to write complicated TEX macros.

Visual TEX

This article uses the term visual TEXto mean programs and other resources that allow
the user to interact with a document through a formatted representation, typically a
previewed dvi file. We use it in preference to WYSIWYG (what you see is what you
get) for two reasons. The first is today many documents are formatted only for screen,
and never get printed. Help files and web pages are examples of this. The second is
that even when editing a document for print, the user may prefer a representation
that is not WYSIWYG.
In most cases the author will benefit from interacting with a suitably formatted

view of the underlying document. The benefits of readability and use of space that
typesetting provides in print also manifest on the screen. But to insist on WYSIWYG



56 jonathan fine

is to ignore the differences between the two media. Hence our use of the term Visual
TEX.
Whatever term is used, the technical problems are much the same, which is how to

enable user interaction with the dvi file.

Richer dvi files
In Visual TEX, the resulting dvi file is a view on the underlying document. For it to
be possible to edit the document through the view, the view must allow the access to
the underlying document. Editing changes applied to the view, such as insertion and
deletion, can then be applied to the document.
Placing large numbers of \special commands in the dvi file is probably the best

(and perhaps the only) way to make this work. Doing this is the responsibility of
the macro package (here taken to include the input filter function described in the
previous section). It is unlikely that any existing macro package, used in its intended
manner, will support the generation of such enriched dvi files. The author’s Active
TEX macro package[2] is designed to allow this.

Better dvi previewers
Most dvi previewers convert the dvi into a graphics file, such as a bitmap. Some
retain information about the font and position of each glyph. A text editor or word
processor has a cursor (called point in Emacs), and by moving the cursor text can be
marked. This is a basic property of such programs. So far as the author knows, no
dvi previewer allows such marking of text.

Further reading
This section is based on the author’s article [1].
The Lyx editor for latex adopts a visual approach to the generation of files that can

be typeset using latex. It does not support WYSIWYG interaction. Understanding
the capabilities and limitations of Lyx is probably a good way to learn more about
this area.

The next steps

This section discusses some of the opportunities and problems in this general area,
likely to present themselves over the next year or two.

Applications
Two areas are likely to be the focus of development in the next year or so. The first is
the refinement of Instant Preview, as a tool for use with existing TEX formats. Part
of this is the creation of material for interactive (La)TEX training. Instant Preview
provides an attractive showcase for the abilities of TEX and its various macro packages.
The second is TEX as a callable function. This is required for Visual TEX. One of

the important missing components are libraries that allow rich interaction with dvi
files. This will lay the foundation for TEX being embedded in desktop applications.



instant preview and the tex daemon 57

License
The work described this article is at present released under the General Public Licence
of the Free Software Foundation (the GPL). Roughly speaking, this means that any
derived work that contains say the author’s implementation of the TEX daemon must
also be released under the GPL.
However, the TEX daemon is the basis for TEX as a callable function, and for good

reason library functions are usually released under the Lesser (or Library) General
Public Licence (the LGPL), or something similar. This means that the library as is
can be linked into proprietary programs, but that any enhancement to the library
must be released under the LGPL.

Porting
TEX runs on almost all computers, and where it runs, it gives essentially identical
results. The same applies, of course, to TEX macros. By and large, it is desirable that
the tools used with TEX run can be made to run identically on all platforms. This is
not to say that the special features of any particular platform should be ignored. Nor
is it to say that advances (such as Instant Preview itself) should not first manifest on
a more suitable platform.
Cross-platform portability is one of the great strengths of TEX. What is desirable

is that programs that run with TEX have a similar portability. Many people cannot
freely choose their computing platform. If TEX and friends are available everywhere,
this make TEX a more attractive choice.
In the 1980s, in the early days of TEX, many pioneers ported TEX to diverse plat-

forms. This work established deep roots that even today continue to nourish the
community. Although Instant Preview, even when fully developed, is not on the same
scale as TEX, it being ported will similarly nourish the community.

TEX macros
Visual TEX requires a stable TEX daemon, which in turn will require a macro package
(or a pre-loaded format). This new use of TEX places new demands on the macros.
Here, we include in macros any input filter functions used to protect the TEX daemon
from errant applications.
These new demands include protection against change of state, reporting and re-

covery from errors, ability to typeset document fragments, support for rich dvi file,
and the ability for a single daemon to support round-robin processing of multiple doc-
uments. Once tools are in place, much of the input is likely to be XML, and much of
the output will be for screen rather than paper.
The existing macros packages (such as plain, latex and ConTEXT) were not written

with these new requirements in mind. Although they are useful now, in the longer term
it may be better to write a new macro package from scratch, for use in conjunction
with suitable input filters.



58 jonathan fine

Summary

By running TEX within a client-server architecture, many of the problems traditionally
associated with it are removed. At the same time, new demands are placed on macro
packages, device drivers (such as dvichop and xdvi) and a new category of software,
input filters (such as WEAVE).
This new architecture allows Instant Preview, and opens the door to Visual TEX.

All this is possible without making any changes to TEX the program, other than in
the system dependent part.

Don Knuth
In 1990, when he told us [4] that his work on developing TEX had come to an end,
Don Knuth went on to say:

Of course I do not claim to have found the best solution to every problem. I
simply claim that it is a great advantage to have a fixed point as a building
block. Improved macro packages can be added on the input side; improved
device drivers can be added on the output side.
The work described in this article has taken its direction from this statement. One

of the most obvious characteristics of today’s computer monitors (not to be confused
with the chalk monitor in classrooms of old) is their widespread use of colour. TEX
is clumsy with colour. TEX was not designed with Visual TEX in mind. However, we
still have our hands full making the best of what we have with TEX. If our labours
bear fruit, then in time a place and a need for a successor will arise.
Again, this possibility was foretold by Don Knuth [3]:
Of course I don’t mean to imply that all problems of computational typography
have been solved. Far from it! There are still countless important issues to be
studied, relating especially to the many classes of documents that go far beyond
what I ever intended TEX to handle.

references

[1] Jonathan Fine, Editing .dvi files, or Visual TEX, TUGboat, 17 (3) (1996), 255–
259.

[2] , Active TEX and the DOT input syntax, TUGboat, 20 (3) (1999), 248–261
[3] Donald E. Knuth, The Errors of TEX, Software—Practice & Experience, 19

(1989) 607–685 (reprinted in Literate Programming)
[4] , The future of TEX and METAFONT, TUGboat, 11 (4) (1990), 489 (re-

printed in Digital Typography)


