
✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠ ✠
✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠

TEX and META

THE GOOD, THE BAD AND THE UGLY

Proceedings
OF THE TWELFTH EUROPEAN TEX CONFERENCE�

KERKRADE, the NETHERLANDS

23–27 SEPTEMBER 2001

EuroTEX2001 is hosted by the Dutch language oriented TEX Users Group /
Nederlandstalige TEX Gebruikersgroep. The webpage of the conference is at

http://www.ntg.nl/eurotex/

♦ ♦

Proceedings Editor
Simon Pepping

♦ ♦

Production
Taco Hoekwater � Siep Kroonenberg

♦ ♦

Design
Siep Kroonenberg

♦ ♦

Organizing Committee
Erik Frambach � Wybo Dekker � Luc De Coninck

Piet van Oostrum � Jules van Weerden

♦ ♦

Program Committee
Hans Hagen � Taco Hoekwater � Johannes Braams

Simon Pepping � Volker Schaa

♦ ♦

Sponsors
CAN-diensten � DANTE, Deutschsprachige Anwendervereinigung TEX e.V

Elvenkind BV � Focal Image Ltd � GUST, Polish TEX Users Group
GUTenberg, Groupe francophone des utilisateurs de TEX � H K Typesetting Ltd

Siep Kroonenberg � M&I/Stelvio BV � Mongolian TEX User Group
NTG, Dutch language oriented TEX users group � Pearson Education Uitgeverij BV

Sun Microsystems Nederland BV � TUG, TEX Users Group
UK-TuG, UK TEX Users’ Group � Jules van Weerden

❧

Table of Contents

Editorial, Simon Pepping

A note about the design of the Proceedings, Siep Kroonenberg .

Pattern generation revisited, David Antoš and Petr Sojka . .

Use of TEX Plugin technology for displaying of real-time
weather and geographic information, S. Austin, D. Menshikov
and M. Vulis

Texlib: a TEX reimplementation in library form, Giuseppe Bilotta

From database to presentation via Xml, Xslt and Context,
Berend de Boer

Usage of MathML for paper and web publishing, Tobias Burnus

The Euromath system – a structured XML editor and browser,
J. Chleb́ıková, J. Guričan, M. Nagy and I. Odrobina

Instant Preview and the TEX daemon, Jonathan Fine . . .

TEX and/or XML: good, bad and/or ugly, Hans Hagen . . .

TEX Top publishing, an overview, Hans Hagen

The bibliographic module for context, Taco Hoekwater . . .

mlBibTeX: a New Implementation of BibTeX, Jean-Michel Hufflen

Special Fonts, Bogus/law Jackowski and Krzysztof Leszczyński . .

Metatype1: a MetaPost-based engine for generating Type 1
fonts, Bogus/law Jackowski, Janusz M. Nowacki, and Piotr Strzelczyk

Natural TEX Notation in Mathematics, Michal Marvan . . .

vi Table of Contents

TEX in Teaching, Michael Moortgat, Richard Moot, Dick Oehrle . .

Poligraf: from TEX to printing house, Janusz Marian Nowacki .

Extending ExTEX, Simon Pepping

Directions for the TeXLive system, F. Popineau

DCpic, Commutative Diagrams in a (La)TEX Document, Pedro
Quaresma de Almeida

Using pdfTEX in a Pdf-based imposition tool, Martin Schröder .

ASCII-Cyrillic and its converter email-ru.tex, Laurent Siebenmann

A Tour around the Nts implementation, Karel Skoupy . . .

Visual TEX: texlite, Igor Strokov

Conversion of TEX fonts into Type1 format, Péter Szabó . .

Math typesetting in TEX: The good, the bad, the ugly, Ulrik Vieth

‘Typography’ and production of manuscripts and incunabula,
Paul Wackers

Re-introducing Type 3 fonts to the world of TEX, W/lodek Bzyl

Literate Programming: Not Just Another Pretty Face,
M. A. Guravage

♦ ♦ ♦

Editorial
Simon Pepping

We are pleased to present the Proceedings of the eurotex 2001 conference, the 12th
annual gathering of the European TEX community. Like its predecessors, this confer-
ence has a varied and interesting programme, and thereby shows that its community
is alive and thriving. Let us review what you will find in this volume.

No TEX conference would be complete without intense attention for fonts. W8lodek
Bzyl, Bogus8law Jackowski, Janusz M. Nowacki and Piotr Strzelczyk make it clear that
this is a strong tradition in the Polish TEX community. In two separate contributions
they pay attention to the use of PostScript fonts with TEX. One of the contributions
especially focuses on a new tool, MetaType1, that should help bridge the gap between
TEX’s early font technology and the Type1 font technology that emerged later but
has become the standard. Péter Szabó tries to do exactly the same with his new tool
TEXtrace.

David Antoš and Petr Sojka revisit another TEX tool of the first hour: Pattern
Generation. Since the birth of TEX the computing world has become truly interna-
tional. They present a complete reimplementation that accommodates the needs of
internationalization, and is written for the current situation in which extensibility and
reusability have become much more important than managing a complex task in a
tiny memory space.

Internationalization is also the goal of Jean-Michel Hufflen’s reimplementation of
another work horse of TEX, viz. bibtex.

Janusz M. Nowacki also presents a new version of his Poligraf package, which aids
users in preparing their TEX work for printing in a professional printing house.

Bogus8law Jackowski and Krzysztof Leszczyński revisit one of TEX’s hooks for exten-
sions: specials. Using a special pseudo-font, they try to make the insertion of specials
more flexible.

Math typesetting is of course one of the main goals of TEX. Its intuitive syntax of
entering formulae—for those who are familiar with them—has been one of the factors
in its success. Nevertheless, there is always room for improvement. Michal Marvan will
present his nath package for natural TEX notation in mathematics, which brings more
intelligence into the interpretation of the typewritten formulae and their subsequent
typesetting.

The same mathematicians who use formulae to express their ideas and work, often
recognize that a diagram is more expressive. Several tools already exist to make
drawing such diagrams easier. Pedro Quaresma explains how he has extended the

2 simon pepping

good and avoided the bad and ugly of earlier packages in his new package DCPic.
Ulrik Vieth applies the motto of this conference, the good, the bad, the ugly, to

math typesetting in TEX. However good TEX is, it is always wise to keep an open
and critical mind. Ulrik points out where TEX’s math typesetting is good, but also
where it has bad or even ugly elements. This critical appraisal will help us to better
understand TEX’s position in comparison with other software packages that aim to
offer similar functionality, and especially when interoperability with such packages is
an issue.

Literate programming is another gem that Knuth left the computing world. In
this era, with its ever more complex software, good documentation is of paramount
importance. Michael Guravage will show us if and how literate programming is still a
useful technique for today’s software developers.

To paraphrase Antoš and Sojka, TEX and friends, being nearly twenty years old, no
longer completely suit today’s needs. Therefore one of the recurring themes of this
conference is reimplemenation. In this respect NTS has been with us for almost 10
years, first as an idea, and for the last three years as a work in progress. At the time
of this conference it will be available in a β-release. Karel Skoupy, its developer, will
take us on a tour through the program, and show us how NTS processes its input into
its output. I myself will try to convince you that the release of NTS is an important
mile stone: it is the first really existing TEX reimplemenation. We should use it to
develop and experiment with extensions and new functionality.

Giuseppe Bilotta takes his own angle to reimplementation. He will discuss what is
required when we want a new TEX that is also suited to provide immediate feedback
to the user, wysiwyg TEX.

When immediate feedback and wysiwyg were provided by Word Processing soft-
ware, it immediately appealed to the majority of users. In the TEX world this was
often done away with a shrug, pointing to the inefficient way of working with these
packages and to the high quality of TEX’s output. But it cannot be denied that im-
mediate feedback and wysiwyg are desirable features, and some have started work
to make this available within TEX as well. Igor Strokov has done extensive work on
an implementation on MS Windows. Jonathan Fine has taken earlier work on IPC
TEX further on the combination of Unix and Emacs. They both will show us what
they have achieved so far.

A hot spot of development in the world around us is xml. Hans Hagen is building
native support for xml documents into his macro package context. He will tell us
about this and other aspects of xml and TEX in one of his presentations.

Berend de Boer, early context user, will demonstrate an application which uses
context’s xml capabilities in combination with various other techniques: database,
xml structuring, xsl styling, context typesetting.

In the xml world, mathml is the newly proposed standard for structuring mathem-
atical formulae. Tobias Burnus will demonstrate how it can be used to publish work
on paper and on the web.

While xml is a new effort of the computing world at large to work with structured
input, in smaller circles this is not a new development at all, vide sgml or even
latex. Work on editors that help the user to produce structured input also stands in

editorial 3

a tradition of a decade. In this tradition J. Chleb́ıková, J. Guričan, M. Nagy and I.
Odrobina present their Euromath system, a structured xml editor and browser.

On earlier TEX conferences the extension arena was dominated by eTEX, later joined
by pdfTEX and their combination pdfeTEX. At this conference they are notably absent.
Hans Hagen has been one of the first TEX implementors to see the importance of these
TEX extensions. Undoubtedly in his presentation on TEX TOP publishing these two
will play their role as invaluable means by which Hans achieves his graphical finesse.

pdfTEX is here to stay, due to the interesting capabilities of the PDF format in
conjunction with the PDF viewers. Martin Schröder and Tom Kacvinsky will both
discuss the possibilities and the problems of the combination of PDF with TeX.

Another area where we have seen tremendous progress in the last years is that of
TEX distributions. While in the early 90’s it required considerable skill to set up a
working TEX installation, the more recent distributions, among which the TEXLive
distribution, have brought successful installation within the reach of an average user.
Fabrice Popineau will discuss the problems that have to be overcome in putting to-
gether such a distribution. And he will show new directions for distributions, among
which installation over a network.

Hans Hagen’s context macro package has attracted a large dedicated user base.
As with all new applications, early users must do without utilities which are taken for
granted with existing applications. Taco Hoekwater presents a bibliographic module
for context, which will provide context users with a better integration of their
favourite format and bibtex.

Besides the turmoil of the newest developments, we also take time to reflect on the
developments in the past that have brought us to where we are now. Paul Wackers
takes us back to the time when typography was still new and modelled itself after the
existing industry of handwritten books. He shows us how the new technology slowly
developed its own paradigms and style, much of which we still recognize.

Finally, why are we doing all this work? Surely, because it is interesting. But we
also work to create a tool that users can deploy together with other tools to complete
a complex task. Michael Moortgat, Richard Moot & Dick Oehrle do just that. Their
focus is on a language technology project, and one of their requirements is high-
quality, flexible typesetting of natural deductions. They will show how they use TEX
successfully to meet that requirement.

S. Austin, D. Menshikov, and M. Vulis demonstrate how they use TEX together
with their own GeX plugin and PDF technology for displaying of real-time weather
and geographic information.

Finally, Laurent Siebenmann goes back to the basics of TEX and applies that rare
ability to write a program in TEX’s macro language. With this technique he creates
an application that allows users to read Russian emails, even when they do not have
the required Cyrillic fonts installed.

4 simon pepping

Acknowledgement

Many articles in this Proceedings have benefited from critical review before publica-
tion. I thank Karel H. Wesseling, Michael Guravage, Taco Hoekwater and Johannes
L. Braams for their efforts to review and correct submitted articles and to correspond
with the authors about their suggestions for improvement.

Many contributors might not have decided to submit their contribution without the
enthousiastic though urgent persuasion by Hans Hagen.

A note about the design of the Proceedings
Siep Kroonenberg, siep@elvenkind.com

he theme of this conference being ‘The Good, the Bad and the Ugly’, I had a
perfect excuse to loosen the reins of good taste and delve into all the ornamental
fonts and artwork that is at my disposal. Taco and I settled for a nineteenth-

century look: first, because of the exuberant graphic design from that period and
second, because TEX typography and the Computer Modern font family already show
a lot of affinity with nineteenth-century design.

We hoped that authors would pick up on this, and add their own flourishes to their
contributions. There were some who did; see for yourself.

The titlepage illustration comes from a periodical ‘Typografische Mededeelingen’,
Volume 15, issue 3, July 1919, published by Lettergieterij Amsterdam v/h N. Tet-
terode. It features a typesetting device called the Intertype. The descriptive text
advertises its suitability for display type.

We like to thank Simon Pepping for the thorough job he did of preparing the electronic
submissions; he made our work much, much easier than it might have been otherwise.

♦ ♦ ♦

Pattern Generation Revisited ∗

David Antoš, Petr Sojka
Faculty of Informatics, Masaryk University Brno

Email: {xantos|sojka}@informatics.muni.cz

abstract.

The program PatGen, being nearly twenty years old, doesn’t suit today’s needs:

� it is nearly impossible to make changes, as the program is highly optimised (like
TEX),

� it is limited to eight-bit encodings,
� it uses static data structures,
� reuse of the pattern technique and packed trie data structure for problems other

than hyphenation (context dependent ligature handling, spell checking, Thai syl-
labification, etc) is cumbersome.

Those and other reasons explained further in the paper led us to the decision to re-
implement PatGen from scratch in an object-oriented manner (like NTS–New Type-
setting System reimplementation of TEX) and to create the PATtern LIBrary PatLib
and the (hyphenation) pattern generator based on it.

We argue that this general approach allows the code to be used in many applications in
computer typesetting area, in addition to those of pattern recognition, which include
various natural language processing, optical character recognition, and others.

keywords: patterns, Unicode, hyphenation, tagging, transformation, Omega, PatGen,
PatLib, reimplementation, templates, C++

Introduction

The ultimate goal of mathematics is to eliminate all need for intelligent thought.
— Graham, Knuth, Patashnik [2, page 56]

T
he ultimate goal of a typesetting engine is to automate as much as possible of
what is needed for a given design, allowing the author to concentrate on the
content of the text. The author maps her/his thoughts in linear writing, a

sequence of symbols. Symbols (characters, words or even sentences) can be combined

∗Presentation of the paper has been made possible with the support of EuroTEX bursary fund.
This research has been partially supported by the Grant CEZ:J07/98:143300003.

8 david antoš, petr sojka

into patterns (of characters, words or sentences). Patterns describe “higher rules” and
dependencies between symbols, depending on context.

The technique of covering and inhibiting patterns used in the program PatGen [11]
is highly effective and powerful. The pattern technique is an effective way to extract
information out of large data files and to recognise the structures again. It is used
in TEX as an elegant and language-independent solution for high-quality word hy-
phenation. This effective approach found its place in many other typesetting systems
including the commercial ones. We think this method should be studied well, as many
other applications are possible, in addition to those in the field of typesetting and
natural language processing.

The generation of hyphenation patterns using the PatGen program does not sat-
isfy today’s needs. Many generalisations are needed for wider use. The Omega
system [6, 12] was introduced. One of it’s goals is to make direct typesetting of texts
in Unicode possible, hence enabling the hyphenation of languages with more than 256
characters. An example of such a language is Greek, where 345 different combinations
of Greek letters with accents, breathings, syllable lengths and the subscript iota are
needed [5]. Therefore, Omega needs a generator capable of handling general/universal
hyphenation patterns. Those new possibilities and needs in computer typesetting, to-
gether with the detailed analysis described below, led us to revise the usage of pattern
recognition and to design new software to meet these goals.

The organisation of the paper is as follows. The next section (page 8) defines the
patterns, using a standard example of hyphenation. Then an overview is given (page 9)
of the process of pattern generation. The following section (page 10) describes one
possible use for patterns and is followed by a section (page 11), in which the limitations
for exploiting the current version of PatGen are argued.

The second part of this paper starts with a section (page 12) which describes the
design of the new software library for pattern handling. Then packed digital trees,
the basic data structure used in PatLib, are presented (page 12). Some thoughts
about implementing the translation/tagging process using pattern based techniques
are summarised in the section on page 15. The final section (page 16) contains a
summary and suggestions for future work.

Patterns

Middle English patron ‘something serving as a model’, from Old French.
The change in sense is from the idea of a patron giving an example to be copied.
Metathesis in the second syllable occured in the 16th century. By 1700 patron
ceased to be used on things, and the two forms became differentiated in sense.

— Origin of word pattern: [3]

P
atterns are used to recognise “points of interest” in data. A point of interest
may be the inter-character position where hyphenation is allowed, or the border
between water and forest on a landscape photograph, or something similar. The

pattern generation revisited 9

pattern is a sub-word of a given word set and the information of the points of interest
is written between its symbols.

There are two possible values for this information. One value indicates the point of
interest is here, the other indicates the point of interest is not here. Natural numbers
are the typical representation of that knowledge; odd for yes, even for no. So we have
covering and inhibiting patterns. Special symbols are often used, for example a dot
for the word boundary.

Below we show a couple of hyphenation patterns, chosen out of the English hyphen-
ating pattern file. For the purpose of the following example, we deal with a small
subset of the real set of patterns. Note that the dot represents a word boundary.

.li4g .lig5a 3ture 1ga 2gam

Using the patterns goes as follows. All patterns matching any sub-word of the word
to be hyphenated are selected. Using the above subset of patterns with the word
“ligature” we get:

. l i g a t u r e .

. l i4g

. l i g5a

3t u r e

1g a

The pattern 2gam matches no sub-word of “ligature”. The patterns compete and
the endresult is the maximum for inter-character positions of all matching patterns,
in our example we get:

. l0i4g5a3t0u0r0e .

According to the above we may hyphenate lig-a-ture.
To sum up: with a “clever” set of patterns, we are able to store a mapping from

sequences of tokens (words) to an output domain — sequence of boolean values — , in
our case positions of hyphenation points. To put it in another way: tokens (characters)
emit output, depending on the context.

For a detailed introduction to TEX’s hyphenation algorithms see [8, Appendix H].
We now need to know how patterns are generated to understand why things are done
this way.

Pattern Generation

An important feature of a learning machine is that
its teacher will often be very largely ignorant of quite what is going on inside,
although he may still be able to some extent to predict his pupil’s behaviour.

— Alan Turing, [16]

G
enerating a minimal set of competing patterns completely covering a given
phenomenon is known to be NP-complete. Giving up the minimality require-
ment, we may get surprisingly good results compressing the input data in-

formation into a pattern set iteratively. Let us now describe the generating process.

10 david antoš, petr sojka

We need a large input data file with marked points of interest. Hyphenating words,
we use a large dictionary with allowed hyphenation points. Now we repeat going
through the data file in several levels. We generate covering patterns in odd levels and
inhibiting ones in even levels.

We have a rule how to choose pattern candidates at each level. In our case it may
be “an at most k characters long substring of the word containing the hyphenation
point”. We choose pattern candidates and store them into a suitable data structure.
Not all candidates are good patterns, so we need a pattern choosing rule. Usually we
remember the number of times when the candidate helps and spoils finding a correct
hyphenation point. We always test new candidates according to all patterns selected
so-far. We are interested in the functionality of the whole set. The pattern choosing
rule may be a linear function over the number of good/bad word efficiency of the
candidate compared to a threshold. This heuristic is used in PatGen, but other
heuristics may lead to better (e.g. with respect to space) pattern sets with the same
functionality. The candidates marked as good by the previous process are included
into the set of patterns. The pattern set still makes mistakes. We continue generating
another level, an even level this time, when we create inhibiting patterns. The next
level will be covering and so on. A candidate at a certain level is good if it repairs
errors made by previous levels.

This is also the way how PatGen works. A PatGen user has no chance to change
the candidate and/or pattern choosing rules, which are similar to the ones previously
described. Hyphenating patterns for TEX have been created for several dozens of
languages [15], usually created from a list with already hyphenated words. There are
languages where the patterns were created by hand, either entirely, or in part.

How successful is this technique? The natural language dictionary has several mega-
bytes of data. Out of such a dictionary patterns of tens of kilobytes may be prepared,
covering more than 98 % of the hyphenation points with an error rate of less than
0.1 %. Experiments show that four or five levels are enough to reach those parameters.
Using various strategies of setting linear threshold parameters we may optimise the
patterns to size, covering ratio and/or errors [13]. As not many lists with hyphenated
words are publicly available for serious research on pattern generation heuristics, we
think that most available patterns are suboptimal. For more information on pattern
generation using PatGen have a look at tutorial [4].

Tagging with Patterns

T
he solution of the hyphenation problem and the techniques involved have been
studied extensively [15] and together with long-lasting usage in TEX and other
typesetting systems, their advantages have been verified. The application of

the techniques of bootstrapping and stratification [13, 14] made them even more at-
tractive. However, to the best of our knowledge, sofar nobody has suggested and used
a context dependent task for the resolution of other ambiguities.

pattern generation revisited 11

We may look at the hyphenation problem as a problem of tagging the possible
hyphenation positions in finite sequences of characters called words. On a different
level of abstraction, the recognition of sentence borders is nothing more than“tagging”
the begins and ends of sentences in sequences of words.

Yet another example: in quality typography, it is often necessary to decide, whether
a given sequence of characters is to be typeset as a ligature (such as ij, fi, fl) and not
as separate characters (ij, fi, fl). This ambiguity has to be resolved by the tagging
of appropriate occurences, depending on the context: ligatures are e.g. forbidden on
compound word boundaries.

All these tasks (and many others, see page 15) are “isomorphic”— the same tech-
niques developed and used for hyphenation may be used here as well. The key issue
in applicability of the techniques for the variety of context-dependent tagging tasks
is the understanding and effective implementation of the pattern generation process.
The current implementation of PatGen is not up to these possible new uses.

PatGen Limitations

What man wants is simply independent choice,
whatever that independence may cost

and wherever it may lead.
— Fedor Dostoevsky, Notes from Underground (1864)

T
he program PatGen has several serious restrictions. It is a monolithic struc-
tured code, which, although very well documented (documented Pascal,
WEB), is very difficult to change. PatGen is also “too optimised”, neces-

sary to make it possible to run in the core of the PDP-10, so understanding the code
is not easy. In this sense PatGen is very similar to TEX itself. The data structures
are tightly bound to the stored information: high-level operations are performed on
the data structures directly without any levels of abstraction.

The data structures of PatGen are hardwired for eight-bit characters. Modifica-
tion to handle more characters— full Unicode — is not straightforward. The maximum
number of PatGen levels is nine. When generating patterns, you can collect candid-
ates of the same length at the same time only. The data structures are static, running
out of memory requires the user to change constants in the source code and recompile
the program.

Of course PatGen may be used to generate patterns on other phenomenons besides
word hyphenation, but only if you transform the problem into hyphenation. This might
be non-trivial and moreover, it’s feasible only for problems with small alphabets, less
than approximately 240 symbols (PatGen uses some ascii characters for special and
output purposes).

12 david antoš, petr sojka

PatLib

My library was dukedom large enough.
— Shakespeare, The Tempest (1611), act 1, sc. 2 l. 109

W
e decided to generalise PatGen and to implement the PATtern LIBrary
PatLib for general pattern manipulation. We hope that this will make the
techniques easily accessible. A Unicode word hyphenation pattern gener-

ator is the testbed application.
For portability and efficiency reasons we chose C++ as the implementation language.

The C++ code is embedded in CWEB to keep the code documented as much as
possible. Moreover the code “patterns” called templates in C++ let us postpone the
precise type specification to higher levels of development which turned out to be a big
advantage during the step-wise analysis. We do hope that templates increase flexibility
of the library.

The PatLib library consists of two levels, the finite language store (which is a finite
automaton with output restricted to finite languages, implemented using packed trie)
and the pattern manipulator. The language store handles only basic operations over
words, such as inserting, deleting, getting iteratively the whole stored language and
similar low-level operations. The output of a word is an object in general, so is the
input alphabet.

The pattern manipulator handles patterns, it means words with multiple positioned
outputs. We also prepared a mechanism to handle numbers of good and bad counts
for pattern candidates.

The manipulator and the language store work with objects in general, nevertheless
to keep efficiency reasonable we suggest to use numbers as internal representation
for the external alphabet. Even if the external alphabet is Unicode, not all Unicode
characters are really used in one input data file. So we can collect the set of all used
characters and build a bijection between the alphabet and the internal representation
by numbers {1, . . . , n}, where all the numbers are really used.

We separated the semantics from the representation. We don’t have to care what
the application symbols are. An application using this library may implement any
strategy for the generation of patterns.

Of course we have to pay for more generality and flexibility with performance loss.
As an example, the output of a pattern in PatGen is a pointer to a hash table contain-
ing pairs 〈level number, position〉, we must have an object with a copy constructor. At
the time of writing of this article we are unable to give an indication of the performance
ratio.

Packed digital tree (trie)

G
entle reader, if you are not interested in programming or data structures,
feel free to skip this section. It will do no harm for understanding the rest of
the article. The trie data structure we use to store patterns is quite known.

pattern generation revisited 13

Its practically usable variant — being described only seldom in programming books —
is much less known.

A trie is usually presented and described as in [9]: it is an m-ary tree, its nodes are
m-ary vectors indexed by a sorted finite alphabet. A node in depth l from the root
corresponds to the prefix of length l. Finding a word in a trie starts at the root node.
We take the next symbol of the word, let it be k. Then the kth member of the node
points to the lower level node, which corresponds to the unread rest of the word. If
the word is not in the trie, we get the longest prefix.

a b c d

a b c d

a b c d

a b c d

❄

❄

❅
❅
❅
❅❘

figure 1: Trie —an example

Figure 1 shows a trie containing the words ba, bb, bbb, and da over the alphabet
{a, b, c, d}. Underlining indicates the end of a word.

It is not difficult to implement this data structure. Nodes may be put into a linear
array one by one, pointers going to the start of the next nodes. But this approach
wastes memory, especially if the words are long and the nodes sparse. Using dynamic
memory does not change this property.

The advantage of a trie is that the time needed for the look-up and inserting of a
word is linear to the length of the word, this means the time needed does not depend
on the amount of words stored.

The need for memory may be reduced (paying with a small amount of time), as
shown by Liang in [10]. In practical applications the nodes are sparse, hence we want
to store them mixed into one another into a linear array. One node uses the fields
which are left empty by another node.

When working with this structure, we must have a way to decide which field be-
longs to a certain node. This may be done with a little trick. To each field we add
information about which alphabet symbol is related to the array position. Moreover
two nodes must never start at the same position of the array. We must add one bit of
information if the position is a base position and when inserting, we never pack two
nodes at the same base position.

14 david antoš, petr sojka

Index 1 2 3 4 5 6 7 8 9
Character a b c d a b b a
Pointer 5 8 6
Base position? Y Y Y Y
End of word? Y Y Y Y

figure 2: Packed trie

In Figure 2 the same language as used previously is stored. The trie starts on posi-
tion 1, this is the base position. The trie root is treated specially for implementation
reasons, it is always stored fully in the array, even if there are no words starting with
the appropriate character. Only the pointer is null in that case.

We assert numerical values to the alphabet symbols: a = 1, b = 2, c = 3, d = 4.
How do we distinguish the fields belonging to a node? Let the node start at base
position z. We go through positions z + a, . . . , z + d and check where the condition
“the character on position z+i is i”holds. For the root this is always true. In the root,
there is a pointer under character b (on position 3). It points to the base position 5.
Moreover the root says we have a word starting with d. Let us go through the positions
belonging to base position 5, this means related to the prefix b. They are:

 position 6, this should be related to a, this holds, the pointer is null, the end-of-
word flag is true, hence ba belongs to the language and any other word starting
with ba does not.

 position 7, which is related to b, so the position belongs to the node, the position
is end-of-word, therefore bb belongs to the language and there are words starting
with bb continuing as said by the node on base position 6.

 positions 8 and 9 should belong to the characters c and d, this is not the case,
these positions do not belong to the current node.

The reader may easily check that the table contains the same language as shown in
Figure 1. Sixteen fields are needed to store the language näıvely, we need nine when
packing. The ratio is not representative, it depends on language stored.

The trie nodes may be packed using the first-fit algorithm. This means when packing
a node, we find the first position where it can be done, where we do not interfere with
existing nodes and we do not use the same base position. We can speed up the
process using the following heuristics. If the node we want to store is filled less than
a threshold, we don’t loose time finding an appropriate position but store it at the
end of the array. Otherwise we use the first-fit method as described. Our experience
shows that array usage much better than 95 % may be obtained without significant
loss of speed.

pattern generation revisited 15

Pattern Translation Processes

If all you have is a hammer, everything looks like a nail.
— popular aphorism

L
et us review several tasks related to computer typesetting, in order to see
whether they could be implemented as a Pattern Translation Processes (ptp),
implemented using PatLib. Most of them are currently being tackled via ex-

ternal ΩTPs in Omega [7].

Hyphenation of compound words The plausibility of the approach has been shown
for German in [13].

Context-dependent ligatures In addition to the already mentioned ligatures at the
compound word boundaries, another example exists:

Fraktur long s versus short s In the Gothic letter-type there are two types of s-es, a
long one and the normal one. The actual usage depends on the word morphology.
Another typical context-dependent auto-tagging procedure implementable by ptp.

End of sentence recognition To typeset a different width space at the end of a sen-
tence automatically, one has to filter out abbreviations that do not normally appear
at the end of a sentence. A hard, but doable task for ptp.

Spell checking Storing a big word-list in a packed digital tree is feasible and gives res-
ults comparable to spelling checkers like ispell. For languages with inflection, how-
ever, several hierarchical ptp’s are needed for better performance. We are afraid
that ptp’s cannot beat specialised fine-tuned morphological analysers, though.

Thai segmentation There is no explicit word/sentence boundary, punctuation and
inflexion in Thai text. This information, implicitly tagged by spaces and punctu-
ation marks in most languages, is missing in standard Thai text transliteration. It
is, however, needed, during typesetting for line-breaking. It has yet to be shown
that pattern-based technology is at least comparable to the currently used prob-
abilistic trigram model [1].

Arabic letter hamza Typesetting systems for Arabic scripts need to have built-in
logic for choosing one of five possible appearances of the letter hamza, depending
on context. This process can easily be formulated as a ptp.

Greek accents In [7, page 153] there is an algorithm — full of exceptions and context
dependent actions— for the process of adding proper accents in Greek texts. Most
parts of it can easily be described as a sequence of pattern-triggered actions and
thus be implemented as a ptp.
Similarly, there are many Czech texts written without diacritics from the times
when email mailers only supported seven-bit ascii , which wait to be converted
into proper form. Even for this task ptp’s could be trained.

We believe that ptp implementation based on PatLib could become common
ground for most, if not all, ΩTP’s. Hooking and piping various ptp’s in Omega
may lead to uniform, highly effective (all those mapping are linear with respect to the
length of the text) document processing. Compared to external ΩTP’s, ptp imple-

16 david antoš, petr sojka

mentation would win in speed. To some extent, we think that a new version of PatGen
based on PatLib will not only be independent of language (for hyphenation), but of
application, too.

Summary and Future Work

Write once, use everywhere.
— paraphrase of a well known slogan

W
e have discussed the motivation for developing a new library for the hand-
ling and generation of patterns, and we presented its design and first ver-
sion. We argue that the pattern-based techniques have a rich future in

many application areas and hope for PatLib to be playing a rôle there.
Readers are invited to download the latest version of PatLib and the PatGen

reimplementation at http://www.fi.muni.cz/~xantos/patlib/.

Acknowledgement
The authors thank a reviewer for detailed language revision.

references

[1] Orchid corpus. Technical Report TR-NECTEC-1997-001, Thai National Elec-
tronics and Computer Technology Center, 1999. http://www.links.nectec.

or.th/.

[2] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics. Addison-Wesley, Reading, MA, USA, 1989.

[3] Patrick Hanks, editor. The New Oxford Dictionary of English. Oxford Univer-
sity Press, Oxford, 1998.

[4] Yannis Haralambous. A Small Tutorial on the Multilingual Features of PAT-
GEN2. in electronic form, available from CTAN as info/patgen2.tutorial,
January 1994.

[5] Yannis Haralambous and John Plaice. First applications of Ω: Adobe Poetica,
Arabic, Greek, Khmer. TUGboat, 15(3):344–352, September 1994.

[6] Yannis Haralambous and John Plaice. Methods for Processing Languages with
Omega. In Proceedings of the Second International Symposium on Multilingual
Information Processing, Tsukuba, Japan, 1997. available as http://genepi.

louis-jean.com/omega/tsukuba-methods97.pdf.

[7] Yannis Haralambous and John Plaice. Traitement automatique des langues et
composition sous Omega. Cahiers Gutenberg, (39–40):139–166, May 2001.

[8] Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.

pattern generation revisited 17

[9] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, 1998.

[10] Franklin M. Liang. Word Hy-phen-a-tion by Com-put-er. Ph.D. Thesis, De-
partment of Computer Science, Stanford University, August 1983.

[11] Franklin M. Liang and Peter Breitenlohner. PATtern GENeration program for the
TEX82 hyphenator. Electronic documentation of PatGen program version 2.3
from web2c distribution on CTAN, 1999.

[12] John Plaice and Yannis Haralambous. The latest developments in Omega.
TUGboat, 17(2):181–183, June 1996.

[13] Petr Sojka. Notes on Compound Word Hyphenation in TEX. TUGboat,
16(3):290–297, 1995.

[14] Petr Sojka. Hyphenation on Demand. TUGboat, 20(3):241–247, 1999.

[15] Petr Sojka and Pavel Ševeček. Hyphenation in TEX — Quo Vadis? TUGboat,
16(3):280–289, 1995.

[16] Alan Turing. Computing machinery and intelligence. Mind, (59):433–460, 1950.

♦ ♦ ♦

Use of TEX plugin technology for displaying of

real-time weather and geographic information
S. Austina, D. Menshikovb, and M. Vulisa

a Dept. of CSC, CCNY, NY, USA
b MicroPress, Inc, USA

In this article we show how by means of the GeX plugin technology one can process
and display geographic information including real-time weather data as part of a
TEX→PDF compilation.

The plugin technology [introduced at TUG2000] functions under the PDF backend
of the VTeX compiler; it allows the user to enhance the TEX-integrated PostScript
converter (GeX) with user-defined language extensions. Plugins can be used for plot-
ting or retrieving specialized data; earlier plugin examples were used for business or
scientific plots.

The Tiger plugin is a new experimental plugin which can retrieve static geographic
data (the Tiger database, for instance), as well as the real time weather data and plot
them together within the context of a TeX document compilation; it can be used, for
example, to supplement static TeX documents (papers, books) with maps, as well as
(on a server environment) produce real-time weather maps.

♦ ♦ ♦

TEXlib: a TEX reimplementation in library form
Giuseppe Bilotta

Introduction

I
first came across the need for a TEX in library form when I was thinking about
developing a graphical real-time front-end to TEX (the TEXPerfect project,
more info at http://texperfect.sourceforge.net). A quick survey (on the

comp.text.tex newsgroup) showed that other projects could have benefited from a
library providing TEX typesetting capabilities, and I thus decided to develop TEXlib
as a separate project from TEXPerfect. A “call for developers” on the same newsgroup
provided the project with developers/consultants/helpers.

An analysis of the current opinion on TEX and its future added another aim to the
TEXlib project: since we’re reimplementing TEX, why shouldn’t we take the occasion
to break through TEX’s limitations?

The current status of TEX’s “future” is the following. We have some extensions:
� ε-TEX, mainly concerned with TEX’s parser (eyes and mouth), but also pro-

viding right-to-left typesetting;
� Omega, mainly concerned with TEX’s typesetting routines (guts), but also with

an innovative input parser (ocplists);
� pdfTEX, mainly concerned with TEX’s output routines, but also prodiving new

typesetting features (one for all: hanging characters);
and some new implementations:

� NTS, in Java, close to its first version;
� ant, in Scheme, still in a very early stage (but still more complete than

TEXlib;-).

More than once it has been suggested that the three TEX extensions should blend
into one; well, TEXlib might as well be the point of convergence. The reasons behind
such an expectation are mainly

� the library form of TEXlib: while a library can be easily used with a command
line interface, it is much harder to let a command line driven program act as a
library;

� being the youngest and less-formed TEX-based project, TEXlib can deal with
all the issues of integration of extensions, without requiring changes to (not-
yet-existant) sources. This assumes that the ε-TEX, pdfTEX and Omega de-
velopers are willing to provide feedback and suggestions on how to integrate
the various features provided by the different extensions.

20 giuseppe bilotta

Library structure

T
he library will be split in three parts: input parser modules (eyes & mouth),
typesetting module (guts), output modules. The three parts will be kept as
separate as possible (thus allowing things like an xml input parser with an

Omega typesetting engine and producing pdf output).
The typesetting module interface will be public, so that custom input parser and

output producers could take advante of TEX’s typesetting capabilities. The typeset-
ting module will basically provide two functions: the paragraph builder (accepting a
horizontal list and returning a vertical list) and the page builder (accepting a vertical
list and returning two vertical lists).

Vertical and horizontal lists will be built by the input parsing modules, and can be
sent to the output modules to produce “real” output (dvi pages, pdf documents, some
other format specifically tuned for real-time preview, etc). The library will provide
default input parsers and output producers.

Assuming the library-provided modules will be used, the following is more or less
how a typical session of TEXlib would run.

1. TEXlib is loaded (if not loaded already).
2. A TEXlib “context”1 is initialized, providing a format file, and various settings,

such as: which extensions are allowed, what kind of input is provided (TEX,
xml), what kind of output is expected (pdf, dvi, memory output), how many
pages to “cache” in memory, etc.

3. The main function will be provided with the address of the buffer containing
the data.

4. Variables for the context are initialized.
5. Typesetting Loop.
6. Feedback Loop.
Library loading and library instantiation are kept separate, not only to allow the

library to be shared among clients, but also to allow the same client–library link
to make use of different TEXlib contexts (useful if typesetting a mixed TEX/xml
document, for example).

TEX input parsing approach

W hile the current TEX extensions deal with what TEX does, the main concern
of TEXlib is how TEX is supposed to do it.

Currently, TEX works in a sequential way: source code is input one line at a time,
and the data is sequentially processed to ship out some kind of output (dvi file, one
page at a time, plus various auxiliary files, depending on the format used).

Much of this processing mode is somehow required by TEX’s embedded macro
(programming) capabilities (or, conversely, TEX’s macro capabilities were built with
this workflow in mind). This means that no revert is possible: once a change (\def,
catcode change, etc) has been made, the only way to “roll back” is through another

“context” is the internal name of a library instantiation.1

texlib 21

“forward” change, restoring the previous value (which must have been saved some-
where, usually in another macro).

Since the main application of TEXlib is TEX real-time editing, and since editing
(and especially reviewing) happens in a non-sequential way, we need a way to allow
moving backward and forward through the source.

Mainly, we can consider two approaches:
1. ONE-STACK-PER-THING-TO-BE-SAVED APPROACH.

The idea behind this approach is to push the old value each time a change is
made, and then pop it when rolling back.

2. CHECK-POINT STACK APPROACH.

This approach can be thought of as “intermediate dumping”: fix a check-point
(say, at page ship out), and push/pop all the values (also the unchanged ones)
each time the user crosses the check-point.

Functionality. Pros and cons

L et’s consider approach 1 first. The technique works as follows. A token is ex-
amined and ‘executed’. If the execution (complete macro expansion or execution

of a primitive) changes some values, the library stores, at the end of the execution,
the original values together with the new ones. This allows easy back-tracking, and
restart of compilation from an arbitrary point.

The largest problems are memory usage (but a comparison between this method
and the next one would need some real-world cases) and the complexity connected
with \let and \def when applied to or otherwise influencing the same token that
causes the change. Currently, the best idea I can think of is to simply wait until
macro expansion and argument scanning ends, before saving the values, but I still
couldn’t think of a robust way to implement such an idea.

Let’s now have a look at approach 2. Probably the best place to insert a checkpoint
is at page shipout. The library then acts this way: it parses data until it fills the page
cache; then it waits for client feedback; if data needs to be re-parsed, the library re-
enters the typesetting loop.

1. Typesetting Loop.
a. (Parsing and typesetting) If no data available goto 1.e else read next token

and execute it.
b. If shipout goto 1.c else goto 1.a.
c. (Shipout) Save checkpoint = (line, col), page,memory dump. Increase

cached pages.
d. If cached pages = max cache goto 1.e else goto 1.a.
e. Tell client that we finished our job.

2. Feedback Loop.
a. The client tells the library where the cursor is.
b. If cursor crosses a checkpoint, reload memory dump for the entered page.
c. If a change has been made (a token has been inserted), goto 2.d else goto 2.a
d. Set line, col to that of the latest checkpoint and goto 1.

This approach is relatively easy to implement, but quite memory consuming (consider
e.g. that a typical ConTEXt format file is between 4 and 5 megabytes in size, and this

22 giuseppe bilotta

amount of memory should be allocated for each cached page). Also, it is quite slow
when rolling back before the first cached page, since in this case typesetting would
have to start right from the beginning of the file (when the first cached page is around
page 100, this would mean that we need to retypeset 100−max cache pages). These
two problems could be minimized with

1. dynamic memory allocation;
2. “unbalanced” cached pages.
The idea behind 1 is that memory should only be allocated when needed, thus giv-

ing smaller memory hits (and higher performance) for typical jobs, while still allowing
heavy jobs to be done without reinitializing the library.

The idea behind feature 2 is to keep more “back” pages than “forward” pages
in cache. For example, if there are 10 cached pages, the current page is likely to
be the 8th or 9th cached page (provided that we are past page 8 in the document).
If the user is scrolling backwards, the library will restart compiling before the user
hits the 1st cached page (say, when the user gets to the 5th cached page), discarding
“forward” pages (say, from the 7th to the 10th) and it will stop compilation three
pages before the first cached page.

The various settings (number of cached pages (10), number of back (7) and forward
(2) pages and the discarding treshold (5)) should be user configurable, possibly at run-
time. A future version might have auto-detection of “best” suggested settings.

Another shortcoming in this approach, at least when fixing checkpoints at page
shipout, is TEX’s asynchronous page shipout. When a page is actually shipped out,
TEX can already be quite a few source lines past the last source line on the page being
shipped out. A possible solution could be to save two source coordinates instead of
one: the (line, col) pair of the data that caused the shipout, and the (line, col) pair
of the last data contained in the shipout.

Of course it is to be seen if there is some way to determine the last data shipped
out, and the parent (line, col) coordinate.

This problem is tightly connected with the synchronization of source and view.
Consider that it was TEXPerfect that pushed me into developing TEXlib. Since
TEXPerfect will likely run in split-view, with the output in the upper half and the
source in the lower half, we need a way to synchronize cursor positions in the view
with cursor positions in the source, and the synchronization has to be as precise as
possible.

Synchronization

S ynchronization needs a continuous feedback between client and library. On one
side we have the client, which provides the source, the current position within

the source, the modification status. On the other side, the library provides the output
(in the specified form) and its status. But there is another important kind of feedback
that the library can provide to the client (and we will see shortly why it is important):
tokenization of the input lines. This means that for each input line read, the library
should return where each token starts, where it ends and which subsequent tokens are
being “eaten up”.

texlib 23

Why is this important? Let’s consider the first level of synchronization: source
specials. At least for the current page (but possibly for each cached page) the library
should know the originating (line, col) coordinate for each output bit (character, rule,
glue).

This can be memory-optimized by taking advantage of one-to-one correspondance:
for example, in the case of a paragraph containing only characters, it is only important
to know where the first letter originated from.

But there are cases of multiple tokens providing one or no bits of input (think of
multiple spaces, or some kind of assignments), and conversely of single tokens providing
more than one bit of input. To make things more complicated, most command tokens
are multi-letter, and they can take arguments.

The idea is then to inform the client about this. Thus, tokens scanned during
macro expansion will be given a particular status, so that the client knows which
tokens will go “directly” to the output, and which should be considered as arguments
of macros. The client can then take appropriate actions: for example, commands (both
the command token and its arguments) could appear as a button in the source code
window, and be skipped with a single keystroke while browsing (instead of requiring
a keystroke for each character composing the token and its arguments).

Problems

T here are some intrinsic problems that are inherent to a librarization of TEX, and
they can be summarized as follows:

A. Error management
This answers the question: how to handle input-parsing errors?

Documents fed to the library could be split in two categories: ‘hand-writ-
ten’ documents and ‘machine-written’ documents.

A hand-written document is simply a document written with a standard
editor. A common source of error in such a case could be of the kind “\hobx
instead of \hbox” (that is, all the kinds of error that arise from typos during
source-writing).

Machine-written documents, on the other hand, are documents where com-
mands are inserted in the source by the editor only, just like it happens, for
example, with word-processors: the user selects Italic in the font properies (or
presses an appropriate shortcut) and the client inserts the appropriate codes
into the source.

Such a document will be free of typo-like errors (unless the editor has been
badly programmed). But still, other kinds of error are possible (for example,
fragile commands in moving arguments).

Since we are implementing a library, when such an error occurs the library
would inform the client of the fact; acording to the spirit of batch processing
in TEX, a suggested solution will be proposed. It is then up to the client to

24 giuseppe bilotta

choose what to do: consult the user, provide its own solution or simply enact
what has been proposed by the library.

A useful option that the client should provide is “verbatim reparsing” from
where the error occurred. For example, if the error was an caused by an unde-
fined csname, the action would be to consider the csname to be a sequence of
character tokens.

B. Input/Output management.
There are also other input/output issues. Two different approaches should be
taken, distinguishing user I/O from file I/O.

Management of user input/output will be entirely left on the client side: the
library will inform the client when user input is requested, and simply defer
logging information to the client. The client is then free to report the logging
information and the query to the users, or simply hide them. For example, in
the case of a query to the user the client might ask the user for an answer,
and then provide that answer as default each time the same query is met again
during re-typesetting.

There are input/output issues connected with external file management, too.
During re-typesetting of source files \inputs and \writes referring to the same
data will be met again and again. How is this to be managed?

First of all it is important to differentiate between user-provided \input

(for example, when dealing with master documents and subdocuments) and
“system” \input (for example, input of auxiliary files, as requested by recent
formats like LaTEX and ConTEXt).

Since the client is the only one who knows if an \input is user- or system-
provided, it should be left to the client to decide which \inputs and \writes
should be honoured and which not. The library will have to manage the input/
output in a rational way, with complete knowledge on which data was output
by which command, so as to be able to remove that data before insertion of the
new data.

(This issue is still blurry and to be discussed. See also issue D.)
A separate problem is finally provided by the \write18 primitive. But this

will probably come up later (for example, if \write18 is used to call Metapost,
a possible solution is to just pass the request to the Metapost library, when
it will be implemented).

C. Extensibily.
Should TEXlib be extensible? To what extent, how easily? This is a serious
problem: I don’t want to stimulate proliferation of many incompatible TEXlib
extensions, while I still believe that time will show its limitations and thus the
need to overcome those. This will mean that there will be an “official” TEXlib,
with “official” extensions. (In other words, more ConTEXt-like development
than a LaTEX-like development).

texlib 25

D. “Backward” compatibility and auxiliary files.
TEX format files use auxiliary files to pass information between a compilation
and the next. Such auxiliary files are created during typesetting, sometimes
post-processed, and finally re-input on subsequent compilations. Most of the
time the data stored by auxiliary files is data provided later in the document
but physically used earlier.

Such a way to pass information back and forth is required in sequential
data parsing, and cannot be easily overcome when subverting the sequential
paradigm while still keeping source compatibility.

There are though some things that can be done to solve some issues.
One issue is, for example, the (possible) need to change the stored data

each time the writing command is issued. This might lead to physical abuse of
storage supports (disks), and can be circumvented with intelligent data analysis
(storing the data if and only if) and file caching (keeping the auxiliary file in
memory instead of on disk —this requires the library to know which files are
auxiliary ones).

Another issue is the actual usage of the data stored in the auxiliary file.
This data is usually input at the beginning of the document, and this gives
some problems.

First of all, it is useless to re-input the same data each time the user crosses
an input command: a more intelligent way to deal with this is to check if the
data has changed and act consequently.

The second important issue is the following: assume that the auxiliary file
is actually input when needed (for example, when the cursor enters the table of
contents), the same input may create differences in subsequent pages, thus pro-
ducing differences in the auxiliary file, and possibly (in case of non-converging
changes) cause a library lock-up.

I propose the following solution (inspired by the way a famous word-pro-
cessor works). During normal editing/previewing auxiliary files are not dealt
with, and input/output requests to it are simply ignored. At the user’s request,
though, a series of sequential compilations take place (the document is gener-
ated). The information collected during these sequential compilations is then
stored in an auxiliary file and used.

Future ideas

A. Convergence of TEX extensions.
As mentioned in the introduction, the “planning” status of TEXlib encourages it
as a point of convergence for TEX extensions. Cooperation with the developers
of the other TEX extensions will render this actual.

B. Librarization of TEX’s friends (at least Metapost).
The TEXlib project is not involved with TEX alone, but with the whole family.
Librarization of the other members of the family —or of their successors— will

26 giuseppe bilotta

allow a previously unseen integration of the components —with all the power
that comes from it.

C. Possible integration of TEX and Metapost in library form.
Library Metapost is a top priority (after TEX itself) of TEXlib; Among other
reasons, because of the impressive power derived from the intregration of TEX
and Metapost (it is even possible to emulate a poor-man’s Omega, at least
when referring to multidirectional typesetting capabilities).

D. Further extensions of TEX.
TEX is finally showing its age. While still outperforming other similar or relat-
ed programs (from word processors to desktop publishing programs) in many
aspects, there are features which simply cannot be implemented robustly with-
out providing new core features. Some (maybe most) of these features can be
implemented through the use of specials and appropriate output postproces-
sors, but native implementation of them could make the whole thing robust,
standard and fast.

Some proposed extensions are the following:
(Native color support (and other attibutes).

This has been discussed (and will be discussed again when the time comes)
on the TEXlib developers mailing list (and no conclusion has been reached).
We came to the conclusion that it could be nice to “load” each node type
with attributes not directly related to typesetting. Color is an example of
such an attribute, since a character is put in the same place whatever its
color is.

(Multiple reference points.
This has been requested by Hans Hagen, to ease and make more robust the
management of \vtop and similar boxes.

(Code tables management.
Most of the internal code tables (catcodes, lccodes, uccodes, sfcodes etc.)
of TEX (and of some of its extensions) have to be manually changed value-
by-value each time such a change is needed. Internal support for saving/
restoring (partial) code tables would speed up things like font- and lan-
guage-switching. This feature probably needs to be made cooperative with
Omega’s ocplists.

♦ ♦ ♦

From database to presentation
via XML, XSLT and ConTEXt

Berend de Boer

Introduction

Much data exists only in databases. A familiar example is an address list. Every once
in a while this data must be presented to humans. To continue with the address list
example, annually an address list must be printed and mailed.

In this article I attempt to given an exhaustive overview of going from structured
data through ConTEXt to output, see figure 1.

structured
data

ConTEXt PDF

Figure 1 Going from data through ConTEXt to output

As any data format can be represented by XML, this document focuses on typesetting
data in XML in ConTEXt, see figure 2. When the data is in XML, in can be directly
handled by ConTEXt. ConTEXt has a built-in XML typesetting engine that can handle
XML tags just fine. You don’t have to convert the XML to ConTEXt macro’s first. This
is the subject of the following section.

XML ConTEXt PDF

Figure 2 Going from XML through ConTEXt to output

When the data is not yet in XML format, is has to be converted to XML. ‘Converting
comma . . . ’ covers converting comma separated data to XML. ‘Converting relational

28 berend de boer

. . . ’ covers converting data residing in relational databases such as DB/2 and Inter-
Base to XML. ‘Typesetting sql . . . ’ covers going from such data straight to ConTEXt
without converting to XML first.

The XML data you have might not be easy to typeset. An advantage of XML is that
it is easy to transform into XML with a different format. There is a specific language,
XSLT, to transform XML into XML, see figure 3. This is the subject of ‘Transforming
XML ...’.

XML
XSLT

processor

XML ConTEXt PDF

Figure 3 Going from XML through ConTEXt to output

Typesetting XML in ConTEXt

This section assumes that the data to be typeset is already available in XML. The next
sections cover converting data to XML.

For this article a special XML format was chosen:
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE rows SYSTEM "example.dtd">

<rows>

<row>

<field>Re-introduction of Type 3 fonts into the TeX world</field>

<field>Wlodzimierz Bzyl</field>

</row>

<row>

<field>The Euromath System - a structure XML editor and browser</field>

<field>J. Chlebkov, J. Gurican, M. Nagy, I. Odrobina</field>

</row>

<row>

<field>Instant Preview and the TeX daemon</field>

<field>Jonathan Fine</field>

</row>

</rows>

This example files shows the first three entries in the abstract list of euroTEX 2001
at the time of this writing. The DTD of this XML file is:

from database to presentation 29

<!-- DTD used for examples in article "From database to presentation

via XML, XSLT and ConTeXt". -->

<!ELEMENT rows (row*)>

<!ELEMENT row (field*)>

<!ELEMENT field (#PCDATA)>

I still prefer DTDs above XML Schema’s. They’re far more readable and you can’t
express all well--formed XML files with XML Schema’s anyway, so what’s the advantage?

Our examples have the root tag <rows>. Our examples can have 0 or more <row>
tags. Each <row> tag can have zero or more <field> tags.

With ConTEXt we can typeset this with the \processXMLfilegrouped macro:

\processXMLfilegrouped {example.xml}

The result of this is:

Re-introduction of Type 3 fonts into the TeX world Wlodzimierz Bzyl
The Euromath System - a structure XML editor and browser J. Chle-
bkov, J. Gurican, M. Nagy, I. Odrobina Instant Preview and the TeX
daemon Jonathan Fine

As you can see, this gives us just the plain text, no formatting is done. We can
typeset our XML in a table with adding the following definitions and processing it
again:

\defineXMLenvironment [rows] \bTABLE \eTABLE

\defineXMLpickup [row] \bTR \eTR

\defineXMLpickup [field] \bTD \eTD

\processXMLfilegrouped {example.xml}

These definitions bind the start and end of a tag to a certain ConTEXt macro. Our
result is now:

Re-introduction of Type 3 fonts
into the TeX world

Wlodzimierz Bzyl

The Euromath System - a
structure XML editor and
browser

J. Chlebkov, J. Gurican, M. Nagy,
I. Odrobina

Instant Preview and the TeX
daemon

Jonathan Fine

The above example uses the new table environment of ConTEXt. As this specific
environment cannot yet split across pages, the tabulate environment is a better choice
for typesetting data. For this environment we need the following definitions:

30 berend de boer

\defineXMLpickup [rows] {\starttabulate[|p(6cm)|p|]} \stoptabulate

\defineXMLpickup [row] \NC \NR

\defineXMLpickup [field] \relax \NC

\processXMLfilegrouped {example.xml}

Our result is now:

Re-introduction of Type 3 fonts into the TeX Wlodzimierz Bzyl
world
The Euromath System - a structure XML ed- J. Chlebkov, J. Guri-
itor and browser can, M. Nagy, I. Odrobi-

na
Instant Preview and the TeX daemon Jonathan Fine

I hope I’ve made clear the basic ideas of typesetting XML:
1. Make sure the XML data is in a proper tabular format.
2. Define mappings to the ConTEXt table, tabular or TABLE environment.
3. Use \processXMLfilegrouped to process your XML file.

Converting comma separated files to XML

Not always is data in the proper format. This section and the next cover converting
non XML data into XML data.

Many programs can give CSV (Comma Separated Variable) data as output. An
example of this format is:

"Fred","Flintstone",40

"Wilma","Flintstone",36

"Barney","Rubble",38

"Betty","Rubble",34

"Homer","Simpson",45

"Marge","Simpson",39

"Bart","Simpson",11

"Lisa","Simpson",9

In this format, fields are separated by comma’s. String fields can be surrounded
by double quotes. In XML this data should look like:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE rows SYSTEM "example.dtd">

<rows>

<row>

<field>Fred</field>

<field>Flintstone</field>

<field>40</field>

</row>

<row>

<field>Wilma</field>

from database to presentation 31

<field>Flintstone</field>

<field>36</field>

</row>

<row>

<field>Barney</field>

<field>Rubble</field>

<field>38</field>

</row>

<row>

<field>Betty</field>

<field>Rubble</field>

<field>34</field>

</row>

<row>

<field>Homer</field>

<field>Simpson</field>

<field>45</field>

</row>

<row>

<field>Marge</field>

<field>Simpson</field>

<field>39</field>

</row>

<row>

<field>Bart</field>

<field>Simpson</field>

<field>11</field>

</row>

<row>

<field>Lisa</field>

<field>Simpson</field>

<field>9</field>

</row>

</rows>

Converting CSV to our ‘standard’ XML format can be done by a simple Perl script:
#!/usr/bin/perl -w use strict;

test arguments

if (@ARGV == 0)

{

die "Supply a filename as argument";

}

use Text::ParseWords;

open INPUT, "$ARGV[0]" or die "Can’t open input file $ARGV[0]: $!";

print "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n";

print "<!DOCTYPE rows SYSTEM \"example.dtd\">\n";

32 berend de boer

print "<rows>\n";

while (<INPUT>) {

chop;

my @fields = quotewords(",", 0, $_);

print "<row>\n";

my $i = 0;

foreach $field (@fields) {

print "\t<field>$field</field>\n";

$i++;

}

print "</row>\n";

}

print "</rows>\n";

Use this script as follows:

perl -w csv2xml.pl flintstones.csv > flintstones.xml

If you don’t know what Perl is, you can read more about it at http://www.perl.
org. Most UNIX users have Perl installed by default. Windows or Macintosh users can
download Perl at http://www.cpan.org/ports/index.html. I’m not a particular fan
of Perl, I can’t remember the syntax if I’ve not used it for a few days. However, you
can count on it being available for almost all operating systems.

Converting relational (SQL) data to XML

Much of this worlds data resides in relational databases. It is not difficult to retrieve
data from a relational database and turn it into XML.

Consider the following SQL table:

create table "family member" (

"id_family member" smallint not null primary key,

"surname" character varying(30) not null,

"family name" character varying(40) not null,

"age" smallint not null);

And the following insert statements:

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (1, ’Fred’, ’Flintstone’, 40);

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (2, ’Wilma’, ’Flintstone’, 36);

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (3, ’Barney’, ’Rubble’, 38);

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (4, ’Betty’, ’Rubble’, 34);

from database to presentation 33

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (5, ’Homer’, ’Simpson’, 45);

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (6, ’Marge’, ’Simpson’, 39);

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (7, ’Bart’, ’Simpson’, 11);

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (8, ’Lisa’, ’Simpson’, 9);

A simple ANSI SQL query to extract the data and sort it in surname is:
select surname, age

from flintstone

order by surname

SQL output is usually not returned in XML format, and certainly not in the format
we’ve described in the previous section. Here is the output that is generated by
InterBase:
Database: flintstones.gdb

surname age

============================== =======

Barney 38

Bart 11

Betty 34

Fred 40

Homer 45

Lisa 9

Marge 39

Wilma 36

Before embarking on our tour to make this SQL more ConTEXt friendly, let’s first
explore how to get such output. Most relational databases offer a command line tool
which can execute a given query. Frequently this tool is called isql. To present the
above example I called isql as follows:
opt/interbase/bin/isql flintstones.gdb -i select1.sql -o select1.out

The actual InterBasequery, instead of the ANSI query presented above, looked like:
select "surname", "age"

from "flintstone"

order by "surname";

At the end of this section I present the command line tools of PostgreSQL and DB2.
There are two methods to typeset SQL output in ConTEXt:
1. Embed XML tags in the select statement.
2. Embed ConTEXt macro’s in the select statement.

34 berend de boer

The first approach will be discussed in this section, the latter approach in the next
section.

Embedding XML in a select statement to generate the format discussed before can
be done with this InterBase select statement:
select

’<row><field>’,

"surname",

’</field><field>’,

"age",

’</field></row>’

from "flintstone"

order by

"surname";

The first two rows of the output look like this (slightly formatted for clarity):
Database: flintstones.gdb

surname age

====== ======= ======== ======== ======= ===== ======== ======

<row> <field> Barney </field> <field> 38 </field> </row>

<row> <field> Bart </field> <field> 11 </field> </row>

There are five problems with the output of InterBase isql, four of which are present
in the above output:

1. There is no container tag, i..e the <rows> tag is missing.
2. The first line contains the database used: flintstones.gdb.
3. Column headers are present.
4. InterBase inserts columns headers after every 20 lines. Because there are just

a few flintstones, this does not show up in my example, but I’ve typesetted
thousands of entries, and there you have to deal with it. Fortunately, this can
be easily solved by using the -page parameter and calling isql as follows:
isql flintstones.gdb -i select1.sql -o select1.out -page 32000

This will insert a column headers only every 32000 rows.
5. There is a lot of superfluous white space. White space is usually not a problem

with TEX, and it also isn’t with ConTEXt’s XML typesetting macro’s. I consider
this a feature. If white space is a problem, you can attempt to write a somewhat
different SQL statement like:
select

’<row><field>’ + surname + ’</field><field>’ + age + ’</field></row>’

from flintstones

This example uses string concatenation instead of putting the XML tags in
different columns.

The first three problems cannot be solved by some parameter. We have to use Perl
again. Here my script to remove the column headers of an InterBase SQL output file
and at the appropriate container tag:

from database to presentation 35

#!/usr/bin/perl -w use strict;

test arguments

if (@ARGV == 0)

{

die "Supply a filename as argument";

}

open INPUT, "$ARGV[0]" or die "Can’t open input file $ARGV[0]: $!";

read up to the line with ====

while (<INPUT>) {

if (/^=.*/) {

last;

}

};

skip one more line

<INPUT>;

now just dump all input to output

print "<rows>\n";

while (<INPUT>) {

print;

}

print "</rows>\n";

The output is now a lot more like XML:

<rows>

<row><field> Barney </field><field> 38 </field></row>

<row><field> Bart </field><field> 11 </field></row>

<row><field> Betty </field><field> 34 </field></row>

<row><field> Fred </field><field> 40 </field></row>

<row><field> Homer </field><field> 45 </field></row>

<row><field> Lisa </field><field> 9 </field></row>

<row><field> Marge </field><field> 39 </field></row>

<row><field> Wilma </field><field> 36 </field></row>

</rows>

We can typeset this with:

\defineXMLpickup [rows]

{\starttabulate[|p(7cm)|p|] \HL\NC surname \NC age \NC\NR\HL}

{\stoptabulate}

\defineXMLpickup [row]

\NC \NR

\defineXMLpickup [field]

\relax \NC

36 berend de boer

\processXMLfilegrouped {select2.xml}

And the result looks great!

surname age

Barney 38
Bart 11
Betty 34
Fred 40
Homer 45
Lisa 9
Marge 39
Wilma 36

As promised here the commands to extract data from DB2 and PostgreSQL. For
DB2 use the db2 command, like this:
db2 -td\; -f myfile.sql -r myfile.out

The -td option defines the command separator character. I use the ‘;’ character
for this. After the -f option follows an SQL file with one or more select statements.
With the -r option you can redirect the output to a file.

PostgreSQL has the psql to extract SQL data. Use it like this:
psql -d flintstones -f myfile.sql -o myfile.out

The -d option specified the database name. The -f option specifies the file with
the select statements. The -o option redirects the output to a file.

Typesetting SQL without generating XML

In the previous section SQL output was enhanced with XML tags. The XML tags were
then mapped to ConTEXt macro’s. It is possible to skip the XML tag generation by
directly putting the ConTEXt commands in the SQL select statement:
select

’\NC’,

"surname",

’\NC’,

"age",

’\NC\NR’

from "flintstone"

order by

"surname";

From the output we again have to remove the lines we don’t need. This can be
done with more or less a Perl script like the one shown before. It can be even simpler
as it doesn’t have to add something before or after the data. After cleaning up the
output should look like:

from database to presentation 37

\NC Barney \NC 38 \NC\NR

\NC Bart \NC 11 \NC\NR

\NC Betty \NC 34 \NC\NR

\NC Fred \NC 40 \NC\NR

\NC Homer \NC 45 \NC\NR

\NC Lisa \NC 9 \NC\NR

\NC Marge \NC 39 \NC\NR

\NC Wilma \NC 36 \NC\NR

The ConTEXt code to typeset the data in this case is:

\starttabulate[|p(7cm)|p|]

\HL

\NC surname \NC age \NC\NR

\HL

\input select3.tex

\stoptabulate

Transforming XML with XSLT

In the preceding section we’ve seen how XML can be generated from non XML sources.
This section is concerned with generating XML that can be typeset in ConTEXt from
existing XML sources. Usually XML sources are not in a format that can be typeset
easily. Such XML has to be transformed to the XML format presented earlier. Fortu-
nately there is an entire language devoted to transforming XML to XML. It is called
XSLT, a quite complete and not too difficult language. More information about XSLT
can be found at http://www.w3.org/Style/XSL/.

The first example is making a list of euroTEX 2001 authors and their presentations.
The program listing in XML at time of this writing looked like this:

<?xml version="1.0" encoding="iso-8859-1"?>

<program>

<day weekday="Monday" date="24 September 2001">

<item time="9.00h"><opening/></item>

<item time="9.15h">

<presentation>

<author>Hans Hagen</author>

<title>Overview of presentations</title>

</presentation>

</item>

<item time="9.45h">

<presentation>

<author>Wlodzimierz Bzyl</author>

<title>Re-introduction of Type 3 fonts into the TeX world</title>

</presentation>

</item>

<break time="10.30h" type="coffee"/>

<item time="11.00u">

<presentation>

38 berend de boer

<author>Michael Guravage</author>

<title>Literate Programming: Not Just Another Pretty Face</title>

</presentation>

</item>

</day>

</program>

With the following XSL stylesheet we can transform this to our standard XML

format:

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/program">

<rows><xsl:text>
</xsl:text>

<xsl:apply-templates select="day/item/presentation"/>

</rows><xsl:text>
</xsl:text>

</xsl:template>

<xsl:template match="presentation">

<row>

<field><xsl:value-of select="author"/></field>

<field><xsl:value-of select="title"/></field>

</row><xsl:text>
</xsl:text>

</xsl:template>

</xsl:stylesheet>

This transformation gives us something like this:

<?xml version="1.0" encoding="UTF-8"?>

<rows>

<row><field>Hans Hagen</field><field>Overview of presentations</field></row>

<row><field>Karel Skoupy</field><field>NTS implementation</field></row>

</rows>

How we can typeset this, should be clear enough by now! It is probably more
helpful to explain the XSL stylesheet a bit. An XSL stylesheet usually consists of many
<xsl:template> tags. The XSL processor takes the first one that matches the root
node (the ‘/’ separator) as the main template. It starts the transformation there
(The real rules are somewhat more difficult, but not important here). In our case
we match the </program> node. We output the <rows> tag and next we output all
the presentations. This is done with a <xsl:apply-templates> tag that searches
for a template that matches the selected nodes. In the template that matches the
presentation node, we output the <row> tag and the individual fields.

An XSL processor can do many advanced things with XML, see figure 4. It cannot
only generate XML, but also straight ConTEXt code for example, or just plain text.

from database to presentation 39

Figure 4 From XML to XML, text or what else

Besides just selecting the presentation, we can also sort them. We can do that with
embedding a sort instruction in an <xsl:apply-templates> instruction:

<xsl:apply-templates select="day/item/presentation">

<xsl:sort select="author"/>

</xsl:apply-templates>

If you want to learn more about XSLT, I can recommend “XSLT Programmer’s
Reference” by Michael Kay, also the author of the well--known XSLT processor Saxon.
For this document I used Xalan, another well--known processor, see http://xml.
apache.org/xalan-c/index.html.

Conclusion

My goal has been to give you a quite exhaustive overview of typesetting structured
data, but not already expressed as TEX macro’s, with ConTEXt. I did this by showing
how you can typesetting XML in ConTEXt. And I covered converting from comma
separated files, relational database data and XML to an XML format that can be
handled easily by ConTEXt.

♦ ♦ ♦

Usage of MathML for paper and web publishing
Tobias Burnus∗

The Mathematical Meta Language (MathML) of the World Wide Web Consortium
(W3C) based on XML has gained more support in the last months. Looking at
the W3C’s list of software which supports MathML one sees that the number of
applications which can produce MathML is rather long, but the list of applications
supporting typesetting of MathML is rather short.

I will concentrate on those points:

1. Using MathML to write real formulas. I started using it for writing my formulas
as a physicist, but I will also use some more complicated examples from the field
of physics and mathematics trying to reach the limits of the language.

2. Typesetting MathML on paper in high quality. Writing MathML alone doesn’t
help if you cannot print it. I will look at the quality of output and alternative
representations using ConTeXt.

3. Typesetting on the Web. Except for the fact that there are some applications
which can produce MathML and not TEX output, the real use for MathML is the
direct and fast representation on the Web. For that I will look at the MathML
features of Mozilla.

∗Email: burnus@net-b.de

♦ ♦ ♦

The Euromath System – a structured XML

editor and browser
J. Chleb́ıková, J. Guričan, M. Nagy, I. Odrobina
Faculty of Mathematics, Physics and Informatics

Comenius University, Bratislava

abstract. The Euromath System is an XML WYSIWYG structured editor and
browser with the possibility of TeX input/output. It was developed within the

Euromath Project and funded through the SCIENCE programme of the European
Commission. Originally, the core of the Euromath System was based on the

commercial SGML structured editor Grif. At present, the Euromath System is in the
final stage of re-implementation based upon the public domain structured editor Thot
and XML. During the re-implementation process several principal differences between
the basic features of Thot and the basic purposes of the Euromath System had to be

resolved.

keywords: structured editing, TEX, XML

Introduction

During the last decade we have seen a revolution in the field of processing of the elec-
tronic documents. The rapid growth of information technologies brought significant
changes to the potential benefits of electronic documents. The current evolution and
the research of electronic documents has several basic goals:

 The document can be used for multiple purposes with different applications. Once
a document has been stored in electronic form, one should be able to derive mul-
tiple “products” from a single source. For example, various kinds of printed ma-
terial can be produced, the document can be used on the WWW, the document
can be searched by database applications, and some parts of the document can
communicate with external applications.

 The document has to have a long life-time. It should be easily revised and usable
in any stage of its lifetime.

 Documents should be easily interchangeable across different computer platforms
and networks.

In line with the previous goals, the markup of documents was developed. For multipur-
pose documents it is necessary to use general standardized markup with emphasis on

42 j. chleb́ıková, j. guričan, m. nagy, i. odrobina

the logical structure of the document. For this reason the idea of a DTD (Document
Type Definition) and a syntax taken from GenCode and GML were formalized and
SGML (Standard Generalized Markup Language – ISO Standard 8879:1986) was de-
veloped (see [4]). Undoubtedly the most popular DTD is HTML, the present language
of the WWW.

SGML is a complex standard, and its use remained limited mainly to large com-
panies and a few research institutes. But this is not true for XML (Extensive Markup
Language) — the new language of the WWW. The most important difference between
XML and HTML is that XML does not have a fixed set of elements and attributes.

Structured Editors

From the user’s point of view the most comfortable tool for editing XML documents
is a structured editor. A structured editor can guide the user according to the logical
structure of the edited document (without his exact knowledge of that structure). In
particular, a structured editor can prevent the user from producing a document whose
actual logical structure is not consistent with the intended logical structure.

Advanced structured editors can allow the user to deal with the whole logical parts
of the document in several ways:

 move or copy complete logical parts of the document,

 change an element to an element of another type,

 create or delete some additional structure around an element

 and so on.

It is not assumed that the author is familiar with the logical structure of the document.
The editor offers options to the user according to the logical structure of the document.

Some structured editors can display and simultaneously allow one to edit individual
elements of the logical structure in separate windows, for example the bibliography.
It is possible to search for references to a particular logical element, and the editor
may facilitate searching for logical elements of a specified type, e.g. tables or figures.

WYSIWYG structured editors have become the most popular; in these the present-
ation of a document is configured separately for each available logical structure. This
approach uses a similar philosophy as latex classes and has several advantages for
the user. The author of the document only has to take care of the content of the docu-
ment — the layout is produced automatically. Also several different presentations can
be defined for one logical structure. The editor takes care of updating the numbering
of theorems, footnotes, cross-references, etc. according to the logical structure of the
document.

At present there are a few freely available WYSIWYG structured editors. We
mention Thot, Amaya and the new version of the Euromath System presented here.
Thot ([5]) is an open experimental authoring system developed by the Opera project

in order to validate the concepts of a structured document. Thot uses three different
internal languages S, P and T for the manipulation of the document, but unfortunately
it stores documents in the binary PIV format. From an abstract point of view the

the euromath system 43

S language (for Structure) provides the same structural concepts as a DTD. The P
language (for Presentation) of Thot provides presentation or style sheet support to
facilitate WYSIWYG views of documents. The T language (for Translation) allows
one to define export specifications for each element (or rules for ‘Save As’ formats).
Amaya ([3]) is the W3C test-bed browser and authoring tool for HTML documents

developed on top of the Thot technology. Amaya also has support for MathML (Math-
ematical Markup Language) and CSS (Cascading Style Sheet).

In the following we introduce the new version of the Euromath System — an XML
authoring tool and browser based on Thot. It was developed in the Euromath Support
Center (Faculty of Mathematics, Physics and Informatics) in Bratislava.

Euromath System

The primary purpose of the Euromath System is to create a homogeneous computer
working environment for mathematicians based on a uniform data model. The first
version of the Euromath System (1992) was developed within the Euromath Project
led by the European Mathematical Trust. Now the Euromath System combines the
advantages of the WYSIWYG approach, structured editing and standardized XML
format.

Originally, the core of the Euromath system was based on the commercial SGML
structured editor Grif. At present, the core of the Euromath System is in the final
step of re-implementation based on XML and Thot. Thot, unlike Grif, is public
domain software which is also available for more platforms (Linux, Unix). Due to the
conceptual proximity of both editors, the re-implementation was possible.

It is important to say that during the re-implementation process several principal
differences between the basic features of Thot and the basic purposes of the Euromath
System had to be resolved.

(i) There is no direct support of XML in Thot. The problem was solved by a new tool
named DTD2SPT that is capable of porting an arbitrary XML DTD to the Euromath
System. According to the DTD and a feature file the tool generates three files in the
internal languages of Thot S, P and T. The S-file describes the logical structure and
follows directly from DTD. The P-file is an automatically generated standard non-
WYSIWYG ‘XML’ presentation, in which the logical tree structure of the document
is displayed together with the tags for logical elements (which are usually hidden in
other presentations). The T-file is used for saving the document in XML format. The
user can influence the automatically generated S, P and T-files via certain rules in
the feature file. These generated files customize Thot in such a way that it provides
comfortable editing for documents which follow the rules of the given DTD. More
detailed information about this tool can be found in Subsection .

(ii) Thot uses the binary PIV format for saving documents. Therefore, it was ne-
cessary to solve the problem of opening and saving XML documents. Due to the fact
that Thot has the possibility to add one’s own T-language for export of the document,
the latter problem was solved almost directly. The problem was solved by adding a
mechanism for opening XML documents. It mainly involves the translation of the

44 j. chleb́ıková, j. guričan, m. nagy, i. odrobina

input XML document into an internal S-structure according the document’s DTD.
This is one of the most important features of the Euromath System. Some key issues
of the realization of the programme are given in Subsection .

(iii) The third important change follows from the fact that Thot is an authoring
system, but the Euromath System is also a WWW browser.

The Euromath system as structured WYSIWYG XML editor
The Euromath System offers the same basic editing functions as non-structured text
editors (find-replace, operations with clipboard, . . .), and a spelling checker for Eng-
lish, French and other languages. It also offers the possibility to easily incorporate
graphics according to various standards. The Euromath System allows easy WYSI-
WYG addition of new characters with support for UNICODE or the entity mechanism.

The Euromath System enables WYSIWYG structured editing for those DTD’s that
are frequently used by mathematicians: EmArticle.dtd, EmLetter.dtd, EmSheet.dtd,
EmSlide.dtd, and others. These DTD’s correspond to latex classes. As was men-
tioned before, the Euromath System facilitates structured editing of documents ac-
cording any new DTD. But this requires that one write a presentation of the new
DTD in Thot’s P-language. Moreover, the user can add more than one presentation,
so that one eventually has several different presentations for one DTD.

Furthermore, the Euromath System enables to use the advantages of the modu-
larity approach. The user can defined some parts of the document structure as a
modul, for example a table, etc. It is comfortable to use modularity approach in the
case, if the parts of the document structure are identical for some document classes.
Euromath System contain the moduls for paragraphs, tables and mathematical ex-
pressions (WYSIWYG presentations, saving into latex, . . .). From these moduls the
WYSIWYG presentation of new documents can be created rather straightforwardly.
If the document consists of modules, the Euromath System allows one to change the
presentation for each module during editing.

After re-implementation to the structured editor Thot, the Euromath System offers
the same properties of the structured editor as before (see [1] for overview). The most
of them was mention in the Section .

The Euromath System stores a document automatically in XML format according
the corresponding DTD. In the T-language the user has the possibility to add a trans-
lation of a document to other structured formats (for example, transform the structure
to another one) and to unstructured formats like TEX or HTML. As the system deals
with a structured document, the translation to most formats is easy. But for a perfect
translation to TEX the T-language lacks certain features (more conditions, external
files, etc.).

The Euromath System offers export of documents according to the EmArticle and
EmLetter DTDs to the standard latex classes article, letter and book. For a new
document class the translation to latex can easily be built from the available modules
such as paragraphs, tables, formulae, etc.

the euromath system 45

Euromath Applications

The Euromath System comes with a programming interface that allows external ac-
tions to be attached to it. Euromath applications extend the possibilities of the
Euromath System as a structured editor.

Personal File System (PFS)
The Personal File System is a front-end for the ZentrallBlatt Math database. The
form for formulating a (database) query is part of the Euromath System and uses the
internal Thot library.

PFS is technically based on three external programs — pcmes, zbl2tex and l2s.
pcmes comes from ZentrallBlatt, zbl2tex and l2s are part of the Euromath System
and were developed in the framework of the Euromath Project.
pcmes is a database engine which executes queries formulated by the user using the

PFS form, and generates record sets or other results. These results are returned to
the Euromath System using a special listener.
zbl2tex transforms a record set obtained from pcmes to an XML file containing

the required bibliographic data. This file is opened as a new document using the
EmArticle DTD.

Some parts of a database record (TI-title, AB-abstract and UT- keywords) can
contain TEX expressions and therefore must be processed by l2s. The source part
of the record, which contains bibliographic data, does not have a fixed structure.
Especially, books and conference articles can be very complicated and differ from case
to case. We use a few heuristic methods to transform this part to the XML structure
specified by the EmArticle DTD. These heuristics successfully cover more than 95 %.
To get the resulting XML file, zbl2tex parses the original output from pcmes together
with some auxiliary data in three stages.

Translation from TEX to XML – l2s
l2s, written for the Euromath project, is a parametrizable translation program, which
translates TEX, latex and AMS-TEX files to files in XML format following the rules of
EmArticle DTD (MathML DTD is in progress). Both the lexer and the parser parts
contain some new features in order to cope e.g. with default parameters in latex2e
macros, with the ensuremath construction or with proclaim in the amsppt style. l2s
was mainly written for the translation of latex(2e) article style formatted documents
to XML format.

The main part of l2s is also used for another way of inputting mathematics. The
user can insert mathematics using either the standard means of a structured editor or
by inserting TEX expressions as special elements. The translation between the TEX
formulae and the XML structure can be done at any time by pressing Ctrl-T (or using
the menu). Even when writing a text, one can press Ctrl-T to obtain the possibility to
enter TEX formulae directly. When done, pressing Ctrl-T again displays the formulae
in WYSIWYG mode.

The user can use his own predefined set of TEX macros given in a file determined
by the MFILEL2S environment variable.

46 j. chleb́ıková, j. guričan, m. nagy, i. odrobina

∗.dtd

SYMBOL TABLE I.

SYMBOL TABLE II.

SYMBOL TABLE III.

SYMBOL TABLE IV.

∗.S ∗XML.T ∗XML.P ∗XML.conf ∗XML.en

∗.fea

∗.SX

parsing

identify
name conflicts

parsing

Phase I.

Phase II.

Phase III.

Phase IV.

Phase V.

adding additional
elements (ghosts)

replace names

removes duplicate
ATTR. definition

figure 1: The phases and actions of the DTD2SPT. The SX file is an auxiliary file de-
scribing the name conversions of the objects.

Retrieving documents across networks
The Euromath System can be used as a WWW browser for HTML and XML docu-
ments. The Euromath System is ideal for viewing remote XML files – especially for
documents with DTD’s, for which WYSIWYG presentations in the Euromath System
are available. The EmArticle DTD also contains some basic mathematical construc-
tions but in the future we would like to add a WYSIWYG presentation for standard
MathML.

Implementation of the Programme

The DTD2SPT tool for porting a DTD into the Euromath System
The tool translates a DTD to files in the S, P, T languages, which are accepted
by Thot. The translation process, inputs, outputs and internal states are shown in
Figure . The tool passes through five phases, which are separated by four defined
states of the principal internal data structure called the SYMBOL TABLE.

During phase I DTD2SPT reads the DTD and transforms it into its internal data
structure. The user might find it useful to influence the automatic generation of the
S, P, T language files by slightly changing the original DTD. This is enabled via

the euromath system 47

supplemental commands in the feature file. As can be seen in Figure , the DTD2SPT
alters the internal representation of the DTD. This process is carried out in phase II
and the SYMBOL TABLE is transformed to its second state.

During phase III DTD2SPT identifies those names of DTD objects (elements, at-
tributes, attribute-definition-parts) which cannot be used in the S, P, T languages.
This happens because the DTD specification permits names with a larger number of
characters from a broader set; the DTD-object names may also interfere with keywords
of the S, P, T languages.

In addition to these syntactical limitations, we had to deal with a dissimilarity in the
background model of objects in the DTD and in the S, P, T languages. An attribute
in the DTD is a sub-part of a single element, and the attribute-definition-part is a sub-
part of an attribute. On the other hand, an attribute in the S-language is visible to all
elements, and an attribute-definition-part to all attributes. This clearly implies that,
unlike in DTDs, the names of all S-objects must be unique. Due to this dissimilarity,
a straightforward translation of a DTD might also generate several definitions of a
uniquely named attribute. Therefore during phase IV, attribute names and attribute
definitions are compared; conflicts in definitions are resolved and redundant definitions
are removed.

The content model of a DTD element can contain also group of elements or occur-
rence indicators. Here we encounter another problem that prevents a straightforward
translation because generation of the presentation (the P-language) for this type of
elements represents a serious complication. The problem is resolved during the same
translation phase when these multi- composed elements are disassembled into elements
with a simple structure. This process introduces additional elements (called ghosts)
into the generated S-code.

Opening XML documents
The XML parser is the basic component of the Euromath System. The chosen ap-
proach uses the advantages of RTN (recursive transition network). The idea was
adapted from [2], who had used RTN to parse natural language sentences. Allen’s
design was changed in detail to simplify the implementation.

The context-free grammar described in [6] was changed to RTN diagrams. Mainly,
for each grammar rule one RTN was designed. The transition arc is labeled either by
the terminal string or by a nonterminal one, which represents another RTN. An RTN
is implemented as one function, which returns accept, reject or error message.
When an RTN returns reject, it must restore the position of the read head. Prob-
lems could occur in the case of inclusions (internal or external entities) because it is
time consuming to restore the original state before calling the RTN function. But
the grammar rules in [6] are well proposed and the grammar is unambiguous. The
unambiguity ensures that an RTN can decide whether to return reject or to continue
processing (after which it can return only accept or error) by reading a few terminals
from the tape.

Semantic rules have been implemented into the RTN functions. For example, the
same name of the start-tag and the end-tag, the inclusion of entities, management
of processing instructions, . . . The inner structure of the document is built while the

48 j. chleb́ıková, j. guričan, m. nagy, i. odrobina

input document is read with the assistance of Thot in accordance with RTN parsing.
The validity of the document is checked automatically by the Thot engine according
the internal structure of the S-language.

In order to successfully open XML documents, it was necessary to make some
changes to Thot’s S-language. For example, we introduced string conversion, new
types of elements and so on.

Unicode has been a serious problem and it has not yet been fully resolved. The Thot
engine does supports not it at all. In the present version, the large unicode numbers
may be used as well a character entity references. Predefined named unicode entities
can be automatically included into every document.

Changed presentation features of the document (for example, the font name or the
font size) and the name of the actual presentation are stored as processing instructions.

Concluding Remarks

XML is rapidly becoming the standard for the WWW. The Euromath System is at
the forefront in exploiting the benefits of XML for documents and also the typesetting
qualities of the TEX system.

The latest version of the Euromath system is available for UNIX (X-window system)
on the SUN platform and Linux.

More information about the Euromath system can be found on the page
http:\\www.dcs.fmph.uniba.sk\~emt.

Our further plans involve support of MathML, improving the possibility of structural
changes and supporting at least some feature of CSS or XSL.

references

[1] J. Chleb́ıková, The Euromath System – the structured editor for mathem-
aticians, EuroTeX 1998, pp. 82–93.

[2] J. Allen, Natural Language Understanding, 2nd ed., The Benjamin/Cummings
Publishing Company, Inc., CA, 1995.

[3] V. Quint, I. Vatton, An Introduction to Amaya, World Wide Web Journal,
Vol. 2, Num. 2, 39–46, 1997.

[4] International Standard ISO 8879, Information Processing – Text and Office Sys-
tems – Standard Generalized Markup Language, International Standard Organ-
ization, 1986.

[5] Opéra, Thot, A structured document editor, Inria, 1997.
http://www.inrialpes.fr/opera/Thot.en.html

[6] XML specification, version 1.0, see http://www.w3c.org/TR/REC-xml.

♦ ♦ ♦

Instant Preview

and

the TEX daemon
Jonathan Fine

abstract.
Instant Preview is a new package, for use with Emacs and xdvi, that allows the user
to preview instantly the file being edited. At normal typing speed, and on a 225MHz

machine, it refreshes the preview screen with every keystroke.
Instant Preview uses a new program, dvichop, that allows TEX to process small files

over 20 times quicker than usual. It avoids the overhead of starting TEX. This
combination of TEX and dvichop is the TEX daemon.

One instance of the TEX daemon can serve many programs. It can make TEX available
as a callable function. It can be used as the formatting engine of a WYSIWYG editor.
This talk will demonstrate Instant Preview, describe its implementation, discuss its
use with latex, sketch the architecture of a WYSIWYG TEX, and call for volunteers

to take the project forward.
Instant Preview at present is known to run only under GNU/Linux, and is released

under the GPL. It is available at:
http://www.activetex.org

Instant Preview

TEX is traditionally thought of as a batch program that converts text files into typeset
pages. This article describes an add-on for TEX, that in favourable circumstances can
compile a file in a twentieth of the normal time. This allows TEX to be used in
interactive programs. This section describes Instant Preview.1

Types of users
Almost all users of TEX are familiar with the edit-compile-preview cycle that is part
of the customary way of using TEX. Previewing is very useful. It helps avoid wasting
paper, and it saves time. In the early days, it could take several seconds to compile
and preview a file, and perhaps minutes to print it. Today it takes perhaps about a
quarter of a second to compile and preview a file.

1A screen-shot, in PNG format, is available at the author’s website. [It would be nice if it could
be included, but I don’t know how to do this.]

50 jonathan fine

Many of today’s newcomers to computing, and most users of WYSIWYG word
processors, expect to have instant feedback, when they are editing a document. Users
of TEX expect the same instant feedback, when they are editing a source file in a
text editor. Because they have absorbed the meaning of the markup codes, they can
usually imagine without difficulty the printed form of the document. They know when
the markup is right.

Beginners tend to compile the document frequently, because they are uncertain,
and wish to have the positive reinforcement of success. Instant Preview, again under
favourable circumstances, can reduce to a twentieth the time take to compile and
preview a file. This makes it practical to offer preview after every keystroke. Beginners
will be able to see their failures and successes as they happen.

Experienced users do not need such a high level of feedback, and prefer to devote
the whole screen to the document being edited. However, even experts have the same
need for positive reinforcement, when they use a package that is new to them.

Modus operandi
Here we describe three possible ways of using Instant Preview. At the time of writing,
only the last has been implemented. We assume that the document is in the editing
stage of its life cycle, or in other words the location of page breaks and the like is not
of interest.

The expert needs only occasionally to preview the source document. She will select
the region of interest, and ask for it to be previewed. Instant Preview here may
provide a quick and convenient interface, but the operation is uncommon and so the
functionality should be unobtrusive.

When doing something tricky, the user might wish to focus on a part of the doc-
ument, and for this part have Instant Preview after every keystroke. The tuning of
math spacing in a formula is an example. Few if any users invariably know, without
looking, what tuning should be applied to a moderately complicated formula. This ap-
plies particularly to displayed equations wider than the measure, multi-line equations,
and commutative diagrams. It also applies to the picture environment (for which the
special tool TEXcad was written).

For the beginner, everything is tricky, even straight text. The beginner hardly
knows that \{}#^_%$ are all special characters, and that ‘‘ and ’’ are the way to get
open and close double quotes. Even experts, who know full well the rules for spaces
after control sequences, sometimes make a mistake2. The absolute beginner is likely
to want Instant Preview of everything, absolutely all the time. Later, with experience,
the training wheels can be removed.

Implementation
Instant Preview has been implemented using Emacs and xdvi. There seems to be
no reason why another editor and previewer should not be used, provided the editor
is sufficiently programmable, and the previewer can be told to refresh the file it is
previewing.

2In the first draft, the allegedly expert author forgot that & is also special, and also that \verb

cannot be used in a latex footnote.

instant preview and the tex daemon 51

Instant Preview works by writing the region to be previewed, together with suitable
preamble and postamble, to a special place. From there, the TEX daemon picks it
up, typesets it, and writes it out as a dvi file. Once written, the previewer is told to
refresh its view of the dvi file.

The main difference between the three modes is what is written out, and when.
Absolute beginner mode writes out the whole buffer, after every keystroke. Confident
expert mode writes out a selected region, but only on demand.

At the time of writing (mid-June 2001), only absolute beginner mode has been
implemented. Further progress requires above all clear goals and Emacs programming
skills.

The dvichop program

For interactive programs, speed is of the essence. Therefore, we will look at TEX’s
performance. The author’s computer has a 225MHz Cyrix CPU. So that we have a
definite figure, we will say that on this machine a response time of 1/10 seconds is
acceptable.

Typesetting story.tex
There is a file, story.tex, that is part of every TEX distribution. It is described in
The TEXbook. On the author’s computer, the command

time tex ./story \\end

takes .245 seconds to execute3. This seems to make Instant Preview impossible.
However, the command

time tex \\end

takes only .240 seconds to execute. Therefore, it takes TEX almost 1/4 of a second to
load and exit, while typesetting the two short paragraphs in story.tex can be done
about 20 times in the target time of a tenth of a second.

Thus, provided the overhead of loading (and exiting) TEX can be avoided, Instant
Preview is possible.

Remarks on performance
The simple tests earlier in this article show that it takes TEX about 0.005 seconds to
typeset the file story.tex. This subsection gives a more precise result. It also show
some of the factors that can influence apparent performance.

The file 100story.tex is as below.

\def\0{\input ./story }

\def\1{\0\0\0\0\0\0\0\0\0\0}

\def\2{\1\1\1\1\1\1\1\1\1\1}

\2 \end

3To avoid the overhead of X-windows, this command was executed in a virtual console. The same
goes for the other timing data. The input file is placed in the current directory to reduce kpathsea
overheads.

52 jonathan fine

Mode seconds
Console, output to /dev/null .492
Console, output to screen .507
X-windows, output to /dev/null .497
X-windows, output to screen .837

table 1: Time taken to typeset story.tex 100 times

Table 1 gives the time taken to process this file, in the various modes. It shows
that on the author’s machine and in the best conditions, it takes about 0.0025 ≈
(0.492− 0.240)/100 seconds to process story.tex once.

Note that the time taken can be quite sensitive to the mode, particularly X-windows.
We also note that using \input story (so that kpathsea looks for the file) adds about
0.025 seconds to the total time taken.

Starting TEX once
The solution is to start TEX once, and use it to typeset multiple documents. Once
TEX has typeset a page, it uses the \shipout command to write it to the dvi file. The
new page now exists on the file system, and can be used by other programs. Actually,
this is not always true. To improve performance, the system dependent part of TEX
usually buffers the output dvi stream. However, this can be turned off. We assume
that dvi output is unbuffered.

Most dvi-reading applications are unable to process such an ill-formed dvi file. For
example, most immediately seek to the end of the file, to obtain a list of fonts used.
To bridge this gap, and thereby enable Instant Preview, the author wrote a utility
program called dvichop.

This program takes as input a dvi file, perhaps of thousands of pages, and produces
from it perhaps thousands of tiny dvi files. The little files are the ones that the
previewer is asked to reload.

More exactly, dvichop looks for special marker pages in the output dvi-stream
produced by TEX the program. The marker pages delimit the material that is to be
written to the small dvi files. The marker pages also control where the output of
dvichop is to be written, and which process is to be informed once the output page
is ready.

Implementation
The program dvichop is written in the C programming language. It occupies about
800 lines of code, and calls in a header file dviop.h to define the opcodes. A shell
program texd starts TEX and sends its dvi output to dvichop. More exactly, TEX
writes to a named pipe (a FIFO), which is then read by dvichop.

More on performance
In the abstract is is claimed that TEX together with dvichop is over 20 times quicker
that ordinary TEX, when applied to small files. Here is some test data to support this
bold claim.

instant preview and the tex daemon 53

Normally, dvichop is run using a pipe. To simplify matters, we will create the input
stream as a ordinary file. The plain input file listed below does this. It also illustrates
the interface to dvichop.

% 100chop.tex

\newcount\dvicount

\def\0{

\begingroup % begin chop marker page

\global\advance\dvicount 1

\count0\maxdimen \count1 3

\count2 \dvicount \shipout\hbox{}

\endgroup

\input ./story % typeset the story

\begingroup % end chop marker page

\count0\maxdimen \count1 4

\count2 0 \shipout\hbox{}

\endgroup

}

\def\1{\0\0\0\0\0\0\0\0\0\0}

\def\2{\1\1\1\1\1\1\1\1\1\1}

\begingroup % say hello to dvichop

\count0\maxdimen \count1 1

\count2 1 \shipout\hbox{}

\endgroup

\2 % ask dvichop to produce 100 files

\begingroup % say goodbye to dvichop

\count0\maxdimen \count1 2

\count2 0 \shipout\hbox{}

\endgroup

\end

Typesetting story.tex 100 times in the conventional way takes approximately 24.5
seconds. Running TEX on 100chop.tex takes about 0.510 seconds. This typesets the
story for us 100 times. Running dvichop on the output file 100chop.dvi takes 0.135
seconds. Its execution creates files 1.dvi through to 100.dvi that are for practical
purposes identical to those obtained in the conventional way. The conventional route
takes 24.5 seconds. The dvichop route took 0.510 + 0.135 = 0.645 seconds.

This indicates that on story.tex using dvichop is 24.5/0.635 ≈ 38 times quicker.
Some qualifying remarks are in order. In practice, using the pipeline will add overhead,
but this seems to be less than 0.01 seconds. On the other hand, the present version
of dvichop is not optimised.

The TEX daemon

A this point we assume the reader has some basic familiarity with client-server archi-
tecture. A server is a program that is running more or less continually, waiting for

54 jonathan fine

requests from clients. Clients can come and go, but servers are expected to persist.
An operating system is a classic example of a server, while an application is a client.

Thanks for the memory
Normally, TEX is run as an application or client program. It is loaded into memory to
do its job, it does its job, and then it exits. In the mid-1980s, when the author started
using a personal computer, having more than a megabyte of memory was uncommon.
TEX is uncomfortable on less than 512Kb of memory. Thus running TEX as a server
would consume perhaps half of the available memory. For all but the most rabid
TEX-ophile, this is clearly not an option.

Today TEX requires perhaps 2Mb of memory, and personal computers typically
have at least 32Mb of memory. Letting TEX remain in memory on a more or less
permanent basis, much as Emacs and other programs remain loaded even when not
used, is clearly practical. However, even today, for most users there is probably not
room to have more than a handful of instances of TEX resident in memory.

Sockets
The present implementation of Instant Preview uses a named pipe. Sockets provide
a more reliable and flexible interface. In particular, sockets can handle contention
(requests to the same server from several clients). Applications communicate to the
X-server provided by X-windows by means of a socket.

Providing a socket interface to the TEX daemon will greatly increase its usefulness.
The author hopes that by the end of the year he or someone else will have done this.

TEX as a callable function
Over the years, many people have complained that the batch nature of TEX makes it
unsuitable for today’s new computing world. They have wanted TEX to be a callable
function. However, to make TEX a callable function, all that is required is a suitable
wrapper, that communicates with the TEX daemon.

At present the TEX daemon is capable of returning only a dvi file. To do this,
it must parse the output dvi stream. Suppose, for example, that the caller wants
to convert the output dvi into a bitmap, say for inclusion in an HTML page. The
present set-up would result in the dvi pages being parsed twice. Although this is
not expensive, compared to starting up a whole new TEX process, it is still far from
optimal.

If the TEX daemon could be made to load page-handling modules, then the calling
function could then ask for the bitmap conversion module to handle the pages produced
by the function call. This would be more efficient. However, as we shall soon see,
premature optimisation can be a source of problems.

TEX forever
An errant application does not bring down the operating system. Strange keystrokes
and mouse movements do not freeze X-windows. In the same way, applications should
never be able to kill the TEX daemon. To achieve this level of reliability is something
of a programming problem.

instant preview and the tex daemon 55

One thing is clear: The application cannot be allowed to send arbitrary raw TEX to
the TEX daemon. TEX is much too sensitive. All it takes is something like

\global\let\def\undefined

and the TEX daemon will be rendered useless.
A more subtle form of this problem is when a client’s call to the daemon results in

an unintended, unwelcome, and not readily reversible change of state. For example,
the latex macro \maketitle executes

\global\let\maketitle\relax

which is an example of such a command. (Doing this frees tokens from TEX’s main
memory. When TEX, macros and all, is shoe-horned into 512Kb, this may be a good
idea.)

Protecting TEX
TEX can be made a callable function by providing an interface to the TEX daemon.
Most applications will want an interface that is safe to use. In other words, input
syntax errors are reported before they get to TEX, and it is not possible to accidentally
kill the TEX daemon. To provide this, the interface must be well defined. For example,
the input might be an XML-document (say as a string) together with style parameters,
and the output would be say a dvi file. Alternatively, the input might be a pointer
to an already parsed data structure.

In the long run, this interface is probably best implemented using compiled code,
rather than TEX macros. Once a function is used to translate source document into
TEX input, there is far less need for developers to write complicated macros whose main
purpose is to provide users with a comfortable input syntax. Instead, the interface
function can do this.

When carried out in a systematic manner, this will remove the problem, that in
general latex is the only program that can understand a latex input file. The same
holds for other TEX macros formats, of course. Note that Don Knuth’s WEAVE (part
of his literate programming system) is similarly compiled code that avoids the need
to write complicated TEX macros.

Visual TEX

This article uses the term visual TEXto mean programs and other resources that allow
the user to interact with a document through a formatted representation, typically a
previewed dvi file. We use it in preference to WYSIWYG (what you see is what you
get) for two reasons. The first is today many documents are formatted only for screen,
and never get printed. Help files and web pages are examples of this. The second is
that even when editing a document for print, the user may prefer a representation
that is not WYSIWYG.

In most cases the author will benefit from interacting with a suitably formatted
view of the underlying document. The benefits of readability and use of space that
typesetting provides in print also manifest on the screen. But to insist on WYSIWYG

56 jonathan fine

is to ignore the differences between the two media. Hence our use of the term Visual
TEX.

Whatever term is used, the technical problems are much the same, which is how to
enable user interaction with the dvi file.

Richer dvi files
In Visual TEX, the resulting dvi file is a view on the underlying document. For it to
be possible to edit the document through the view, the view must allow the access to
the underlying document. Editing changes applied to the view, such as insertion and
deletion, can then be applied to the document.

Placing large numbers of \special commands in the dvi file is probably the best
(and perhaps the only) way to make this work. Doing this is the responsibility of
the macro package (here taken to include the input filter function described in the
previous section). It is unlikely that any existing macro package, used in its intended
manner, will support the generation of such enriched dvi files. The author’s Active
TEX macro package[2] is designed to allow this.

Better dvi previewers
Most dvi previewers convert the dvi into a graphics file, such as a bitmap. Some
retain information about the font and position of each glyph. A text editor or word
processor has a cursor (called point in Emacs), and by moving the cursor text can be
marked. This is a basic property of such programs. So far as the author knows, no
dvi previewer allows such marking of text.

Further reading
This section is based on the author’s article [1].

The Lyx editor for latex adopts a visual approach to the generation of files that can
be typeset using latex. It does not support WYSIWYG interaction. Understanding
the capabilities and limitations of Lyx is probably a good way to learn more about
this area.

The next steps

This section discusses some of the opportunities and problems in this general area,
likely to present themselves over the next year or two.

Applications
Two areas are likely to be the focus of development in the next year or so. The first is
the refinement of Instant Preview, as a tool for use with existing TEX formats. Part
of this is the creation of material for interactive (La)TEX training. Instant Preview
provides an attractive showcase for the abilities of TEX and its various macro packages.

The second is TEX as a callable function. This is required for Visual TEX. One of
the important missing components are libraries that allow rich interaction with dvi

files. This will lay the foundation for TEX being embedded in desktop applications.

instant preview and the tex daemon 57

License
The work described this article is at present released under the General Public Licence
of the Free Software Foundation (the GPL). Roughly speaking, this means that any
derived work that contains say the author’s implementation of the TEX daemon must
also be released under the GPL.

However, the TEX daemon is the basis for TEX as a callable function, and for good
reason library functions are usually released under the Lesser (or Library) General
Public Licence (the LGPL), or something similar. This means that the library as is
can be linked into proprietary programs, but that any enhancement to the library
must be released under the LGPL.

Porting
TEX runs on almost all computers, and where it runs, it gives essentially identical
results. The same applies, of course, to TEX macros. By and large, it is desirable that
the tools used with TEX run can be made to run identically on all platforms. This is
not to say that the special features of any particular platform should be ignored. Nor
is it to say that advances (such as Instant Preview itself) should not first manifest on
a more suitable platform.

Cross-platform portability is one of the great strengths of TEX. What is desirable
is that programs that run with TEX have a similar portability. Many people cannot
freely choose their computing platform. If TEX and friends are available everywhere,
this make TEX a more attractive choice.

In the 1980s, in the early days of TEX, many pioneers ported TEX to diverse plat-
forms. This work established deep roots that even today continue to nourish the
community. Although Instant Preview, even when fully developed, is not on the same
scale as TEX, it being ported will similarly nourish the community.

TEX macros
Visual TEX requires a stable TEX daemon, which in turn will require a macro package
(or a pre-loaded format). This new use of TEX places new demands on the macros.
Here, we include in macros any input filter functions used to protect the TEX daemon
from errant applications.

These new demands include protection against change of state, reporting and re-
covery from errors, ability to typeset document fragments, support for rich dvi file,
and the ability for a single daemon to support round-robin processing of multiple doc-
uments. Once tools are in place, much of the input is likely to be XML, and much of
the output will be for screen rather than paper.

The existing macros packages (such as plain, latex and ConTEXT) were not written
with these new requirements in mind. Although they are useful now, in the longer term
it may be better to write a new macro package from scratch, for use in conjunction
with suitable input filters.

58 jonathan fine

Summary

By running TEX within a client-server architecture, many of the problems traditionally
associated with it are removed. At the same time, new demands are placed on macro
packages, device drivers (such as dvichop and xdvi) and a new category of software,
input filters (such as WEAVE).

This new architecture allows Instant Preview, and opens the door to Visual TEX.
All this is possible without making any changes to TEX the program, other than in
the system dependent part.

Don Knuth
In 1990, when he told us [4] that his work on developing TEX had come to an end,
Don Knuth went on to say:

Of course I do not claim to have found the best solution to every problem. I
simply claim that it is a great advantage to have a fixed point as a building
block. Improved macro packages can be added on the input side; improved
device drivers can be added on the output side.

The work described in this article has taken its direction from this statement. One
of the most obvious characteristics of today’s computer monitors (not to be confused
with the chalk monitor in classrooms of old) is their widespread use of colour. TEX
is clumsy with colour. TEX was not designed with Visual TEX in mind. However, we
still have our hands full making the best of what we have with TEX. If our labours
bear fruit, then in time a place and a need for a successor will arise.

Again, this possibility was foretold by Don Knuth [3]:

Of course I don’t mean to imply that all problems of computational typography
have been solved. Far from it! There are still countless important issues to be
studied, relating especially to the many classes of documents that go far beyond
what I ever intended TEX to handle.

references

[1] Jonathan Fine, Editing .dvi files, or Visual TEX, TUGboat, 17 (3) (1996), 255–
259.

[2] , Active TEX and the DOT input syntax, TUGboat, 20 (3) (1999), 248–261

[3] Donald E. Knuth, The Errors of TEX, Software—Practice & Experience, 19
(1989) 607–685 (reprinted in Literate Programming)

[4] , The future of TEX and METAFONT, TUGboat, 11 (4) (1990), 489 (re-
printed in Digital Typography)

♦ ♦ ♦

TEX and/or xml: good, bad and/or ugly
Hans Hagen∗

PRAGMA ADE, 8061 GH Hasselt, The Netherlands

abstract. As a typesetting engine, TEX can work pretty well with structured input.
One can build interfaces that are reasonably well to work with and code in. xml on
the other hand is purely meant for coding, and the more rigorous scheme prevents
errors and makes reuse easy. Contrary to TEX, xml is not equivalent to typesetting,
although there are tools (and methods) to easily convert the code into other stuctured
code (like html) that then can be handled by rendering engines. Should we abandon
coding in TEX in favor of xml? Should we abandon typesetting using TEX in favor of
real time rendering of relatively simple layout designs? Who are the good and bad

guys in that world? And even more importantly: to what extent will document design
(and style design) really change?

∗E-mail: pragma@wxs.nl url: www.pragma-ade.com

♦ ♦ ♦

TEX Top Publishing: an overview
Hans Hagen∗

PRAGMA ADE, 8061 GH Hasselt, The Netherlands

abstract. TEX is used for producing a broad range of documents: articles, journals,
books, and anything you can think of. When TEX came around, it was no big deal to
beat most of those day’s typesetting programs. But how well does TEX compete today

with mainstream Desk Top Publishing programs?
What directions will publishing take and what role can TEX play in the field of

typesetting? What are today’s publishing demands, what are the strong and what are
the weak points of good old TEX, and what can and should we expect from the

successors of TEX?

∗E-mail: pragma@wxs.nl, url: www.pragma-ade.com

♦ ♦ ♦

ConTEXt Publication Module,
The user documentation

Taco Hoekwater

Introduction

T
his module takes care of references to publications and the typesetting of pub-
lication lists, as well as providing an interface between BibTEXand context.

This is a preliminary version; changes may be needed or wanted in the near
future. In particular, there are some minor issues with the multi-lingual interface that
need to be solved.

The bibliographic subsystem consists of the main module m-bib.tex; a helper
module (m-list.tex); four BibTEX styles (cont-xx.bst); and an example configu-
ration file (bibl-apa.tex) that specifies formatting instructions for the citations and
the list of references.

General overview
A typical input file has the following structure:

1. A call to \usemodule[bib].
2. Some optional setup commands for the bibliographic module.
3. A number of definitions of publications to be referenced in the main text of the

article. The source of these definitions can be a combination of:
− an implicit BibTEX-generated BBL file (read at starttext)
− one or more explicit BibTEX-generated BBL files
− an included definition file in the preamble
− included macros before \starttext

All of these possibilities will be explained below. For now, it is only im-
portant to realize that of all these definitions must be known before the first
citation in the text.

4. \starttext

5. The body text, with a number of \cite commands.
6. The list of publications, called using the command \placepublications or the

command
\completepublications.

7. \stoptext

62 taco hoekwater

Setup commands

B
ibliographic references tend to use a specific ‘style’, a collection of rules for the
use of \cite as well as for the formatting that is applied to the publication
list. The context bibliographic module allows one to define all of these style

options in one single file. Unlike latex, his style includes the formatting of the items
themselves.

Global settings: \setuppublications
The most important user-level command is \setuppublications. Most of the options
to this command are set by the bibliography style, and should only be overridden with
great care, but a few of them are of immediate interest to the user. The command
should be given before \starttext, and it sets some global information about the
bibliographic references used in the document. context needs this information in
order to function correctly.

\setuppublications[..,..=..,..]

autohang yes no

numbering yes no short bib

criterium all cite

sorttype bbl cite

alternative text apa

refcommand author authoryear authoryears key number num page short type year data

alternative This gives the name of a bibliography style.
Currently, there is only one style, which is APA-like, and that style
is therefore also the default.

sorttype How the publications in the final publication list should be sorted.
‘cite’ means: by the order in which they were first cited in your
text. ‘bbl’ tells the module to keep the relative ordering in which
the publication definitions were found.
The current default for apa is ‘cite’.

criterium Whether to list only the referenced publications or all of them.
If this value is ‘all’, then if ‘sorttype’ equals ‘cite’, this means that
all referred-to publications are listed before all others, otherwise
(if ‘sorttype’ equals ‘bbl’) you will just get a typeset version of the
used database(s).
The default for apa is ‘used’

numbering Whether or not the publication list should be labelled and if so,
how. yes uses the item number in the publication list as label.
short uses the short label. bib uses the original number in the
BibTEX database as a label. Anything else turns labelling off.
The default for apa is ‘no’.

context publication module 63

numbercommand A macro that can be used to typeset the label if numbering is
turned on.
The default behaviour is to typeset the label as-is, flush left.

autohang Whether or not the hanging indent should be re-calculated based
on the real size of the label. This option only applies if numbering
is turned on.
The default is ‘no’.

refcommand The default option for \cite.

Since most of the options should be set by a bibliography style, the specification
of an alternative bibliography style implies that all other arguments in the same com-
mand will be ignored. If you want to make minor changes to the bibliography style,
do it in two separate commands, like this:

\setuppublications[alternative=apa]

\setuppublications[refcommand=author]

How the entries are formatted: \setuppublicationlist

\setuppublicationlist[..,..=..,..]

totalnumber text

samplesize text

editor \invertedauthor \invertedshortauthor \normalshortauthor

\normalauthor

author \invertedauthor \invertedshortauthor \normalshortauthor

\normalauthor

artauthor \invertedauthor \invertedshortauthor \normalshortauthor

\normalauthor

namesep text

lastnamesep text

firstnamesep text

juniorsep text

vonsep text

surnamesep text

..=.. see \setuplist

The list of publications at the end of the article is essentially a normal context ‘list’
that behaves much like the list that defines the table of contents, with the following
changes:

The module defines a few new options. These options are static, they do not change
to follow the selected context interface.

The first two options provide default widths for ‘autohang’:

totalnumber The total number of items in the following list (used for autohang).
samplesize The longest short label in the list (used for autohang)

All the other extra options are needed to control micro--typesetting features that
are buried deep within macros. There is a separate command to handle the larger

64 taco hoekwater

layout options (\setuppublicationlayout, explained below), but the options here
are the only way to make changes in the formatting used for the names of editors,
authors, and article authors.

editor command to typeset one editor in the publication list.
author command to typeset one author in the publication list.
artauthor command to typeset one article author in the publication list.
namesep the separation between consecutive names (either editors, authors or

artauthors).
lastnamesep the separation before the last name in a list of names.
firstnamesep the separation following the first-name or inits part of a name in the

publication list.
juniorsep likewise for ‘junior’.
vonsep likewise for ‘von’.
surnamesep likewise for surname.

The commands that are listed as options for ‘editor’, ‘author’ and ‘artauthor’ are
predefined macros that control how a single name is typeset. The four supplied macros
provide formatting that looks like this:

\invertedauthor von Hoekwater, jr Taco
\invertedshortauthor von Hoekwater, jr T
\normalauthor Taco, von Hoekwater, jr
\normalshortauthor T, von Hoekwater, jr

As can be seen in the examples, there is a connection between certain styles of
displaying a name and the punctuation used. Punctuation in this document has been
set up by the ‘apa’ style, and that style makes sure that \invertedshortauthor looks
good, since that is the default command for ‘apa’ style. (Keep in mind that the comma
at the end of the author will be inserted by either ‘namesep’ or ‘lastnamesep’.)

If you are not happy with the predefined macros, you can quite simply redefine one
of these macros. They are all simple macros with 5 arguments: firstnames, von-part,
surname, inits, junior.

For reference, here is the definition of \normalauthor:

\def\normalauthor#1#2#3#4#5%

{\bibdoifelse{#1}{#1\bibvariant{firstnamesep}}{}%

\bibdoifelse{#2}{#2\bibvariant{vonsep}}{}%

#3\bibvariant{surnamesep}%

\bibdoifelse{#5}{#5}{}}

But commands can be a lot simpler, like this:

\def\surnameonly#1#2#3#4#5{#3}

\setuppublicationlist[editor=\surnameonly]

context publication module 65

The module itself sets some of the normal options to the setup of a list. To ensure
a reasonable layout for the reference list, the following are set as a precaution:

variant Always re-initialized to ‘a’. This makes sure that no space is allocated
for the page number.

pagenumber Always re-initialized to ‘no’. The list is a bit of a special one, and
page numbers don’t make much sense. All entries will (current-
ly) have the same page number: the number of the page on which
\placepublications was called.

criterium Always set to ‘all’. You need this! If you want partial lists, set ‘criteri-
um’ to ‘used’, and ‘sorttype’ to ‘cite’. This combination will reset itself
after each call to \placepublications.

In addition, the following options are initialized depending on the global settings
for ‘numbering’ and ‘autohang’:

width Set to the calculated width of the largest label (only if autohang
is ‘yes’).

distance Set to 0pt (only if autohang is ‘yes’).
numbercommand The command given in ‘setuppublications’ if numbering is turned

on, otherwise empty.
textcommand Set to a macro that outdents the body text if numbering is turned

off, otherwise empty.

Setting citation options: \setupcite
The \cite command has a lot of sub-options, as can be seen above in the setting of
‘refcommand’. And even the options have options:

\setupcite[..,...,..][..,..=..,..]

... author authoryear authoryears key number num page short type year data

pubsep text

lastpubsep text

inbetween text

left text

right text

compress yes no

Here are the possible keywords:

pubsep separator between publication references in a \cite command.
lastpubsep same, but for the last publication in the list.
left left-hand side of a \cite (like [).
inbetween the separator between parts of a single citation.
right right-hand side of a \cite (like]).
compress Whether \cite should try to compress its argument list. The default is

‘yes’.

66 taco hoekwater

Not all options apply to all types of \cite commands. For example, ‘compress’
does not apply to the citation list for all options of \cite, since sometimes compression
does not make sense or is not possible. The ‘num’ version compresses into a condensed
sorted list, and the various ‘author’ styles try to compress all publications by one
author, but e.g. years are never compressed.

Likewise, ‘inbetween’ only applies to three types: ‘authoryear’ (a space), ‘autho-
ryears’ (a comma followed by a space), and ‘num’ (where it is ‘–’ (an endash), the
character used to separate number ranges).

Setting up BibTEX: \setupbibtex
BibTEX bibliographic databases are converted into .bbl files, and the generated file
is just a more TEX-minded representation of the full database(s).

The four .bst files do not do any actual formatting on the entries, and they do
not subset the database either. Instead, the entire database is converted into TEX-
parseable records. About the only thing the .bst files do is sorting the entries (and
BibTEX itself resolves any ‘STRING’ specifications, of course).

The module will read the created \jobname.bbl file and select the parts that are
needed for the current article.

\setupbibtex[..,..=..,..]

database file(s)

sort no author title short

database List of bibtex database file names to be used. The module will write a
very short .aux file instructing BibTEX to create a (possibly very large)
\jobname.bbl file, that will be \input by the module (at \starttext).

sort How the publications in the BibTEX database file should be sorted.
The default here is ‘no’ (cont-no.bst), meaning no sorting at all. ‘author’
(cont-au.bst) sorts alphabetically on author and within that on year,
‘title’ (cont-ti.bst) sorts alphabetically on title and then on author and
year, and ‘short’ (cont-ab.bst) sorts on the short key that is generated
by BibTEX.

For now, you need to run BibTEX by hand to create the \jobname.bbl file (texutil
will hopefully do this for you in the future).

You may want to create the \jobname.bbl yourself. The .bbl syntax is explained
below. There is no default database of course, and you do not have to use one: it is
perfectly OK to just \input a file with the bibliographic records, as long as it has the
right input syntax. Or even to include the definitions themselves in the preamble of
your document.

The most efficient calling order when using BibTEX is:

texexec --once myfile

bibtex myfile

texexec myfile

context publication module 67

Texexec should be smart enough to recognize how many runs are needed in the
final part, but it seems it sometimes does one iteration too few. So you might have
to call texexec one last time to get the page references correct. Numbered references
always require at least one more run than do (author,year) references, because the
final number in the reference list is usually not yet known at the moment the \cite

command is encountered.

Borrowing publications: \usepublications
It is also possible to instruct the module to use the bibliographic references belonging
to another document. This is done by using the command \usepublications[files],
where files is a list of other context documents (without extension).

\usepublications[..,...,..]

... file(s)

To be precise, this command will use the .bbl and .tuo files from the other
document(s), and will therefore not work if these files cannot be found (the .tuo

file is needed to get correct page references for \cite[page]).

Citations

Citations are handled through the \cite command.
\cite has three basic appearances:

\cite[keys] Executes the style-defined default citation command. This
is the preferred way of usage, since some styles might use
numeric citations while others might use a variation of the
(author,year) style.
‘keys’ is a list of one of more publication IDs.

\cite[option][keys] The long form, which allows you to manually select the style
you want. See below for the list of valid ‘option’s.

\cite{keys} For compatibility (with existing latex .bib databases).
Please don’t use this form in new documents or databases.

Cite options
Right now, the interesting bits are the keys for the argument of \startpublication.

Following is the full list of recognized keywords for \cite, with a short explanation
where the data comes from. Most of the information that is usable within \cite comes
from the argument to \startpublication. This command is covered in detail below,
but here is an example:

\startpublication[k=me,

t=article,

a=Hoekwater,

68 taco hoekwater

y=1999,

s=TH99,

n=1]

...

\stoppublication

All of these options are valid in all publication styles, since context always has
the requested information. But not all of these are sensible in a particular style. For
instance, using numbered references if the list of publications itself is not numbered is
not a good idea. Also, some of the keys are somewhat strange and only provided for
future extensions.

First, here are the simple ones:

author (Hoekwater) (from ‘a’)
key [me] (from ‘k’)
number [1] (from ‘n’)
short [TH99] (from ‘s’)
type [article] (from ‘t’)
year (1999) (from ‘y’)

Keep in mind that ‘n’ is a database sequence number, and not necesarily the same
number that is used in the list of publications. For instance, if ‘sorttype’ is cite, the
list will be re-ordered, but the ‘n’ value will remain the same. To get to the number
that is finally used, use

num [1] (this is a reference to the sequence number used in the publication list)

Even if the list of publications is not numbered visually, a number is still available.
Three of the options are combinations:

authoryear Hoekwater (1999) (from ‘a’ and ‘y’)
authoryears (Hoekwater, 1999) (from ‘a’ and ‘y’)
data Hoekwater, T. (To appear). context Publication The data content.

Module, The user documentation. MAPS, pages
66–76. This article.

And the last one is a page reference to the first place where the entry was cited. This
is not always the page number in the list of publications: if there was a \cite[data]

somewhere in the document, that page number will be the number used (as you can
see from the example).

page [68] (a page reference)

context publication module 69

Placing the list of publications

T
his is really simple: use \completepublications or \placepublications at
the location in your text where you want the list of publications to appear.
As is normal in context, \placepublications gives you a raw list, and

\completepublications a list with a heading. The module uses the following defaults
for the generated head:

\setupheadtext[en][pubs=References]

\setupheadtext[nl][pubs=Literatuur]

\setupheadtext[du][pubs=Literatur]

These can be redefined as needed.

The bbl file

A
typical bbl file consists of one initial command (\setuppublicationlist)
that sets some information about the number of entries in the bbl file and the
widths of the labels for the list, followed by a number of occurrences of:

\startpublication[k=,

t=,

a=,

y=,

s=,

n=]

...

\stoppublication

The full version of \cite accepts a number of option keywords, and we saw
earlier that the argument of the \startpublication command defines most of
the items we can make reference to. This section explains the precise syntax for
\startpublication.

Each single block defines one bibliographic entry. I apologise for the use of single--
letter keys, but these have the advantage of being a) short and b) safe w.r.t. the
multi-lingual interface.

Each entry becomes one internal TEX command.

\startpublication[..,..=..,..]

k text

a text

y text

s text

t text

n text

70 taco hoekwater

Here is the full example that has been used throughout this document:

\startpublication[k=me,

t=article,

a=Hoekwater,

y=1999,

s=TH99,

n=1]

\artauthor[]{Taco}[T.]{}{Hoekwater}

\arttitle{\CONTEXT\ Publication Module, The user documententation}

\journal{MAPS}

\pubyear{To appear}

\note{This article}

\pages{66--76}

\stoppublication

Defining a publication
Here is the full list of commands that can appear between \startpublication and
\stoppublication. All top-level commands within such a block should be one of the
following (if you use other commands, they might be typeset at the beginning of your
document or something similar).

Order within an entry is irrelevant, except for the relative order of the three com-
mands that may appear more than once: \artauthor, \author and \editor.

Here is the full list of commands that can be used. Most of these are ‘normal’
BibTEX field names (in lowercase), but some are extra special, either because they
come from non-standard databases that I know of, or because the bst file has pre-
processed the contents of the field:

\abstract#1 Just text.
\annotate#1 Just text.
\artauthor[#1]#2[#3]#4#5 For an author of any publication that appears within a

larger publication, like an article that appears within
a journal or as part of a proceedings.

\arttitle#1 The title of such a partial publication.
\author[#1]#2[#3]#4#5 The author of a standalone publication, like a mono-

graph.
\chapter#1 The chapter number, if this entry refers to a smaller

section of a publication. It might actually be a part
number or a (sub)section number, but the BibTEX field
happens to be called CHAPTER. The field \type (below)
differentiates between these.

\city#1 City of publication.
\comment#1 Just text.
\country#1 ccountry of publication.

context publication module 71

\crossref#1 A cross-reference to another bibliographic entry. It will
insert a citation to that entry, forcing it to be typeset
as well.

\edition#1 The edition.
\editor[#1]#2[#3]#4#5 The editor of e.g. an edited volume.
\institute#1 The institute at which the publication was prepared.
\isbn#1 isbn number (for books).
\issn#1 issn number (for journals).
\issue#1 issue number (for journals).
\journal#1 The journal’s name.
\keyword#1 Just text (for use in indices).
\keywords#1 Just text (for use in indices).
\month#1 Month of publication.
\names#1 Just text (for use in indices).
\note#1 Just text (this is the ‘standard’ BibTEX comment

field).
\notes#1 Just text.
\organization#1 Like institute, but e.g. for companies.
\pages#1 Either the number of pages, or the page range for a

partial publication. The ‘t’ key to startpublication will
decide automatically what is meant.

\pubname#1 Publisher’s name.
\pubyear#1 Year of publication. Within this command, the

BibTEX bst files will sometimes insert the command
\maybeyear, which is needed to make sure that the
bbl file remains flexible enough to allow all styles of
formatting.

\series#1 Possible book series information.
\size#1 Size in KB of a PDF file (this came from the NTG

Maps database).
\thekey#1 BibTEX’s ‘KEY’ field. See the BibTEX documentation

for its use. This is not related to the key used for citing
this entry.

\title#1 The title of a book.
\type#1 BibTEX’s ‘TYPE’ field. See the BibTEX documenta-

tion for it’s use. This is not related to the type of entry
that is used for deciding on the layout.

\volume#1 Volume number for multi-part books or journals.

Rather a large list, which is caused by the desire to support as many existing
BibTEX databases as possible.

As you can see, almost all commands have precisely one argument. The only
exceptions are the three commands that deal with names: \artauthor, \author and
\editor. At the moment, these three commands require 5 arguments (of which two
look like they are optional, they are not!)

72 taco hoekwater

Adding one of your own fields is reasonably simple:

\newbibfield[mycommand]

This will define \mycommand for use within a publication (plus \bib@mycommand,
its internal form) as well as the command \insertmycommand that can be used within
\setuppublicationlayout to fetch the supplied value (see below).

Defining a publication type layout

P
ublication style files of course take care of setting defaults for the commands as
explained earlier, but the largest part of a such a publication style is concerned
with specifying layouts for various types of publications.

The command that does the work is \setuppublicationlayout. It has an optional
argument that is a type, and all publications that have this type as argument to the
‘t’ key of \startpublicationwill be typeset by executing the commands that appear
in the group following the command.

For reference, here is one of the commands from bibl-apa:

\setuppublicationlayout[article]{%

\insertartauthors{}{ }{\insertthekey{}{ }{}}%

\insertpubyear{(}{). }{\unskip.}%

\insertarttitle{\bgroup }{\egroup. }{}%

\insertjournal{\bgroup \it}{\egroup}

{\insertcrossref{In }{}{}}%

\insertvolume

{, }

{\insertissue{(}{)}{}\insertpages{:}{.}{.}}

{\insertpages{, pages }{.}{.}}%

\insertnote{ }{.}{}%

\insertcomment{}{.}{}%

}

For every command in the long list given in the previous section, there is a cor-
responding \insertxxx command. (As usual, \author etc. are special: they have a
macro called \insertxxxs instead.) All of these \insertxxx macros use the same
logic:

\insertartauthors{<before>}{<after>}{<not found>}

Sounds easy? It is! But it is also often tedious: database entries can be tricky
things: some without issue numbers, others without page numbers, some even without
authors. So, you often need to nest rather a lot of commands in the <not found>

section of the ‘upper’ command, and \unskip and \ignorespaces are good friends
as well.

context publication module 73

There is nothing special about the type name you give in the argument, except
that every \startpublication that does not have a ‘t’ key is assumed to be of type
‘article’, and undefined ‘t’ values imply that the data is completely ignored.

bibl-apa defines layouts for the ‘standard’ publication types that are defined in
the example bibliography that comes with BibTEX.

Bibliography

Hoekwater, T. (To appear). context Publication Module, The user documentation.
MAPS, pages 66–76. This article.

♦ ♦ ♦

mlbibtex: a New Implementation of bibtex
Jean-Michel Hufflen∗

abstract. This paper describes mlbibtex, a new implementation of bibtex with
multilingual features. We show how to use it as profitably as possible, and go

thoroughly into compatibility between bibtex’s current implementation and ours.
Besides, the precise grammar of mlbibtex is given as an annex.

keywords: Bibliographies, multilingual features, latex, bibtex.

Introduction

T
here is increasing interest in multilingual word processors nowadays: some
books may be composed of parts written in different languages, some docu-
ments have to be produced using several languages: for example, at least three

languages for official documents of the eec1. As word processors, TEX and latex are
indisputably pioneers in this topic. From its first version, TEX [28] has provided com-
mands to produce accents and other diacritical signs of European languages using the
Latin alphabet. The ability for non-English words to be hyphenated has been im-
proved by first mltêx (for ‘Multilingual têx’) [16] and then TEX’s Version 3. When
latex2ε [32] came out, the french [19] and german [41] packages strongly eased writing
documents in French and German, even if these packages were ad hoc for one language
only. ‘Actual’ multilinguism has been reached with the babel package [7], in the sense
that this package processes all the languages it knows in a homogeneous way, without
giving any privilege to a particular one. Therefore this package is especially suitable
for mixing several languages within the same document. Besides, this package is now
able to process some languages using a non-Latin alphabet (Greek, Russian, . . . cf. [7,
§ 26 & 51]). Last but not least, the Ω and Λ projects [40] aim to develop ‘super’ TEX
and latex engines, able to process all the world’s languages2, by using the Unicode
standard encoding [45].

Now let us consider bibtex [38], the bibliography program associated with latex.

∗Author’s address: LIFC, University of Franche-Comté. 16, route de Gray. 25030 BESANÇON
CEDEX. FRANCE. E-mail: hufflen@lifc.univ-fcomte.fr.

1European Economic Community.
2In fact, some extensions of TEX were already able to process languages with right-to-left texts as

well as languages with left-to-right texts: TEX-XET since 1987 [27], and ε-tex [36].

mlbibtex 75

@BOOK{gibson1988,

AUTHOR = {William Gibson},

TITLE = {Mona Lisa Overdrive},

PUBLISHER = {Victor Gollancz, Ltd.},

YEAR = 1988}

Figure 1: Example of a bibtex entry.

It offers some flexibility about foreign (that is, non-English) language support (cf. [21,
§ 13.8.2]), and the insertion of some slight multilingual features have been put into
action: for example, the bibliography style files built by means of the makebst program
(cf. [13] or [21, § 13.9]) can be interfaced with the babel package; another example is
given by the Delphi BibStyles collection (cf. [21, § 13.8.2]). But it is obvious that
bibtex’s present version does not provide as many multilingual features as latex’s.

Given these considerations, we started a new implementation in October 2000, so-
called mlbibtex (for ‘Multilingual bibtex’). The first version (1.1) is available now3,
and has already been introduced in [24], but very informally. For the eurotex con-
ference, we propose a more precise description hereafter.

In this article, we do not pay particular attention to the typographical conventions
ruling the layout of bibliographies, since mlbibtex produces the same outputs as
bibtex from an ‘aesthetic’ point of view. Readers interested in this topic can consult
some good typography manuals: for example, [10, § 10], [11, § 15.54–15.76], [22, p. 53–
54]. French-speaking readers can also refer to [12, § 94] or [34, p. 31–36] about the
conventions ruling French bibliographies, German-speaking readers can refer to [15],
too. More official documents have been issued by the ansi4 [3], or British Standards
[8, 9], or the French institute of standardisation5 [1].

We assume that readers are familiar with the usual commands of latex and
bibtex6 and the way to use them in cooperation. However, we recall some points
in order to make precise our terminology. A bibtex file (with the .bib suffix) contains
a series of entries like that given in Figure 1. When bibtex runs, it builds a .bbl file
that contains references for a latex document, using the \bibitem command, and
according to a bibliography style. For example, the reference corresponding to Entry
gibson1988 (cf. Figure 1) and using the plain bibliography style—that is, references
are labelled with numbers—will look like:

[1] William Gibson. Mona Lisa Overdrive. Victor Gollancz, Ltd., 1988.

after being processed by latex. There exist many other bibliography styles: most of
them are described in [21, § 13.2], more in [25, § 4.3]—including some styles suitable
for French bibliographies—and keys to design new bibliography styles are given in [37].

The sections of this article will successively explore first the multilingual exten-

3See http://lifc.univ-fcomte.fr/PEOPLE/hufflen/texts/mlbibtex/mlbibtex/mlbibtex.html.
4American National Standards Institute.
5AFNOR: Association Française de NORmalisation.
6The basic reference is [32]. There are also [14] and [43] in French, [29, 30, 31] in German.

76 j.-m. hufflen

sions provided and processed by mlbibtex, then the ways of compatibility between
bibtex’s current implementation and ours. Finally we briefly describe our implement-
ation and we conclude with what we plan for the future of mlbibtex. An annex sums
up all our syntactic conventions.

The Extensions of mlbibtex

In this section, we present the extensions provided by mlbibtex. We attempt to
detail them in an informal but precise way. Besides, we show that they meet actual
requirements about multilingual bibliographies.

mlbibtex allows its users to specify language changes and language switches. Be-
fore we describe them, let us explain what ‘the bibliographical entry’s language’ and
‘the bibliographical reference’s language’ mean. In fact, there are two approaches for
multilingual bibliographies.

 According to the first approach, the information related to a reference should
be expressed using the language of the corresponding document. For example,
the month of issue should be ‘July’ for a reference about a document written in
English, ‘juillet ’ for a reference about a document written in French, ‘Juli ’ for a
reference about a document written in German. Roughly speaking, the values to
be put into the fields of bibtex entries are copied slavishly from what is printed on
the document. From a ‘philosophical’ point of view, this convention proceeds from
the idea that a reference is wholly suitable only for people reading the language
this referred document is written in7. We have to add language information to
each entry, in the sense that latex must be able to format the corresponding
reference by using the typographical conventions of this language. Such language
information is given by an additional mlbibtex field called LANGUAGE8. The value
of this field defaults to english. In the following, this approach will be called
reference-dependent.

 Given a printed work, the second approach consists of using its language for the
information of all its bibliographical references, as far as possible. So, in comparison
with the example illustrating the first approach, all the months of issue should be
expressed in English if the work is written in English. In the same way, they
should be expressed in French (resp. German) if the work is written in French
(resp. German). However, if this approach is systematic, some information fields
other than dates should be superseded by a translated form. For example, let us
consider the entry given in Figure 2, concerning the novelisation of a film. This
reference can be formatted as it is within a bibliography in English, but the NOTE

7Following this approach to extremes, the information related to a document written in a language
using a non-Latin alphabet should be put using this alphabet’s characters. For example, ‘èþëü’ for
‘July’ in Russian. But we can remark that if the title of such a document is transliterated into
Roman letters, this operation needs to know the original language when the bibliographical entry is
established.

8In fact, this ‘new’ field has already been used in conjunction with the mlbib package [35]. bibtex—
like mlbibtex—allows end-users to add new fields, which are ignored by ‘standard’ bibliography
styles.

mlbibtex 77

@BOOK{bisson1995,

AUTHOR = {Terry Bisson},

TITLE = {{J}ohnny {M}nemonic},

NOTE = {Based on a short story and screenplay by William Gibson},

PUBLISHER = {Simon \&~Shuster, Inc.},

YEAR = 1995}

Figure 2: A bibtex entry, but suitable for a bibliography in English.

field should be replaced by:

D’après une histoire et un scénario de William Gibson

within a bibliography in French. In the following, this approach will be called
document-dependent.

From our point of view, the choice between these two approaches does not have to
be made by the designer of a bibliography program like bibtex. This choice proceeds
from personal considerations, or requirements from an editor or a publisher. That is
why we think that a multilingual bibliography program associated with latex should
be able to put both these two approaches into action. To emphasise this point, let
us consider a book like an anthology or proceedings, with several chapters written in
several languages. If each chapter ends with its own bibliography and if the publisher
requires that the bibliography of a chapter must be written in the chapter’s language, a
reference—for example, a reference to Entry bisson1995 above—cited in two chapters
written in English and French will appear differently within the two bibliographies. In
this case, we show that it should be possible for a bibliography program to be adapted
to several languages used within a document, as well as it should be possible for an
entry to be used to generate different references according to the language chosen.

There exist some latex2ε packages for each of these two approaches. About the
reference-dependent approach, the mlbib package [35] uses a LANGUAGE field and allows
each item of a bibiliography to be printed according to suitable typography. About
the document-dependent approach, the oxford package [4] allows users to choose a
language for the whole of the bibliography. But these implementations are partial:
only basic typographical rules (rules for spacing in French, for example) and some
keywords (month names, for example) are taken into account. The same fact holds
about bibliography styles built with the makebst program (cf. [13] or [21, § 13.9]) and
interfaced with the babel package. If ‘standard’ bibtex is used, there is no ‘actual’
multilinguism in entries, unless users fill in some fields by using commands originating
from the multilingual packages of latex2ε.

So, here are the precise definitions related to our terminology.

 A language identifier is a non-ambiguous prefix of:

– an option of the babel package,
– or a multilingual package name such as french or german9.

9This choice of a non-ambiguous prefix allows a language identifier to get access to several ways to
process a language. For example, a language identifier set to french works with the frenchb option [18]

78 j.-m. hufflen

@BOOK{king1982f,

AUTHOR = {Stephen~Edwin King},

TITLE = {The Running Man},

NOTE = {[Written as] * english

[Sous le pseudonyme de] * french

[Unter der Pseudonym] * german

Richard Bachman},

PUBLISHER = {New American Library},

YEAR = 1982,

MONTH = may,

LANGUAGE = english}

Figure 3: Example of a multilingual entry.

 The entry’s language is given by the LANGUAGE field10.

 The reference’s language is given:

– either by the LANGUAGE field if each item of the bibliography should be expressed
in its own language (reference-dependent approach),

– or by the language in which the document is written if this language is to be
used for the whole of the bibliography (document-dependent approach).

As mentioned above, this convention about the reference’s language allows us to put
both possible approaches for multilingual bibliographies into action.

Language switches
There are two kinds of language switches, with and without a default language. They
are used for information about what must be put, possibly in another language, and for
details that can be given in a particular language, but can be omitted if no translation
is available.

Switch with a default language It is expressed by the following syntax:

[string0] * idf0 [string1] * idf1 ... [stringn] * idfn (1)

where string0, string1, . . . , stringn (n ∈ N) are strings of characters11 and idf0,
idf1, . . . , idfn are pairwise-different language identifiers. mlbibtex processes it as
follows:

 if there exists i (0 ≤ i ≤ n) such that the reference’s language is equal to idf i,
Expression (1) yields string i;

 otherwise, mlbibtex puts the string associated with the value of the LANGUAGE

field: if such a value does not exist, Expression (1) is replaced by an empty string.

of the babel package as well as the french package [19]. Readers who are interested in a comparative
study between these two ways to write French documents can consult [23, § 2].

10Let us recall that it defaults to the english value.
11We follow the convention originating from bibtex, that is, a group surrounded by braces (‘{...}’)

is viewed as a single character. We will go thoroughly into this point in Subsection Using square
brackets as syntactic tokens.

mlbibtex 79

@BOOK{king1990,

AUTHOR = {Stephen~Edwin King},

TITLE = {The Stand},

NOTE = {[The Complete and Uncut Edition.] * english

[Version int\’{e}grale.] * french

[Abridged version issued in 1978] * english

[Version abr\’{e}g\’{e}e parue en 1978] * french

[Abgek\"{u}rzt Auffassung im Jahre 1978 erschienen] * german},

PUBLISHER = {Doubleday \&~Co},

ADDRESS = {New-York},

YEAR = 1990,

LANGUAGE = english}

Figure 4: Example with two language switches.

An example is given in Figure 3. When using the plain bibliography style, mlbibtex
will produce the following references, after processing by latex:

 when the reference’s language is English:

[1] Stephen Edwin King. The Running Man. New American Library, May
1982. Written as Richard Bachman.

 when it is French:

[1] Stephen Edwin King. The Running Man. New American Library, mai
1982. Sous le pseudonyme de Richard Bachman.

 when it is German:

[1] Stephen Edwin King. The Running Man. New American Library, Mai
1982. Unter der Pseudonym Richard Bachman.

As an example of using default values, if mlbibtex is asked for a Russian-speaking
reference, the information in English is put since we did not specify any string for the
Russian language, and the value of the LANGUAGE field is english. In fact, only the
month name—given by the abbreviation may that bibtex and mlbibtex know—is
printed in Russian:

[1] Stephen Edwin King. The Running Man. New American Library, ìàé
1982. Writing as Richard Bachman.

‘* idf ’ where idf is the value of the LANGUAGE field can be omitted. The example
given in Figure 3 about the NOTE field could be abridged as follows:

NOTE = {[Written as]

[Sous le pseudonyme de] * french

[Unter der Pseudonym] * german

Richard Bachman}

A language switch ends:

 either at the end of a mlbibtex field or before a common part, not surrounded by
square brackets: this second convention holds for the example above, the common
part being ‘Richard Bachman’;

80 j.-m. hufflen

@BOOK{king1978f,

AUTHOR = {Stephen~Edwin King},

TITLE = {Night Shift},

NOTE = {[Collection of 20 short stories] * english

[Recueil de 20~nouvelles] * french

[Titre de la traduction fran\c{c}aise : Danse macabre] * french

[Titel der deutschen \"{U}bersetzung: Nachtschicht] * german},

PUBLISHER = {Doubleday \&~Co},

YEAR = 1978.

LANGUAGE = english}

Figure 5: Two language switches, too.

 when a language identifier is repeated, in which case another language switch
begins. For example, look at Figure 4. There are two switches, the first specifying
a choice between English and French, the second a more complete choice among
English, French and German, the default language being English in both cases. If
this entry is used to produce a German-speaking reference, that will result in using
the default value for the first switch and an ad hoc value for the second:

[1] Stephen Edwin King. The Stand. Doubleday & Co, New-York, 1990.
The Complete and Uncut Edition. Abgekürzt Auffassung im Jahre
1978 erschienen.

In order to make language switches more readable, we recommend end-users to
begin each of them with the default value. For example, look at Figure 5: the NOTE
field contains two language switches: the first specifying a choice between English
and French, defaulting to English, the second a choice between French and German,
without default. Even if mlbibtex is able to process the NOTE field from Figure 5
without any trouble, we think that it should be put down using this more readable
form:

NOTE = {[Collection of 20~short stories]

[Recueil de 20~nouvelles] * french

[]

[Titre de la traduction fran\c{c}aise : Danse macabre] * french

[Titel der deutschen \"{U}bersetzung: Nachtschicht] * german}

A language switch with a default language may occur anywhere except:

 within a LANGUAGE field, which must be a language identifier if defined,

 or within CROSSREF or KEY fields.

In mlbibtex’s Version 1.1, a language switch with a default language cannot occur
within AUTHOR or EDITOR fields, either. We plan to implement this last feature in
Version 1.2, because it can be useful for the transliteration of person names originating
from a language using a non-Latin alphabet. Since this transliteration is generally
phonetic, it may be different from one language to another, as shown by the following
example:

AUTHOR = {[Àðàì Èëüè÷ Õà÷àòóðÿí] * russian

mlbibtex 81

@BOOK{gibson1986,

AUTHOR = {William Gibson},

TITLE = {Burning Chrome and Other Stories},

NOTE = {[Titre de la traduction fran\c{c}aise :

\emph{Grav\’{e} sur chrome}] ! french

[Titel der deutschen \"{U}bersetzung: \emph{Cyberspace}] ! german},

PUBLISHER = {Victor Gollancz, Ltd.},

YEAR = 1986,

LANGUAGE = english}

Figure 6: Example of language switch without default language.

[Aram Il’yich Khachaturian] * english

[Aram Ilyich Khatchatourian] * french

[Aram Iljitsch Chatschaturjan] * german},

...

LANGUAGE = ...

It is for this reason—related to the possible use of other alphabets—that we allow
language switches within fields such as:

ADDRESS JOURNAL SCHOOL

BOOKTITLE ORGANIZATION SERIES

INSTITUTION PUBLISHER TITLE

In the same way, the date may be expressed using different calendars, which is
why mlbibtex’s future versions will probably allow language switches with a default
language within fields such as MONTH or YEAR.

Switch without default language It is expressed by the following syntax:

[string0] ! idf0 [string1] ! idf1 ... [stringn] ! idfn (2)

where n, string0, string1, . . . , stringn, idf0, idf1, . . . , idfn have the same
meaning as in Expression (1). mlbibtex processes it as follows:

 it behaves exactly like a language switch with ‘*’ if there exists i (0 ≤ i ≤ n)
such that the reference’s language is equal to idf i, that is, Expression (2) yields
string i;

 otherwise, Expression (2) is replaced by an empty string, and a warning message
is emitted by mlbibtex.

An example is given in Figure 6. When using the plain bibliography style, mlbibtex
will produce the following references, after processing by latex:

 when the reference’s language is French:

[1] William Gibson. Burning Chrome and Other Stories. Victor Gollancz,
Ltd., 1986. Titre de la traduction française : Gravé sur chrome.

 when it is German:

82 j.-m. hufflen

@BOOK{king1981i,

AUTHOR = {Stephen~Edwin King},

TITLE = {[Danse macabre] : french},

PUBLISHER = {Everest House},

YEAR = 1981,

MONTH = jul,

LANGUAGE = english}

Figure 7: Example of a language change.

[1] William Gibson. Burning Chrome and Other Stories. Victor Gollancz,
Ltd., 1986. Titel der deutschen Übersetzung: Cyberspace.

 and an empty note will be put otherwise:

[1] William Gibson. Burning Chrome and Other Stories. Victor Gollancz,
Ltd., 1986.

A language switch without default language may occur anywhere except within
following fields:

AUTHOR JOURNAL TITLE

BOOKTITLE KEY YEAR

CROSSREF LANGUAGE

EDITOR MONTH

Language change
It is expressed by the following syntax:

[string] : idf (3)

where string is a string of characters, and idf a language identifier. It expresses
conformity to other typographical conventions and can be used to hyphenate foreign
words: here ‘foreign’ means ‘belonging to a language different from the value of the
LANGUAGE field’. For example, the language change given within the TITLE field in
Figure 7 ensures that the title, using French words for an American book, will be
hyphenated correctly if need be.

A language change may occur anywhere except within the following fields:

CROSSREF LANGUAGE YEAR

KEY MONTH

In mlbibtex’s Version 1.1, a language change cannot occur within AUTHOR or EDITOR
fields either, but we plan to implement this feature in Version 1.2.

Using square brackets as syntactic tokens
In mlbibtex, the use of square brackets does not interfere with the different meanings
of braces. It is known that in bibtex (cf. [21, § 13.5.2]), the two following field
specifications:

{The Eyes of the Dragon} "The Eyes of the Dragon" (4)

mlbibtex 83

are equivalent. Using braces to surround the whole of a field—like in the expression
at the left—is needed when this field contains the double-quote character:

{"For the Love of Barbara Allen"}

In fact, a double-quote character, as part as a field’s value, must be surrounded by
braces. The following value:

"{"For the Love of Barbara Allen"}"

is correct. Anyway, these two field specifications are equivalent, too:

{{The Eyes of the Dragon}} "{The Eyes of the Dragon}" (5)

but Expressions (4) make possible for this title to be non-capitalised, whereas Expres-
sions (5) tells bibtex to consider the string The Eyes of the Dragon as it is12. In
the same way, the following specifications are equivalent in mlbibtex:

{[Firestarter] [Charlie] * french [Feuerkind] * german}

"[Firestarter] [Charlie] * french [Feuerkind] * german"
(6)

and so are the following four:

{{[Firestarter] [Charlie] * french [Feuerkind] * german}}

{[{Firestarter}] [{Charlie}] * french [{Feuerkind}] * german}

"{[Firestarter] [Charlie] * french [Feuerkind] * german}"

"[{Firestarter}] [{Charlie}] * french [{Feuerkind}] * german"

(7)

but Expressions (6)—resp. (7)—are analogous to Expressions (4)—resp. (5)—with
respect to possible capitalisation.

Square brackets must be balanced, unless they are put in math mode—that is,
enclosed between two ‘$’ characters—in which case they do not have any meaning for
mlbibtex. A double-quote character belonging to a field’s value must be surrounded
by braces or square brackets. If square brackets are used like in this example:

TITLE = {The Girl Who [Loved] Tom Gordon},

mlbibtex believes that they surround the default part of a language switch with ‘*’,
the ‘*’ character followed by the default language being omitted. So the result will
be:

The Girl Who Loved Tom Gordon

in any case.
If users wish to insert them within the value of a field13, the right square bracket

must be followed by the empty string:

NOTE = {Brilliant\ldots\ A delight to read [\ldots] {} A true original.

(\emph{Sunday Times})}

12This rule does not hold if the enclosed opening brace is followed by a TEX or latex command.
For example, ‘{{\relax The Eyes of the Dragon}}’ produces the same outputs as one of Expres-
sions (4): cf. [21, § 15.5.2] and [28, Ch. 24] about the \relax command. This way, mlbibtex behaves
exactly like bibtex.

13Let us recall that in typography, square brackets are used to enclose editorial interpretations,
corrections, explanations, . . . cf. [11, § 5.128–5.132]. ‘[. . .]’ means that some words have been
skipped.

84 j.-m. hufflen

The same convention holds if users wish to print square brackets followed by ‘*’, ‘!’
or ‘:’ characters:

{Read [Trails in Darkness] {} * by Robert~Erwin Howard}

From our point of view, the two drawbacks of its convention are:

 if users want to insert a left square bracket only, or a right square bracket only,
the solution is to use the latex command \symbol:

{\symbol{91}Count Zero} for ‘[’
{Virtual Light\symbol{93}} for ‘]’

 the same ‘trick’ holds when users wish square brackets to be nested, which is not
allowed by mlbibtex:

{Read [\symbol{91}Eons of the Night\symbol{93}] {} by Robert~Erwin Howard}

How the language is determined
mlbibtex considers a bibliography’s language. Version 1.1 can process documents
written:

 with the default configuration of latex, that is, without any multilingual package,
in which case, the bibliography’s language is supposed to be english;

 by using the babel package, in which case the bibliography’s language is the default
language, that is, the last option when this package is loaded14.

Concerning other mulilingual packages, the bibliography’s language will be french or
german when mlbibtex works with the french [19] and german [41] packages, which
is planned for Version 1.2.

If the bibliography style used is reference-dependent, the reference’s language is
given by the LANGUAGE field for each entry. If it is document-dependent, the reference’s
language is always the bibliography’s language, but mlbibtex considers the value
given by the LANGUAGE field for the following information fields:

AUTHOR EDITOR PUBLISHER

BOOKTITLE JOURNAL TITLE

which are processed according to suitable typographical conventions when there is
no language switch. To explain this behaviour, let us consider Entry king1998d in
Figure 8, and let us assume that we would like to refer it in a document written in
French. If the bibliography style is reference-dependent, the corresponding reference
will be wholly written in English and the result, in the .bbl file, will look like—cf. [7,
§ 12.2] about the otherlanguage environment—:

\bibitem{king1998d}

\begin{otherlanguage}{english}Stephen~Edwin King. \emph{Bag of Bones}.

Scribner Book Company, September 1998. Translated into French and German.

\end{otherlanguage}

If the bibliography style is document-dependent, only the fields supposed to be in
English will be processed according to English typographical conventions, that is, the
TITLE field, but not the PUBLISHER field because there is a language switch with no

14This default language is given by the \bbl@main@language command, provided by the babel
package: cf. [7, § 12.2].

mlbibtex 85

@BOOK{king1998d,

AUTHOR = {Stephen~Edwin King},

TITLE = {Bag of Bones},

NOTE = {[Translated into French and German] * english

[Titre de la traduction fran\c{c}aise : Sac d’os] * french

[Titel der deutschen \"{U}bersetzung: Sara] * german},

PUBLISHER = {[Scribner Book Company] * english

[Premi\‘{e}re \’{e}dition am\’{e}ricaine] * french},

YEAR = 1998,

MONTH = sep,

LANGUAGE = english}

Figure 8: Yet another example of language switch.

common part. (In addition, let us recall that mlbibtex’s Version 1.1 processes the
AUTHOR field exactly like bibtex, that is, it does not switch over to another language
for this field.) So, the result in the .bbl file will look like:—cf. [7, § 12.2] about the
\foreignlanguage command—:

\bibitem{king1998d}

Stephen~Edwin King. \foreignlanguage{english}{\emph{Bag of Bones}}.

Premi\‘{e}re \’{e}dition am\’{e}ricaine, septembre 1998. Titre de la

traduction fran\c{c}aise : Sac d’os.

If some fields F0, . . . , Fn (n ≥ 0) are provided by an entry E accessed by means
of a CROSSREF field, these fields F0, . . . , Fn are processed by considering the value of
the LANGUAGE field for E.

Whenever it has to switch over to another language, mlbibtex checks that this
language will be known when latex processes the .bbl file. If not, this other language
is replaced by the bibliography’s language15. This behaviour is different from what
happens if direct commands originating from the babel package are used within the
value of a bibtex field. For example:

{\iflanguage{frenchb}{Jessie}{\iflanguage{german}{Das Spiel}{Gerald’s Game}}}

—cf. [7, § 12.2] about the \iflanguage command—will work only if the corresponding
reference belongs to the bibliography of a document using the babel package with at
least the frenchb and german options, which can be an actual drawback if .bib files are
shared out among several people.

As an example, the bibliography of this article has been put with a reference-
dependent bibliography style.

Issue of Compatibility

Due to the huge number of .bib files already written, mlbibtex should be able to
work with them. We ought to have written ‘has to’ instead of ‘should’, but syntactic

15So, for the example above, we assumed that the babel package was loaded in the latex document,
with at least the english and frenchb (or french) options.

86 j.-m. hufflen

� Commands:

month names ordinal numbers other keywords
\bbljan \bblfirsto \bbland

\bblfeb \bblsecondo \bblchap

\bblmar \bblthirdo \bbled

\bblapr \bblfourtho \bbledby

\bblmay \bblfiftho \bbledn

\bbljun \bblst \bbleds

\bbljul \bblnd \bblin

\bblaug \bblrd \bblmasterthesis

\bblsep \bblth \bblno

\bbloct \bblof

\bblnov \bblp

\bbldec \bblphdthesis

\bblpp

\bbltechrep

\bblvol

The commands for month names implement the abbreviations known by bibtex and mlbibtex:

jan feb mar apr may jun jul aug sep oct nov dec

� The bblquotedtitle allows a title to be quoted:

\begin{bblquotedtitle}%

Nesnesiteln\’{a} lehkost byt\’{\i}

\end{bblquotedtitle}

– with respect to English style: “The Unbearable Lightness of Being”
– w.r.t. French style: � L’insoutenable légèreté de l’être �
– w.r.t. German style:

”
Die Unerträgliche Leichtigkeit des Seins“

– and other styles in interface with mlbibtex.

By the way, notice the use of the “%” character—which opens a comment—in the example above,
just after “\begin{bblquotedtitle}”. This aims to bypass the end-of-line character, because
latex considers it as a space character (cf. [32, § 2.2.1]). Another way to avoid any undesirable
spacing is to glue the opening of this environment “\begin{bblquotedtitle}”and the beginning
of the quoted section together, without any space character:

\begin{bblquotedtitle}Neuromancer

\end{bblquotedtitle}

Table 1: Additional latex commands used in bibliographies generated by mlbibtex.

conventions have changed. . . In the same way, some end-users of bibtex developed
their own bibliography styles, and these styles should be able to be used with our
version. ‘Should be able to be used. . . ’, too. Here is what we describe precisely below.

Roughly speaking, the whole distribution of mlbibtex consists of:

 an executable program, called ‘mlbibtex’;

 a file defining some additional latex commands16 given in Table 1;

16Most of them are used in bibliography styles generated by the makebst program, and in interface
with the babel package (cf. [13] or [21, § 13.9]). In this case, they have to be defined in a file called
babelbst.tex.

mlbibtex 87

 some bibliography style files that can be used in addition to the standard biblio-
graphy style files. Some begin with the command:

REFERENCEDEPENDENT

so they put the reference-dependent approach into action. Otherwise, they are
document-dependent.

Any existing bibliography style file should work with mlbibtex, provided it works
with bibtex’s current implementation17. Due to our conventions, these existing bib-
liography style files are supposed to be document-dependent.

As far as we know, there are only two bug cases when bibtex (.bib) files are used
with mlbibtex:

 unbalanced square brackets,

 nested square brackets,

—see Subsection Using square brackets as syntactic tokens—but we think that they
must be very rare in real situations. Anyway, mlbibtex knows any field name bibtex
knows, including names put in compatibility with scribe [42]. If a ‘new-fashioned’
style is used for files processed by current bibtex, there is a bug case:

 double-quote character surrounded by square brackets, but not by braces, for ex-
ample:

"Virtual ["Light"]"

in the same way, that should hardly ever happen. Otherwise, these files should be
processed without any bug but obviously the result may look somewhat strange.

The additional bibliography style files can be used with bibtex’s current implement-
ation, provided that the REFERENCEDEPENDENT command is removed and the latex
commands given in Table 1 are defined when the .bbl file is processed. So they behave
in a ‘standard’ way. Besides, mlbibtex uses two environment variables:

MLBIBINPUTS when it searches for a .bib file,
MLBSTINPUTS .bst file,

the corresponding environment variables used by bibtex’s current implementation
being BIBINPUTS and BSTINPUTS. These two sets of environment variables can be
given suitable values, so end-users can ensure that ‘new-fashioned’ files are processed
only by mlbibtex.

Some Words about the Implementation

In order to be able to master a program in constant progress, we chose to develop
mlbibtex from scratch, even if we confess that we often consulted the source files of
current bibtex to get as much experience as possible.

17Bug reports or improvement suggestions will be welcome at hufflen@lifc.univ-fcomte.fr. In addition,
we will progressively put all the bug reports and any additional information onto the Web page
http://lifc.univ-fcomte.fr/PEOPLE/hufflen/texts/mlbibtex/mlbibtex/mlbibtex.html.

88 j.-m. hufflen

mlbibtex is written in the C programming language [26], since it has become stand-
ard and is efficient and widely available on many systems. Besides, its use allowed
us to get access to many development tools, especially gnu18 tools. For example, the
scanner and parser have been developed using the gnu scanner and parser generators:
flex and bison, corresponding to lex and yacc within ‘standard’ Unix [33].

In fact, we adopted an approach of reverse engineering, since we recovered design
form analysing source files and documentation. But this study allowed us to put
a precise modular decomposition into action. This decomposition yielded a precise
terminology to name functions and variables, in order to ease the possible improvement
of some modules.

Conclusion

Developing the first version of mlbibtex was a real challenge for us, since we personally
missed this kind of multilingual tool quite often. We also have been very interested in
the problems raised by extending bibtex’s grammar19. Concerning ergonomics, we
think that our proposals are user-friendly and will need as few adaptations as possible
when end-users put bibtex files according to mlbibtex conventions. But we do not
have actual feedback, that is why we presently consider our program as a prototype,
being about to belong to the latex legacy [44], and independent of bibtex’s future
version described in [39]. Our goal is to be fully able to perform some experiments. . .
and other experiments. For this reason, we have preferred a step-by-step approach.
So we could change our syntactic conventions if it appears to be preferable.

Besides, we did not forget that many tools are based on bibtex20, and we think
that adaptations should be slight if developers of such tools would like to make them
conformant to mlbibtex, if need be.

On another subject, many extensions of mlbibtex are planned:

 a version based on Unicode,

 an extension allowing users to define sorting programmes with respect to the lex-
icographical order associated with a particular language21,

 the extension of the language used in bibliography style files, in order to ease file
inclusions and avoid the duplication of identical parts from one bibliography style
to another.

18Recursive acronym for ‘GNU’s Not Unix’. This project aims to develop free software. For more
details, see the Web page http://www.gnu.org.

19In fact, the use of square brackets as syntactic elements originates from our study of the camel
citator [6, 5].

20For example, bib2bib and bibtex2html, described in [17]. A list of tools based on bibtex can be
found at the Web page http://www.ecst.csuchico.edu/~jacobsd/bib/formats/bibtex.html, main-
tained by Danna Jacobsen.

21Let us consider the Spanish language as an example: words beginning with ‘ll...’ are alpha-
beticised after other words beginning with ‘l...’, and before words beginning with ‘m...’, that is:

la... ly... lla... m...

mlbibtex 89

<the_axiom> ::= <information_list> ;

<information_list> ::= /* empty */ | <information> <information_list> ;

<information> ::= <comment_information> |

<preamble_information> |

<string_information> |

<entry_information> ;

<comment_information> ::= "@COMMENT" bibtex_comment ;

<preamble_information> ::= "@PREAMBLE" <bibtex_value> ;

<string_information> ::=

"@STRING" ("{" bibtex_identifier "=" <bibtex_expression> "}" |

"(" bibtex_identifier "=" <bibtex_expression> ")") ;

<entry_information> ::=

entry_keyword ("{" label <after_label> "}" | "(" label <after_label> ")") ;

<after_label> ::= /* empty */ | "," <field_list> ;

<field_list: ::= /* empty */ | <field_nelist> ;

<field_nelist> ::= <field> | <field> "," <field_nelist> ;

<field> ::= <field_name> "=" <bibtex_expression> ;

<bibtex_expression> ::= <concatenation_list> ;

<concatenation_list> ::= <bibtex_value> | <bibtex_value> "#" <concatenation_list> ;

<bibtex_value> ::= bibtex_identifier | natural_number | mlbibtex_atomic_value ;

Table 2: Grammar of bibtex (and mlbibtex).

And finally, we also plan a comparative study of the multilingual features of mlbibtex
and those provided by xml and xsl22, which could help us develop further versions
of mlbibtex.

Annex: mlbibtex’s Syntax

Now we outline our syntax precisely. We plan to update this description at each syntax
change, in order to ease the writing of tools associated with mlbibtex.

mlbibtex’s parser—which could be used as bibtex’s parser—is based on the gram-
mar given in Table 2. This grammar is expressed with a formalism close to bnf23,
that is:

 for each nonterminal symbol, enclosed by ‘<’ and ‘>’, the expression following the
‘::=’ sign and terminated by ‘;’ states how it can be expanded: for example,
the non-terminal symbol <the_axiom> can be expanded only to the non-terminal
symbol <information_list>;

 if a non-terminal symbol expands to an empty expression, we emphasise that by
putting a C-like comment /* empty */;

 the nonterminal symbol from which the whole grammar is derived, is <the_axiom>;

22‘eXtensible Markup Language’ and ‘eXtensible Style Language’. A good introduction to these
languages is [20], in French, and an updated version is available in English: see the Web page
http://webcast.cern.ch/Projects/WebUniversity/AcademicTraining/Goossens/.

23Backus-Naur Form. Readers unfamiliar with this formalism can refer to [33] for more details.
A more general reference about these techniques is [2].

90 j.-m. hufflen

bibtex_comment All the characters are skipped, until next ‘@’ character.

bibtex_identifier A constituent (see below), followed by zero or more constituents or digits.

constituent A letter (alphabetical character) or one of the following characters:

‘ ~ @ # $ % ^ & + * - / _ . : ; ? ! < > [] \

entry_keyword Syntactically, the ‘@’ character, followed by zero or more constituents or digits,
but @COMMENT, @PREAMBLE and @STRING are not entry keywords. Here are the entry keywords used
most often:

@ARTICLE @CONFERENCE @MANUAL @PHDTHESIS

@BOOK @INBOOK @MASTERSTHESIS @PROCEEDINGS

@BOOKLET @INCOLLECTION @MISC @TECHREPORT

@COLLECTION* @INPROCEEDINGS @PATENT* @UNPUBLISHED

The entry keywords asterisked are not standard, they might occur within some .bib files.

field_name Syntactically, a letter, followed by zero or more constituents or digits. Here are the
fields used more often:

ABSTRACT* EDITION LCCN* SCHOOL

ADDRESS EDITOR LOCATION* SERIES

AFFILIATION* HOWPUBLISHED MONTH SIZE*

ANNOTE INSTITUTION MRNUMBER* TITLE

AUTHOR ISBN* NOTE TYPE

BOOKTITLE ISSN* NUMBER URL*

CHAPTER JOURNAL ORGANIZATION VOLUME

CONTENTS* KEY PAGES YEAR

COPYRIGHT* KEYWORDS* PRICE*

CROSSREF LANGUAGE* PUBLISHER

The field names asterisked are not used in standard bibliography styles, but can be used by some
additional styles or in some latex2ε packages.

label A non empty-sequence of constituents or digits, the ‘{’ and ‘}’ characters being also allowed.

natural_number A non-empty sequence of digits. Negative numbers or numbers with ‘.’ are not
allowed.

Table 3: Lexical tokens of mlbibtex, except for field’s values.

 expressions enclosed by two double quote characters are reserved words and sym-
bols,

 symbols not surrounded by braces are terminal, that is, they are tokens read by
the scanner,

 the ‘|’ sign means an alternative,

 parentheses are used to override precedence.

We describe the tokens common to bibtex and mlbibtex in Table 3, whereas the
description of the grammar ruling the possible values for mlbibtex’s fields are given
in Table 4.

Let us recall that:

 the reserved words of bibtex and mlbibtex are read by a case insensitive scan-

mlbibtex 91

<mlbibtex_atomic_value> ::= ‘"’ <no_double_quote>* ‘"’ | ‘{’ <between_braces> ‘}’ ;

<no_double_quote> ::=

<almost_any> |

‘$’ <any_math>* ‘$’ |

‘[’ <between_square_brackets>* ‘]’ <after_square_brackets> |

‘{’ <between_braces> ‘}’ ;

<between_square_brackets> ::=

<almost_any> | ‘"’ | ‘{’ <between_square_brackets> ‘}’ | ‘$’ <any>* ‘$’ ;

<after_square_brackets> ::=

/* empty */ |

‘*’ <bibtex_identifier> |

‘!’ <bibtex_identifier> |

‘:’ <bibtex_identifier> |

‘{’ ‘}’ ;

<between_braces> ::= <no_double_quote> | ‘"’ ;

where:

<almost_any> is for any characters—including the space, tabulation, or end-of-line character—but
braces, square brackets, ‘"’ and ‘$’;

<any_math> is for any character—including the space, tabulation, or end-of-line character—but
‘$’;

‘...’ states a character that actually appears within the value;

<...>* means ‘zero or more occurrences of <...>’.

Table 4: Lexical grammar of mlbibtex values.

ner24: for example, ‘@BOOK’, ‘@book’, ‘@Book’, ‘BoOk’ are suitable for the entry type
BOOK;

 on the contrary, the values of bibtex and mlbibtex fields—that is, the possible
values for the bibtex_atomic_token token—keep their own case;

 bibtex and mlbibtex ignore any text that is not inside an entry, so the @COMMENT
command, used to put any texts outside commands, is not really necessary;

 from a syntactic point of view, some labels used to refer bibtex or mlbibtex
entries, may be accepted by them, but be wrong arguments of the latex commands
\bibitem and \cite;

 space, tabulation, and end-of-line characters between syntactic categories are ir-
relevant in the specification given in Table 2, but are relevant in Tables 3 and 4.

Acknowledgements

Thanks to Oren Patashnik for his valuable comments about this article, and Simon
Pepping who proof-read it.

24On the contrary, latex is case sensitive.

92 j.-m. hufflen

References

[1] afnor Z44-045 : Documentation — Références bibliographiques — Contenu,
forme et structure. Norme disponible auprès de l’afnor, voir
http://www.afnor.fr. Décembre 1987.

[2] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman: Compilers, Principles,
Techniques and Tools. Addison-Wesley Publishing Company. 1986.

[3] ansi/niso Z39.71–1999: Holding Statements for Bibliographic Items. See
http://www.ansi.org. 1999.

[4] Peter Antman: Oxford Style Package. Version 0.4. 1997. See ctan: bib-

lio/bibtex/contrib/oxford/.

[5] Frank G. Bennett, Jr: The Law Module for the Camel Bibliography Engine.
July 1995. See http://www.loria.fr/services/tex/english/bibdex.html.

[6] Frank G. Bennett, Jr: User’s Guide to the Camel Citator. July 1995. See
http://www.loria.fr/services/tex/english/bibdex.html.

[7] Joannes Braams: Babel, a Multilingual Package for Use with latex’s Stand-
ard Document Classes. Version 3.7. February 2001. See ctan:
macros/latex/required/babel/babel.dvi.

[8] British Standards 1629:1989: Recommendation for References to Published Ma-
terials. See http://bsonline.techindex.co.uk. 1989.

[9] British Standards 5605:1990: Recommendations for Citing and Referencing
Published Materials. See http://bsonline.techindex.co.uk. 1990.

[10] Judith Butcher: Copy-Editing. The Cambridge Handbook for Editors, Au-
thors, Publishers. 3rd edition. Cambridge University Press. 1992.

[11] The Chicago Manual of Style. The University of Chicago Press. The 14th
edition of a manual of style revised and expanded. 1993.

[12] Code typographique. Choix de règles à l’usage des professionnels du livre. Fé-
dération nationale du personnel d’encadrement des industries polygraphiques
et de la communication, Paris. 17e édition. 1993.

[13] Patrick W. Daly: Customizing Bibliographic Style Files. Version 3.2. February
1999. Part of latex’ distribution.

[14] Bernard Desgraupes : latex. Apprentissage, guide et référence. Vuibert
Informatique, Paris. 2000.

[15] Duden: Rechtschreibung der deutschen Sprache und der Fremdwörter. 19.
Auflage. Bibliographisches Institut, Mannheim. 1986.

[16] Michael J. Ferguson: “A Multilingual TeX”. TUGboat, Vol. 6, no. 2, p. 57–58.
July 1985.

[17] Jean-Christophe Filliâtre and Claude Marché: bibtex2html: A Trans-
lator of bibtex bibliographies into html. February 2001. See
http://www.loria.fr/services/tex/english/outils.html.

[18] Daniel Flipo: A babel Language Definition File for French. Version v1.5e.

mlbibtex 93

March 2001. See http://www.tex.ac.uk.

[19] Bernard Gaulle : Notice d’utilisation du style french multilingue pour latex.
Version pro V5.01. Janvier 2001. Voir sur ctan :
loria/language/french/pro/french/ALIRE.pdf.

[20] Michel Goossens : � xml et xsl : un nouveau départ pour le Web �. Cahiers
GUTenberg, Vol. 33–34, p. 3–126. Novembre 1999.

[21] Michel Goossens, Frank Mittelbach and Alexander Samarin: The latex
Companion. Addison-Wesley Publishing Company, Reading, Massachusetts.
1994.

[22] Hart’s Rules for Composers and Readers at the University Press. Oxford Uni-
versity Press. 39th edition. 1999.

[23] Jean-Michel Hufflen : � Typographie : les conventions, la tradition, les
goûts, . . . et latex �. Cahiers GUTenberg, Vol. 35–36, p. 169–214. Mai 2000.

[24] Jean-Michel Hufflen : � Vers une extension multilingue de bibtex �. Cahiers
GUTenberg, Vol. 39–40, p. 23–38. Mai 2001.

[25] Jean-Michel Hufflen, Denis Rœgel et Karl Tombre : Guide local (la)tex
du LORIA. Millésime 1998. Rapport technique 98–R–214, LORIA. Septembre
1998.

[26] Brian W. Kernighan and Denis M. Ritchie: The C Programming Language.
2nd edition. Prentice Hall. 1988.

[27] Donal Ervin Knuth and Pierre MacKay: “Mixing Right-to-Left Texts with
Left-to-Right Texts”. TUGboat, Vol. 8, no. 1, p. 14–25. April 1987.

[28] Donald Ervin Knuth: Computers & Typesetting. Vol. A: the TEXbook.
Addison-Wesley Publishing Company, Reading, Massachusetts. 1984.

[29] Helmut Kopka: latex—Band I: Einführung. 2. Auflage. Addison-Wesley
Longmann. 1997.

[30] Helmut Kopka: latex—Band II: Ergänzungen mit einer Einführung in
metafont. 2. Auflage. Addison-Wesley Longmann. 1997.

[31] Helmut Kopka: latex—Band III: Erweiterungen. Addison-Wesley Long-
mann. 1997.

[32] Leslie Lamport: latex. A Document Preparation System. User’s Guide and
Reference Manual. Addison-Wesley Publishing Company, Reading, Massachu-
setts. 1994.

[33] John Levine, Tony Mason and Doug Brown: lex & yacc. 2nd edition.
O’Reilly. October 1992.

[34] Lexique des règles typographiques en usage à l’Imprimerie Nationale. Imprime-
rie Nationale. 1990.

[35] Wenzel Matiaske: Multilinguale Zitierformate. Oktober 1995. Siehe ctan:
macros/latex/contrib/supported/mlbib/.

[36] nts Team and Peter Breitenlohner: The ε-tex Manual. February 1998.

94 j.-m. hufflen

Part of latex’ distribution.

[37] Oren Patashnik: Designing bibtex styles. February 1988. Part of latex’
distribution.

[38] Oren Patashnik: bibtexing. February 1988. Part of latex’ distribution.

[39] Oren Patashnik: “bibtex 1.0”. TUGboat, Vol. 15, no. 3, p. 269–273. Septem-
ber 1994.

[40] John Plaice and Yannis Haralambous: Draft Documentation for the Ω Sys-
tem. March 1998. See
http://www.loria.fr/services/tex/english/moteurs.html.

[41] Bernd Raichle: Die Makropakete
”
german“ und

”
ngerman“ für latex2ε,

latex 2.09, Plain-TEX and andere darauf Basierende Formate. Version 2.5.
Juli 1998. Im Software latex.

[42] Brian Reid: scribe Document Production System User Manual. Technical
Report, Unilogic, Ltd. 1984.

[43] Christian Rolland : latex par la pratique. Éditions O’Reilly. Octobre 1999.

[44] Chris A. Rowley: “The latex Legacy. 2.09 and All That”. In: Annual acm
Symposium on Principles of Distributed Computing. Newport, Rhode Island.
August 2001.

[45] The Unicode Standard Version 3.0. Addison-Wesley. February 2000.

♦ ♦ ♦

Special Fonts
BogusJlaw Jackowski∗and Krzysztof Leszczyński†

abstract. We propose the use of a special pseudofont as an enhancement
(in a sense) of the \special instruction. The examples of the implementation show

that the technique applied here would prove to be extremely useful,
especially with METAPOST.

keywords: cmdfont, special commands, MetaPost, fonts, PostScript

K
een users of TEX, METAFONT, or METAPOST might find the instructions
called “special” very mighty helpers. However, METAPOST imposes serious
limit on them: their content is placed at the very beginning of a PostScript

file that METAPOST produces, just after the %%Page comment, before the very first
real PostScript statement. It means that METAPOST, unlike TEX and METAFONT,
is not able to intersperse drawing commands (draw, fill) or typesetting commands
(infont, btex ... etex) with a special user-defined content. This behaviour embit-
ters the life of METAPOST users and leads to neck-breaking solutions. Even worse,
TEX \special instructions are ignored by dvitomp, making oodles of TEX packages
unusable inside a btex ... etex construct.

The solution is to replace each \special instruction with a string typeset with a
special-ly crafted font (pseudofont). We propose a natural name for it: cmdfont,
command font. The text typeset with cmdfont has a special meaning when a TEX-
generated dvi or a METAPOST-generated eps file is processed—it is treated as a
sequence of commands to be interpreted.

The current article is the result of very preliminary thoughts—the idea is still very
fresh. We are far from understanding all the consequences of this approach. Therefore,
instead of developing a “general theory of specials,” we decided to present just a few
examples illustrating various possible applications of special \special instructions.

We have concentrated on using cmdfont with METAPOST. The use of pseudofonts
with TEX, METAFONT, html or even major office editors is another thing. The
reader may wish to evaluate the possibilities of special fonts. We perceive them as
quite promising.

∗B.Jackowski@GUST.org.pl
†Polish Linux Users’ Group, chris@linux.org.pl

96 b. jackowski and k. leszczyński

What is the special font?

Our special font can be defined with a short METAPOST program, cmdfont.mp:

designsize:=10bp/pt - epsilon;

fontdimen 2: designsize; % font normal space

fontmaking:=1;

for i:=0 upto 255:

beginfig(i-256);

charwd:=charht:=chardp:=charic:=0;

endfig;

endfor

end.

The result of interpreting this program by METAPOST is cmdfont.tfm, i.e., a metric
file which should be put somewhere where all tfm files reside. It contains 256 char-
acters with all dimensions equal to zero. Most other font parameters are also set to
zero. It is obvious that the font design size cannot be zero, but it is not obvious why
the width of a space (fontdimen2) should be set to the design size. In fact, the actual
size is not essential, any non-zero will do. Also, the actual design size value is not
important as long as everybody who uses cmdfont takes the same designsize value.

Please note that the beginfig parameter is negative. Negative arguments in-
struct the METAPOST interpreter to output all the eps files under the same name:
cmdfont.ps. If we used a seemingly natural form, beginfig(i), our directory would
be infested by cmdfont.0, cmdfont.1, . . . , cmdfont.255 files. We don’t need those
files and it is easier to throw away one file than 256 files.

Special font in a METAPOST program

Let’s trace how the instructions referring to cmdfont are parsed by METAPOST. Con-
sider the file named, say, infont.mp:

beginfig(100);

draw "META FONT" infont "cmdfont";

draw "META POST" infont "cmdfont" scaled 2;

endfig;

end.

The resulting file, infont.100, reads:

1 %!PS

2 %%BoundingBox: 0 0 0 0

3 %%Creator: MetaPost

4 %%CreationDate: 2001.04.13:1950

5 %%Pages: 1

6 %*Font: cmdfont 10 10 20:80000000460708

7 %*Font: cmdfont 20 10 20:80000000440598

8 %%EndProlog

special fonts 97

9 %%Page: 1 1

10 0 0 moveto

11 (META FONT) cmdfont 10 fshow

12 0 0 moveto

13 (META POST) cmdfont 20 fshow

14 showpage

15 %%EOF

Leaving apart the hairy details of METAPOST-generated PostScript code, let’s note
that the information about the font cmdfont is declared twice in the header of the
file, namely, in the lines 6 and 7. Recall that METAPOST strings drawn by an infont

command are always converted to a single (Postscript string), even if they are
extremely long. The space inside the METAPOST and the PostScript string denotes
the character of code 32. Computer Modern fonts use code 32 for the character
suppress ‘8’ used for the letters ‘8L’ and ‘8l’. Most text fonts use code 32 for a normal
non-stretching space.

Consider now a METAPOST program btexetex.mp that typesets a text using a con-
struction btex ... etex:

verbatimtex \font\f cmdfont etex

beginfig(100);

draw btex \f META FONT etex; draw btex \f META POST etex scaled 2;

endfig;

end.

It should not be a surprise that the resulting eps differs from the previous one:

1 %!PS

2 %%BoundingBox: 0 0 0 0

3 %%Creator: MetaPost

4 %%CreationDate: 2001.04.13:1950

5 %%Pages: 1

6 %*Font: cmdfont 10 10 41:8c0e1

7 %*Font: cmdfont 20 10 41:880b3

8 %%EndProlog

9 %%Page: 1 1

10 0 0 moveto

11 (META) cmdfont 10 fshow

12 9.9999 0 moveto

13 (FONT) cmdfont 10 fshow

14 0 0 moveto

15 (META) cmdfont 20 fshow

16 19.99979 0 moveto

17 (POST) cmdfont 20 fshow

18 showpage

19 %%EOF

98 b. jackowski and k. leszczyński

The difference is that both strings have been split into two pieces (rows 13, 15 and
17, 19). Instead of typesetting a space character (\char32), TEX replaced each space
with positioning instructions. Wizards able to read the magic hexadecimal sequences
occurring in rows 6 and 7 will see that the character of code 32 is missing from the
character set used to typeset texts in this particular PostScript file.

The problem of the space will recur in this article.

The special font and TEX+dvips

The files generated with METAPOST are usually included into TEX documents, cal-
endered by dvips and eventually end up in the resulting PostScript file. The only
font information TEX needs is the respective metric file (tfm). In contrast, dvips
requires for a given font both the tfm file and its glyph shapes. It uses the header
of the eps it processes to learn about the character set it needs. Unless we somehow
monkey the header, dvips will demand that we provide a bitmap (pk) or a Post-
Script Type 1 (pfa or pfb) font file. But we have no glyphs for cmdfont—neither
bitmaps, nor outlines.

We might have used the trick with a virtual font having all characters void, but it
wouldn’t work—dvips is smart enough to ignore all texts typeset with empty charac-
ters.

We have found no other way but to choose a popular font and identify it with
cmdfont by adding an equivalence definition into the psfonts.map file. We have
chosen Courier. The relevant line reads:

cmdfont Courier

That’s all. Now the files typeset with cmdfont can be printed as if cmdfont was a
regular font although the final effect might be weird. However, the cmdfont should
be used in such a way that a PostScript interpreter would never attempt to display
its characters.

How to use cmdfont without external processing

There are two PostScript instructions we have to bridle: cmdfont itself and fshow.
METAPOST typesets the texts using the PostScript instructions with the name
derived from the relevant tfm files. The fshow command is defined in the file
finclude.pro. This file is automatically included when dvips encounters the eps
file generated by METAPOST containing typeset texts. The piece of METAPOST code
quoted below redefines the meaning of both instructions. Our cmdfont command in-
terprets the string as an instruction sequence (cvx exec) and then it neutralizes the
ensuing fshow.

def prep_cmdfont =

special "/fshow where ";

special " {pop} {/fshow {pop} def} ifelse";

special "/cmdfont {cvx exec";

special fonts 99

special " /fshow.tmp /fshow load def";

special " /fshow";

special " {pop /fshow /fshow.tmp load def}";

special " def";

special "} def";

enddef;

extra_endfig:=extra_endfig & ";prep_cmdfont;";

Using the METAPOST special instruction guarantees that the code is moved to the
begin of the PostScript code and that’s what we wanted to achieve. Note that
splitting strings does not bother the ‘cvx exec’ doublet.

Employing this technique yields undoubtedly useful results that are rather hard to
achieve using “classic” methods. Below, we present three examples of feasible cmdfont
applications. In the examples we refer to the file named prepcmdf.mp containing the
definition of prep_cmdfont and extra_endfig assignment, as described above.

Example 1: Colouring fragments of a TEX text
Let’s assume that the METAPOST illustration contains a text with a fragment to be
coloured.

This is not a particularly
ingenious example of
colouring a selected
piece of text within
a btex ... etex clause.

The METAPOST source of this illustration is not particularly complicated:

input prepcmdf.mp;

verbatimtex

\def\incmyk#1#2{%

\leavevmode\rlap{\font\f=cmdfont \f

gsave #1 setcmykcolor}%

#2%

{\font\f=cmdfont \f grestore}}

etex

beginfig(100);

draw btex \vbox{

\hsize 40mm \pretolerance10000 \raggedright \noindent

This is not a particularly ingenious example of colouring

\incmyk{0 0 0 0.3}{{\bf a selected piece of text}}

within a~{\tt b{}tex} {\tt ...} {\tt e{}tex} clause.

} etex scaled 1.2;

endfig;

The chief painter is the two-parameter macro \incmyk defined in the verbatimtex

... etex clause; the \rlap instruction used at the beginning of the macro definition

100 b. jackowski and k. leszczyński

is crucial—we don’t want the text “typeset” with cmdfont to influence the rest of the
typesetting. Recall that the cmdfont space has a non-zero width.

This is the piece of the resulting eps file responsible for the colour changes. The
strings fed to cmdfont instructions are underlined to improve the legibility.

...

(gsave) cmdfont 11.99997 fshow

55.82301 28.69228 moveto

(0) cmdfont 11.99997 fshow

59.8076 28.69228 moveto

(0) cmdfont 11.99997 fshow

63.79219 28.69228 moveto

(0) cmdfont 11.99997 fshow

67.7768 28.69228 moveto

(0.3) cmdfont 11.99997 fshow

71.76138 28.69228 moveto

(setcmykcolor) cmdfont 11.99997 fshow

51.83855 28.69228 moveto

(a) plbx10 11.95514 fshow

62.50629 28.69228 moveto

(selected) plbx10 11.95514 fshow

0 14.3462 moveto

(piece) plbx10 11.95514 fshow

34.15456 14.3462 moveto

(of) plbx10 11.95514 fshow

49.21426 14.3462 moveto

(text) plbx10 11.95514 fshow

73.46477 14.3462 moveto

(grestore) cmdfont 11.99997 fshow

...

Example 2: The implementation of eofill
PostScript is armed with two basic countour-filling operations: fill and eofill

(even-odd fill). The following picture illustrates the difference. “Snails” are construc-
ted from the circles filled with fill (left side) and eofill (right side).

Unfortunately, METAPOST uses only fill. The eofill operator can be implemented
using METAPOST special instructions. In general, however, it is hairy. Another

special fonts 101

solution is the external processing of the resulting eps files but this is even hairier.
The use of cmdfont opens a rather simple way to implement eofill.

1 def eofill(text paths) text modif =

2 begingroup

3 save x_, y_;

4 for p_:=paths:

5 x_:=xpart(llcorner(p_));

6 y_:=ypart(llcorner(p_));

7 exitif true;

8 endfor

9 draw ("/fill.tmp /fill load def " &

10 "/newpath.tmp /newpath load def" &

11 "/fill {/fill{}def /newpath{}def}def")

12 infont "cmdfont" shifted (x_,y_) modif;

13 for p_:=paths: fill p_ modif; endfor

14 draw ("eofill /fill /fill.tmp load def " &

15 "/newpath /newpath.tmp load def")

16 infont "cmdfont" shifted (x_,y_) modif;

17 endgroup

18 enddef;

Just a few words of comment: Lines 9–12 neutralize fill and newpath instructions
appearing in the PostScript code generated by line 13. The code in lines 14–16
invokes eofill and restores the meaning of fill and newpath. cmdfont strings need
to be positioned in a place that will not change the dimensions of the picture. In this
example, strings are put in the lower left corner of the first path from the argument
list (lines 4–8). This point satisfies our assumption: all strings have a total width of 0
because spaces are interpreted as characters of code 32.

The macro eofill can be used as follows:

eofill(

fullcircle scaled 24mm shifted (-8mm,0),

fullcircle scaled 24mm,

fullcircle scaled 24mm shifted (8mm,0))

withcolor 1/2white;

From the user’s point of view, there is a difference between the eofill operation im-
plemented here and the innate METAPOST fill operation—the argument of eofill
is a list of paths rather than a single path. It is not difficult to predict the result of
the code quoted above:

102 b. jackowski and k. leszczyński

We do not present the PostScript code of the latter example just because boring
the reader to death is not exactly our goal. Nevertheless, we recommend to run
METAPOST and study the code, it is very instructive reading.

Example 3: The implementation of eoclip
The pair of clip-eoclip operators used for clipping the pictures is analogous to the
fill-eofill pair we considered in the previous example. In particular, METAPOST

provides only clip. The implementation of \eoclip using the cmdfont technique is
a bit more difficult than that of eofill. Here’s is our proposal:

1 def eoclip(expr pic)(text paths) text modif =

2 begingroup

3 save s_, xmin_, xmax_, ymin, ymax_;

4 xmin_=ymin_:=infinity; xmax_=ymax_:=-infinity;

5 draw ("/clip.tmp /clip load def " &

6 "/newpath.tmp /newpath load def" &

7 "/clip {/clip{}def /newpath{}def}def")

8 infont "cmdfont";

9 picture s_;

10 s_:=image(

11 draw ("eoclip /clip /clip.tmp load def " &

12 "/newpath /newpath.tmp load def")

13 infont "cmdfont"; draw pic);

14 for p_:=paths: clip s_ to p_ modif;

15 if xpart(llcorner(p_ modif)) < xmin_:

16 xmin_:=xpart(llcorner(p_ modif)); fi

17 if xpart(urcorner(p_ modif)) > xmax_:

18 xmax_:=xpart(urcorner(p_ modif)); fi

19 if ypart(llcorner(p_ modif)) < ymin_:

20 ymin_:=ypart(llcorner(p_ modif)); fi

21 if ypart(urcorner(p_ modif)) > ymax_:

22 ymax_:=ypart(urcorner(p_ modif)); fi

23 endfor

24 setbounds s_ to

25 (xmin_,ymin_)--(xmax_,ymin_)--

26 (xmax_,ymax_)--(xmin_,ymax_)--cycle;

27 addto currentpicture also s_;

28 endgroup

29 enddef;

The solution we propose is not obvious and has its drawbacks—we would gladly wel-
come any suggestions how to improve the code. Leaving apart the details, let’s con-
centrate on a few things: (1) Part of the text typeset with cmdfont is added to the
current picture (currentpicture variable, lines 5–8), another part is added to the
local picture s_ (lines 10–13). This is to ensure a proper order of PostScript op-
erations. (2) The text is positioned at the coordinate origin, because eventually the

special fonts 103

picture acquires its bounds explicitly (lines 24–26). (3) It resembles more the eofill

operation defined previously than the original clip. We’ll need to get used to it. . .
The illustration below presents the effect of eoclip.

ABCDEFGHIJKLMNOPQRSTUVW
XYZABCDEFGHIJKLMNOPQRSTU
VWXYZABCDEFGHIJKLMNOPQR
UVWXYZABCDEFGHIJKLMNO
QRSTUVWXYZABCDEFGHIJKLMN
OPQRSTUVWXYZABCDEFGHIJK
MNOPQRSTUVWXYZABCDEFGH
KLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXYZAB
EFGHIJKLMNOPQRSTUVWXY

It was generated by the following program, again admittedly trivial:

beginfig(100);

picture p; p:=btex \vbox{

\hsize 45mm \spaceskip-2ptplus1pt \parfillskip0pt

\baselineskip7pt \lineskiplimit-\maxdimen \noindent

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

} etex;

eoclip(p)(

fullcircle scaled 24mm shifted (-8mm,0),

fullcircle scaled 24mm,

fullcircle scaled 24mm shifted (8mm,0))

shifted center p;

endfig;

The presented examples are supposed to convince the Reader that the use of eofill
and eoclip is simple. Obviously, it does not imply that the respective definitions are
simple. Nevertheless, we think that inventing such definitions is within every META-
POST user’s reach. We count on it that METAPOST lovers will develop a heap of
useful operations using the described techniques.

The special font and TEX packages

Processing the TEX fragments of a METAPOST source is one of the applications where
the cmdfont technique proves useful. The basic METAPOST construction, i.e., btex

104 b. jackowski and k. leszczyński

the TEX code etex works correctly if we stick to classic TEX only. Thus the phrase:

verbatimtex \input epsf etex;

picture P; P:=btex \epsfbox{file.eps} etex;

does not produce the desired results. The reason is the presence of TEX \special

commands which (as we mentioned in the introduction) are ignored during the dvi-
to-METAPOST transform. The macro \epsfbox, defined in the file epsf.tex from
the dvips distribution, analyses the PostScript file and generates the appropriate
whatsit node of type special. For instance, the TEX file

\input epsf \epsfbox{tiger.ps} \end

where tiger.ps is a popular on-duty eps file from the Ghostscript distribution,
produces \special{PSfile=tiger.ps llx=22 lly=171 urx=567 ury=738 rwi=5450}.
If the TEX fragment is included in a METAPOST file, we should put \input epsf inside
a verbatimtex ... etex block.

As we can see, we cannot move any further without knowing what to do with
\special instructions. There should be a way to pass the information about them
to METAPOST. One such way is redefining the \special instruction to transform its
content to a string to be typeset with cmdfont. The näıve solution

\def \special #1{\smash{\hbox{\cmdfont TeXspecial #1}}}

does not work properly because the argument of \special usually contains spaces
which have a non-zero width in cmdfont. TEX replaces such spaces by appropriate
glues, thus splitting the argument into several substrings that are put into the final
PostScript file and interwoven with positioning instructions. Moreover, a \special

argument may contain characters with unexpected categories (such as $). Let’s assume
that \special receives its argument as a string of characters of various categories but
free from non-expandable non-character tokens (like \advance). In theory, such tokens
may occur inside \special, but we haven’t observed any single instance of such an
instruction. (It does not mean, however, that they do not exist.) Our task is to
convert a string into another string with all categories being “printable”.

We propose the following trick: embed the argument of \special inside \csname

... \endcsname. This way, we get an “error trap” for free because \csname crashes
when it finds a token that is not a character or a space. The resulting control se-
quence (with the meaning = \relax) can be converted by a \string command into
a sequence of characters. As every TEX user knows, \string expands its arguments
into a sequence of characters of category 12. . . well, not really—spaces get their “tra-
ditional” catcode: 10. Therefore all spaces must be converted into explicit \char32]

characters by forcing TEX to write the character of code 32 into the dvi file. dvips
or dvitomp would convert such a character to an ordinary space. The simplified yet
usable file cmdfont.tex redefining the \special command is given below:

\font \cmdfont=cmdfont

% The box keeps the string of characters used instead of \special

\newbox \mpspecialbox

special fonts 105

% We’ll keep all specials occurring in the main vertical list

% into the special box.

\newbox \MVLspecialbox

\setbox \MVLspecialbox=\null

\def \mpspecial #1{%

\setbox \mpspecialbox=\hbox{%

\cmdfont

% set escapechar, just in case

\escapechar=‘\\%

% Prepare a macro with the name being the content of our special

% including a backslash at the very beginning.

\edef \a {\expandafter \string

\csname TeXspecial: #1\endcsname

\space \relax}%

% \b eats the leading backslash, that resulted from

% \a after it was expanded.

\def \b ##1{\c}

% Change every space into the character coded 32.

\def \c ##1 ##2\relax{##1%

\ifx $##2$%

\else \char32 \c##2\relax

\fi}%

\expandafter \b \a

}%

% If we’re in the main vertical list, put the special into

% a special box, otherwise just typeset it.

\if \ifvmode\ifinner+\else-\fi\else+\fi +%

\box \mpspecialbox

\else

\global \setbox \MVLspecialbox

\hbox{\box \MVLspecialbox

\kern1sp

\box \mpspecialbox}%

\fi

}

\def\special{\mpspecial}

Such a redefinition of \special guarantees that its argument will not be ignored (by
dvitomp) and that METAPOST will receive their string equivalents. More import-
antly, every such \special generates a single string, therefore dvips will also generate
a single string even if it is enormously large.

What should we do with such strings passed to METAPOST? The final PostScript
must be postprocessed with a sed, awk, or Perl script. This processing is easier than

106 b. jackowski and k. leszczyński

it could be, because, as we have mentioned, every special is transformed into a single
(Postscript string).

PostScript file postprocessing

A small example: tiger.mp

verbatimtex

\input cmdfont

\input epsf

etex

beginfig(100)

draw btex \epsfxsize=20pt

\epsfbox{tiger.ps} etex

endfig;

end.

The resulting file tiger.100 contains:

%!PS

%%BoundingBox: 0 0 20 21

%%Creator: MetaPost

%%CreationDate: 2001.04.04:1968

%%Pages: 1

%*Font: cmdfont 10 10 20:800277e4000098805748bdc

%%EndProlog

%%Page: 1 1

9.9626 0 moveto

(TeXspecial: PSfile=tiger.ps llx=22 lly=171 u\

rx=567 ury=738 rwi=199) cmdfont

10 fshow

showpage

%%EOF

The parameters llx, lly, urx, and ury define the bounding box of the figure to be
included; rwi is equal to \epsfxsize× 10/1bp. We have to replace the string with
the code that would be generated by dvips if indeed dvips found the relevant “real”
\special.

We have to watch out for strings that begin with (TeXspecial and process them
up to the final) cmdfont ... fshow.

What dvips understands

Although the popular dvi-to-PostScript translator called dvips understands lots of
\special patterns, it does not accept all imaginable ones. It can tell friend from foe

special fonts 107

by a \special’s prefix. Here is the list of the most frequently used prefixes that dvips
can understand.

 papersize—Defines the page size; METAPOST deals with encapsulated Post-
Script files, thus we can ignore this parameter in most documents as setting page
parameters is not allowed in eps files (according to the Adobe specification of
PostScript).

 landscape—Specifies page orientation; can be ignored, too.

 header—Adds the specified file to the header of the PostScript file made by
dvips. Keeping in mind that METAPOST files are usually included in TEX doc-
uments and processed by dvips, we can clone this instruction by adding it to
an auxiliary TEX file as a normal \special. If dvips felt moved by the standard
PostScript structured comment %%DocumentNeededResources, we could replace
the header \special by the METAPOST special. Actually, dvips would just ig-
nore such a comment stolidly.

 psfile—Adds an eps file. Unfortunately, there’s no other way except adding
such a file by hand or rather by script. Some non-standard elements like %*Font

declarations could be cloned to the auxiliary file TEX file.

 !—Its argument is a piece of a literal PostScript code. Normally, dvips places
it in the header of the final output file. Thus, we should clone it to the auxiliary
TEX file.

 "—A piece of PostScript code, embedded in the graphic environment (coordinate
transformation matrix) of an eps file.

 ps: (note the single colon)—A piece of PostScript code embedded in the graphic
environment (coordinate transformation matrix) of the PostScript file generated
by dvips. Before and after the code dvips adds the positioning instructions.

 ps::, ps::[begin], ps::[end]—These constructions are used to concatenate a
sequence of \special instructions; They are omens of serious trouble. Their de-
scription in the dvips manual is rather laconic. One can really PSoil things. We’ll
assume there are no such specials in the processed files.

 em:—This form was introduced by Eberhard Mattes and used to be understood
only by emTEX. Although they were quite useful at the time, now they are mostly
replaced by pure PostScript code. We won’t deal with them.

 html:— . . . well, perhaps some other time :-).

Construction cloning

Assuming that every METAPOST file eventually gets into TEX and dvips, we can save
our labour and many opportunities of making errors if we clone some constructions.
A \special instruction that begins with a header or an exclamation mark prefix can
be written, as was mentioned, to an auxiliary TEX file to be \input again in the final
stage of processing. The structured %*Font comments can be saved to a pseudo-eps

108 b. jackowski and k. leszczyński

file containing only these comments; moreover, an appropriate \special command
(\special{psfile ...}) can be added to the auxiliary TEX file. In this way, the
relevant fonts will be included by dvips.

The best method to gain some insight into the techniques described herein is to ex-
periment. One can process METAPOST files using the program despecials available
from ftp://bop.eps.gda.pl/pub/cmdfont. It is a Perl script that updates the
METAPOST output. It changes \special command equivalents expressed by cmdfont

strings into proper (or sometimes improper) PostScript code. Additionally, it pro-
duces the TEX file mpspec.inc containing selected cloned \special commands.

Header files

Life becomes worse if a TEX file that we add using btex ... etex generates \special
instructions during input. Many macro libraries behave in such a way. As an illus-
tration, let’s take a very simple example of the output produced by the lilypond
program for typesetting music. One of the possible effects of lilypond processing

4
4Z #######Z 4
4 ���#

its score file is a TEX file (gamac.tex in this case) that can
be input into the METAPOST figure. Even such a simple

example contains four \special instructions after conversion to TEX format: two of
them are placed in the header part and two are required for slurs. Typesetting scores
is, no doubt, one of the most intricate tasks TEX can carry out and there is no way to
do it without being special-infested. A one-page minuet from the lilypond manual
contains more than 60 \special commands.

Our METAPOST file would look like:

verbatimtex

\input cmdfont

\input lily-ps-defs

etex

beginfig(100)

picture P;

P=btex \input gamac.tex etex;

draw P;

endfig;

end.

Unfortunately, macros contained in the file lily-ps-defs.tex generate \special

commands themselves. Let’s consider the result of processing such a file by META-
POST: it generates a file mpx$$.tex (the exact name varies from system to system)
with an obvious content:

\input cmdfont

\input lily-ps-defs

%

\shipout\hbox{\smash{\hbox{\hbox{%

special fonts 109

\input gamac.tex}\vrule width1sp}}}

\end{document}

We can see two lines issued by verbatimtex ... etex, and the content of the btex

... etex block embedded in a rather complicated Russian doll of boxes, to be sent to
the dvi file by an explicit \shipout command.

Without additional treatment, the effect of TEX processing is a dvi file containing
two pages. The first one, generated by \shipout, will comprise the content of the
box without the necessary header information. The next page will be generated by
the \end instruction and it will contain the main vertical list (mvl) with the relevant
header information.

There is no unique answer to this problem. It depends on our plans with respect
to the header list. One of possible solutions is collecting all \special instructions
from the main vertical list and adding them to all boxes (or only to the first box) by
appropriately redefining the \shipout instructions.

Let’s assume that the \special instructions defined in the verbatimtex ... etex

block are put into the main vertical list without embedding them in boxes. Under
this assumption, it is easy to distinguish a header -\special from the a box -\special.
The first one is generated in external vertical mode, the latter one in internal vertical
mode or horizontal mode (restricted or paragraph). To tell the difference it suffices to
use a pair of conditionals \ifinner and \ifvmode. The macro \mpspecial defined in
cmdfont.tex catches every \special that plans to visit the mvl and puts it into a
special box, \MVLspecialbox. Note that specials are separated by a thin space (1sp),
otherwise they would be glued together in the case of an \unhbox operation.

If our macros generated \special whatsits that are caught by \mpspecial, the
\pagetotal register would be equal to 0pt. If this is not the case, it usually means
that something went to the mvl, which is probably wrong. This case cannot be dealt
with in a general way but if the total length of the mvl is still less than the page
height we can try to pick it up and save into a box:

\par

\newbox \MVLbox

\begingroup

\ifdim \pagetotal>0pt

\errhelp{I’ll save the MVL into MVLbox}

\errmessage{MVL is not empty}

\output={\global\setbox

\MVLbox=\box255}

\vsize=\pagetotal

\eject

\fi

\endgroup

It is up to the programmer what the \MVLbox is used for, once it is saved.

110 b. jackowski and k. leszczyński

Recapitulation

Augmenting TEX, METAPOST, METAFONT, and some other programs with a specially
treated font looks promising, especially with METAPOST.

Full evaluation of the new possibilities offered by the special font technique requires
more experience than we as yet have. The technical details of the cmdfont structure
need to be worked out. It is not obvious which parameters such a font should have.
For instance, which size the space should have: 0pt, 1sp, 1

3em (a typical value for a
text font), or even 1em. We chose the latter because then it is easier to learn, from
inside the TEX program, which is the value of the designsize parameter. It is also
not obvious whether there should be only one cmdfont or a whole family of such fonts;
and if so, which rules should be applied to avoid a mess.

A mess seems to be a critical threat to the effective application of the techniques
described herein. Early standardization, including the font name, the details of the
font design and the structure of texts typeset with it, is a sine qua non condition
of success. We count on the TEX community—without their help it is unlikely that
we manage to keep the mess away from this emerging technology which is still in its
infancy.

♦ ♦ ♦

MetaType1: a METAPOST-based engine for

generating Type 1 fonts
BogusJlaw Jackowski∗, Janusz M. Nowacki†, and Piotr Strzelczyk‡

abstract.
A package for preparing parameterized outline fonts in PostScript [6] Type 1 [8]

format is described. The package makes use of METAPOST [3], awk [4], and
T1utils [5], therefore is supposed to be easily portable to various computer platforms.

Its beta version along with a sample font (Knuth’s logo font)
is available from: ftp://bop.eps.gda.pl/pub/metatype1

keywords: outline fonts, scalable fonts, parameterized fonts,
PostScript Type 1 fonts, MetaFont, MetaPost

T
he situation of font collections available for the TEX [1] system can certainly
be classified as bad if not ugly. METAFONT [2], with its bitmap fonts, nowadays
seems more and more obsolete. The near future appears to belong to scalable

outline fonts. But it would be a pity if METAFONT, with its marvellous engine for
creating character shapes, were to remain unused.

Already relatively long ago it was recognized that the design of METAFONT is un-
sufficiently extensible. In 1989, at the tug meeting, Hobby announced the beginning
of work on METAPOST, a program for the generation of a set of eps (encapsulated
PostScript) files instead of a bitmap font; in 1990, the first version of METAPOST

was running. In the same year, Yanai and Berry [23] considered modifying METAFONT

in order to output PostScript Type 3 [7] fonts.
Type 3 fonts can be legitimately used with TEX. Actually, bitmap fonts are always

implemented as Type 3 fonts by dvi-to-PostScript drivers. Recently, Bzyl [15] has
put a lot of effort into the revival of Type 3 fonts in the TEX world. Nevertheless,
Type 3 fonts have never become as popular as Type 1 fonts, and probably they
never will. One cannot install Type 3 fonts under Windows, MacOS, or X Window,
although there are no serious reasons for that—it would suffice to include a Post-
Script interpreter into an operating system, which is not an unthinkable enterprise.
But the commercial world is ruled by its own iffy rights. . . Anyway, in order to

∗B.Jackowski@GUST.org.pl
†J.Nowacki@GUST.org.pl
‡P.Strzelczyk@GUST.org.pl

112 b. jackowski, j. m. nowacki, and p. strzelczyk

preserve the compatibility with the surrounding world, one should rather think about
Type 1 than Type 3 fonts.

Alas! The issue of converting automatically METAFONT sources to Type 1 format
turned out to be more difficult than one could expect (cf. [18, 19, 20, 21, 22]) and after
nearly twenty years since the birth of TEX no programming tool for generating Type 1
fonts has appeared. As a consequence there is a glaring scarcity of fonts created by
the TEX community.

The MetaType1 package was developed as a response to that bitter situation.
Whether it can be classified as good—the future will reveal. So far, MetaType1
helped us to prepare a replica of a Polish font designed in the second decade of the
twentieth century, Antykwa Pó8ltawskiego [16]. It also proved useful in improving some
freely available families of fonts [17].

Which font format?

Among a plethora of currently attainable font formats (see [7] for formats devised by
Adobe alone), two are predominant: Type 1 [8] and TrueType [9]. The Type 1
format was Adobe’s top secret for six years. In 1990, Adobe decided to disclose the
specification after Microsoft and Apple had published the TrueType format. True-
Type fonts, despite their very obscure documentation, have become the “mother
fonts” of interactive (window) systems. Type 1 fonts can also be used with these
systems; however, an additional commercial program, atm (Adobe Type Manager), is
needed.

From the point of view of TEX users, Type 1 fonts are certainly more suitable,
because they are an intrinsic part of the PostScript language. Although a one-to-
one conversion between TrueType and Type 1 formats is, in general, impossible,
there exist converters that can be used (with care) for this purpose. There are free
TrueType-to-Type 1 converters (e.g., [11]), but Type 1-to-TrueType converters
seem to be available only as commercial products. Somewhere in between can be
located a built-in Windows NT 3.5 converter from Type 1 to TrueType.

Incidentally, contemporary PostScript interpreters accept Type 42 fonts [7],
which are essentially TrueType fonts “wrapped” in a PostScript structure. The
conversion (one-to-one) between TrueType and Type 42 is pretty simple and free
converters are easily available (e.g., [12]).

A few years ago, Microsoft and Adobe announced a joint initiative: they proclaimed
that a new font format, OpenType, is to replace both TrueType and Type 1.
Microsoft in their documentation on TrueType say, perhaps a bit prematurely, that
the TrueType font file specification is “of historical interest only.” At present, Adobe
offers a cost-free (although licensed) converter from Type 1 to OpenType for the
Macintosh and Windows NT platforms. We can expect that more such converters will
emerge.

The future is always hidden; we believe, however, that today we can safely invest
our efforts in the creation of Type 1 fonts.

MetaType1 113

Interactive or programming tool?

There are several interactive programs for creating outline fonts. We doubt whether
a satisfactorily uniform font can be produced using an interactive tool alone. Fonts
are complex monsters and one cannot expect that creating them will ever be an easy
task. They are governed by a multitude of parameters such as a stem thickness, serif
size and shape, italic angle, the height of majuscules and minuscules, the position of
ascenders and descenders, the width of a particular group of characters (e.g., digits
should have identical width if we want to use the font in numerical tables), etc. It
is particularly difficult to preserve the similarity of shapes appearing repeatedly in a
group of characters, e.g., ovals in the letters ‘b’, ‘d’, ‘o’, ‘p’, and ‘q’.

In general, the more irregular the font, the more adequate is an interactive tool.
Fonts used for book typesetting, however, are exceptionally uniform. Therefore, some
interactive programs provide a programming interface that facilitates controlling uni-
formness; for example, the commercial FontLab program offers a Python interface
in addition. Kinch’s approach [18] can be considered as a step further. His MetaFog
package is meant for the (semi)manual tuning of glyphs programmed in METAPOST.
Despite many advantages, such a “hybrid” approach has a principal drawback: a
slight modification of a font may lead to a lot of laborious manual intervention. In
particular, parameterization, the boon of the programming approach, is lost.

Only an entirely programmable tool overcomes all these hindrances, but it brings
with it its own disadvantages, as programming is apparently difficult for most present-
day computer users. This means that the number of MetaType1 users will be limited.
Since we are very fond of programming, we can make the prognosis that the number
of users will not be less than three.

METAFONT, METAPOST, or . . . ?

From the very beginning, we abandoned the idea of writing one more stand-alone
program (by, e.g., modifying METAFONT or METAPOST) as we didn’t want to be
involved in technical implementation details. We wanted to make use of existent
reliable programs and to focus our attention on the problem of generating Type 1
fonts. Therefore, we had to choose: METAFONT or METAPOST?

The problem with METAFONT is that it writes only gf, tfm, and log files, hence
transforming the output from METAFONT to a completely different format, such as
PostScript Type 1, is somewhat inconvenient. Its successor, METAPOST, is capable
of writing several (text) files, although pictures generated by METAPOST do not form
any structure. Fortunately, METAPOST inherited from METAFONT the ability of
writing tfm files, which significantly eases the process of generating fonts for TEX,
since no extra font installation programs are needed. An argument that can be raised
against using METAPOST is that it does not belong to Knuth’s canonical distribution;
but one cannot avoid using non-canonical software anyway if one wants to produce
Type 1 fonts. All in all, we decided to use METAPOST as the bedrock of our package.

114 b. jackowski, j. m. nowacki, and p. strzelczyk

Transforming METAPOST output appropriately and imposing a font structure on it
has to be done by means of an external program. Our presumption was that it should
be a freely available, popular, and portable program.

We believe that awk (actually, gawk [13]) meets these requirements. The main
drawback of awk is that it handles only text files. MetaType1 output files are mostly
text files, e.g., afm (Adobe font metric) files, with one pivotal exception, however:
many Type 1 applications, notably atm, require a binary form of Type 1, pfb
(PostScript font binary). We have considered writing our own assembler in the
PostScript language (to be used with Ghostscript [14]), but finally we gave up
and employed a Type 1 assembler from the T1utils package.

For reasons that are hard to explain, another binary file, pfm (printer font metric),
is required in order to install Type 1 on a Windows system. We decided to prepare
our own perl script for generating pfms out of afms, because the task was relatively
simple in spite of the somewhat obscure pfm documentation (sigh) and, moreover, it
is easier to manage home-grown software. The script can be used independently of
the rest of the engine and, actually, it is not part of the MetaType1 package.

MetaType1: an overview

Having answered the fundamental question, i.e., why we are reinventing the wheel,
we can start to survey the MetaType1 engine. Figure 1 shows the structure of the
MetaType1 engine. The boxes drawn with bold lines denote final results, the boxes
drawn with dashed lines denote temporary results.

Step 1: METAPOST processing
The METAPOST font base contains quite a few macros which are useful in preparing a
font. They are similar to Knuth’s cmbase macros. For example, the base contains the
macros beginglyph and endglyph, analogous to beginchar and endchar. Obviously,
the differences are more profound than a simple renaming of some macros, e.g., a lion’s
share of the code is related to the rules with which Type 1 should comply.

From the point of view of a font creator the main difference is that pens are not
allowed in MetaType1 programs. A user is responsible for constructing a proper
outline of a glyph: paths should not cross each other (in particular, no self-intersections
should occur) and should be properly oriented, i.e., outer paths run anti-clockwise,
inner paths run clockwise. There are some macros that facilitate finding the contour
of a stroke drawn with a pen (“expanding stroke”) or finding the common part of
two areas (“removing overlaps”), but, in general, such operations cannot be reliably
programmed in METAFONT/METAPOST and therefore users are expected to know
what they are doing.

METAPOST works in two passes:

 During the first pass, character glyph files (eps) and a few auxiliary files (e.g.,
containing the kerning information) are being generated. The files from the first
pass are subsequently processed by awk.

MetaType1 115

figure 1: The general scheme of the MetaType1 engine.

 During the second pass, only tfm files are being generated. All drawing operations
are switched off. Writing eps files, however, cannot be switched off. One can live
with it, but it is a somewhat vexing situation—why generate lots of useless files
which are only removed later on? The following trick is exploited during the tfm-
generating pass: usually, METAPOST appends a numeric extension to the file name;
however, if the character code is negative, the extension is simply ps; thanks to
this, one has to remove only a single dummy file instead of hundreds of them.

Additionally—similar to cmbase—a user may on demand generate a proof version
of character glyphs, e.g., for documentation purposes. Appreciating Knuth’s idea of
literate programming, we tried to implement it in MetaType1. We wanted META-
POST sources to be simultaneously the ultimate documentation. The mft utility from
the canonical TEX package fits here very well. We slightly enhanced the TEX macros
that accompany the program (mftmac.tex) in order to facilitate self-documentation.
The altered version allows one to include easily a proof version of the glyphs into the
formatted source. Figure 2 shows what such a documentation looks like. The displayed
sample page is taken from the source of Knuth’s logo font adapted to MetaType1.

We tried to keep the font base as independent of the Type 1 specification as possible,
although, as was mentioned, some peculiarities of Type 1 cannot be ignored. Anyway,
we hope that in the (far) future, when Type 1 fonts are finally superseded by a

116 b. jackowski, j. m. nowacki, and p. strzelczyk

figure 2: An example of a self-documenting MetaType1 source.

“Brave New Format,” appropriate modification of the base will not be an exceedingly
difficult task.

Step 2: awk processing
The main duty of the awk module is to convert glyphs (eps) from plain PostScript
to a form required by the Type 1 specification (and accepted by T1utils). The
Type 1 format accepts only integer numbers, therefore rounding is necessary (a user
should control the process of rounding at crucial points in METAPOST programs).
The only exception is the width of a character. A non-integer width is replaced not
by a single number but by a division operation which is allowed in Type 1. For
example, the width of the character ‘T ’ from the logo10 font is 5.77776pt, i.e.,
577.776 in Type 1 grid units; this quantity is represented in the resulting pfb file by
‘17911 31 div’ which yields ≈ 577.7742. Appropriate numerators and denominators
are computed by means of continued fractions.

In Type 1, all dimensions have to be given in relative units, while plain Post-
Script (as output by METAPOST) uses absolute coordinates. Conversion to relative
coordinates is also done by awk.

MetaType1 117

Perhaps the most complex part of the awk job is arranging the data properly for
hinting. Hints are Type 1 commands that control the discretization of outlines. In
a METAPOST source, a user specifies relevant paths and stem values; METAPOST

finds acceptable coordinates for the stems and writes this information (embedded as
structured comments) into the eps files. This, however, is not the end of the story.
The Adobe Type 1 specification requires that no hints of the same kind (horizontal
or vertical) can overlap. If such a situation occurs, a special routine, called hint
replacement, should be launched ([8], pp. 69–71). The awk script does its best to
prepare the data properly for the hint replacement process. But it uses some heuristics,
therefore the applied algorithm may fail (rather unlikely under normal circumstances).

The result of the awk run is a disassembled (“raw”) pfb file and an afm file;
moreover, enc and map files, to be used with a dvips driver, are generated. Option-
ally, prior to assembling the“raw” pfb file can be processed again by awk. During this
pass, another awk script is used to search for repeated fragments of code; subroutine
definitions are added for such fragments and all their occurrences are replaced by the
respective subroutine calls. Usually, this process shortens the pfb file by some 10%.
Besides optimization, it also provides an audit of the font, e.g., accented letters should
afterwards contain only subroutine calls and no explicit drawing commands.

The awk stage of font generation is entirely PostScript-oriented. For a different
output font format the awk scripts would have to be rewritten nearly from scratch.

Step 3: Assembling the pfb file
This is the simplest step of all: a one-to-one conversion from the disassembled to the
final (binary) version of the pfb file is done by a stand-alone freeware utility, T1asm.

Step 4 (optional): generating the pfm file
As was mentioned, pfm files are required if the Type 1 fonts are to be installed on a
Windows system. A pfm file contains similar information to that contained in the afm
file, character dimensions, kerning, etc. The main difference is that a pfm file does not
contain glyph names, therefore the encoding must be specified in addition. There is a
secret byte in a pfm file (85th counting from 0) that contains the relevant information;
e.g., the value 238 denotes East European encoding, 206 Central European. Can you
guess why? It’s simple: 23810 = EE16, 20610 = CE16. In order to generate a pfm file
conforming to a particular Windows installation, one has to know which number is
appropriate. It cannot be excluded that more bombshells of that kind await Windows
users. Fortunately, the perl script is fairly legible and can easily be adjusted if needed.

End or start?

Although we have been working on MetaType1 for a few years, only recently has it
stabilized sufficiently to make it available publicly. We must warn potential fearless
MetaType1 users, however, that our experience with the package is limited to one
complete font (Antykwa Pó8ltawskiego), a few geometric symbol fonts, several improved
fonts and one experiment: while preparing this paper we tested MetaType1 against

118 b. jackowski, j. m. nowacki, and p. strzelczyk

Knuth’s logo font. Within three working days we were able to modify the METAFONT

sources and adjust them to the requirements of MetaType1. The modified logo font
is enclosed with the MetaType1 distribution package. It should be emphasized that
the resulting tfm files are 100% compatible with the original ones.

Needless to say, the experiment also unveiled the existence of a few bugs in Meta-
Type1, both in the METAPOST and awk parts. Therefore, we consider the public
release of MetaType1 as the start of a new phase rather than the completion of the
design process.

Users’ feedback cannot be underestimated in this respect. We count upon users’
contributions, although we cannot promise a royal road to creating fonts; instead,
we can promise satisfaction once a font is ready. We can also assert that program-
ming a font is not reserved for Donald E. Knuth—so, let us go forth now and create
masterpieces of digital typography in Type 1 format.

references

[1] Knuth, D. E., The TEXbook. Addison-Wesley, eleventh printing, 1990.

[2] Knuth, D. E., The METAFONTbook. Addison-Wesley, seventh printing, 1992.

[3] Hobby, J. D., The METAPOST Page.
http://cm.bell-labs.com/who/hobby/MetaPost.html

[4] Aho A. V., Kernighan B. W., Weinberger P. J., The awk Programming Lan-
guage. Addison-Wesley, 1988.

[5] Type tools. http://www.lcdf.org/~eddietwo/type/#t1utils

[6] PostScript Language Reference Manual, 3rd Edition.
http://partners.adobe.com/asn/developer/PDFS/TN/PLRM.pdf

[7] Adobe Font Formats and File Types.
http://partners.adobe.com/asn/developer/typeforum/ftypes.html

[8] Adobe Type 1 Font Format. Addison-Wesley, 1990.
http://partners.adobe.com/asn/developer/pdfs/tn/T1_SPEC.PDF

[9] TrueType Specification, ver. 1.3.
http://www.microsoft.com/typography/tt/ttf_spec/ttspec.zip

[10] OpenType specification, ver. 1.3 (last update: April 2001).
http://www.microsoft.com/typography/otspec/otsp13p.zip

[11] TrueType to PS Type 1 Font Converter.
http://sourceforge.net/projects/ttf2pt1/

[12] Baron, D., A TrueType to Type 42 Converter.
http://ftp.giga.or.at/pub/nih/ttftot42

[13] Gnu awk User’s Guide. http://www.gnu.org/manual/gawk/index.html

[14] Ghostscript, Ghostview and GSview. http://www.cs.wisc.edu/~ghost/

[15] Bzyl, W., Reitroducing Type 3 fonts to the TEX world. Proc. of EuroTEX 2001,
24th–27th September, 2001, Kerkrade, The Netherlands.

MetaType1 119

[16] Jackowski, B., Nowacki, J. M., Strzelczyk, P., Antykwa Pó/ltawskiego: A Para-
meterized Outline Font. Proc. of EuroTEX’99, 20th–24th September, 1999,
Heidelberg, Germany, pp. 109–141.

[17] Jackowski, B., Nowacki, J. M., Strzelczyk, P., Localizing Type 1 Fonts from
Ghostscript Distribution. BachoTEX’2001, 9th GUST Conference, 29th April–
2nd May, 2001, Bachotek, Poland,
http://www.gust.org.pl/BachoTeX/2001/GSFONTS.PDF

[18] Kinch, R. J., MetaFog: Converting METAFONT Shapes to Contours. TUG-
boat 16 (3), pp. 233–243, 1995.

[19] Kinch, R. J., Belleek: A Call for METAFONT revival. Proc. of 19th Annual TUG
Meeting, AuGUST 17–20, 1998, Toruń, Poland, pp. 131–136.

[20] Hoekwater, T., Generating Type 1 Fonts from METAFONT Sources. Proc. of 19th
Annual TUG Meeting, AuGUST 17–20, 1998, Toruń, Poland, pp. 137–147.

[21] Haralambous, Y., Parametrization of PostScript Fonts Through META-
FONT—an Alternative to Adobe Multiple Master Fonts. Electronic Publishing,
6 (3), pp. 145–157, 1993.

[22] Malyshev, B. K., Problems of the Conversion of METAFONT Fonts to Post-
Script Type 1. TUGboat, 16 (1), pp. 60–68, 1995.

[23] Yanai, S., Berry D. M., Environment for Translating METAFONT to Post-
Script. TUGboat 11 (4), pp. 525–541, 1990.

♦ ♦ ♦

Natural TEX Notation in Mathematics
Michal Marvan∗

abstract. In this paper we introduce Nath, a LATEX 2.09/2ε style
implementing a natural TEX notation for mathematics.

keywords: Natural mathematical notation

The paradigm

The original idea behind TEX was to overcome the principal contradiction of scientific
typography, namely that typographers shape publications without understanding their
content. But now that the field has been conquered and TEX has become a standard in
scientific communication we face an unwanted effect: a decline in typographic quality.

The LATEX scheme of separating the presentation and content (in the sty and doc

files, respectively) already enabled a basic division of responsibility between scientists
and typographers, with a positive impact on the quality of both professional and
lay publishing. In contemporary LATEX we have a rather firmly established content
markup for the main parts of a text such as sections, lists, theorems; thanks to styles
from the American Mathematical Society we also have a wide variety of mathematical
symbols and environments. But the notation for mathematical expressions still encodes
presentation.

The basic mathematical constructs of plain TEX refer to presentation by the obvious
requirement of universality, and the same holds true for their later reencodings. For
instance, \frac, which differs from plain TEX’s \over only by syntax, is a presentation
markup to the effect that two elements are positioned one above the other, centered,
and separated by a horizontal line. Even though TEX has no technical difficulty type-
setting built-up fractions (such as A

B) in text style, publishers that still adhere to fine
typography may prefer converting them to the slash form A/B. The conversion, dur-
ing which the mathematical content must not be changed, cannot be reliably done by
nonexperts. However, the chance that software can perform the conversion does not
turn out to be completely unrealistic, as we shall see below.

Namely, herewith we would like to introduce a natural mathematical notation in
TEX. By such we mean the coarsest notation for which there exist algorithms that find
a typographically sound and mathematically correct context-dependent presentation,

∗Mathematical Institute, Silesian University in Opava, Bezručovo nám. 13, 746 01 Opava, Czech
Republic. E-mail: Michal.Marvan@math.slu.cz

natural mathematical notation 121

whereas the notation itself is essentially independent of the context. It should be
stressed that it is not the goal of natural notation to encode the mathematical content
– in contrast to the notation used, e.g., in computer algebra or programming languages.

An accompanying LATEX 2ε style, Nath, is offered to the public for scrutiny of its
strengths and weaknesses, and for practical use. Its mission is to produce traditional
mathematical typography with minimal requirements for presentation markup. The
price is that TEX spends more time on formatting the mathematical material. However,
savings in human work appear to be substantial, the benefits being even more obvious
in the context of lay publishing, when expert guidance is an exception.

Preliminaries

Nowadays we recognize two major styles to typeset mathematical material, which
we shall call display and in-line. They possibly occur in three sizes: text, script and
second level script. The display style is characterized by the employment of vertical
constructions and arbitrarily sizeable brackets, with emphasis on legibility. Over cen-
turies the display style was commonplace even in in-line formulas, forcing typographers

to spread lines as with lim
n→∞

(
1 +

1

n

)n

. Irregular line spacing and extra costs due to

unused white space were among the arguments pushed forward against this practice.
Gradually the in-line style evolved, essentially within the Royal Society of London

[3, p. 275]. Based on suggestions by the famous logician Augustus de Morgan, the style
was introduced by G.G. Stokes [18] and gained strong support from J.W. Rayleigh
[15] (all three gentlemen were presidents of the Society). Designed for use under strict
limits on the vertical size, the in-line style replaces stacking with horizontal linking,
as in limn→∞(1 + 1/n)n. Typical is the use of the solidus “ / ” as a replacement for
the horizontal bar of a fraction. The in-line style adds some more ambiguity to that
already present in the display style.

Accordingly, Nath uses two distinct math modes, display and in-line, which are
fundamentally distinct in TEXnical aspects and go far beyond plain TEX’s four math
styles (\displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle). The
single dollar sign $ starts the in-line mode; otherwise said, Nath’s in-line formulas
use in-line mode, and so do sub- and superscripts even within displayed formulas.
The double dollar sign $$ as well as various display math environments start display
mode. In contrast to TEX’s defaults but in good agreement with old traditions, Nath’s
default mode for numerators and denominators of displayed fractions is display.

Either mathematical mode can be forced on virtually any subexpression by making
it an argument of one of the newly introduced \displayed and \inline commands.
Preserved for backward compatibility, plain TEX’s \displaystyle and \textstyle

only affect the size of type, like \scriptstyle and \scriptscriptstyle. Actually,
no such simple switch can alter the fairly sophisticated Nath mode.

122 m. marvan

Operators

We start with a solution to a subtle problem that occurs in both the display and in-
line styles, namely, uneven spacing around symbols of binary operations following an
operator, as in λ id−g. Recall that TEX’s capability of producing fine mathematical
typography depends on the assignment of one of the eight types (Ord, Op, Bin, Rel,
Open, Close, Punct, Inner) to every math atom (see [7, pp. 158 and 170]). Oddly
enough, [7, Appendix G, rule 5] says that a Bin atom (a binary operation) preceded
by an Op (an operator) becomes an Ord (an ordinary atom like any variable). However,
the existence of expressions like λ id − g suggests that operators followed by binary
operations make perfect sense. Therefore, we propose that the spacing between a Bin
atom preceded by an Op be a medium space, i.e., the value in the 2nd row and 3rd
column of the table on p. 170 of the TEXbook [7] be ‘(2)’ instead of ‘ * ’. Since TEX
provides us with no means to change the table, we had to redefine \mathop to a
“mixed-type creator,” namely \mathop from the left and \mathord from the right,
augmented with appropriate handling of exceptions when Op’s behaviour differs from
that of Ord. Fortunately, the exceptions occur only when the following atom is Open
(an opening delimiter) or Punct (a punctuation), which can be easily recognized by
comparison to a fairly short lists of existing left delimiters and punctuation marks. One
only must successfully pass over sub- and superscripts as well as over the \limits and
\nolimits modifiers that may follow the Op atom, which on the positive side gives
us an opportunity to enable \\ in Op’s subscripts, so that

$$

\sum_{i,j \in K \\ i \ne j} a_{ij}

$$

prints as
∑

i,j∈K
i�=j

aij .

Another new mixed-type object is !, which produces suitable spacing around factori-
als: $(m!n!)$ typesets as (m!n!). It is simply the exclamation mark (which itself is of
type Close) with \mathopen{}\mathinner{} appended from the right.

Nath also supports a handy notation for abbreviations in a mathematical formula,
such as e2πi = −1, adx y, span{u, v}, H ′ = H ′

symm+H ′
antisymm, f |intU . They are created

as letter strings starting from a back quote, e.g., $‘e^{2\pi‘i}$, $‘ad_x y$, etc.

Fractions

There are three basic types of fractions in modern scientific typography:

1) built-up:
A

B
, 2) piece: 1

2 , 3) solidus: A/B.

Mostly they indicate division in a very broad sense; often but not always they can be
recast in an alternative form, such as AB−1 or A : B (e.g., ∂f/∂x cannot). Type 1

natural mathematical notation 123

fractions are now restricted exclusively to display style. The solidus form is mandatory
for non-numeric fractions in in-line style; it is also spontaneously preferred in specific
situations such as quotient algebraic structures (e.g., Z/2Z). Type 2 is strictly con-
fined to numeric fractions (when the numerator and denominator are explicit decimal
numbers), e.g., 5

7 , 1
10 000 , 0.15

1.22 . Numeric fractions should be of type 2 or 3 in in-line
style. In display style they may occur as both types 1 and 2, depending on the vertical
size of the adjacent material. When one changes from display to in-line style, built-up
fractions are generally substituted with solidus fractions, and parentheses may have
to be added to preserve the mathematical meaning.

Nath supports two commands to typeset fractions: slash / and \frac. With slash
one always typesets a type 3 fraction. With \frac one creates a fraction whose type
is determined by the following rules: In display style, non-numeric fractions come out
as type 1. The type of numeric fractions is determined by the principle of smallest
fences : A numeric fraction is typeset as a built-up fraction in display style if and only
if this will not extend any paired delimiter present in the expression. We explicitly
discontinue the tradition according to which numeric fractions adjust their size to the
next symbol. For example, Nath typesets

$$

(\frac 12 + x)^2 - (\frac 12 + \frac 1x)^2

$$

as

(1
2 + x)

2 −
(

1

2
+

1

x

)2

.

In the sequel, we shall need some definitions. A symbol is said to be exposed if it is
neither enclosed in paired delimiters nor contained in a sub- or superscript nor used
in a construction with an extended line (such as \sqrt, \overline, or a wide accent).
Next, by an element of type Bin∗ we shall mean an element that either is of type Bin
or is of type Ord, starts an expression, and originates from an element of type Bin by
[7, Appendix G, rule 5].

In in-line style, the rules that govern typesetting of \frac AB are as follows. If
A,B are numeric (i.e., strings composed of decimal numbers, spaces and decimal
points), then the resulting fraction is of type 2. Otherwise the fraction is of type 3
and bracketing subroutines are invoked. Parentheses are put around the numerator A
if A contains an exposed element of type Bin, Rel, Op; or an exposed delimiter that
is not a paired delimiter (e.g., /, \ or |). Likewise, parentheses are put around the
denominator B if B contains an exposed element of type Bin∗, Rel; or an exposed
delimiter that is not a paired delimiter. Finally, parentheses are put around the whole
fraction if at least one of the columns of Table 1 contains ‘Yes’ in the corresponding
row. For example,

a +
b

b + c
1− c

→ (a + b/(b + c))/(1− c).

124 m. marvan

Type Left neighbour Example Right neighbour Example

Ord Yes1 x(a/b) Yes (a/b)x
Op Yes sin(a/b) Yes (a/b)sinx
Bin∗ No2 1 + a/b No a/b + 1
Rel No = a/b No a/b =
Open No [a/b Yes (a/b)[
Close Yes](a/b) No a/b]
Punct No , a/b No a/b,
Inner Yes1 1

2a/b Yes (a/b)12

1 No, if the left neighbour is a digit or a piece fraction (hence Inner) and at the same time A starts
with neither Bin∗ nor digit nor decimal point. E.g., 1

2
a/b, but 1

2
(−2a/b), 1

2
(25a/b), 1

2
(.5a/b).

2 Yes, if A starts with Bin∗, e.g., 1 + (−a/b).

Table 1: Bracketing rules for fractions

Nath’s approach to binary operations is mathematically correct under the following
assumption: Every binary operator ∗ that occurs in the numerator, denominator, or
the immediate vicinity of \frac is, similarly to addition, of lower precedence than / .
An obvious exception is the multiplication “ · ”, which is, however, left associative with
respect to division and hence A·B/C = A·(B/C) = (A·B)/C anyway. (We also assume
that numerators and denominators do not contain exposed punctuation, except for the
decimal point.) In particular, Nath converts

A

B
⊗ C

D
→ A/B ⊗ C/D,

and
A⊗B

C ⊗D
→ (A⊗B)/(C ⊗D).

Literature contains examples of different bracketing, (A/B)⊗(B/C) and A⊗B/C⊗D,
namely Hn

(
(K/C)⊗ L

)
in [11, Ch. V, diag. 10.6] and Ker∂n/Cn ⊗ A in [11, Ch. V,

proof of Th. 11.1]. Anyway, we feel that giving more binding power to ‘⊗ ’ than to
‘ / ’ is unfounded.

Now we come to a more delicate question, which reflects a difference between human
readability and machine readability. In favour of the former it is often desirable to
suppress unneeded parentheses; compare exp(x/2π) and exp(x/(2π)). This is one of
the reasons why Nath converts

a

bc
→ a/bc

and not a/(bc). Here we follow the living tradition according to which a/bc means
‘a divided by bc.’ Numerous examples of use in professional publications can be easily
documented, e.g., [2, p. 9, 34, 52, 89, 115], and the convention is by no means outdated,
see, e.g., [14]. It is supported by major manuals of style, albeit by means of examples,

natural mathematical notation 125

such as |〈X1, X2〉|/‖X1‖‖X2‖ in [4]. As much as one chapter in Wick’s handbook [20]
is devoted to solidus fractions and examples of use; all of them use the same rule as
above.

Unfortunately, the convention is not completely devoid of controversy. Some oppon-
ents argue that if bc means multiplication, then a/bc = (a/b)c by the current standard
rules of precedence, and therefore one should write a/(bc) to have both b and c in the
denominator. But, examples like x/12, ∂f/∂x ∂y, 1/f(x), 1/sinx, Z/2Z show that not
every juxtaposition denotes multiplication, while in all of these cases an added pair of
parentheses would be certainly superfluous. Understanding juxtaposition requires un-
derstanding mathematics, for which reason it is certainly preferable that typography
treats all juxtapositions on an essentially equal footing (an exception being subtle
rules for close and loose juxtapositions, see the expression sinxy cosxy in [1]).

The core of the problem resides in the possible ambiguity of the juxtaposition (see
Fateman and Caspi [8], who bring lots of examples of ambiguous notation in the
context of machine recognition of TEX-encoded mathematics). However, we feel that
by all reasonable criteria, the ambiguity should be kept limited within the denomin-
ator, instead of letting it propagate beyond the fraction, which is exactly what would
happen if we adapted the competitive rule a/bc = (a/b)c. Indeed, the mathematical
interpretation of juxtaposition is context dependent, a good case in point being the
classic a(x+y). Its meaning depends on whether a is a function that may have x+y as
its argument, or not. Under Nath’s rules 1/a(x + y) is invariably equal to 1/(a(x + y)),
while under the competitive rule the meaning of 1/a(x + y) would be (1/a)(x + y)
in case of a = const! But then we conclude that the traditional rule a/bc = a/(bc)
remains the only reasonable alternative for an unthinking machine.

Anyway, we must admit that there is currently no general consent on this point.
The AIP style manual [1] says: “do not write 1/3x unless you mean 1/(3x),” while the
Royal Statistical Society [16] considers the notation a/bc “ambiguous if used without a
special convention.” The Annals of Mathematical Statistics even changed its rules from
1/2π to 1/(2π) between 1970 and 1971. Use of programming languages and symbolic
algebra systems with different syntactic rules also has a confusing effect.

It is certainly true that ambiguity of notation makes reading of mathematical pub-
lications more difficult than absolutely necessary. A good solution, which is heartily
recommended, amounts to typesetting all difficult fractions in display, or disambigu-
ating them through explicit use of parentheses or otherwise.

Nath’s solution is, we believe, the best possible from those available, given the fact
that TEX does not provide tools for recognizing close (spaceless) juxtaposition. Nath
essentially treats juxtaposition as a binary operation of higher precedence than solidus
(even the loose juxtaposition expressed via a small amount of white space, such as
\thinmuskip around Op’s):

1

cosx
→ 1/cosx.

The only exception is that the right binding power of loose juxtaposition is considered
uncomparable to the left binding power of the solidus, so that, e.g., sinx/y comes out

126 m. marvan

Left delimiters Right delimiters
(())
[,\lbrack [],\rbrack]
\{, \lbrace { \}, \rbrace }
<, \langle 〈 >, \rangle 〉
\lfloor � \rfloor �
\lceil � \rceil �
\lvert, \left| | \rvert, \right| |
\lBrack, \double[[[\rBrack, \double]]]
\lAngle, \double< 〈〈 \rAngle, \double> 〉〉
\lFloor �� \rFloor ��
\lCeil �� \rCeil ��
\lVert, \ldouble| || \rvert, \rdouble| ||
\triple[[[[\triple]]]]
\triple< 〈〈〈 \triple> 〉〉〉
\ltriple| ||| \rtriple| |||

Table 2: Paired delimiters

as truly ambiguous (following [1]); hence Nath converts

sin
x

y
→ sin(x/y)

and
sinx

y
→ (sinx)/y

– even though Wick interprets sinx/y as (sinx)/y.

Delimiters

Plain TEX introduces various delimiter modifiers such as \left and \right. If used
continually without actual need, as is often done, they produce unsatisfactory results;
such continual use is as undesirable as is the failure to use them when they are actually
needed. Under natural notation every left parenthesis is a left delimiter by default,
and Nath does its best to ensure proper matching to whatever is enclosed.

Table 2 lists paired delimiters. Their presentation depends on the current mode. In
display mode delimiters automatically adjust their size and positioning to match the
material enclosed (thus rendering \left and \right nearly obsolete), and do so across
line breaks (which themselves are indicated by mere \\ whenever allowed by the con-
text). Around asymmetric formulas the delimiters may be positioned asymmetrically.

natural mathematical notation 127

A particularly nice example, taken from [9, p. 4], is

M

(
1− x1 + · · ·+ xn + pZ

r

)

1− p

∂Z

∂x2
+ · · ·+ ∂Z

∂xn

ρ

(no modifiers in front of the parentheses).
The modifiers \double and \triple create double and triple counterparts of de-

limiters, such as

[[
x

y

]]
.

We also introduce middle delimiters: \mid and \middle| produce | , \Mid and
\double| produce || , and \triple| produces ||| . They have exactly the size of the
nearest outer pair of delimiters. For example:

{
(xi) ∈ R∞

∣∣∣
∞∑

i=1

x2
i = 1

}
.

Observe that matching is done in a subtle way, disregarding sub- and superscripts,
accents, and other negligible parts. (Let us also note that in order to implement the
above-mentioned principle of smallest fences in display style, Nath represents numeric
fractions as middle delimiters.)

With nested delimiters it is frequently desirable that the outer delimiters are bigger
than the inner ones. In displayed formulas this is controlled by a count \delimgrowth
that when set to n makes every nth delimiter bigger. One should set \delimgrowth=1
when a display contains many vertical bars:

C6

∣∣∣∣∣

∣∣∣∣f
∫

Ω

∣∣S̃−1,0
a,− W2(Ω,Γ1)

∣∣
∣∣∣∣
∣∣|u| →WÃ

2 (Ω; Γr, T)
∣∣
∣∣∣∣∣.

(cf. [17]).
In in-line mode a completely different mechanism is needed, which would be ap-

plicable to implicit delimiters introduced by \frac. We introduce a command \big

having the effect that the next entered level of delimiters will be set in big size (in plain
TEX’s sense). For instance, $\Delta \big \frac 1{f(x)}$ produces ∆

(
1/f(x)

)
. It is

an error to place a \big within delimiters that are not big. Observe that Nath’s \big
need not immediately precede a delimiter; this gave us an opportunity to introduce
\bigg as an abbreviation for \big\big.

Unbalanced delimiters may be present in an in-line formula (as is often the case in
indices in differential geometry), but then cannot be resized.

128 m. marvan

Displayed formulas

Displayed formulas have never been a serious problem. Yet there is room for innovation
and simplification of the current presentation markup. Downes presented a style [6],
which breaks multiline displayed equations automatically. With Nath, every end of
line must be marked by an explicit \\, but this \\ can be used at almost any place
where it makes sense. In particular, $$ · · · = · · · \\ · · · = · · · $$ is a valid syntax. The
result is a multiline formula without special alignment:

=
=

(by default, Nath indents all displayed equations by \mathindent=4pc). Within the
equation environment, the formula obtains a single centered number.

A kind of alignment can be obtained with the wall–return construction. The syntax
is \wall · · · \\ · · · \\ · · · \\ · · · \return, and can be nested. Here is an example

$$

\stuff \wall = \stuff + (\wall \stuff \\

\stuff)

\return

= \stuff

\return

$$

gives
= + (

)

= .

The meaning is that the typeset material must not cross the wall.
Display delimiters cannot be combined with alignments unless every cell has bal-

anced delimiters, which is certainly the case with matrices, but not necessarily with
other alignment environments, such as eqnarray. The purpose of these environments
is, essentially, to align binary relation symbols in one of the two typographically rel-
evant situations:
(1) an n-line sequence of equalities and relations;
(2) a pile of n distinct formulas.

In case (1), walls alone represent a simple alternative that spares the 2n alignment
symbols & required by eqnarray. It is also possible to put a wall–return block into one
cell of an alignment.

Acknowledgements

I would like to thank many people, explicitly Eylon Caspi, Michael Guravage, Wietze
van der Laan, Petr Sojka, Simon Pepping, Alex Verbovetsky, and staff in the National
Library of Scotland in Edinburgh.

natural mathematical notation 129

references

[1] AIP Style Manual, 4th edition (Amer. Inst. Physics, New York, 1990).

[2] S.H. Benton, The Hamilton–Jacobi Equation. A Global Approach (Academic Press,
New York, 1977).

[3] F. Cajori, A History of Mathematical Notations I, II (Open Court, Chicago, 1928,
1929).

[4] The Chicago Manual of Style (The Univ. Chicago Press, Chicago and London, 1969).

[5] A. De Morgan, The calculus of functions, in: Encyclopaedia Metropolitana (1845).

[6] M. Downes, Breaking equations, TUGboat 18 (1997) 182–194.

[7] D.E. Knuth, The TEXbook (Addison Wesley, Reading, 1984)

[8] R.J. Fateman and E. Caspi, Parsing TEX into mathematics, poster presented at Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC ’99), Vancouver
BC Canada, July 28–31, 1999.

[9] E. Goursat, Leşons sur l’Intégration des Équations aux Dérivées Partielles du Premier
Ordre, 2nd ed. (Hermann, Paris, 1921)

[10] J. Larmor, Practical suggestions on mathematical notation and printing, an appendix
to [15].

[11] S. Mac Lane, Homology (Springer, Berlin, 1967).

[12] A. Macfarlane, Sir George Gabriel Stokes, in: Lectures on Ten British Physicists of
the Nineteenth Century (New York, 1919).

[13] M. Marvan, Přirozená matematická notace v TEXu, in: J. Kasprzak and P. Sojka,
eds., SLT 2001 (Konvoj, Brno, 2001) 53–59.

[14] Mathematical Composition Setters, Sample style setting, online www.mcs-ltd.co.uk,
accessed Jan. 8, 2001.

[15] J.W. Rayleigh, Address of the president, Lord Rayleigh, O.M., D.C.L., at the an-
niversary meeting on November 30, 1918, Proc. Roy. Soc. London, Sect. A 82 (1909)
1–17.

[16] Royal Statistical Society, Notes for the preparation of mathematical papers, J. Roy.
Stat. Soc., Ser. A 136 (1973) 293–294.

[17] A. Samarin, F. Mittelbach and M. Goossens, The LATEX Companion (Addison-Wesley,
Reading, 1994).

[18] G.G. Stokes, Mathematical and Physical Papers, Vol. I (Cambridge Univ. Press, Cam-
bridge, 1880).

[19] E. Swanson, Mathematics into Type (Amer. Math. Soc., Providence, 1987).

[20] K. Wick, Rules for Typesetting Mathematics (Mouton, The Hague, 1965); translated
from the Czech original Pravidla Matematické Sazby (Academia, Praha, 1964).

✷ ♦ ✷

TEX in Teaching
Michael Moortgat, Richard Moot & Dick Oehrle∗

abstract. A well-known slogan in language technology is ‘parsing-as-deduction’:
syntax and meaning analysis of a text takes the form of a mathematical proof.

Developers of language technology (and students of computational linguistics) want to
visualize these mathematical objects in a variety of formats.

We discuss a language engineering environment for computational grammars. The
kernel is a theorem prover, implemented in the logic-programming language Prolog.
The kernel produces latex source code for its internal computations. The front-end
displays these in a number of user-defined typeset formats. Local interaction with the
kernel is via a tcl/tk GUI. Alternatively, one can call the kernel remotely from dynamic

PDF documents, using the form features of Sebastian Rahtz’ hyperref package.

T
his paper discusses some uses of the dynamic possibilities offered by Sebastian
Rahtz’ hyperref package in the context of a courseware project we have been
engaged in. The project provides a grammar development environment for

Type-Logical Grammar — one of the formalisms that are currently used in compu-
tational linguistics. Our paper is organized as follows. First, we offer the reader a
glimpse of what type-logical grammars look like. In the next section, we discuss the
TEX-based visualisation tools of the Grail workbench in its original unix habitat.
Finally, we report on our current efforts to provide browser-based access to the Grail
kernel via dynamic PDF documents.

Type-logical grammar

Type-logical (TLG) grammar is a logic-based computational formalism that grew out
of the work of the mathematician Jim Lambek in the late Fifties. For readers with
easy access to issues of the American Mathematical Monthly in the pre-TEX era, the
seminal paper (Lambek 1958) is warmly recommended; (Moortgat 1997) gives an up-
to-date survey of the field. The mathematically-inclined reader of these Proceedings
will easily appreciate why it is such a pleasure to work with TLG.

As the name suggests, TLG has strong type-theoretic connections. One could think
of it as a functional programming language with some special features to handle the

∗We thank Willemijn Vermaat and Bernhard Fisseni for helpful discussions of TEXnicalities. For
comments and suggestions, contact {moortgat,oehrle}@let.uu.nl.

tex in teaching 131

peculiarities of natural (as opposed to programming) languages. In a functional lan-
guage (say, Haskell), expressions are typed. There is some inventory of basic types
(integers, booleans, ...); from types T, T ′ one can form functional types T → T ′. With
these functional types, one can do two things. An expression/program of type T → T ′

can be used to compute an expression of type T ′ by applying it to an argument of
the appropriate type T . Or a program of type T → T ′ can be obtained by abstracting
over a variable of type T in an expression of type T ′. Below we give a simple example:
the construction of a square function out of a built-in times function. We present
this as a logical derivation — the beautiful insight of Curry allows us to freely switch
perspective between types and logical formulas, and between type computations and
logical derivations in a constructive logic (Positive Intuitionistic Logic).

times : Int→ (Int→ Int) x : Int

(times x) : Int→ Int
(Elim→)

x : Int

(times x x) : Int
(Elim→)

λx.(times x x) : Int→ Int
(Intro→)

How can we transfer these ideas to the field of natural language grammars? The
basic types in this setting are for expressions one can think of as ‘complete’ in some
intuitive sense — one could have a type np for names (‘Donald Knuth’, ‘the author
of The Art of Computer Programming’, ...), common nouns n (‘author’, ‘art’, ...),
sentences s (‘Knuth wrote some books’, ‘TEX is necessary’, ...). Now, where a phrase-
structure grammar would have to add a plethora of non-terminals to handle incomplete
expressions, in TLG we use functional (implicational) types for these. A determiner
like ‘the’ is typed as a function from n expressions (like ‘author’) to np expressions; a
verb phrase (like ‘is necessary’) as a function from np expressions into s expressions,
and so on.

To adjust the type-logical approach to the natural language domain, we have to
introduce two refinements. The syntax of our programming language example obeys
the martial law of Polish prefix notation: functions are put before their arguments.
Natural languages are not so disciplined: a determiner (in English) comes before the
noun it combines with; a verb phrase follows its subject. Instead of one implication,
TLG has two to capture these word-order distinctions: an expression of type T/T ′

is prefixed to its T ′-type argument; an expression T ′\T is suffixed to it. An example
is given below. (The product ◦ is the explicit structure-building operation that goes
with use of the slashes. It imposes a tree structure on the derived sentence.)

mathematicians � np
like � (np\s)/np TEX � np

like ◦ TEX � np\s [/E]

mathematicians ◦ (like ◦ TEX) � s [\E]

The second refinement has to do with the management of ‘programming resources’.
In our Haskell-style example, one can use resources as many times as one wants (or
not use them at all). You see an illustration in the last step of the derivation, where
two occurrences of x : Int are withdrawn simultaneously. In natural language, such a

132 moortgat, moot & oehrle

cavalier attitude towards occurrences would not be a good idea: a well-formed sentence
is not likely to remain well-formed if you remove some words, or repeat some. (You
will agree that ‘mathematicians like’ does not convey the message that mathematicians
like mathematicians.) Our grammatical type-logic, in other words, insists that every
resource is used exactly once. And in addition to resource-sensitivity, there may
be certain structural manipulations that are allowable in one language as opposed to
another. To control these, there is a module of non-logical axioms (so-called structural
postulates) in addition to the logical rules for the slashes. The derivation below
contains such a structural move: the inference labeled P2 which uses associativity to
rebracket the antecedent tree.

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 � np]1

wrote ◦ p1 � np\s
[/E]

knuth ◦ (wrote ◦ p1) � s
[\E]

(knuth ◦ wrote) ◦ p1 � s
[P2]

knuth ◦ wrote � s/np [/I]1

that ◦ (knuth ◦ wrote) � n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) � n [\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) � np [/E]

At this point, you are perfectly ready to write your first type-logical grammar! Assign
types to the words in your lexicon, and decide whether any extra structural reasoning
is required. The type-inference machine of TLG does the rest.

The Grail theorem prover

The Grail system, developed by the second author, is a general grammar development
environment for designing and prototyping type-logical grammars. We refer the reader
to (Moot 1998) for a short description of the system, which is available under the
GNU General Public License agreement from ftp.let.uu.nl/pub/users/moot. The
original Grail implementation presupposes a unix environment. It uses the following
software components:

◦ SICStus Prolog: the programming language for the kernel;

◦ Tcl/Tk for the graphical user interface;

◦ a standard teTeX environment for the visualization/export of derivations.

In a Grail session, the user can design a grammar fragment, which in the TLG setting
comes down to the following:

◦ assign formulas (and meaning programs) to words in the lexicon or edit formulas
already in the lexicon,

◦ add or modify structural rewrite rules,

tex in teaching 133

figure 1: The Grail main window

◦ and finally, to run the theorem prover on sample expressions to see which ex-
pressions are grammatical in the specified grammar fragment by trying to find a
derivation for them.

The theorem prover can operate either automatically or interactively. In interactive
mode, the user decides which of several possible subproofs to try first, or to abandon
subproofs which the user knows cannot succeed, even though the theorem prover
might take a very long time to discover that. Another possibility is that the user
is only interested in some of the proofs. The interactive debugger is based on proof
net technology — a proof-theoretic framework specially designed for resource-sensitive
deductive systems. In Figure 1, we give a screenshot of the main window of the GUI.
Figure 2 shows a proof net for the derivation of the sentence ‘Knuth surpassed himself’.

When successful derivations have been found, Grail can convert the internal rep-
resentation of the proof objects to natural deductions in the form of latex output.
We have already seen some examples in the previous section. Though the internal
representation of derivations contains a lot of information, the structure is basically
simple: a proof object consists of a conclusion together with a list of proof objects

figure 2: The proof net debugger window

134 moortgat, moot & oehrle

knuth
np

surpassed

(np\s)/np
himself

((np\s)/np)\(np\s)
surpassed ◦ himself 	 np\s [\E]

knuth ◦ (surpassed ◦ himself) 	 s
[\E]

figure 3: Prawitz style natural deduction output

1. knuth : np− knuth Lex
2. surpassed : (np\s)/np− surpass Lex
3. himself : ((np\s)/np)\(np\s) − λz2.λx3.((z2 x3) x3) Lex
4. surpassed ◦ himself : np\s− λx3.((surpass x3) x3) \E (2, 3)
5. knuth ◦ (surpassed ◦ himself) : s− ((surpass knuth) knuth) \E (1, 4)

1. ((surpass knuth) knuth)

figure 4: Fitch style natural deduction output

which validate this conclusion and the latex output is produced by recursively tra-
versing this structure.

A number of parameters guide the production of the latex proofs. The output
parameters include, for example, a choice to have proofs presented in the tree-like
Prawitz output format, as shown in Figure 3, or in the list-like Fitch output format,
as shown in Figure 4. The Fitch list format is handy when the user chooses to in-
clude the meaning assembly in a derivation: tree format quickly exceeds the printed
page format in these cases. The Prawitz derivations are typeset in latex using the
proof.sty package of Tatsuta (1997), but, as the conversion to latex is quite modu-
lar, it would be possible to generate proofs in different formats, using for example the
prooftree.sty of Taylor (1996) as an alternative.

An extract of the latex source for Figure 3 is shown in Figure 5. Automated
generation of derivations is agreeable especially in the case of more complex examples,
which can be frustrating to produce or edit manually.

\infer[\bo \bs E \bc^{}]

{\textsf{knuth}\circ_{}(\textsf{surpassed}\circ_{}\textsf{himself})\vdash s}{

\infer{np}{\textsf{knuth}}

&

\infer[\bo \bs E \bc^{}]

{\textsf{surpassed}\circ_{}\textsf{himself} \vdash np \bs_{}s}{

\infer{(np \bs_{}s) /_{}np}{\textsf{surpassed}}

&

\infer{((np \bs_{}s) /_{}np) \bs_{}(np \bs_{}s)}{\textsf{himself}}

}

}

figure 5: The latex source for Figure 3

tex in teaching 135

Grail on the web

The Tcl/Tk-based graphical interface to Grail provides a pleasant working envir-
onment, especially for users unfamiliar with Prolog. But it is a complex platform,
dependent on the interaction of a number of programs—Prolog, latex, Tcl/Tk. The
World Wide Web provides an environment that in principle allows access to Grail’s
facilities for grammatical research, testing, and development to anyone with a graph-
ical browser, and this is the objective of our current efforts. Moving Grail onto the
web involves a natural series of stages, which we describe below.

Command line interaction

It would be difficult to manage via a browser the interaction of a remote user and
the Tcl/Tk graphical interface. But it is not so difficult to manage this interaction
directly via the SICStus Prolog command line prompt. In particular, if one wants to
test whether a given expression is assignable a particular type relative to a particular
fragment, it is enough to start Grail under SICStus, load the fragment in question—
simply an additional sequence of Prolog clauses—then pass the expression and the
goal formula to Grail. The results of the parse can be written out as a latex file
and displayed in .dvi or .ps or .pdf format, as discussed above.

One commonly executes these steps sequentially, as shown below, suppressing un-
necessary detail and extraneous messages. The command line instruction % sicstus

initiates a session with SICStus Prolog and the command consult(’notcl2000.pl’)

loads Grail without the Tcl/Tk interface. One can then load a fragment—here
consult(’knuth.pl’) —and test whether the expression Knuth surpassed himself can
be assigned the type s by entering the clause tex([knuth,surpassed,himself],s).

• • •
% sicstus

SICStus 3.8.5 (sparc-solaris-5.7): Fri Oct 27 10:12:22 MET DST 2000

Licensed to let.uu.nl

| ?- consult(’notcl2000.pl’).

{consulting notcl2000.pl...}

========================

= Welcome to Grail 2.0 =

========================

{Warning: something appears to be wrong with the TclTk library!}

{You can still use Grail, but you will have limited functionality}

yes

| ?- consult(’knuth.pl’).

{consulting knuth.pl...}

{consulted knuth.pl in module user, 20 msec 6952 bytes}

yes

136 moortgat, moot & oehrle

| ?- tex([knuth,surpassed,himself],s).

===

[knuth,surpassed,himself] => s

===

Lookup: 0

Max # links: 12

===

(FAILED). surpass(knuth,knuth)

(knuth *[] (((G \[] (E *[] (surpassed *[] G))) /[] E) *[] himself))-->>

IRREDUCIBLE

===

1. surpass(knuth,knuth)

(knuth *[] (((G \[] (G *[] (surpassed *[] E))) /[] E) *[] himself))-->>

(knuth *[] (surpassed *[] himself))

===

Telling LaTeX output directory eg.tex

1 solution found.

CPU Time used: 0.200

Telling LaTeX output directory eg.tex

true ? latex ready

• • •

The final comments indicate that Grail has written out the proof to the file eg.tex in
a way that can be inserted directly in a latex document, as we have seen in Figure 5.

Shell interaction

SICStus provides facilities to combine all the steps of program initiation and input just
illustrated into a single command line, using the built-in SICStus predicates. During
a SICStus session, a call to the predicate save_program saves the state of the run of
SICStus in a way that allows it to be restarted at exactly the same point.

For instance, if a SICStus program contains the clause

tex in teaching 137

make_savedstate:- save_program(wwwgrailstate, startup).

the run state will be saved as the executable wwwgrailstate, and upon reinitiation will
attempt to prove the predicate startup/0. To restart SICStus in this way, one calls
SICStus with the -r flag:

% sicstus -r wwwgrailstate

Finally, there is an additional flag which allows one to pass a sequence of arguments to
the re-initiated state, bound as a list of Prolog atoms to the special built-in constant
argv, as shown below.

% sicstus -r wwwgrailstate -a arg1 arg2 ...

Now, for our purposes, these arguments can provide information about a particular
fragment to be loaded, a variety of choices about proof display, etc., and finally,
the goal formula of the expression to be tested and the list of words making up the
expression itself. What remains is to unpack the list argv inside and redeploy these
individual arguments appropriately.

Here is an example in which the first argument following the -a flag selects the frag-
ment knuth.pl, the second through the fifth arguments set switches governing the proof
format, the sixth argument (s) sets the goal formula, and the remaining arguments
specify the list of words of the expression to be tested.

% sicstus -r wwwgrailstate

-a knuth yes yes yes inactive nd s knuth surpassed himself

{restoring wwwgrailstate...}

{wwwgrailstate restored in 80 msec 513808 bytes}

{consulting knuth.pl...}

{consulted knuth.pl in module user, 20 msec 7064 bytes}

===

[knuth,surpassed,himself] => s

===

Lookup: 0

Max # links: 12

===

(FAILED). surpass(knuth,knuth)

(knuth *[] (((G \[] (E *[] (surpassed *[] G))) /[] E) *[] himself))-->>

IRREDUCIBLE

===

1. surpass(knuth,knuth)

138 moortgat, moot & oehrle

(knuth *[] (((G \[] (G *[] (surpassed *[] E))) /[] E) *[] himself))-->>

(knuth *[] (surpassed *[] himself))

===

1 solution found.

CPU Time used: 0.200

• • •
Although we will not discuss here how the list of arguments bound to argv is treated
internally to the SICStus code in wwwgrailstate, the reader may observe the similarity
of the standard error message printed out immediately above and the standard error
message encountered earlier in the course of our interactive command-line session with
Grail.

Web interaction

From this point, it is straightforward to lift the interaction to the web. The arguments
are encoded in an active form (or simply passed directly using the standard URL
syntax for CGI programming). The form document can be prepared as an HTML
document or as an active PDF document, using Sebastian Rahtz’s hyperref package
and Han The Thanh’s pdflatex program. We will come back to details of this step
momentarily, after looking briefly at how the server is set up to deal with such an
interaction.

Lincoln Stein’s Perl module CGI.pm makes it especially simple to grab these argu-
ments, check them for correctness (‘untainting’), and pass them to the saved SICStus
state. And the parse can be written out in latex, then passed back to the user’s
browser as a .pdf file (using pdflatex).

Fragment display

A disadvantage of the above setup is that the end user must have a reasonable idea
of the capabilities of each fragment: what is its lexicon? what kinds of grammatical
questions does it address? As an aid to the user, it would be helpful to display the
fragment in a pleasant form, providing all the information the user needs. Grail
already has facilities to spell out the properties of fragments in latex—including
postulates, lexicon, and stored examples. One can collect these as a static display,
which can be stored on a web server and accessed as a PDF document. A better idea is
to utilize the capacities built into the hyperref package, so that the document becomes
an active PDF document. In particular, example expressions of the fragment now
take the form of active links: a click of the mouse triggers the whole series of events
described above, sending appropriate form data to the Perl script described above,
and returning the results of the parse attempt as a PDF document. Additionally, the
active form can contain text fields in which the user can enter arbitrarily constructed
examples (compatible with the fragment), rather than simply selecting among the

tex in teaching 139

examples listed in the fragment specification itself. To see the display of the fragment
knuth.pl, visit http://grail.let.uu.nl/knuth.pdf.

Static libraries of fragments

Once it is possible to display a single fragment which allows active interaction with
the Grail environment over the web, it is immediately possible to provide access
to a library of fragments, each displayed as a PDF document prepared using the
hyperref package and pdflatex. The interested reader can visit the fragments section
of http://grail.let.uu.nl/tour.pdf for an example.

Dynamic libraries

Static libraries have their limitations. Most obviously, they depend on a webmaster
to install fragments and make their displays available. For broader teaching, de-
velopment, and research, it is preferable for web-based users to construct their own
fragments and access displays of them, all in a way that allows the fragments to be
tested and improved. Through the LWP.pm module, Perl makes it relatively simple to
fetch remote files from hosts across the web. In brief, through interaction with text-
fields in a web document, a remote Grail user can specify the URL of a fragment,
specify a test expression and a test goal, and submit the test remotely. Resulting proof
displays of the kind already seen are returned over the web. Alternatively, the user
may request that a remote fragment be transformed into a an active latex document
(as just discussed), which can be further used for teaching, development, and research.

Future work

More complex forms of interaction involving fragment revision and editing directly via
dynamic PDF documents would be desirable and are possible in principle. Also, the
concept of a derivation itself is a dynamic notion: it would be nice to have an option
to unfold derivations step by step in the typeset PDF document. We are currently
experimenting with Stephan Lehmke’s texpower bundle, which offers the required kind
of functionality.

references

Lambek, J. 1958, The mathematics of sentence structure. American Mathematical
Monthly, 65:154–170.

Lehmke, S. 2001, The TEXPower bundle. Currently available in a pre-alpha release
from http://ls1-www.cs.uni-dortmund.de/~lehmke/texpower/.

Moortgat, M. 1997, Categorial type logics. Chapter 2, Handbook of Logic and Lan-
guage. Elsevier/MIT Press, pp. 93–177.

140 moortgat, moot & oehrle

Moot, R. 1998, Grail: an automated proof assistant for categorial grammar logics,
in R. Backhouse, ed., ‘Proceedings of the 1998 User Interfaces for Theorem
Provers Conference’, pp. 120–129.

Radhakrishnan, C.V. 1999, ‘Pdfscreen.sty’, Comprehensive TEX Archive Network.
macros/latex/contrib/supported/pdfscreen/.

Rahtz, S. 2000, ‘Hyperref.sty’, Comprehensive TEX Archive Network.
macros/latex/contrib/supported/hyperref/.

Tatsuta, M. 1997, ‘Proof.sty’, Comprehensive TEX Archive Network.
macros/latex/contrib/other/proof/proof.sty.

Taylor, P. 1996, ‘Prooftree.sty’, Comprehensive TEX Archive Network.
macros/generic/proofs/taylor/prooftree.sty.

♦ ♦ ♦

Poligraf: from TEX to printing house
Janusz Marian Nowacki∗

abstract.
The macro package Poligraf was for the first time presented at the Polish TEX
Users’ Group meeting “BachoTeX’96”. Users’ suggestions and remarks have been

taken into account leading to this new, completely re-worked version.

T
o my joy Poligraf has been received with significant interest. It turned out
that a number of people use TEX for preparing publications for professional
printing. Unfortunately, I must confess that the 1996 version had a number of

shortcomings.
First, the full functionality of Poligraf was only available with the plain format,

which I use daily. My lack of latex knowledge caused latex users, who form a ma-
jority, quite a number of problems.

Second, I attempted to solve too many issues at once. For example, I unnecessarily
attempted to deal with assembling of print sheets. Now I know that there exist better
and less error prone means to this end.

Third, the colour separation mechanism was too extensive and thus became too
complicated. In the meantime, in parallel to my work the cmyk-hax.tex package has
been under development by my colleagues from the BOP company in Gdańsk. I came
to the conclusion that this is a far better solution than the one proposed in the first
version of Poligraf.

The distribution

Currently the package consists of three files:1

 poligraf.sty—the main macros,

 crops.pro—a required header file to be used with the DVIPS program.

 separate.pro—an optional header file to be used with the DVIPS program2.

∗J.Nowacki@GUST.org.pl
1The package is to be found on the ftp server ftp.gust.org.pl/GUST/contrib/poligraf.zip

and the “TEXLive 6” CD-ROM.
2Additionally, the cmyk-hax.tex package is required for colour separation.

142 janusz marian nowacki

In everyday practice the crops.pro file suffices

The majority of documents typeset with TEX or other DTP systems is printed using
a desktop printer. On the other hand, if quality and size of the edition matter,
more and more publications are being printed by professional offset print shops. For
such purposes the document pages or print sheets should contain additional elements
required by the printers. These are for example registration marks. crop marks, colour
steps and colour bars.

In the current version of the Poligraf package this task is realised by the header
file crops.pro, input by the dvips program3.

The foo.dvi file generated with any TEX format (plain, latex2ε, AMSTEX, etc.)
is run through dvips,

dvips -h crops.pro foo.dvi

producing a foo.ps file with all the necessary elements.
The user may change the default values of the parameters. It suffices to change the

values of some variables found in the first few lines of the file.

 cropmarksize—the size of the corner crop marks (A in the figure). The construct
fits into a square hence only one dimension is necessary. The unit of measure is
millimetres. The proposed default is 10 mm.

 cropmarkdistance—the distance of the crop marks from the page field (B). The
unit of measure is millimetres. The proposed default distance is 3 mm.

 barsize—the size of the square fields (C), out of which the colour steps and colour
bars are built. The unit of measure is millimetres. I propose the side of the squares
to be 5 mm.

3The dvips program is distributed with its own crop.pro or crop.lpr header files. These are not
satisfactory as they do not create all elements required by printers.

Poligraf: from TEX to printing house 143

 colorbars—the switch controlling the range of control objects to be put onto the
print sheet:

– 0 : no colour strips, e.g. for print sheet assembling,
– 1 : all colour strips,
– 2 : only colour steps,
– 3 : only colour bars.

 mirror—mirroring of whole print sheets including the colour strips and bars as
well as registration and crop marks. No other mirroring methods should be used
if this switch is on.

 labeloff—supresses the output of the TEX and PostScript page numbers and
the name of the separated colour.

 xoffset or yoffset—offset of the whole page including the marks and bars relative
to the PostScript co-ordinate origin.

Please note that the TEX source file should define the format of the print sheet.
Problems arise if this is neglected.

TEX itself does not care about the sheet on which the publication is printed. Essen-
tial are the text width and height and the location of its upper left corner. The sheet
format is used by DVIPS, which determines it using the information specified in the
TEX source, for example:

\special{papersize=xmm,ymm}

If the sheet size is not specified in the source file, DVIPS uses the default value from
the config.ps file, usually A4, which might not be what was expected.

Even with the sheet size specified in the source file, DVIPS may provide for sur-
prising effects by ”rounding” to a default format within an undefined tolerance. The
following option

-t unknown

switches the formats off4. In this way one can make sure that the given sheet size will
be used.

From within the TEX file

dvips header files provide for independence of the TEX format, but not all users
regard them as a convenient tool. A “real” TEX’er prefers to have full control over the
publication from within the source file and this is why I wrote the new poligraf.sty.
The .sty extension shows that now latex users, who constitute the majority of TEX
users, are being supported.

To start using Poligraf the following invocation in the source file suffices:

\input poligraf.sty

4In some of the older dvips versions this option was incorrectly defined.

144 janusz marian nowacki

or in latex

\usepackage{poligraf}

This will cause the previously described crops.pro file to be inserted into the output
file. Additionally the default values of its parameters may be overridden through the
use of TEX directives of same names.

By using poligraf.sty one does not need to alter crops.pro, only the source
file might need editing. Moreover, all of the parameters controlling the crop and
registration marks as well as the colour bars and steps are saved in the source file,
thus ensuring that the document will always have the same appearance.

Colour separation

The printing process requires that the publication be separated into the basic printing
colours, i.e., cyan, magenta, yellow and black.

Normally this would be done by image setters. However, many users prepare the
separations themselves. A reason for this could be the desire to judge the effects
before the final image setting without incurring the cost. One could also produce
uncomplicated separations using a laser printer and transparencies.

As has been said before, colour separations may be obtained with the proven macro
package cmyk-hax.tex with its excellent choice of options. The package can be used
not only for colour separation but also for manipulating the colours of individual
objects.

Colour separations are achievable with the use of the following commands:

 \Separate\CYAN—separate cyan,

 \Separate\MAGENTA—separate magenta,

 \Separate\YELLOW—separate yellow,

 \Separate\BLACK—separate black,

 \NoOverPrintBlack—the standard behaviour of Poligraf is to overprint black
paint on previously printed colours—this suppresses such behaviour.

The use of the \Separate command instructs TEX to input the cmyk-hax.tex

package.

Colour separation at the command line

Colour separation may also be achieved with the help of the header file separate.pro.
This file has been created with the help of the cmyk-hax.tex program. Several vari-
ables control its behaviour. For example, one can select the desired colour of the
separation. The following command line

dvips -h separate.pro foo.dvi

Poligraf: from TEX to printing house 145

produces the required PostScript file. If the separation has to contain the print
sheet’s graphic elements the command

dvips -h separate.pro -h crops.pro foo.dvi

should be issued. The header files should be specified in the order shown.
Several file editing cycles are required to generate all colour separations. A more

convenient solution is offered through the use of the four separation files: cyan.pro,
magenta.pro, yellow.pro and black.pro. A batch file or a shell script might be
created to generate all colour separations in a single action. The use of the header
files crops.pro and separate.pro without the use of poligraf.sty allows one to
process the dvi file directly. Sometimes this might be the way of choice with TEX
formats I have not tested. Surprises might lurk there.

What is missing from the new Poligraf?

The main reason for Poligraf to be re-written was the urge to have an easy to
use program for as many TEX formats as possible. Several commands present in the
previous version are missing from the new Poligraf:

 \Language\Polski and \English: were rarely used.

 \Twoside, \Landscape, \LeftMargins, \TopMargins: standard TEX solutions can
be used instead.

 \Hoffset, \Voffset: have been replaced by \xoffset and \yoffset.

 \ScrAngle, \ScrFrequency, \Rasterize: the functionality is provided by the
cmyk-hax.tex package.

 \Hline, \Vline, \ShowGrid, \MargLines: the same information is available from
programs like ps-view and gs-view.

 \beginLocalRaster, \endLocalRaster: this is outside the scope of Poligraf.

Acknowledgements

I would like to thank cordially all the Poligraf users for bug reports and improvement
suggestions. My thanks go also to Piotr Pianowski, Piotr Strzelczyk, Marcin Woliński
and Staszek Wawrykiewicz for their effective help in writing the new version.

♦ ♦ ♦

Extending ExTEX
Simon Pepping

abstract. What can be done after the completion of ExTEX? I describe a dream,
some results, and some further ideas.

keywords: ExTEX, DSSSL, file location, extension of ExTEX, primitives in ExTEX

SGML, DSSSL and TEX

Complex architectures have always appealed to me. It is no wonder then that the
system SGML – DSSSL – typographical backend found in me a believer. Sebastian
Rahtz’s jadetex is a good implementation of TEX as the typographical backend. But
ever since I had a look at it and at the way the jade DSSSL engine communicates with
the backend, I have had this dream of a direct communication between the DSSSL
engine and TEX, and of a direct implementation of flow objects in TEX.

One might think that this dream has been made obsolete by modern developments:
SGML is out, XML is the new king. But I do not think things have really changed in
the style specification area: The style language is now called XSL, its abstract page
specification objects are now called formatting objects, but the idea has remained the
same.

Obviously, I was not sufficiently skilled as a programmer to realize such a program.
I also had the idea that with the current TEX program it would be impossible, and
anyway I had little desire to work through the complicated canonical route to hack
the TEX sources.

Therefore I looked forward to the release of the ongoing ExTEX project, so that I
could try to realize my idea in a system with a more extensible structure. When I got
the program in March, I started to try and understand its structure, and see where I
should start to plug in my changes. That gave rise to some interesting conclusions.

TEX input without macros
When the jade program talks directly to the typographical backend, it makes calls to
subroutines that start and end the flow objects, subroutines that register new values
of characteristics, and subroutines that receive textual data. Those calls specify the
layout in terms of abstract flow objects. From there the typographical backend should
take it, and produce pages according to the abstract specification.

TEX, on the other hand, requires input in terms of its macro language. That has

extending extex 147

been a great benefit. While the TEX program itself has proved hard to extend, the
macro language has provided programmers/users with ample opportunity to write
extensions.

The interprogram communication sketched above bypasses the macro language com-
pletely. As a consequence none of the extensions created in the 80s and 90s are avail-
able. When one looks at jadetex, one sees that it makes a good effort to pull in all
major packages written for latex2ε. So, when we are not able to use those, we have
a big problem. It is even worse: we have even bypassed plain TEX; indeed, we do
not even have plain TEX’s output routine, because that is specified through control
sequences as well.

Karel Skoupy, the author of ExTEX, tells me that we do not even have a typesetting
engine; we have no more than a library. It is the macro language that glues it all
together into a typesetting engine. So my idea comes down to doing away with that
glue!

That is where my plans have stalled. I will need some bright ideas to find a way
forward.

Serving the files to ExTEX

When I had the ExTEX program, and took part in some discussions between its
author and its users, it soon became clear that there was a problem in the way ExTEX
finds the required files in the TEX distribution. Java, being a platform-independent
language, has problems communicating with the environment. The chosen solution
was to launch kpsewhich as a separate process to find the files for ExTEX.

While the kpathsea library has become a de facto standard, I am not ready to
accept it as the only way to locate files in a TEX distribution, now and in the future.
And therefore I do not think it a good idea to hard-code the use of kpsewhich into
ExTEX. I prefer a separation between the typesetting engine and the TEX distribution,
even though TEX has built-in file locating capabilities. I want a file locator architecture
that is configurable by the distribution. The setup of Java’s security mechanism, which
is extremely configurable, with the possibility to plug in third party implementations
of one or more functions, showed me how this could be achieved.

I constructed what I call the pluggable file locator architecture. ExTEX creates a
File Locator object which defines the required file location functionality and its API.
One or more implementations of that functionality may then be written, and added to
ExTEX as modules. Start-up options determine which of the available implementations
is actually used.

Basically, it works as follows. On the command line one has to tell ExTEX which file
locator implementation one wishes to use. This can be done using the java property
nts.filelocatorclass. Or it can be done in a configuration file, whose name should
be communicated to the application using the java property nts.filelocatorconfig.
An added bonus of a configuration file is that its path is communicated to the im-
plementation, a feature which I use below in the kpathsea implementation. Extra
arguments can be passed to the implementation. For more information, see the doc-

148 simon pepping

umentation in the java code itself (which is extractable with the javadoc tool). The
idea is that the TEX distribution configures the command line to its needs, so that
this is transparent to users.

Here is an example of the startup line of ExTEX using a file locator configuration
file:

java -Dnts.fmt=latex \

-Dnts.filelocatorconfig=/usr/share/TeX/bin/ntsfilelocator.cfg \

Nts latex-file

The configuration file contains the following line:

nts.filelocator=<package>.<file locator implementation class>

Here is an example of a startup line directly providing the file locator implementation
class. This class has a single constructor argument:

java -Dnts.filelocatorclass=’<package>.kpsewhich \

/usr/share/TeX/bin/kpsewhich’ \

Nts tex-file

kpathsea
Of course, the de facto standard kpathsea was my first implementation. Since it is
written in C, I used the Java Native Interface (JNI) to access it from the Java code.
Hacking kpathsea turned out to be relatively easy. I took the code of kpsewhich,
removed all code that is related to the command line options, added the functions
that implement the Java interface, and I was almost done.

There was one complication: kpathsea is very much written for the situation where
it is linked into an executable. Here the executable is java, which is of little help. So
I have to supply artificially the name of another program, one in the kpathsea bin
directory. I use kpsewhich for this purpose.

To my surprise, modifying in the kpathsea code the name of the executable from
java to that of a kpathsea program:

kpse_set_program_name(NTSprogpath, NTSprogname);

at first did not work. It turns out that on glibc systems kpathsea does not use the
two arguments of this function. The glibc library catches the program names and
those are used by kpathsea. Therefore I have to reset the glibc program names:

program_invocation_name = NTSprogpath;

program_invocation_short_name = NTSprogname;

The file locator configuration file itself can be put in the kpathsea bin directory
and used as a pseudo kpathsea program. When the first of the above ExTEX startup
lines is used, the File Locator class communicates the path of the configuration file
to the constructor of the implementation, and the latter uses it as the program path.
This feature really embeds the file locator interface to ExTEX in the kpathsea setup
of bootstrapping the distribution from the path of the executable.

extending extex 149

TEX file server
As became apparent during discussions, Java is not good at communicating with the
environment of the computer on which it runs. On the other hand, it is excellent in
communicating with the networked world. So the idea presented itself to serve files
over a network.1 This was my second file locator implementation.

It was my goal to write a simple proof-of-concept. So I wrote a simple TEX file
server using Java’s ServerSocket class, and a simple TeXFSClient class as the file
locator implementation that uses the TEX file server to get its files. The protocol is
also simple:

Open TeX session The client sends a handshake to the server, to make sure the
server can be found and is alive.

Open TeX file The client requests a file. It communicates the characteristics which
are familiar from kpathsea: file name, format, must exist and program name.

This implementation basically demonstrates the idea. But it has some serious lim-
itations:

 The session is not persistent, each file is requested in a new connection.

 In kpathsea it is not possible to change the name of the format, so once opened,
the TEX file server serves files for only one format.

If this were to be turned into a serious tool, there is still a lot to be done. There are
several possibilities to set up a more robust TEX file server. A good way to do it is over
HTTP. It makes use of an established protocol, which is implemented in a number of
excellent web server systems. To communicate TEX specific messages, one could use a
CGI- and XML-based protocol, such as that recently developed by the Open Archives
Initiative (see http://www.openarchives.org/OAI/openarchivesprotocol.htm).

Other extensions to ExTEX

latex2ε has some outstanding features which deserve to be separated from latex’s
document style features and made available to all TEX users:

NFSS Ever since the early 90s latex’s font selection scheme has made it relatively
easy to manage an ever growing font collection. Adding a new family of fonts is
done in a systematic and transparent way.

graphicx/s providing the much needed integration of latex with graphics.

babel making (La)TEX multilingual.

latex has implemented a number of extended primitives, such as \newcommand, or
the control sequences of the ifthen package, which make macro programming more
robust and easier. These could be implemented as true primitives within ExTEX.

latex provides an interface to document classes, and for that purpose defines many
latex primitives, such as \@startsection, the counter commands, the option com-
mands. That interface can be realized in ExTEX itself, as a module. latex users can

1I understand that the file server idea has also been put forward within the NTS steering group.

150 simon pepping

use it, others can leave it alone.
These facilities (and latex itself) have been realized using TEX’s extension mech-

anism, its macro language. This is an astonishing feat, in view of the fact that the
macro language is hardly adequate as a programming language. Now that we have an
extensible program, it seems a good idea to program these facilities as modules. As a
programmer, I believe that the use of a programming language would make it much
easier to achieve the desired logic.

Epilog

ExTEX has been awaited for a long time, and its realization is not entirely satisfactory:
it is slow and resource hungry. But despite these drawbacks, we should appreciate that
it is the first complete reimplementation of TEX ever made.

Its release provides us with a tool that we can play with, modify, and extend, more
readily than we can do with TEX. At the very least, it is a sandbox on which new
ideas can be tested. I hope the recount of my efforts provides inspiration to others to
start working with the system.

♦ ♦ ♦

Directions for the TEXLive system
∗

Fabrice Popineau

abstract. This paper is about the current status of the TEXLive software.
The first part of the paper will address the structured description of its content and

how the Windows 1 setup program can use it. The past experiments with the
Windows installer have revealed that the problem was harder than expected. The new
TEXLive 6 description files will allow a more effective way to use the setup program.

Some further enhancements are even scheduled.
The second part of the paper will address a set of possible extensions to the

Web2C/Kpathsea pair (read it as a call for code contributions!). Some aspects of its
use were not foreseen when it was devised and it may be time for an enhancement.

keywords: TEXLive, Web2C

Introduction

TEX is a great piece of software, but it used to be not so easy to distribute. As
time passed, people arranged so called TEX distributions for various platforms, which
became easier and easier to install and use, even for people not really acquainted with
TEX.

To name only a few, there was emTEX for DOS platforms, which came compiled,
as usually people do not have development tools for this platform. There was also
Web2C for Unix, which came in source form, because all Unixes have development
tools. This concerns the programs. On the other side, the collection of TEX macros
available around the Internet did not stop to inflate over the years.

All these distributions matured and Web2C turned out to be really portable so
that its programs were made available on all major platforms. The most successful
instantiation of Web2C as a standalone distribution was the great teTEX distribution
assembled by Thomas Esser. At the same time, the TEX Directory Structure was
standardized, and the layout of the support files for the programs almost frozen. It
was time then to build the first multiplatform ready-to-use distribution: the TEXLive
project was born.

∗Thanks to Sebastian Rahtz for putting up the TEXLive project.
1Later in this paper, all the various Windows platforms will be designated by the generic Win32

acronym.

152 f. popineau

The 6th edition of the TEXLive system

The TEXLive system gathers almost all free TEX related software available from the
CTAN repository. By this I mean all the programs directly related to TEX and its use
(around 240 for Unix, a few more for Windows) and most of the free macro packages
available on CTAN plus documentation. This is around 40000 files on a CD-ROM. So
there is one big problem: how to manage such a huge pile of files?

We can split it in two parts. First, CTAN is great because it holds all TEX related
files, it is managed, and you can find whatever you need on it if it does exist. But the
files there are not directly usable: you need to unpack, compile, install at the right
location on your site. Not something all people are ready to do or even not easy to do
at all. Anyway, CTAN aims at being a repository for contributions to the TEX world,
no more no less.

So in a sense the TEXLive system can be seen as a projection of CTAN onto some
instance of the TDS with all files ready to use. This task has been almost completely
automated for the macro packages by Sebastian Rahtz, who wrote a set of Perl scripts
that can automatically convert any of these packages from their CTAN form into their
usable form. That means that the archives are unpacked, the .dtx files are processed,
documentation compiled, files moved to the right TEXLive location and so on.

The second problem is to find a way to present the user with those files in an
understandable way. So we need to build a structured description of the files.

Structured description of the TEXLive system
The RDF format has been chosen for describing the components. RDF is an XML
application that allows one to express sentences of the OAV (Object – Attribute –
Value) kind. One can use it to claim that such url on the Internet has an attribute
of such value. This model is powerful enough to express complex sentences, but we
don’t need the advanced features for the moment. However, relying on this language
is a best bet for the future when we might need them. We have chosen a dedicated
namespace for the so-called TPM (TEX Package Management) description files.

This edition introduces a new structured description of the various components.
The current description is based on collections and packages. What is a collection
and what is a package? A collection is intended to be a collection of packages. Each
of these components has a common set of attributes which are given below for the
tex-basic collection:

<!DOCTYPE rdf:RDF

SYSTEM "../tpm.dtd">

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:TPM="http://texlive.dante.de/">

<rdf:Description about="http://texlive.dante">

<TPM:Name>tex-basic</TPM:Name>

<TPM:Date>2001/03/16</TPM:Date>

<TPM:Version>1.0</TPM:Version>

<TPM:Creator>rahtz</TPM:Creator>

<TPM:Title>Essential programs and files

</TPM:Title>

directions for the texlive system 153

<TPM:Description>

These files are regarded as basic for any TeX system, covering

plain TeX macros, Computer Modern fonts, and configuration for common

drivers.

</TPM:Description>

<TPM:Flags default="yes"/>

<TPM:RunFiles size="14957">

texmf/tex/generic/hyphen/hypht1.tex

...

texmf/tpm/collections/tex-basic.tpm

</TPM:RunFiles>

<TPM:BinFiles arch="i386-linux" size="4706207">

bin/i386-linux/texdoctk

...

bin/i386-linux/MakeTeXPK

</TPM:BinFiles>

<TPM:BinFiles arch="win32" size="4194277">

</TPM:BinFiles>

<TPM:Requires>

<TPM:Package name="bibtex"/>

<TPM:Package name="bluesky"/>

...

<TPM:Package name="texlive"/>

<TPM:Package name="tex-ps"/>

<TPM:Package name="bibtex8bit"/>

</TPM:Requires>

<TPM:RequiredBy/>

</rdf:Description>

</rdf:RDF>

Information about the components can be divided into three parts:

1. Information about the component: name, date, version, description, and so on.
There is a special Flags tag, which is used to give directives to the setup program.
For the moment, it is used to specify that some component should be selected by
default, or that it is only remotely available.

2. Files lists, split into:

bin files which are tagged by the target architecture given as an attribute and
which specify all the files that should go into an architecture dependent directory
(namely the programs);

run files which refer to the files used by the TEX system and which are architec-
ture independent, i.e. mostly macro files;

source files which refer to the source files for the macro packages; the source files
for the programs are not yet indexed this way;

doc files which refer to the documentation files that come with the component;
remote files which are used only for some Win32 support files that are not free

or for which there is no space on the CD-ROM, hence that are only remotely
available.

154 f. popineau

figure 1: Package selection page of the TeXSetup wizard.

3. Dependencies: the other required components needed to make this component
work.

This information is sufficient to build a simple management system with the follow-
ing features:

Installation install the files for the first time on the computer;

Maintenance allow the user to add, upgrade or remove components;

Removal remove all the files that have been installed.

All these operations should be done with consistency ensured. By this I mean that
all the required packages are installed whenever you choose one, and that when you
upgrade some package, all the required packages are upgraded if needed. Obviously,
the database of TPM files needs to be sound by itself and should reflect the reality.

Enforcing consistency can be tricky. Dependencies define a graph between the com-
ponents and the job of the management program when you ask it to install something
is to find a minimum spanning tree over this graph that covers all the selected pack-
ages. Using such a system where consistency is enforced, it may happen that you will
try and be denied to deselect some component: all dependencies may not be obvious
to the user and it is rather intriguing to click on some checked box, and to fail to un-
ckeck it! Maybe in this case the system should display the reason why the component
is required. So dependencies and package bounds should be carefully designed.

Experiments have been done with the Windows TeXSetup program. The version
in the current TEXLive system allows the user to install, to add and to upgrade
packages. Figure 1 shows the screen when the user wants to add or upgrade some

directions for the texlive system 155

of his packages. The black labels (only tex-pdftex on the figure) indicate that the
component is installed and up to date, the red ones (tex-latex on the figure) that
the component is out of date and the green ones that it is not yet installed (all the
other packages on the figure).

How to go further in describing the TEXLive system?
The system is working properly at this point. However, not all issues have been
adressed.

There is a small step that will be taken quickly2. Currently, packages as well as
collections hold files. This should not be the case anymore. All files should be moved
into packages, and collections shoud only hold a set of requirements. This will not
prevent packages from requiring collections if that is needed. It will only ease the
visualisation of dependencies.

In many cases where collections hold files, the files are binaries. So the binaries
will also be split into packages corresponding more or less to the various parts in the
program sources of the TEXLive system. So in this new description, the tex-omega

collection will require some omega-basic collection and some omega-lambda collec-
tion, the omega-basic collection requiring the omega-binaries, omega-base and
omega-fonts packages. Further, this will enable us to introduce a dependency between
the omega-binaries package and the kpathsea package. You may wonder why it is
needed. Under Windows, Kpathsea is distributed as a DLL as are some other parts of
the system, so if you upgrade some program depending on Kpathsea, you potentially
need to upgrade Kpathsea itself, and hence all other programs depending on it. But
once this dependency is explicit, even upgrading the programs will be done in a safe
way.

Another point that will probably be adressed is the removal of the division into
doc-files, source-files and run-files. The problem is that at the moment you can choose
to install each package with or without documentation and with or without sources.
This has two flaws:

1. Each selected package is flagged as being installed, but nothing is remembered
about its documentation or source files. The ‘no-doc’ flag is global, but the doc-
files are defined per package. This is not so much of a problem as long as you can
reinstall each package alone and choose to add its doc and source files if needed,
but it is not very consistent because when you upgrade the package, you do not
know if you should do it with or without doc and source files.

2. It is worse for some packages that hold only documentation, because they can be
flagged as installed while only their .tpm file got installed (with the ‘no-doc’ option
selected globally).

Given that documentation is very useful for many packages3, the documentation files
will be combined with the run files. On the other hand, the source files, which are
usually useful only to a few people, will be described in a separate set of .tpm files, and
there will be a separate collection (resp. package) for the source files of each collection

2Maybe even achieved by the time of the conference.
3And that the cost of disk-space has dramatically dropped!

156 f. popineau

(resp. package). This set of source files related collections and packages will form a
separate tree from which users can select components. The setup program can have
an option to automatically link any selected package to its source counterpart so that
sources get installed easier.

Now, if we look further, we can wonder if a different, much bigger step should not be
taken. We said that the TEXLive system is the projection of the CTAN content onto
a ready-to-use axis. But CTAN already has its own set of description files, namely
the Graham Williams Catalogue! Which incidentally is on the TEXLive CD-ROM. So
we have two sets of description files. In fact, there is a third useful description of the
components, which comes with the texdoctk program4.

So we might think that three is two too many. One description should be enough.
It is true that a merge between the Catalogue and the description files of the TEXLive
system is highly desirable. But this is a huge work to undertake, and it could be
done only by setting up a new procedure to submit files to CTAN. In this procedure
package authors would be asked to build the XML description file for their package
and also probably to follow very strict rules to package their contribution. Maybe this
procedure can be automated by providing people with the right set of scripts, but this
needs to be investigated.

Remaining problems about the setup system
The configuration files are not yet handled very nicely. The problem has been solved
locally for the language.dat file. It has been split into several parts one line long,
each one assigned to some collection specific to this language. When the user selects
his collections, all the parts are assembled and the specific language.dat is build.

This process could be generalized to some other configuration files: fmtutil.cnf,
map files in pdftex.cfg and config.* for dvips and gsftopk. However, doing this
is hardcoded for the moment. It would be better to design and standardize some
mechanism that would allow one to specify how the configuration files are built through
rules and regular expressions.

Another remaining problem is about the setup programs. The Unix install-cd.sh
script shell does not actually use the RDF files, but some preprocessed version of
them. It also has no graphical user interface.

The Windows installer is a regular MFC dialog-box based application with a specific
behaviour: a wizard in the Windows world. It relies heavily on platform specific
features (dialog items like tooltips and tree control, Internet functions) so its code is
not at all portable to the Unix world.

There is not yet any installer for the binaries on MacOS/X, and there is little chance
that if one is written it could even be reused on another Unix system.

Reasoning in the context of a multiplatorm distribution, it would be nice to have a
portable installer. However, requirements are very different between Unix and Win-
dows. The other problem is that the installer needs to be standalone, and none of the
tools that would allow one to quickly build a portable installler like Perl or Python,
have the feature of building standalone programs. If this feature is ever introduced

4A nice Perl/Tk script that points you to the documentation inside a teTEX installation.

directions for the texlive system 157

for all platforms, then this is clearly the way to go. But we can’t expect that on every
platform, users will have a complete Perl/Tk or wxPython installation, with the right
GUI libraries, right version of the files and so on.

The other way of thinking, probably much more realistic, is to rely on a specific
setup system for each platform. Sebastian Rahtz is willing to provide RPM packages
for Debian and RedHat Linux users, and in fact he already did it as an experiment.
Not all details have yet been sorted about – especially related to configuration files –
but that’s on the way for the next release.

Now that Microsoft has provided its own installer for all the versions of Windows,
it would probably be better to switch to it5. It was not obvious that the first version
of this system would be usable for the TEXLive system mainly because of the large
number of files, but this Windows Installer system has quickly evolved and can’t be
ignored today.

So the common starting point will be the RDF description of the packages, and
platform dependent versions will be built by scripts for each kind of setup system.

Other enhancements
We would like to get even more granularity. For instance, the ”langgreek” collection
has about five different Greek setups. Which one is best? In general, it is time we
started to cut down on latex packages. Perhaps ConTEXt shows us the way forward.

The new package description allows us to define different distributions for different
uses. Most people do not want the whole set of programs. We would like to define
genuinely small TEX distributions, as small as possible. It could help to make TEX
more popular. Setting up a pdflatex based distribution, without the METAFONT sys-
tem but only Type1 fonts, for Western European countries, and a reasonable amount
of latex packages takes less than 30Mb. Maybe it is still too much, but this is way
less than the default setup of the previous TEXLive versions.

At the heart of the system

There are other parts of the system that could be enhanced to gain greater ease of
use.

Unforeseen usage of Web2C
The \write18 primitive was very successful among advanced TEX users. Using this
primitive, you can make TEX execute commands while compiling your document, but
you can also make these commands write their result into a file and \immediately
read it! This is very interesting because it means you can make TEX communicate
with other programs bi-directionally.

So what is the issue with an extensive usage of this command? The main problem
is that the Kpathsea library has not been designed to be reentrant, and that none
of the programs that are chained share any of the data structures used by Kpathsea.
So the various hash-tables are built several times, which takes time, especially if you

5The latest experiments about permissions under Win2K would argue for this solution.

158 f. popineau

consider building the hash-table for the ls-R of the TEXLive system, which may hold
all the files.

If we consider the Win32 platform, the situation is even worse under NT/Win2K
and the NTFS filesystem because of the underlying Unicode filenames that need to
be compared case-insensitively. It appears that the conversion towards uppercase
names is a little bit slower under NTFS. Benchmarks on a PII-400Mhz machine show
that building the hash table takes up between 2 s and 3 s without the conversion to
uppercase names, and around 1 s more with it.

When I was told some people could call METAPOST hundreds of times from their
pdfTEX run, each METAPOST run calling in turn pdfTEX, I quickly hacked Kpathsea
to put the hash tables in shared memory, and save the initialisation time. The result
was as expected. Processing the following file:

\input supp-pdf.tex

\pdfoutput=1

\immediate\openout10=fabrice.mp

\immediate\write10{beginfig(1);fill fullcircle scaled 4cm;endfig;end.}

\immediate\closeout10

\loop

\immediate\write18{mpost fabrice.mp}

\convertMPtoPDF{fabrice.1}{1}{1}\vfill\eject

\ifnum\count0<100

\repeat

\end

with a debug version of kpathsea and the hacked version, time dropped from 2min
30s to 0min 30s. So there is indeed some potential gain for huge jobs there. Obviously,
the final gain depends mostly on how much time is needed to do the typsetting itself.

However I think that, if we want to make the design of the whole system evolve,
such a step will be needed. Kpathsea will need to act as a server. At what level needs
to be discussed (probably a DCOM server on Windows, but read further about a plug
and play TEX system).

Extending Kpathsea towards the Internet
Kpathsea is a nice library which has provided a common interface to paths (ways to
access some file) across different platforms and architectures. It is not very strange
that today people wonder if it could be extended towards the Internet. It would allow
you to include files in your documents using urls. We could even define it as a new
protocol and use it like this:

\RequirePackage{tds:graphics.sty}

...

\font\foo=http://www.font.net/foo/bar/x

In fact, there is nothing preventing us from doing so. Some experiments along this

directions for the texlive system 159

line are on the way under Windows. The TeXSetup program required the ability to
download files, so the basic functions to grab a url to a local file or to a string are
there. It is not that hard to make kpathsea aware of urls as a kind of file. And it is
another good test of the robustness of its API. The only problem is that downloading
files takes time, and it is subject to failure because of dead connections and so on. So
adding this feature should be done carefully:

 Whenever a file is downloaded, display some progression of the download so that
users can decide to kill the job if it is stuck or too slow.

 Add a file caching system to avoid downloading the same file twice if it is used
twice by the same job. This cache system should also be given a maximum amount
of disk space to use and an LRU mechanism to decide which files to drop when
it needs to reuse the space. One could also argue that this is the job of a proxy
server, but not everybody can set up one. So we might be forced to implement a
simple one.

These are the minimum requirements of such a feature.

Other possible extensions
Memory allocation should be made dynamic throughout the Web2C system. It is
really annoying when you have to rebuild your format file because you have reached
the current limits. And there is nothing in your document to specify that you used an
enlarged TEX to compile it, so beware if you give the file to someone else. Moreover,
almost half of the texmf.cnf file is dedicated to specifying those limits. Worse, not
all the arrays used in those programs have been made extensible, but only the ones
that are most likely to require it. However, every year, we need to add arrays to the
list of extensible ones per users’ requests.

Kpathsea should make it simpler to put files in the TDS tree. Currently, it is done
by a very complex set of shell scripts. I know that some people advocate for shell
scripts being easy to use and read but I’m not sure it is the vast majority. Being able
to provide your own function to change the behaviour of Kpathsea, or to configure the
way it will store files, why not. But in any case, Kpathsea should be complete and
provide a decent, canonical and simple system to store the generated files. This is also
a requirement for the point discussed further about a better integrated TEX system.

Core code considerations

Sharing and reusing code
Various routines are duplicated in several places, or implemented in different ways.
These routines deal with very different things:

 Basic ones, like reading a line in a text file. If we want to support several platforms
with different end-of-line conventions, then we should take care of the problem,
preferably in only one place. It appears that for example, BibTEX does not use the
same routine to perform this function as the one used by TEX. The TEX routine
has been enhanced to support different eol conventions, but the BibTEX one has

160 f. popineau

not, so we eventually run into the buffer size problem with BibTEX when it is fed
with a MacIntosh file.

 Higher level ones, like reading a DVI file. This is done several times by very
different tools for different needs (xdvi may not have the same requirements as
dvitype), but all in all, the feature is the same: being able to parse a DVI file and
access all the objects in it. Maybe the DVIlib by Hirotsugu Kakugawa presented
last year at TUG2000 could be a starting point.

Any project aiming at enhancing the current set of programs should have a close
look at these redundancies, try to implement some kind of lowest common multiple set
of features in terms of libraries, then make the programs use these libraries and remove
the original code. It has been done once with great success: Kpathsea is the way to
go. It can be done further. For example, there is the VFLib project, which could be
used to let all the programs share several parts of code related to font handling.

Towards an integrated plug and play TEXsystem.
What is the aim of this discussion? We love TEX and we would like it to be more
popular and shared by many more people. So what do we need to make it easier to
use and install? Basic computer users are used to programs with a nice interface,
preferably with lots of menus and buttons, they are not used to dealing with dozens
of console mode programs. In this respect, any TEX system looks old.

So what do we have to do to turn TEX into something more appealing? We have for
example XEmacs (or maybe Emacs, but I don’t know much of the latest developments)
which has a very nice design that could be made to embed TEX. How could it be done?

Currently, the way to run TEX under any Emacs flavor is with the AUC-TEX pack-
age. The standard way for Emacs to talk to external processes is through the console.
But if we aim at fast communication between TEX and the embedding environment, we
might want to remove the overhead of accessing the console (on both sides). XEmacs
is already able to dynamically load a DLL.

On the Win32 platform, one is expected to build shared parts of programs as a
DLL, much more than on Unix. The TEX engine, for example, is built as a DLL

because there are no symbolic links under Win32. So the DLL is linked to various
stubs (tex.exe, latex.exe, etc.) that just set the program name which will be used
later to load the right format.

So if we want to go further in this direction, what we need is a TEX program
independent of any console, that could be addressed by other programs which will
dynamically open the tex.dll and communicate with it through its API. At the
moment it is not really easy because TEX does not know how to report errors by any
other way than writing to the log file or to the console.

The big picture would be to make XEmacs able to display DVI files into one of
its buffers, which might actually not be so difficult. This could be done by turning
some previewer into a DLL and linking XEmacs to it. Then what you might want is
the ability for XEmacs to talk to the TEX DLL, and let the output of the TEX DLL

feed the previewer. Jonathan Fine will present his Instant Preview system in these
proceedings, which reuses the ability of Web2C engines to send their output unbuffered

directions for the texlive system 161

through a socket. Jonathan’s system splits the dvi output into smaller parts to achieve
a better effect of instantaneously viewing the output of the text being typed in. If we
go the way of sharing code in libraries and if some powerful DVI library is designed,
then we could even remove the overhead of creating all those files, because the DVI

library could allow any of its clients to access any page of any file currently known.
A lock mechanism together with a copy on write mechanism could achieve even much
better performance, and we would have a really nice typesetting system.

This is still fiction, but this kind of project can certainly be put up. So if you have
students or man power to write code, please stand-up!

Conclusion

TEX used to be difficult to set up. Over the years, thanks to the many contributions
of the TUG community, things have become smoother. However, the status is not yet
up to the current standards of plug and play software. To go further in this direction
requires us to rethink some of the core code.

I hope that by opening up the discussion on these topics I will have woken up some
good will and that a new wave of contributions will appear: we need volunteers to
make things move.

♦ ♦ ♦

DCpic, Commutative Diagrams in a (La)TEX

Document
Pedro Quaresma∗

CISUC
Departamento de Matemática, Universidade de Coimbra

3001-454 COIMBRA, PORTUGAL

abstract. DCpic is a package of TEX macros for graphing Commutative Diagrams
in a (La)TEX or ConTEXt document. Its distinguishing features are: the use of

PICTEX a powerful graphical engine, and a simple specification syntax. A commutative
diagram is described in terms of its objects and its arrows. The objects are textual

elements and the arrows can have various straight or curved forms.
We describe the syntax and semantics of the user’s commands, and present many

examples of their use.

keywords: Commutative Diagrams, (La)TEX, PICTEX

Introduction

C
ommutative Diagrams (Diagramas Comutativos, in Portuguese), are a kind
of graphs which are widely used in Category Theory [4, 7, 9], not only as a
concise and convenient notation but also for “arrow chasing”, a powerful tool

for mathematical thought. For example, the fact that in a Category we have arrow
composition is easily expressed by the following commutative diagram.

A B C...
f

...
g

...
..........
........
.......
......
......
......................
................

g ◦ f

The word commutative means that the result from going throught the path f plus
g is equal to the result from going throught the path g ◦ f . Most of the graphs used

∗This work was partially supported by the Portuguese Ministry of Science and Technology (MCT),
under the programme PRAXIS XXI.

dcpic 163

in Category Theory are digraphs which we can specify in terms of its objects, and its
arrows.

The (La)TEX approach to typesetting can be characterized as “logical design” [5, 6,
8], but commutative diagrams are pieces of “visual design”, and that, in our opinion is
the piece de resistance of commutative diagrams package implementation in (La)TEX.
In a commutative diagrams package a user seeks the simplest notation, a logical nota-
tion, with the most powerful graphical engine possible, the visual part. The DCpic
package, along with the package by John Reynolds [3, 10], has the simplest nota-
tion off all the commutative diagrams packages described in the Feruglio article [3].
In terms of graphical capabilities the PICTEX [12] package provides us with the best
TEX-graphics engine, that is, without going to Postscript specials.

The DCpic package depends only of PICTEX and TEX, which means that you can
use it in all formats that are based on these two. We have tested DCpic with latex,
TEX plain, pdflatex, pdfTEX [11], and ConTEXt [8]; we are confident that it can be
used under many other formats.

The present version (3.1) of DCpic package is available in CTAN and in the author’s
Web-page1.

Constructing Commutative Diagrams

DCpic depends on PICTEX, thus you must include an apropriate command to load
PICTEX and DCpic in your document, e.g. “\usepackage{dcpic,pictex}”, in a
latex document.

A commutative diagram in DCpic is a “picture” in PICTEX, in which we place our
objects and morphisms (arrows). The user’s commands in DCpic are: begindc and
enddc which establishe the coordinate system where the objects will by placed; obj,
the command which defines the place and the contents of each object; mor, and cmor,
the commands which define the morphisms, linear and curved arrows, and its labels.

Now we will describe each of these commands in greater detail.

The Diagram Environment
The command begindc, establishes a Cartesian coordinate system with 1pt units,

\begindc[<magnification factor>] ... \enddc
such a small unit gives us a good control over the placement of the graphical objects,
but in most of the diagrams not involving curved arrows such a “fine grain” is not
desirable, so the optional argument specifies a magnifying factor m ∈ N, with a default
value of 30. The advantage of this decision is twofold: we can define the “grain” of
the diagram, and we can adjust the size of the diagram to the available space.

 a “course grain” diagram is specified almost as a table, with the numbers giving us
the lines and the columns were the objects will be placed, the following diagram
has the default magnification factor:

1http://www.mat.uc.pt/˜pedro/LaTeX/

164 pedro quaresma

A B

C

...

f

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.......................
................

g

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...................

................

h

\begindc
\obj(1,1){A}
\obj(3,1){B}
\obj(3,3){C}
\mor(1,1)(3,1){f}[\atright,\solidarrow]
\mor(1,1)(3,3){g}
\mor(3,1)(3,3){h}[\atright,\solidarrow]
\enddc

 a “fine grain” diagram is a bit harder to design but it gives us a better control over
the objects placement, the following diagram has a magnification factor of three,
this gives us the capability of drawing the arrows f and f ′ very close together:

A B

C

...

f

...
f ′

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.......................
................

g

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...................

................

h

\begindc[3]
\obj(10,10){A}
\obj(30,10){B}
\obj(30,30){C}
\mor(10,9)(30,9){f}[\atright,\solidarrow]
\mor(10,11)(30,11){f^\prime}
\mor(10,10)(30,30){g}
\mor(30,10)(30,30){h}[\atright,\solidarrow]
\enddc

 the magnification factor gives us the capability of adapting the size of the diagram
to the available space, without having to redesign the diagram, for example the
specification of the next two diagrams differs only in the magnification factor: 30
for the first; and 25 for the second.

A B

C

...

f

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.......................
................

g

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...................

................

h

A B

C

..

f

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.......................
................

g

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......................

................

h

Note that the magnification factor does not interfere with the size of the objects,
but only with the size of the diagram as a whole.

After establishing our “drawing board” we can begin placing our “objects” on it,
we have three commands to do so, the obj, mor, and cmor, for objects, morphisms,
and “curved” morphisms respectively.

Objects
Each object has a place and a content

\obj(<x>,<y>){<contents>}
the x and y, integer values, will be multiplied by the magnifying factor. The contents
will be put in the centre of an “hbox” expanding to both sides of (m× x,m× y).

dcpic 165

Linear Arrows
Each linear arrow will have as mandatory arguments two pairs of coordinates, the
beginning and the ending points, and a label,

\mor(<x1>,<y1>)(<x2>,<y2>)[<d1>,<d2>]{<label>}[<label placement>,<arrow type>]

the other arguments are opcional. The two pairs of coordinates should coincide with
the coordinates of two objects in the diagram, but no verification of this fact is made.
The line connecting the two points is constructed in the following way: the beginning
is given by a point 10pt away from the point (m× x1,m× y1), likewise the end point
is 10 points away from (m×x2,m× y2). If the “arrow type” specifies that, a tail, and
a pointer (arrow) will be added. The label is placed in a point (xl, yl) at a distance of
10 points from the middle point of the arrow, the position of the “hbox” is dependent
of the angle and the direction of the arrow, if the arrow is horizontal the “hbox” will
be centred in (xl, yl), if the arrow is vertical the “hbox” will be left, or right, justified
in (xl, yl), and similarly for the other cases. In all cases the position of the “hbox” is
such that the contents of it will not interfere with the line.

The distance from the point (m× x1,m× y1) to the actual beginning of the arrow
may be modified by the user with the specification of d1, the same thing happens for
the arrow actual ending in which case the user-value will be d2. The specification of
d1 and d2 is optional.

The placement of the label, to the left (default value), or to the right, and the type
of the arrow: a solid arrow (default value), a dashed arrow, a line, an injection arrow,
or an application arrow, are the last optional arguments of this command.

Quadratic Arrows
The command that draws curved lines in DCpic uses the setquadratic command of
PICTEX, this will imply a quadratic curve specified by an odd-number of points,

\cmor(<list of points>) <arrow direction>(<x>,<y>){<label>}[<arrow type>]

the space after the list of points is mandatory. After drawing the curved line we must
put the tip of the arrow on it, at present it is only possible to choose from: up, down,
left, or right pointing arrow, and we must explicitly specify what type we want. The
next thing to draw it is the arrow label, the placement of that label is determined by
the x, and y values which give us the coordinates, after being magnified, of the centre
of the “hbox” that will contain the label itself.

The arrow type is an optional argument, its default value is a solid arrow, the other
possible values are a dashed arrow and a line, in this last case the arrow tip is omitted.
The arrow type values are a subset of those of the mor command.

A rectangular curve with rounded corners is easy to specify and should cater for most
needs, with this in mind we give the following tip to the user: to specify a rectangular,
with rounded corners, curve we choose the points which give us the expanded chess-
horse movement, that is, (x, y), (x ± 4, y ∓ 1), (x ∓ 1, y ± 4), or (x, y),(x± 1, y ∓ 4),
(x∓4, y±1), those sets of points will give us the four corners of the rectangle; to form
the whole line it is only necessary to add an odd number of points joining the two (or
more) corners.

166 pedro quaresma

Examples

We now present some examples that give an idea of the DCpic package capabilities.
We will present here the diagrams, and in the appendix the code which produced such
diagrams.

The Easy Ones
The diagrams presented in this section are very easy to specify in the DCpic syntax,
just a couple of objects and the arrows joining them.

Push-out and Exponentials:

Z

X

Y

P

P ′

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................

................

f

...

g

...

r

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................

................

s

...............
..............

...............
...............

...............
..............

...............
...............

..............
...............

...............
...............

..............
...............

...............
...............

.......................
................

r′

.......
.......
........
.......
.......
.......
.......
........
.......
.......
.......
........
.......
.......
.......
.......
........
.......
.......
.......
........
.......
.......
.......
.......
........
.......
.......
.......
........
.......
.......
.......
.....................
................

s′
.........
....
.........
....
.........
....
.........
....
.........
....
...................
.............

h

ZY × Y Z

X × Y X

ZY..
ev

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.......................
................

f × id
.......
......
.......
......
.......
......
.......
......
.............
.............

f

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...................

................

f

Function Restriction and the CafeOBJ Cube [2]

X

X ′

Y

Y ′

...
f

..
.......
..
.......
.......
..

........
................ ..

.......
..
.......
.......
..

........
................

...
g = f |Y ′

X′

MSA RWL

OSA OSRWL

HSA HSRWL

HOSA HOSRWL

..

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.................

................

.........
.........
.........
.........
.........
.........
.........
.....................
................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................

................

.........
.........
.........
.........
.........
.........
.........
.....................
................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.................

................

..

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.................

................

..
.........
.........
.........
.........
.........
.........
.........
.....................
................

...

.........
.........
.........
.........
.........
.........
.........
.....................
................

The Not so Easy
The diagrams presented in this section are a bit harder to specify. We have curved
arrows, and also double arrows. The construction of the former was already explained.
The double arrow (and triple, and . . .) is made with two distinct arrows drawn close
to each other in a diagram with a very “fine grain”, that is, using a magnifying factor
of just 2 or 3.

All the diagrams were made completely within DCpic.

dcpic 167

Equaliser, and a 3-Category:

Z

X X Y

.......

......

.......

......

.......

......

.......

......

.......

......

.............

.............

h

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......................
................

h

..
e

f
...

g

A C

B

..

h

.......
........
.......
.......
.......
.......
.......
........
.......
.......
.......
.......
.......
........
.......
.......
.......
.......
.......
........
.......................
................

f

..
.......
.......
.......
..

g

...
..........
........
.......
......
.....
......
......
.......
.........
.............
..

.......
..
.......
.......
..

idA

...
..........
........
.......
......
.....
......
......
.......
.........
.............

..
.......
..
.......
.......
..

idC

......

......

.......
.........
............
...

idB

Isomorfisms:

A AB...
f

...
g

...
..........
........
.......
......
......
......................
................

idA

B BA...
g

...
f

...
..........
........
.......
......
......
......................
................

idB

Godement’s “five” rules [4]:

A B C D E F...
L

...
K

...
V

...
U

...

↓ ξ
...
↓ η

...

W

...
F

...
↓ µ

...

H

...
G

The others . . .
It was already stated that some kinds of arrows are not supported in DCpic, e.g., ⇒,
but we can put a PICTEX command inside a DCpic diagram, so we can produce a
diagram like the one that we will show now. Its complete specification within DCpic
is not possible, at least for the moment.

Lax coproduct [1]

A A⊕B B

C

[σ, τ]

..
....
........
........

f

..
inl

..
inr

..
........
............
....

g

..

..

[f, g]

..............
........
.......
.......
..

.............

.......
..
........
........

...

..
...............
.........
....

......................

..............
..............
..............

..............
..............

..............
..............
..............

..............
..

.............
..............

.............
..............
..............

.............
..............
..............
.............
...
..

.................
.....

...............

.........
....

......................

inlf,g

inrf,g

.........
................
..
...

.................
.....

...........

.......
.......
.

................
......

σ τ

168 pedro quaresma

DCpic compared

If one took the Feruglio article [3] about typesetting commutative diagrams in (La)TEX
we can say that:

 the graphical capabilities of DCpic are among the best. Excluding packages which
use Postscript specials the DCpic package is the best among available packages.

 the specification syntax is one of the simplest, the package by John Reynolds has
a very similar syntax.

We did not try to take any measure of computational performance.
The following diagram is one of the test-diagrams used by Feruglio, as we can see

DCpic performs very well, drawing the complete diagram based on a very simple
specification.

G Gr∗ H

ΣG ΣH

Lm Kr,m Rm∗

L Lr R

ΣL ΣR

.........
.........
.........
.........
.........
.........
.........
........................
................λG

..

.......

..

i5
..

r∗
.........
....
.........
....
.........
....
.............
.............

λH

...

ϕr∗

...
.......
..
.......
.......
..

m

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......................

................

................

i2

..

.......

..i3
..

r
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......................
................

................

i4

...
.......
..
.......
.......
..

m

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......................

................

................

i6

...
.......
..
.......
.......
..

m∗

.........
.........
.........
.........
.........
.........
.........
........................
................λL

..

.......

..i1
..

r
.........
.........
.........
.........
.........
.........
........................
................

λR

..
.......
..
.......
.......
..

ϕm

...
ϕr

..
.......
..
.......
.......
..

ϕm∗

Conclusions

We think that DCpic performs well in the “commutative diagrams arena”, it is easy
to use, with its commands we can produce the most usual types of commutative
diagrams, and if we accept the use of PICTEX commands, we are capable of producing
any kind of diagram. It is also a (La)TEX-only package, that is, the file produced
by DCpic does not contain any Postscript special, neither any special font, which in
terms of portability is an advantage.

The author and his colleagues in the Mathematics Department of Coimbra Univer-
sity have been using the (now) old version (2.1) of DCpic for some time with much
success, some of the missing capabilities of the older version were incorporated in the
new version (3.1), and the missing capabilities of the new version will be taken care
in future versions.

dcpic 169

references

[1] S. Abramsky, Dov Gabbay, and T. Maibaum, editors. Handbook of Logic in
Computer Science, volume 1 of Oxford Science Publications. Claredon Press,
Oxford, 1992.

[2] Rãzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language,
Proof Techniques, and Methodologies for Object-Oriented Algebraic Specifica-
tion, volume 6 of AMAST series in Computing. World Scientific, 1998.

[3] Gabriel Valiente Feruglio. Typesetting commutative diagrams. TUGboat,
15(4):466–484, 1994.

[4] Horst Herrlich and George Strecker. Category Theory. Allyn and Bacon Inc.,
1973.

[5] Donald E. Knuth. The TeXbook. Addison-Wesley Publishing Company, Read-
ing,Massachusetts, 1986.

[6] Leslie Lamport. latex: A Document Preparation System. Addison-Wesley
Publishing Company, Reading, Massachusetts, 2nd edition, 1994.

[7] S. MacLane. Categories for the Working Mathematician. Springer-Verlag, New
York, 1971.

[8] Ton Otten and Hans Hagen. ConTEXt an excursion. Pragma ADE, Hasselt,
1999.

[9] Benjamin Pierce. Basic Category Theory for Computer Scientists. Foundations
of Computing. The MIT Press, London, England, 1998.

[10] John Reynolds. User’s Manual for Diagram Macros.
http://www.cs.cmu.edu/˜jcr/, 1987. diagmac.doc.

[11] Hàn Th´̂e Thành, Sebastian Rahtz, and Hans Hagen. The pdfTeX manual, 1999.

[12] Michael Wichura. The PICTEX Manual. M. Pfeffer & Co., New York, 1987.

Appendix: The DCpic Specifications

Push-out:

\begindc[26]

\obj(1,1){Z}

\obj(1,3){X}

\obj(3,1){Y}

\obj(3,3){P}

\obj(5,5){P^\prime}

\mor(1,1)(1,3){f}

\mor(1,1)(3,1){g}[\atright,\solidarrow]

\mor(1,3)(3,3){r}[\atright,\solidarrow]

\mor(3,1)(3,3){s}

\mor(1,3)(5,5){r^\prime}

\mor(3,1)(5,5){s^\prime}[\atright,\solidarrow]

\mor(3,3)(5,5){h}[\atright,\dasharrow]

\enddc

170 pedro quaresma

Exponentials:

\begindc

\obj(1,3){$Z^Y\times Y$}

\obj(3,3){Z}

\obj(3,1){$X\times{}Y$}

\obj(4,1){X}

\obj(4,3){Z^Y}

\mor(1,3)(3,3)[20,10]{ev}

\mor(3,1)(1,3){$f\times{}\mathrm{id}$}

\mor(3,1)(3,3){\overline{f}}[\atright,\dasharrow]

\mor(4,1)(4,3){f}[\atright,\solidarrow]

\enddc

Function Restriction:

\begindc[28]

\obj(1,1){X}

\obj(1,3){X^\prime}

\obj(3,1){Y}

\obj(3,3){Y^\prime}

\mor(1,1)(3,1){f}

\mor(1,3)(1,1){}[\atright,\injectionarrow]

\mor(3,3)(3,1){}[\atright,\injectionarrow]

\mor(1,3)(3,3){$g=f|^{Y^\prime}_{X^\prime}$}

\enddc

CafeOBJ Cube:

\begindc[17]

\obj(1,1){MSA}

\obj(5,1){RWL}

\obj(3,3){OSA}

\obj(7,3){OSRWL}

\obj(1,4){HSA}

\obj(5,4){HSRWL}

\obj(3,6){HOSA}

\obj(7,6){HOSRWL}

\mor(1,1)(5,1)[15,15]{}

\mor(1,1)(1,4){}

\mor(1,1)(3,3){}

\mor(5,1)(5,4){}

\mor(5,1)(7,3){}

\mor(3,3)(3,6){}

\mor(3,3)(7,3)[15,22]{}

\mor(7,3)(7,6){}

\mor(1,4)(5,4)[15,22]{}

\mor(1,4)(3,6){}

\mor(3,6)(7,6)[17,26]{}

\mor(5,4)(7,6){}

\enddc

Equaliser:

\begindc[2]

\obj(1,1){Z}

\obj(1,36){$\overline{ X}$}

\obj(36,36){X}

\obj(52,36){Y}

dcpic 171

\mor(1,1)(1,36){$\overline{ h}$}[\atleft,\dasharrow]

\mor(1,1)(36,36){h}[\atright,\solidarrow]

\mor(1,36)(36,36){e}

\mor(36,37)(52,37)[8,8]{f}

\mor(36,35)(52,35)[8,8]{g}[\atright,\solidarrow]

\enddc

A 3-Category:

\begindc[3]

\obj(14,11){A}

\obj(39,11){C}

\obj(26,35){B}

\mor(14,11)(39,11){h}[\atright,\solidarrow]

\mor(14,11)(26,35){f}

\mor(26,35)(39,11){g}

\cmor((11,10)(10,10)(9,10)(5,11)(4,15)(5,19)(9,20)(13,19)(14,15))

\pdown(1,20){id_A}

\cmor((42,10)(43,10)(44,10)(48,11)(49,15)(48,19)(44,20)(40,19)(39,15))

\pdown(52,20){id_C}

\cmor((26,39)(27,43)(31,44)(35,43)(36,39)(35,36)(31,35)) \pleft(40,40){id_B}

\enddc

Isomorfisms:

\begindc[3]

\obj(10,15){A}

\obj(40,15){A}

\obj(25,15){B}

\mor(10,15)(25,15){f}

\mor(25,15)(40,15){g}

\cmor((10,11)(11,7)(15,6)(25,6)(35,6)(39,7)(40,11)) \pup(25,3){id_A}

\obj(55,15){B}

\obj(85,15){B}

\obj(70,15){A}

\mor(55,15)(70,15){g}

\mor(70,15)(85,15){f}

\cmor((55,11)(56,7)(60,6)(70,6)(80,6)(84,7)(85,11)) \pup(70,3){id_B}

\enddc

Godement’s “five” rules:

\begindc[7]

\obj(12,10){\mathcal{A}}

\obj(19,10){\mathcal{B}}

\obj(26,10){\mathcal{C}}

\obj(34,10){\mathcal{D}}

\obj(41,10){\mathcal{E}}

\obj(48,10){\mathcal{F}}

\mor(12,10)(19,10){L}

\mor(19,10)(26,10){K}

\mor(26,10)(34,10){$V\qquad\ $}

\mor(26,12)(34,12){U}

\mor(26,12)(34,12){$\downarrow\xi$}[\atright,\solidarrow]

\mor(26,8)(34,8){$\downarrow\eta$}

\mor(26,8)(34,8){W}[\atright,\solidarrow]

\mor(34,11)(41,11){F}

\mor(34,9)(41,9){$\downarrow\mu$}

\mor(34,9)(41,9){H}[\atright,\solidarrow]

172 pedro quaresma

\mor(41,10)(48,10){G}

\enddc

Lax coproduct: Guess how.

DCpic and the others:

\begindc[35]

\obj(1,1){G}

\obj(3,1){G_{r^*}}

\obj(5,1){H}

\obj(2,2){Σ^G}

\obj(6,2){Σ^H}

\obj(1,3){L_m}

\obj(3,3){$K_{r,m}$}

\obj(5,3){R_{m^*}}

\obj(1,5){L}

\obj(3,5){L_r}

\obj(5,5){R}

\obj(2,6){Σ^L}

\obj(6,6){Σ^R}

\mor(1,1)(2,2){λ^G}

\mor(3,1)(1,1){i_5}[\atleft,\aplicationarrow]

\mor(3,1)(5,1){r^*}[\atright,\solidarrow]

\mor(5,1)(6,2){λ^H}[\atright,\dasharrow]

\mor(2,2)(6,2){φ^{r^*}}[\atright,\solidarrow]

\mor(1,3)(1,1){m}[\atright,\solidarrow]

\mor(1,3)(1,5){i_2}[\atleft,\aplicationarrow]

\mor(3,3)(1,3)[14,10]{$i_3\quad$}[\atright,\aplicationarrow]

\mor(3,3)(5,3)[14,10]{r}

\mor(3,3)(3,5){i_4}[\atright,\aplicationarrow]

\mor(3,3)(3,1){$\stackrel{\displaystyle m}{\barraB}$}

\mor(5,3)(5,5){i_6}[\atright,\aplicationarrow]

\mor(5,3)(5,1){$\stackrel{\displaystyle m^*}{\barraA}$}

\mor(1,5)(2,6){λ^L}

\mor(3,5)(1,5){$i_1\quad$}[\atright,\aplicationarrow]

\mor(3,5)(5,5){r}

\mor(5,5)(6,6){λ^R}[\atright,\solidarrow]

\mor(2,6)(2,2){φ^m}[\atright,\solidarrow]

\mor(2,6)(6,6){φ^r}

\mor(6,6)(6,2){φ^{m^*}}

\enddc

♦ ♦ ♦

Using pdfTEX in a PDF-based imposition tool
Martin Schröder

Crüsemannallee 3, 28213 Bremen, Germany∗

pdfTEX has been used successfully to build an industrial-strength PDF-based im-
position tool. This paper/talk describes the pitfalls we encountered and the lessons
learned.

∗Net address: martin@oneiros.de, URL: http://www.oneiros.de

ASCII-Cyrillic and its converter
email-ru.tex

by Laurent Siebenmann

A new faithful ASCII representation for Russian called ASCII-Cyrillic is presented
here, one which permits accurate typing and reading of Russian where no Russian
keyboard or font is available -- as often occurs outside of Russia.

ASCII-Cyrillic serves the Russian and Ukrainian languages in parallel. This article
initially discusses Russian; but, further along, come the modifications needed to adapt
to the Ukrainian alphabet.

TeX is mother to ASCII-Cyrillic inasmuch as its converter "email-ru.tex" is a program
in TeX language which is interpreted by TeX. On the other hand, ASCII-Cyrillic is
designed to be useful beyond TeX. Indeed a current project is to make it available on
Internet so that the vast public ignorant of TeX can exploit it. This provisional Internet
bias has led to the use of HTML for this article, bitmaps and all.

Contents

Overview
Crash course on Russian ASCII-Cyrillic
Ukrainian ASCII-Cyrillic
Vital statistics for ASCII-Cyrillic

Below is a photo of a fragment of Russian email sent from France to Russia. Ideally, it
would be typed as 8-bit text using a Russian keyboard and screen font, and then
assigned a suitable MIME type identifying the font encoding. To the email system, the
message contents would be a sequence of "octets" or "bytes" (each 8 zeros or ones),
where each octet corresponds to a character according to the font encoding. The

ASCII-Cyrillic and its converter email-ru.tex 175

receiving email system and email reader are expected to recognize the encoding and
provide for Cyrillic display and printing. This system works well provided there is
diligent support of it from one end of the email trajectory to the other. The transcoding
provided by "email-ru.tex" can be part of this support.

(The GIF photo image you see here is widely readable, but at least 10 times as bulky as
8-bit text, and somewhat hazy too.)

Unfortunately, quite a few things can go wrong in MIME-tagged 8-bit Cyrillic email,
particularly when either sender or recipient is outside the countries using a Cyrillic
alphabet:

-- there is a frequent need to re-encode for another computer operating system, and
when the targeted encoding does not contain all the characters used, defects result.
Worse, if at any stage wrong assumptions are made about an encoding, severe and
irreparable damage usually ensues.

-- outside the Cyrillic world, Cyrillic keyboards are rarissime, and Cyrillic screen fonts
often have to be hunted down and installed by an expert.

To circumvent such difficulties Russian speakers often use an ad hoc 7-bit ASCII
transliteration of Russian (or even switch to English) and then rely on ASCII's
universal portability. ASCII, the American Standard for Computer Information
Interchange of 1963, long predates Internet and the MIME protocols.

ASCII-Cyrillic is a new faithful ASCII transcription of Russian that transforms this
"last resort" ASCII approach into something quite general and reliable.

176 Laurent Siebenmann

For example, the email fragment illustrated above was first typed as the ASCII-Cyrillic
text below, using a Latin (French) keyboard, and then converted to the above Cyrillic
form by the utility "email-ru.tex". For good measure, both forms were then emailed.

 Na obratnom puti !Michele obq'asnila mne, kak
 delath peresadku na metro. My s nej proexali
 bolhwu'u 'casth puti vmeste. Ona vywla na
 ostanovke posle togo, kak my pereseli na mo'u
 lini'u. Polhzovaths'a metro 'N13!A,
 dejstvitelhno, o'cenh prosto -- gorazdo pro'we,
 'cem v Moskve. Kogda 'a 'eto pon'ala, to srazu
 uspokoilash. Sej'cas vs'o v por'adke. 'A mogu
 polhzovaths'a metro, i u'ze ne bo'ush xodith v
 Pari'ze.

Inversely, for email from Russia to France, the keyboarding would be Cyrillic and
"email-ru.tex" would convert from 8-bit text to ASCII-Cyrillic. Again, for good
measure, both versions would be sent.

ASCII-Cyrillic is designed to be both typeable and readable on every computer
worldwide: Well chosen ASCII letters stand for most Russian letters. To distinguish
the remaining handful of Russian letters, a prefixed accent ' is used. Further, to
introduce English words, the exclamation mark ! appears. The rules are so simple that,
hopefully, ASCII-Cyrillic typing and reading of Russian can be learned in an hour, and
perfected in a week.

An essential technical fact to retain is that all the characters used by ASCII-Cyrillic are
7-bit (i.e. the 8th bit of the corresponding octet is zero), and each character has a
reasonably well-defined meaning and shape governed by the universally used ASCII
standard. It is a key fact that all 8-bit Cyrillic text encodings include and respect the
ASCII standard where 7-bit characters are concerned.

In 7-bit ASCII-Cyrillic form, Russian prose is about 5 percent bulkier than when 8-bit
encoded. Thus, typing speed for ASCII-Cyrillic on any computer keyboard can
approach that for a Cyrillic keyboard.

The difference of 5 percent in bulk drops to about 1 or 2 percent when the common
"gzip" compression is applied to both. Thus, there is virtually no penalty for storing
Cyrillic text files in ASCII-Cyrillic form.

ASCII-Cyrillic and its converter email-ru.tex 177

As "email-ru.tex" converts both to and from ASCII-Cyrillic, one can convert in two
steps between any two common 8-bit Cyrillic encodings. Further, new or "variant",
8-bit encodings can be quickly introduced "on-the-fly" by specifying an "encoding
vector". Additionally, the Cyrillic UTF8 unicode will soon be supported.

ASCII-Cyrillic is a cousin of existing transcriptions of Russian which differ in using
the concept of ligature -- i.e. they use two or more English letters for certain Russian
letters. The utility "email-ru.tex" also converts Russian to one such ligature-based
transcription system established by the the USA Library of Congress:

 Na obratnom puti Michele ob'jasnila mne, kak
 delat' peresadku na metro. My s nej proexali
 bol'shuju chast' puti vmeste. Ona vyshla na
 ostanovke posle togo, kak my pereseli na moju
 liniju. Pol'zovat'sja metro No13A,
 dejstvitel'no, ochen' prosto -- gorazdo proshche,
 chem v Moskve. Kogda ja eto ponjala, to srazu
 uspokoilas'. Sejchas vse v porjadke. Ja mogu
 pol'zovat'sja metro, i uzhe ne bojus' xodit' v
 Parizhe.

Nota bene:- Accurate reconversion of existing ligature-based transcriptions back to 8-bit
format always requires a good deal of human intervention.

Although not more readable, the ASCII-Cyrillic representation has the advantage that,
for machines as well as men, it is completely unambiguous as well as easily readable.
The "email-ru.tex" utility does the translation both ways without human intervention,
and the conversion (8-bit) ==> (7-bit) ==> (8-bit) gives back exactly the original 8-bit
Russian text. (One minor oddity to remember: terminal spaces on all lines are ignored.)

Thus, by ASCII-Cyrillic encoding a Russian text file, one can archive and transfer it
conveniently and safely, even by email.

Beginner's operating instructions

To use "email-ru.tex" as a converter:

Put a copy of the file to convert, alongside of "email-ru.tex" and give it the name
"IN.txt".

178 Laurent Siebenmann

Process "email-ru.tex" (not "IN.txt") with Plain TeX. The usual command line
is: tex email-ru.tex

Follow the instructions then offered on screen by "email-ru.tex".

A batch mode will soon be available.

Use of ASCII-Cyrillic with TeX

ASCII-Cyrillic could be made completely independent of TeX through using, to build
its converter, some other portable language (C, Java, ...). On the other hand, the TeX
community, with its keen appreciation of ASCII text as a stable portable medium, will
probably always be "home ground" for ASCII-Cyrillic. Thus, it is unfortunate that, for
lack of time, this author has not so far created macro packages offering optimal
integration of ASCII-Cyrillic into Cyrillic (La)TeX typesetting. Anyone taking up this
challenge is invited to contact the author -- who would like to use such macros for
definitive ASCII-Cyrillic documentation!

In the interim, one has a simple modus vivendi with essentially all TeX formats having
8-bit Cyrillic capablility -- one which requires no new macros at all! Namely, convert
from ASCII-Cyrillic text to 8-bit Cyrillic text (with embedded TeX formatting), and
then compose with TeX. (As will be explained, the TeX formatting commands are
largely unchanged when expressed in ASCII-Cyrillic.) The converter "email-ru.tex"
then serves as a preprocessor to TeX. One way to get good value from this approach is
to break your TeX typescript into files that are either purely ASCII or else mostly
Cyrillic. Only the latter sort undergo conversion. The two sorts of file can then be
merged using TeX's \input command or LaTeX's \include.

Snag Warning

A few important TeX implementations, notably C TeX under unix, and a majority of
implementations for the Macintosh OS, are currently unable to \write true octets >
127 --- as "email-ru.tex" requires in converting from ASCII-Cyrillic to 8-bit Cyrillic
text. (This problem does not impact the conversion from 8-bit Cyrillic text to
ASCII-Cyrillic.)

To solve this problem when it arises, the ASCII-Cyrillic package will rely on a tiny
autonomous and portable utility "Kto8" that converts into genuine 8-bit text any text file
which the few troublesome TeX installations may output.

ASCII-Cyrillic and its converter email-ru.tex 179

The sign that you need to apply this utility is the appearance of many pairs ^^ of hat
characters in the output of "email-ru.tex".

Ready-to-run binary versions of "Kto8" will progressively be provided for the linux,
unix, Macintosh, and Windows operating systems. The most current distribution of
"Kto8" is at http://topo.math.u-psud.fr/~lcs/Kto8/. See also the CTAN archive.

Crash course on Russian ASCII-Cyrillic

The 33 letters of the modern Russian alphabet, in alphabetic order, are typed:

 a b v g d e 'o 'z z i j k l m n o p
 r s t u f x 't 'c w 'w q y h 'e 'u 'a

The corresponding Cyrillic glyphs are:

Similarly for capital letters:

 A B V G D E 'O 'Z Z I J K L M N O P
 R S T U F X 'T 'C W 'W Q Y H 'E 'U 'A

correspond to:

It is worth comparing this with the phonetic recitation of the alphabet (in an informal
ASCII transcription):

 ah beh veh geh deh yeh yo zheh zeh
 ee (ee kratkoe) kah el em en oh peh
 err ess teh oo eff kha tseh cheh
 shah shchah (tv'ordyj znak) yerry

180 Laurent Siebenmann

 (m'agkij znak) (e oborotnoe) yoo ya

where parentheses surround descriptive names for letters that are more-or-less
unpronouncable in isolation.

When there is a competing ergonomically "optimal" choice for typing a Russian
character, the alternative may be admissible in ASCII-Cyrillic. Thus:

 'g='z
 's=w
 c='t
 'k=x

Incidentally, the strongest justification for typing "c" for a letter consistently
pronounced "ts" is the traditional Russian recitation of the Latin (ASCII) alphabet:

 ah beh tseh deh ...

For the Ukrainian Cyrillic "hard g" (not in the modern Russian alphabet), Russian
ASCII-Cyrillic requires typing:

'{gup}

(and '{GUP} for the uppercase form). Similarly for other Cyrillic letters. The braces
proclaim a Cyrillic letter and the notation is valid for every Cyrillic language.

For the Russian number character, which resembles in shape the pair "No",
ASCII-Cyrillic uses the notation

'[No]

Similarly for the numerous other non-letters. Exceptionally, for this widely used
symbol, the short form 'N is allowed. The square brackets proclaim a non-letter. One
oddity to note is that for text double right quotes one types '["] (4 characters) and
not '[''] (5 characters) while for text double left quotes one types '[``] (5
characters) .

The two long notation schemes '{...} and '[...] afford a systematic way to
represent all characters typed on any Cyrillic computer keyboard; and they leave room
for future evolution.

ASCII-Cyrillic and its converter email-ru.tex 181

The ASCII-Cyrillic expression for an octet >127 not encoded to any normalized
character, is

!__xy

Here __ is two ASCII underline characters, and xy is the two-digit lowercase
hexadecimal representation of the octet. Imagine, for example, that, in the 8-bit Cyrillic
text encoding, the octet number hex 8b (= decimal 139) is for non-text graphic purposes
or else is undefined. In either case, it is rendered in conversion to ASCII-Cyrillic as

!__8b

Conversion from this back to the 8-bit form will work. However, although the 5 octet
string "!__8b" is ASCII text, this text is not independent of 8-bit encoding. Thus, it is
important to eliminate such "unencoded" or "meaningless" octets. A Cyrillic text file
containing them is in some sense "illegal".

Tha ASCII letters are the English unaccented letters. The ASCII non-letter characters,
namely:

 ! " # $ % & ' () * + , - . /
 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @
 [\] ^ _ `
 { | } ~

are all common to Russian and English computer keyboards and 8-bit encodings. It is
worth remembering these non-letters, since you can then identify ASCII text at sight.
All of these, except on occasion ' ! \ , can be freely used in ASCII-Cyrillic
typing of Russian prose; they are not altered under conversion to an 8-bit encoding.

ASCII-Cyrillic is not well designed for typing English sentences, but, since occasional
English words or letters are used in Russian, ASCII-Cyrillic allows one to type, for
example, !U for an isolated U and:

 !Coca-!Cola for Coca-Cola

The special relationship with TeX

The converter "email-ru.tex" is programmed as a TeX macro package because TeX is
perhaps the most widely and freely available utility that can do the job.

182 Laurent Siebenmann

The relation with TeX runs deeper. TeX is a powerful stable and portable formatting
system, and perhaps the most widely used system for scientific and technical
documents. For a continental European language with an accented Latin alphabet
(French for example), a TeX typescript is often created as an 8-bit text file that (just as
for Russian) depends on 8-bit encoding. However TeX itself has always offered an
alternative more prolix ASCII form for such accented letters. For example, \'e
represents e with an acute accent. This ASCII form has always served to provide
portable ASCII typescripts that are readable and editable. ASCII-Cyrillic seems to be
the first ASCII scheme to offer something similar for all Russian TeX typescripts.

To let users type TeX commands with reasonable comfort in ASCII-Cyrillic, the latter
preserves TeX control sequences like \begin. The familiar command

\begin{document}

is thus expressed as:

\begin{!document}

Russians use mostly ASCII letters in math mode. According to the usage of ! already
explained, the ASCII-Cyrillic $!e=!mc^2$ converts to Einstein's formula $e=mc^2$.
The extra exclamation marks are an annoyance. However, for the same TeX output, you
could type this formula without the extra exclamation marks --- provided you first
define special \mathcode values for the octets of \cyre, \crym, \cyrc, etc.
Consult the TeXbook about \mathcode.

The escape characters: The special roles played by the three characters ' ! \
impose a few strange rules in ASCII-Cyrillic typing. Notably, the ASCII prime ' must
sometimes be typed as '' (two primes). Experimental use of "email-ru.tex" will
allow the user to find his way as quickly as would detailed documentation. (Please
report any needlessly complex or absurd behavior!)

Ukrainian ASCII-Cyrillic

This is similar to but distinct from the Russian mode and is not compatible with it.

The 33+1 letters of the modern Ukrainian alphabet, listed in alphabetic order are:

ASCII-Cyrillic and its converter email-ru.tex 183

and the preferred Ukrainian ASCII-Cyrillic form is:

 a b v g 'g d e 'e 'z z y i 'i j k l m
 n o p r s t u f x 't 'c w 'w 'u 'a q '*

The 34th character is a Cyrillic apostrophe, a "modifier letter" that has various roles,
among them those of the hard sign of Russian. The representation valid for all Cyrillic
languages is '{apos}.

The phonetic recitation of this alphabet (using an informal ASCII transcription) is:

 ah beh veh heh geh deh eh yeh
 zheh zeh y(?) ee yee yot kah el
 em en oh peh err ess teh oo eff kha tseh
 cheh shah shchah yoo ya (m'akyj znak)
 (apostrof)

The alternative short forms in Ukrainian ASCII-Cyrillic: are

 h=g 's=w c='t 'k=x

The following four letters do not occur in Russian:

 <=> '{gup} '{ie} '{ii} '{yi} (all Cyrillic languages)
 <=> 'g 'e i 'i (short forms for Ukrainian)
 <=> (no Russian short forms)

Reciprocally, the following four Russian letters do not occur in Ukrainian:

 <=> '{hrdsn} '{ery} '{erev} '{yo} (all Cyrillic)
 <=> (no Ukrainian short forms)

184 Laurent Siebenmann

 <=> q y 'e 'o (short forms for Russian)

The following two letters are common to Ukrainian and Russian, but the
ASCII-Cyrillic short forms are different.

 <=> '{i} '{sftsn} (all Cyrillic)
 <=> y q (short forms for Ukrainian)
 <=> i h (short forms for Russian)

In Ukrainian ASCII-Cyrillic, the use of q as a short form for '{sftsn} is supported
by the fact that the shape q rotated by 180 degrees is similar to that of '{sftsn} . But
there is another reason for this choice. It permits one to use h as an alternative
Ukrainian short form for '{g} --- which is natural since in many cases '{g} is
pronounced like the harsh German h in "Horst".

Similarly for capital letters. In particular:

have the Ukrainian ASCII-Cyrillic representation:

 A B V G 'G D E 'E 'Z Z Y I 'I J K L M
 N O P R S T U F X 'T 'C W 'W 'U 'A Q '*

Long forms valid for all Cyrillic languages are:

 '{A} '{B} '{V} '{G} '{GUP} '{D} '{E} '{IE} '{ZH} '{Z}
 '{R} '{I} '{II} '{YI} '{J} '{K} '{L} '{M} '{N} '{O}
 '{P} '{S} '{T} '{U} '{F} '{X} '{TS} '{CH}
 '{SH} '{SHCH} '{YU} '{YA} '{SFTSN} '{APOS}

Note that the Ukrainian apostrophe '{APOS} is a letter and, unlike '{SFTSN}, it
normally coincides with the lowercase version: normally '{APOS}='{apos}. In case of
a distinction, '* will be '{apos}. Further, '{apos} normally has shape identical to the
text right single quotation mark denoted in ASCII-Cyrillic by '['].

ASCII-Cyrillic and its converter email-ru.tex 185

There is an official lossy ASCII transliteration for Ukrainian using the ligature concept,
and it is supported by "email-ru.tex". See the Ukrainian national norm of 1996
summarized at:

http://www.rada.kiev.ua/translit.htm

Beware that the official Ukrainian transliterations of the six letters:

 '{g} '{ie} '{yi} '{ishrt} '{yu} '{ya}

are context dependent. This is a good reason for calling upon "email-ru.tex" to do the
official transliteration.

The other aspects of ASCII-Cyrillic are the same for Ukrainian and Russian.

Vital statistics for ASCII-Cyrillic

ASCII-Cyrillic home page: (established December 2000)

 topo.math.u-psud.fr/~lcs/ASCII-Cyrillic/ascii-cy.htm

ASCII-Cyrillic software directory:

 http://topo.math.u-psud.fr/~lcs/ASCII-Cyrillic/

Long term archiving: See the CTAN TeX Archive and its mirrors.

Copyright conditions: Gnu Public Licence.

Documentation: -currently included as ASCII text inside the converter "email-ru.tex".

Debts: The author owes many thanks, in particular:
-- to Stanislas Klimenko for an invitation to IHEP Protvino, Russia, in Fall 1977;
ASCII-Cyrillic was conceived there;
-- to Irina Maxova'a for suggesting in November 1997 that the ASCII w represent the
Cyrillic letter "sh" (\cyrsh in TeX);
-- to Gal'a Gor'a'cevskix for answering innumerable questions about Russian;
-- to the members of the Cyrillic TeX discussion list (CyrTeX-en@vsu.ru), moderated
by Vladimir Volvovi'c, both for clarifying problems and for furnishing vital data. The

186 Laurent Siebenmann

list archives are available at:

https://info.vsu.ru/Lists/CyrTeX-en/List.html

-- to Maksym Pol'akov (mpoliak@pcomp.nauu.kiev.ua) whose extensive advice was
essential in establishing Ukrainian mode.

Date of most recent modification: July, 2001.

The author: (who welcomes comments)

Laurent Siebenmann
CNRS, Université de Paris-Sud
Orsay, France

lcs@math.u-psud.fr
lcs@math.polytechnique.fr
laurent@math.toronto.edu

♦ ♦ ♦

A Tour around the NTS implementation
Karel Skoupý

abstract. NTS is a modular object-oriented reimplementation of TEX written in
Java. This document is a summary of a presentation which shows the path along
which the characters and constructions present in the input file pass through the

machinery of the program and get typeset. Along the way the key classes and concepts
of NTS are visited, the differences with original TeX are explained and the good points

where to dig into the system are proposed.

keywords: NTS , Java, extension
NTS is a modular object-oriented reimplementation of TEX. It is written in Java and
is meant to be extended with new functionality and improvements. In spite of the
expectations of many it is not simpler than original TEX and it probably could not be
if it has to do exactly the same job. But whereas TEX is a very monolithic system, the
complexity ofNTS is divided into many independent modules and is accommodated in
lots of useful abstractions. As a consequence one need not know all the details about
the whole system in order to extend or change just a specific part. The dependencies
between the modules are expressed by clear interfaces and the interfaces is all one
needs to know about untouched parts. So extending and changing NTS should be
quite easy, shouldn’t it?

The problem is that detailed documentation is still missing and that there are
hundreds of classes, so it is hard to know where to start. Although the classes are many,
fortunately there are a limited number of main concepts which are really important.

The processing in NTS is naturally quite similar to TEX. The input is scanned
and converted to Tokens. Each Token has a certain meaning: a Command. Some
Commands are non-typographic, these usually deal with macro expansion or registers.
Typographic Commands build some typographic material consisting of Nodes using
Builders. Lists of Nodes are packed by a Packer and finally typeset by an instance of
Typesetter.

Of course there are a few more basic concepts than those emphasized in the previous
paragraph but not that many. They are always represented by an abstract class or
an interface. The other classes in NTS are either various implementations of those
interfaces or they are auxiliary and not so interesting.

Recently we have been trying to improve the design of NTS so that extensions and
configuration are even easier. We will also look into ways how to increase performance
and interoperability with the TEX directory structure.

♦ ♦ ♦

Visual TEX: texlite
Igor Strokov

abstract. A prototype of a visual TEX is implemented by means of minor
modifications of canonical TEX. The changes include the ability to start compilation
from an arbitrary page, fast paragraph reformatting, and retaining the origin of visual
elements. The new features provide direct editing of the document preview and correct

markup of the source text.

keywords: visual, TEX

The need for visual TEX

A good feature which TEX traditionally has lacked is visual editing, or the ability to
typeset a document in its final (print preview) form. Though one can manage without
visual editing, there are certain cases when it really helps, mainly when tuning the
appearance of a document, especially for novice and occasional users.

There are two ways to deal with this problem. The first one, implemented in lyx and
SciWord, represents the source text in a form which logically resembles the resulting
output. Although this way proved to be a good compromise, the logical preview is
often quite far from the printed result. Besides, these tools use latex with special
macros, so arbitrary TEX documents are beyond their scope.

The other way is synchronously running a source text editor, TEX the compiler,
and a viewer, so that changes made in the source editor are compiled and displayed in
the viewer without explicit invocation of these tools in a command string or a menu.
In textures, in addition, the cycle is closed by means of two corresponding pointers
in the source editor and the viewer. The approach of Jonathan Fine, presented in
these proceedings [2], can be related to this way. Its main problem lies in the need
to compile a whole document to receive the visual response to an editing action. On
slow computers, large documents, or complicated macros this compilation could cause
at least a noticeable delay.

How to TEX part of a document

So, if even a single letter is changed, TEX needs to process the whole document from
scratch. However, TEX already solved a similar problem by loading precompiled mac-
ros (so called ‘formats’). This way TEX saves the time required to compile standard

texlite 189

macros which can be considered a part of a document. With minor changes one can
extend this method to arbitrary stages of the document compilation. One only need
to choose particular stages and probably improve the storage method.

The natural decision is to make a core dump each time a typeset page has been
completed and removed from TEX’s memory. At this moment the memory is relatively
empty and contains essentially values which do not change from page to page, which
allows the dump to be more compact. A page dump is always stored as a record of
differences from some reference dump. Every 8-th dump refers to dump zero (the
‘format’ itself) while the others refer to the preceding 8-th one (see [3] for details).

In comparison to a common format the core dump has to store additional data:
the input and semantic list stages, open file pointers, and, above all, the source line
number reached when the page was completed. Thus, if the source is changed at
some line, one can derive the last page number affected by the change. Then the
corresponding dump is loaded and the compilation starts from the given page.

In texlite, the visual TEX prototype, the compilation is allowed to run up to the end
of the document. Moreover, if any output file to be read again is changed, then the
compilation starts again, this time from the very beginning (this happens, for example,
when a latex section title is edited after the table of contents). However, this already
does not matter, as the page of interest is obtained quite quickly (in constant time,
regardless of the page number and the document size). Although in some mentioned
cases the page is updated a second time, in practice this event does not disturb a user
because of buffered output and preservation of the current input position.

Besides, if another source change will occur before the natural end of the compila-
tion, it will be interrupted to let a more actual compilation run. As a result, all recent
editing actions are reflected in time, while the remote consequences (if any) appear
after a pause.

How to reformat a paragraph

Selective compilation is a necessary but not sufficient feature for visual editing. It just
reduces the response time from the source to the preview (making it constant instead
of linear). Let us consider the inverse problem — how to bring preview changes into
the source text.

In general, one needs to keep track of the relation of source characters to visual
elements. In many cases the reciprocal relation (say, a character — a glyph) may be
established and used to synchronize current positions in the source and the preview.
Fortunately, no vast interference in TEX is needed to make it remember the origin of
its output: it is enough to extend the format of memory nodes in a way similar to
that used for breaking the 64K barrier.

So, a user may mark the current position in the preview and type something there.
Texlite applies the corresponding changes in the source text and initiates the compil-
ation starting from the current page. In most computers (starting from a 200MHz
Pentium) the delay before the visual result is virtually unnoticeable. However, one
cannot ignore slow computers and various decelerating factors such as parallel pro-

190 strokov

cesses, complex page formatting, complicated macros, etc.
Therefore, before starting the true compilation, texlite tries to reformat the current

paragraph using the native TEX algorithm for this purpose. Canonical TEX, however,
does not keep parameters it used to set up boxes and paragraphs. That is, one cannot
correctly rebuild a box or a paragraph only from its contents. Texlite resolves this
problem by storing the necessary data in special whatsit nodes. This does not take
too much extra space, as many parameters (penalties, glues, parshape, etc.) remain
the same throughout a document and thus can be omitted.

Let us see what happens when a user edits the preview. First of all, texlite decides
(with the aid of whatsit nodes) in which paragraph, if any, the current position falls.
If no paragraph is recognized (for example, it may be within a \halign), then only
the enclosing box is rebuilt and the selective compilation starting from the current
page is initiated. Otherwise texlite locates the current paragraph and unwraps it back
into a hlist by inserting lost glues and repairing hyphenations. The unwrapped list is
subjected to the changes following from the user’s input (insertion of a character-and-
glue node list or deletion of several nodes from the current position) and the linebreak
routine is called to rebuild the paragraph. Then the preview (along with the current
position) is updated.

After this ‘emergency repair’ texlite enters the source text, performs parallel changes
there and starts the selective compilation, which runs from the current page to the
end of the document or until the user presses another key. If the compiler manages to
build the current page before the next key stroke (usually it does) and the new page
happens to be different from the repaired one (usually it does not) then the preview
is accurately updated.

Implementation

Texlite, currently implemented under Win32, provides a visual shell for the TEX core
tangled from TEX: The Program [1] and modified in the way described above. Let us
enumerate the main changes:

1. It can make detailed core dumps and read them back at specified points.

2. For every paragraph it stores all the data required to unwrap the paragraph back
and break it into lines again.

3. It relates nodes in memory to their origin in the source text.

Except for these additions the compiler remains the canonical TEX, able to process
an arbitrary TEX document.

The shell consists of two windows. The preview window represents the current page
in its typeset form, which is common to all DVI viewers. The main difference is an
editing cursor (a flashing caret). The user may mark, type, or delete pieces of format-
ted text as in any WYSIWYG text processor, without delays or other inconveniences.
However, the requirement to keep a correct document structure still imposes some
limitations. For example, one cannot select a part of a heading and several words
in a following paragraph and delete them at once. Texlite prevents such inconsistent

texlite 191

changes by tracking grouping levels.
Texlite preview supports graphics in several bitmap formats and in PostScript (in-

stalled GhostScript required). Standard latex coloring schemes and emTEX exten-
sions (popular in the DOS/Windows community) are supported too.

In addition, texlite provides an extension for internal and outer links in a document.
For example, a specific macro makes a common table of contents into an interactive
directory which opens the corresponding page when a section reference is clicked. An
outer reference brings a user to a different document located elsewhere on Internet.
This feature facilitates browsing of TEX documents and makes it similar to web surfing.

Though a user may choose to work with a document in the preview window only,
there remains a window for the source text. All the changes made in the preview are
automatically reflected here. However, if a user edits the source text, he should invoke
the synchronization explicitly, because manual correction of the source text allows the
existence of inconsistent clauses.

The source text view benefits from visual editing too, as it uses information from
the compiler to mark up the text according to the TEX syntax. Moreover, the markup
(presented in different colors) is always correct, even if symbol categories are changed
during the compilation.

A small improvement concerns error corrections. The shell sets the cursor to the
position in the source text where an error occurs and displays its description. However,
if a compiler is used just to mark up the text, errors are only marked by a color.

references

[1] Knuth, D. E. Computers & Typesetting. Volume B, TEX: The Program. Read-
ing, Massachusetts: Addison-Wesley, 1986.

[2] Fine, J. Instant Preview and the TEX daemon. These proceedings.

[3] Strokov, I. I. A WYSIWYG TEX implementation. TUGBoat, December, 1999.

������

Conversion of TEX fonts into Type 1 format
Péter Szabó∗

abstract. This paper analyses the problem of converting TEX fonts to Type 1 fonts,
describes TEXtrace, a new free conversion program, and compares it to other possible

methods and existing utilities. TEXtrace works by rendering the font in high
resolution and then tracing (vectorizing) it.

keywords: PDF, font conversion, Type1, METAFONT, vector, outline, raster, bitmap,
pdfTEX

�
here are two major ways to describe the shape of the glyphs1 of a font: using
bitmap images or vector outlines. A bitmap image is a rectangular array of
dots; each dot can be painted white or black independently from the others.

At a high resolution of around 600 DPIthe human eye cannot distinguish individual
pixels and sees the glyph as if it was continuous. On the other hand, vector outlines
specify the black regions by the curves (lines, arcs, ellipses and others) which delimit
them. The most important advantage of this representation is that glyph outlines can
be transformed (rotated, scaled etc.) without quality loss.
Most fonts used in today’s desktop publishing systems are distributed in some kind

of vector outline format. (Such formats are: Type 1, TrueType, OpenType, Speedo,
METAFONT source.) The process of converting an outline font to its bitmap equivalent
is called rendering or rasterization. The rendering must surely happen before actually
printing the document onto paper or displaying it on screen, because today’s printers
and screens display everything using a rectangular layout of dots. So the difference
between document preparation systems lies not in the presence of the rendering, but
the moment when it occurs.
When printing a document onto paper, the exact time instant of the rendering is

not important � the author wants the final output be beautiful, and all other inner
parts of the printing process are of minor importance. However, the case is different
when the document is about to be distributed in electronic form. Since readers might
use different software for viewing and/or printing, the author should ensure that the
document looks and prints nice in most environments, i.e. the document should be

∗Many thanks to Ferenc Wettl and Gyöngyi Bujdosó
1glyph: a specific, visible representation of a character

created to be portable. This involves selecting a font format that works well in most
reader software, and using this font format exclusively in electronically published
versions of the document.
In our specific case, the file format used for document publishing is PDF, and one

of the best font formats for embedding is Type 1, a traditional vector outline for-
mat. (These will be presented later in more detail.) Today’s TEX-to-PDF generating
software support Type 1 fonts, but unfortunately most TEX fonts are currently not
available in Type 1 format. So they have to be converted.
This paper focuses on a quite difficult font conversion problem. The most common

source format, METAFONT is rather complicated (in fact, it is an almost full-featured
programming language), and the destination format, Type 1 has too many restrictions.
Probably this is the reason why there have been no good and robust programs to
do the conversion. TEXtrace, described later in this document, overcomes the first
problem by not even trying to understand the METAFONT files, but letting the original
METAFONT program render the glyphs, and then calling the AutoTrace program which
traces the bitmaps (approximates them with vector outlines). Fortunately AutoTrace’s
output needs only minor modifications to comply the restrictions of the Type 1 format.
The main disadvantage of this “blind” conversion approach is a minor quality loss
caused by both the rendering and the tracing process.
The availability of the fonts in a vector outline format is of primary importance

when publishing the document as PDF, because Acrobat Reader, the most widely
used PDF viewer displays bitmap fonts slowly and ugly on screen.

Motivation

Why PDF?
The PDF file format is very popular nowadays among authors to distribute their work
electronically. PDF has become popular because it

� represents letters, spaces, line breaks and images etc. accurately: documents retain
their structure and original visual appearance between PDF viewers (as opposed
to markup languages, such as SGML and HTML).

� follows the industry standard PostScript page drawing model, PostScript files can
be converted to PDF without quality loss (and vice versa).

� is portable and device-independent. Printing PDF files and rendering them on
screen is often easier and more straightforward than doing the same for PostScript
files. It is possible to create a portable PDF document, but one can never be sure
about PostScript portability.

� has widespread freely available viewers (e.g. Acrobat Reader: either stand-alone
or in the web browser, Ghostscript, xpdf, PDF e-Book readers) for most platforms.
Most systems have some sort of PDF viewer installed.

� has hyperlink, form submit and other web-related capability. (This article ignores
these facilities and deals only with static PDF files.)

Conversion of TEX fonts into Type1 format 193

Figure 1: The difference between vector (nice) and bitmap fonts in Acrobat Reader

� allows relatively small file sizes, which is comparable to DVI files.
� is well suited for both short and long documents, including scientific articles, re-

ports, books and software documentation.

Of course, it is possible to convert TEX output into PDF format either by calling
pdfTEX [6], which directly creates PDF files instead of DVI files, or using a DVI-to-
PDF or PostScript-to-PDF converter. Preparing a PDF version of a TEX document
is somewhat harder than just printing the PostScript version, and requires a bit more
time. To enjoy the benefits listed above, the author must use the proper version of
the utilities, she must adjust the settings, and she must make sure that the proper
versions of the fonts get embedded.

Font problems with PDF and TEX
The main problem with PDF files originating from TEX source is that characters of
most TEX fonts show up slowly and look ugly in Acrobat Reader. This is because
such fonts are generated by METAFONT, and are embedded into the PDF file as high
resolution bitmap images; and Acrobat Reader displays bitmap images slowly and
poorly on screen. This has been one of the famous Ugly Bits related to TeX for years.
The problem doesn’t occur when printing the document, because the resolution of the
printer is most often high enough (≥ 300 DPI) to eliminate rendering problems.
The solution to this problem is to embed the offending fonts in such a file format

which Acrobat Reader can display quickly and beautifully. A good candidate for this
is the classical, standard Type 1 format, appeared in the late ’80s. Fortunately pdfTEX
and newer versions of ps2pdf (Ghostscript ≥ 6.50) fully support it, so the only problem
remaining is that how to convert a font in METAFONT format to the Type 1 format.
Many techniques have been proposed so far, and none of them is fully satisfactory.
The problem itself can be simply visualized by running pdftex on simple .tex file

(see also Figure 1):

Sample text: nice\par \font\f=ecrm1000\f Sample text: ugly\end

Both the console output of pdftex and the .log file should contain the entries
ecrm1000.600pk> and <cmr10.pfb> (the number 600 may vary across installations).
These entries are the names of the two font files pdftex has embedded into the PDF
file. The pk extension means that the glyphs of the font have been embedded as
bitmap images (the resolution of 600 DPI is also indicated � this is of course printer
dependent), and the .pfb extension means that the glyphs have been included as
vector outlines in the Type 1 format.

194 Péter Szabó

Differences between METAFONT and Type 1
We’ll focus only on how these formats describe the shapes of individual glyphs. The
difference between how font-wide metrics, glyph metrics, kerning and ligatures are
treated isn’t much important, because this information can be converted easily and
precisely � and this information will be acquired from the original TEX fonts (the .tfm
files) anyway, so we don’t have to convert them at all.
Taco Hoekwater gives a detailed, richly illustrated comparison of the two font for-

mats, including many figures and a case study of converting some math and symbol
fonts (e.g. logo8, wasy5, stmary7, rsfs10) in [3]. The curious but beginner reader is
referred to that article.
The fundamental difference between the METAFONT and Type 1 is that METAFONT

is a programming language, and Type 1 is just a compact file format describing glyph
data2. The compiler/interpreter of the METAFONT language is the mf program, which
reads the font program source from .mf files (written by humans). The METAFONT

programming language contains 	 among others � line and curve drawing instructions.
mf follows the instructions in the font program, and draws the glyphs into a bitmap in
memory, and saves the bitmap into a file when ready. Thus the printable/embeddable
version of a METAFONT font is available only in bitmap format � the rasterization
cannot be delayed.

METAFONT programs describe lines and curves indirectly: they impose mathemat-
ical equations the shapes must fulfill, and mf determines the exact shapes by solving
these equations. For example, the font designer is allowed to define a point as an
intersection of two, previously defined lines, and to leave the calculation of the exact
coordinates to mf.
On the other hand, Type 1 fonts define points and shapes calculated previously,

in the time of font creation. This suggests that a Type 1 font is the final output
of some font generation process, such as a compiler similar to METAFONT (see [4]),
or 	 more commonly � the export facility of a graphical, wysiwyg font editor3.The
process itself may be arbitrary as long as its output conforms to the syntax described
in the Type 1 documentation [1]. The font contains the glyphs as vector outlines,
in the form of curves consisting of straight lines and Bézier-curves. The rendering
(rasterization) into the printer-specific resolution is deferred as much as possible; thus
Type 1 fonts are scalable (resolution-independent). Type 1 doesn’t define a specific
rendering algorithm, so minor pixel differences might occur when printing the same
document containing Type 1 fonts on different printers. The rendering algorithms
are relatively simple (much simpler than an mf implementation), and they are fast
enough for real-time operation: each instance of the glyph is rendered independently
to the others by the printer4. The Type 1 file format relates closely to the PostScript
programming language (the font file is a valid PostScript code in fact), but it is possible
to render Type 1 fonts without knowing how to interpret PostScript.
Type 1 fonts can be easely converted to METAFONT format (see [4]). This conversion

2a similar difference exists between TEX and HTML; one cannot write a loop that prints n stars
in pure HTML, but it is possible in TEX

3such as the free and sophisticated PfaEdit program [8]
4this is not exactly true for modern printers that have a glyph cache

Conversion of TEX fonts into Type1 format 195

is merely syntactical: similar to converting plain text into a program that just prints
the text into its standard output and quits: we just convert a glyph outline to META-
FONT drawing instructions that draw the outline. However, this direction of conversion
is quite useless, because TEX can already deal with Type 1 fonts well (even for PDF
files), plus the inner structure of the glyphs wouldn’t be revealed, so we’d lose the
benefit of the geometrical (programmed) font generation philosophy of METAFONT.
The other way, converting .mf to Type 1 is expected to be harder, because the

METAFONT language is much more complicated than the Type 1 syntax. So we cannot
convert the METAFONT programs exactly without “understanding” them. Because
current .mf files tend to be quite complicated, full of dirty tricks, and they are utilizing
most features of the language, the only reliable way to understand these files is using
a full METAFONT interpreter. There are two such interpreters available: mf itself and
mpost (METAPOST). mf doesn’t fit our needs, because it generates bitmap images
and not vector outlines. On the other hand, mpost generates EPS (Encapsulated
PostScript) output, containing vector outlines which are very similar to the Type 1
outlines. But, due to the restrictions of the Type 1 format, these outlines must be
post-processed. This cleanup process is so complicated that currently no program
exists that can do it reliably. Alternative ways of using of METAFONT or METAPOST

for conversion will be discussed two sections later.
Of course 	 as in the case of TEXtrace � one may go ahead without trying to

understand the METAFONT language, and looking at only mf’s bitmap output. These
bitmaps must somehow be converted (traced) into vector outlines that approximate
the bitmap. Fortunately there exist automatic utilities for this.

A tour from CM to EC
TEX’s default and most common font family is the Computer Modern (CM) family,
designed by the author of TEX and METAFONT, Donald Knuth himself, between 1979
and 19855. The fonts were available only in METAFONT format till 1992, when BlueSky
converted them to Type 1. Now the Type 1 .pfb files are available from CTAN and
they are part of most standard TEX distributions (such as teTEX and MikTEX).
pdfTEX is configured to use these .pfb files by default (pdftex.cfg includes bsr.

map which contains all the available font names), so there should be no problem when
creating PDF from those TEX documents which use the CM fonts.
The EC abbreviation stands for the European Computer Modern family, designed

by Jörg Knappen between 1995 and 1997. European means that these fonts suit
typesetting in some non-English European languages better than the CM fonts. Apart
from this, the EC fonts are basically the same as the CM fonts with a couple of minor
additions and adjustments. It is almost impossible to distinguish a font in the EC
family from its CM counterpart6. Tha main difference between these two families is
technical: the EC family contains the accented characters directly in the font, while
the CM family contains the letters and the accents separately and TEX macros are
used to position the accents. The EC fonts are thus larger, but they have an important

5for those who are still wondering: this paper uses the Computer Modern fonts almost exclusively.
6one of the visible differences are the accents; for example the CM acute accent is taller, and the

CM Hungarian umlaut accent is more angled than its EC counterpart

196 Péter Szabó

benefit: text entered using those fonts can be automatically hyphenated by TEX (in
the case of CM fonts the macros prevent automatic hyphenation).
Unfortunately the EC fonts are not available in Type 1 format yet, and most Euro-

pean TEX users are suffering from this problem. The primary reason why TEXtrace
was written is to do the conversion. However, several methods existed before TEX-
trace to overcome this Ugly Bit. Some of them are:

� The AE fonts with the LATEX package ae simulate the EC fonts from the available
CM fonts with virtual fonts7. Both requirements are fulfilled: automatic hyphen-
ation works because the virtual font gives TEX all the accented glyphs, and PDF
files look nice because the virtual font points to the CM fonts, already available in
Type 1 format from BlueSky.
The most serious problem of the AE fonts is that only the most commonly used

EC fonts are simulated, and they are available only in some of the EC design sizes
(5–8 of 14). Of course some glyphs are missing because they were missing from the
CM fonts (examples: eth ð, gulliemots « »). Another problem is that the metrics
are a bit different from the original font, and this affects line and page breaks of
the document. (This could be easily solved by overwriting the .tfm files from the
good EC fonts.)
Correcting the accents and creating all design sizes would have been possible

with a couple of weeks of work, but the missing glyphs imposed an unsolvable
limitation. And the method worked only for the EC fonts, it couldn’t cope with
all TEX fonts.

� The ZE fonts are similar to the AE fonts, but they collect the missing glyphs from
common Adobe fonts (such as /Times-Roman). Apart from this, they have the
same fundamental problems as the AE fonts.

� Automatic hyphenation works well when typesetting an English (and other latin
non-accented) document. The already available CM fonts can be used for this.
In LATEX, the only thing the author must ensure is that the document preamble
doesn’t contain \usepackage{t1enc}.

� There are language-specific conversion utilities which modify .tex source files and
insert discretionary hyphens (\-) into the appropriate places. So the hyphenation
problem is solved, the automatic hyphenation provided by TEX isn’t used at all.
These utilities are not part of TEX itself, and have different interface for different
languages. They contradict the generic, consistent and accurate way as Babel
works, and make typesetting with TEX more difficult and error-prone. The solution
is font-independent, so it works with the CM fonts.

Thus, in the case of the Computer Modern family, one can use the tricks above to
manage without the Type 1 versions of the EC fonts. But there are no such tricks
for most other TEX fonts: they need conversion, and for the conversion, one needs a
proper converter.

7a TEX virtual font builds its glyphs from glyphs of other fonts. Virtual fonts can be used for
re-encoding and/or collecting glyphs from several fonts.

Conversion of TEX fonts into Type1 format 197

�������

TEXtrace

TEXtrace is a collection of scripts for UNIX that convert any TEX font into a Type 1
.pfb outline font immediately suitable for use with DVIPS, pdfTEX, Acrobat Reader
(and many other programs). The documents using these fonts cannot be visually
distinguished from the documents using the original TEX fonts, moreover the PDF
documents display quickly and nicely in Acrobat Reader.
The main goal for writing TEXtrace was to convert the EC fonts to Type 1 format

with it. This goal has been fulfilled, 372 of the 392 font files (28 fonts · 14 design sizes)
are available as .pfb files with an average file size of 86 kb. The missing 20 files are the
Typewriter fonts at 5pt and the experimental Fibonacci and Funny fonts at various
sizes. They are missing because METAFONT failed to generate them. The conversion
took 40 hours with a 333MHz Celeron processor and 128Mb memory.
The 392 TC (Text Companion) fonts and some others have been also converted.

(With some failures, because of METAFONT overflow or font program error).
TEXtrace is in beta status, the author is waiting bug reports from users.

How it works
TEXtrace renders all the 256 glyphs of the TEX font in a very high resolution (≥
7000DPI), then it converts the resulting bitmaps to individual vector outlines, and
finally it assembles these outlines to form a syntactically correct Type 1 font. The
final result is a .pfb font file, which can be read by both DVIPS and pdfTEX to be
included into documents.
The principle sounds simple, but the implementation is quite complicated because

of the usual quirks of programs used, incompatible software and loose (or disobeyed)
file format specifications.
TEXtrace operates fully automatically. It doesn’t require human intervention,

it doesn’t ask questions. The output of TEXtrace is useful immediately, needs no
further conversion, re-editing or adjustment in font editors. TEXtrace can operate
in batch mode; this means converting all the fonts listed in a .map file.
The operations of TEXtrace for a single font:

1. A .tex file is generated, each page with a different glyph from the font.
Not only the shape of the glyph is important, but the absolute coordinates of

the character origin must also be specified: this guarantees that glyphs will line
up to basepoint and follow each other the same distances in the original and the
converted font. So the TEX primitive \shipout is used to output pages. This way
page numbers and the various glues are completely avoided, so the glyph is typeset
to a well-defined, exact place on the page.
The font is requested at a relatively large size (120.45 pt for 600 DPI and fonts

with design size of 10 pt), so that 1 em will be 1000 pixels long when rendered.
TEX is instructed to output glyph metrics into a separate .log file.

198 Péter Szabó

2. tex is invoked to create the .dvi file from the .tex file. This is a quite simple job
for TEX: no line or page breaks etc. occur. As a side effect, tex runs mktextfm (or
whatever font generation mechanism is used in the TEX distribution) if the .tfm
file was missing.

3. dvips is run, which converts the .dvi file to .ps and automatically embeds the
font into the .ps file.

DVIPS reads the font from the appropriate .pk file (e.g. ecrm1000.7227pk)
most of the time. If the .pk doesn’t already exist (which is probably true since
the chances for a previous use of the font at 120.45 pt or so are negligible), it calls
mktexpk to create it. mktexpk looks around and passes the job to mf.
All this happens automatically, without TEXtrace having to know about TEX

font generation and embedding internals.
4. gs (GNU Ghostscript) is called to render (rasterize) the .ps file.

This is almost a syntactical conversion, because METAFONT fonts are already
inserted into .ps file in rasterized bitmap .pk format by DVIPS8. Of course the
output bitmaps of Ghostscript are not sent to the printer, but they are saved to
individual image files (in the PBM format).
Special care must be taken for glyphs with negative sidebearing (i.e. glyphs

extending to the left from their origin). For normal printing, this isn’t a problem,
because a sub-millimeter negative sidebearing is negligable with a left margin of
2 cm. In the case of TEXtrace, we must make sure that the glyph won’t stick out
of the page. This could be accomplished by moving a large (but constant) amount
to the right and hoping that the left sidebearing is smaller than that amount. TEX-
trace uses a more precise approach: it measures the glyph bounding box (with a
careful trickery using the bbox device of Ghostscript), and moves the appropriate
amount to the right.

5. The individual bitmaps are converted to vector outlines by the free external pro-
gram AutoTrace (written by Martin Weber <martweb@gmx.net>).
This converter supports several input and output file formats, but these are

mostly equivalent. The EPS format is used for output, because it is very similar
to how Type 1 represents glyphs. However, Type 1 imposes some restrictions on
the glyphs, so a little modification of the original AutoTrace output routine was
required to obey these restrictions:

� Path directions (clockwise/counter-clockwise) had to be corrected, so that black
regions would always be to the right-hand side from the path.

� Multiple paths had to be converted into a single one.
� The initial clearing of the image to white color had to be removed.
� Curves didn’t touch each other in the original output, so no modifications were

necessary.

The AutoTrace program has bugs: it errs out with some failed assertion error
for 0.12% of the glyphs. The author of AutoTrace is aware of the bugs, but he
currently has no fix for them. The bug is worked around empirically, by calling

8an exception: when DVIPS has embedded a font in other than .pk format.

Conversion of TEX fonts into Type1 format 199

original AutoTrace Freehand CorelTrace Streamline
Figure 2: AutoTrace compared to other tracing software

original -corner-threshold 80 -corner-threshold 90
Figure 3: AutoTrace cannot find corners at low resolution

AutoTrace with different parameters until the bug stops to manifest.
AutoTrace – although it is free – isn’t currently available from the web because of

technical reasons. So the proper version of AutoTrace is included in the TEXtrace
distribution.

AutoTrace was chosen for the tracing because it is free, works automatically, and
gives a good result (see Figure 2 for a comparison). Other examples of glyphs
traced by AutoTrace are the ornaments throughout this document. AutoTrace does
a quite good job at extremely high resolutions (such as the 7227DPI used by TEX-
trace), but produces poor and useless output for low resolutions (example: when
a glyph at 10pt is scanned at 600DPI).
Figure 3 illustrates that the sharp corners produce the most problems for Auto-

Trace. Adjusting the command-line options doesn’t help, and it might even do
harm if different regions of the image require different options. Fortunately such
distortions do not occur when using TEXtrace, because fonts are rendered in a
high enough resolution.

6. The vector outlines are cleaned up a bit to comply the Type 1 specification.
The details of the cleanup have been explained in the previous item. The cleanup

after AutoTrace is much easier than it would be after METAPOST (see [3]).
The outlines are also properly scaled and shifted respect to the origin.

7. The outlines are merged into a Type 1 font file.
type1fix.pl (a utility bundled with TEXtrace) is run on the font file to fix

quirks in common font editors and other font handling software (including pdfTEX
and DVIPS).
The output .pfb file will be highly portable and compatible with most font

software. In an ideal world (with no Ugly Bits) there should be no font compat-
ibility issues. However, in the real world, such issues are common since there is
no standard way to read a Type 1 font apart from interpreting it as a PostScript
program. (Of course that’d require a full PostScript interpreter in all font handling
programs, which is too complicated and would make execution slow).

200 Péter Szabó

So most utilities (including those mentioned above) use a different, nonstandard
Type 1 reader (invented by the “common sense” of their programmer). These read-
ers tend to have specific lurking quirks: they are able to load most Type 1 fonts,
but they might run into a problem with loading an “offending” fonts, which fully
follow the Type 1 specification. Fortunately to output of type1fix.pl avoids all
common quirks, so fonts generated by TEXtrace don’t suffer from incompatibili-
ties of third-party software.

Availability
TEXtrace is free software, licensed under the GNU General Public License. It can
be downloaded from its home page:

http://www.inf.bme.hu/~pts/textrace/

TEXtrace requires a UNIX system with the teTEX distribution, GNU Ghostscript,
Perl and GNU Bash to run. Successful runs have been reported on MacOS X and
Win32, but those platforms are not supported. Of course, .pfb font files generated by
TEXtrace are platform independent, and they can be used in any TEX environment.
Some fonts converted by TEXtrace are available for download from the same home

page. These include all the EC and TC fonts, some missing AMS fonts and others.

Problems to be solved
� Huge font files. The .pfb files TEXtrace generates are around 3.15 times larger

than the optimum. This is mostly because of AutoTrace cannot find the optimal
Bézier-curves that describe the outline. To solve this, AutoTrace has to be partially
rewritten or an other tracer must be used. (The author doesn’t know of free tracers
comparable to or better than AutoTrace.)

� Corners get smoothed. Finding the corners (sharp angles) of the outline is a weak
point AutoTrace: sometimes it recognizes corners as small arcs. The author tried
adjusting the tracing parameters to solve the problem, but hasn’t succeeded.

� Hinting information is missing. Type 1 fonts use the so-called hinting technology
to improve rendering on small resolutions (e.g. on screen, ≤ 100DPI). This requires
global and glyphwise additional information in the font, called hints. To achieve
high quality, this information should be inserted by experts with great care, the
process can be automated only with loss of quality. Fonts generated by TEX-
trace completely lack hinting, so glyphs are expected to be badly readable in low
resolutions. Fortunately, in practice, fonts generated by TEXtrace can be read
quite well in Acrobat Reader unless one turns antialiasing off explicitly9.

� Conversion is slow. With a 333MHz Celeron processor and 128Mb of memory,
conversion of a single font (e.g. ecit1728) takes around six minutes. This is
tolerable unless one wants to convert hundreds of fonts (such as all the 392 EC
fonts). Although this might sound quite slow, currently TEXtrace is the fastest in
its category. Moreover, the process is fully automatic, and the result is immediately

9with File→Preferences→General→Smooth. . .

Conversion of TEX fonts into Type1 format 201

usable without any further human intervention. Although doubled speed could be
achieved with complete rewrite of the code, this wouldn’t worth optimizing.

� Limited portability. TEXtrace is requires a UNIX environment, but could be easily
ported to other systems (with TEX, DVIPS and Ghostscript) in 1–2 days of work.
TEXtrace consists of programs written in Bash (shell script), Perl, PostScript and
ANSI C. The C part cannot be avoided because the engine, AutoTrace is written in
C. The PostScript part is OK, because Ghostscript is needed anyway. Shell scripts
can be easily rewritten in Perl, and Perl scripts are possible to be rewritten in C,
but it would require too much work.

� Written for experts. Although the documentation describes the conversion process
for beginners, expert level knowledge is needed to enjoy TEXtrace’s benefits. The
selection of source fonts, and the proper usage of the destination fonts in documents
is left to the user. So is the recovery from errors: TEXtrace is quite paranoid and
stops on most errors, but the error message doesn’t always indicate the real cause,
and the user is left alone for figuring out and making corrections.

� Fails for some .mf files. METAFONT uses fixed point arithmetic to make rounding
errors identical on all architectures. The bits representing the fractions are chopped
from the integer part, so the range of numbers in METAFONT is small. The large
rendering resolution asked by TEXtrace requires large numbers. This results
sometimes in overflow errors for some glyphs, and mf fails to generate those glyphs.
TEXtrace currently refuses to convert fonts with bad glyphs. The problem is hard
to solve in the general case: the implementation of arithmetics in METAFONT

should be rewritten from scratch.
� No Unicode support. TEXtrace operates on normal TEX fonts with 256 or less

glyphs. Although theoretically it wouldn’t be hard to implement Omega and/or
Unicode support, it is not available yet. TEXtrace deals only with glyph indices,
because encodings would be already resolved by the time fonts generated by TEX-
trace are needed.

PostScript font installation
Installing PostScript fonts for TEX in the general case is quite complicated. That’s
mostly because the font must be adapted to use a common TEX-specific encoding,
accented glyphs should be composed by hand, kerning and ligature information must
be adjusted etc. See the manual of DVIPS [7] or fontinst [5] for more information.
In the case of fonts generated by TEXtrace the task is much easier. The metrics

file (.tfm) requires no modifications, and moreover, it is already installed. Only the
.pfb must be made available for TEX. TEXtrace doesn’t automate this process, the
.pfb files must be installed manually. This consists of:

1. selecting the appropriate .map file to insert the font name and the filename. The
file depends on the utility we’d like to use the font with:

� XDvi. The file is psfonts.map, the location is probably texmf/dvips/base.
� DVIPS. The file is any of the .map files mentioned in config.ps, most proba-

bly in texmf/dvips/config. config.ps almost always contains the entry for

202 Péter Szabó

psfonts.map.
� pdfTEX. The file is any of the .map files mentioned in pdftex.cfg (in texmf/

pdftex/config). There is no default filename.

Note that the original .map files do not have to be overwritten, it is enough to
place the new version into the current directory, thanks to Kpathsea.

2. appending a line describing the font to the .map file. This line is of the form:
〈TEX-font-name〉,〈PostScript-FontName〉,<〈PFB-file-name〉

Example:
ecrm1000 TeX-ecrm1000 <fcrm1000.pfb

The 〈PostScript-FontName〉 can be read from the .pfb file after /FontName, but in
the case of TEXtrace it is simply the word TeX- prepended to 〈TEX-font-name〉.
See the file contrib/ecpfb.map of the TEXtrace distribution.

3. copying the .pfb file to its final, system-wide location. This step isn’t mandatory,
the font is also functional in the current directory, thanks to Kpathsea. The most
common system-wide location for Type 1 fonts is texmf/fonts/type1/*.

4. testing whether the utility really finds the .pfb file by running it on a sample
document and checking the console output whether it includes the .pfb file.

Other uses of TEXtrace
Although TEXtrace’s primary goal is to convert METAFONT fonts to the Type 1
format automatically, the program is a bit more general: it can convert any font
available to DVIPS (practically any TEX font) to Type 1, regardless of the original
representation of the font.
The Type 1 format is standard since 1985, and TEXtrace creates files that are

compatible with all common font handling utilities (including many font editors, DTP
programs, converters, printers, typesetters). Type 1 fonts can be easily converted to
any of the font formats used nowadays. So TEXtrace can be used as a first step (the
TEX-specific step) to make a TEX font available in any publishing environment.
TEXtrace converts only the glyph outlines, so kerning, ligature and other metrics

information (all located in the .tfm file) must be converted separately. The documen-
tation of TEXtrace contains details about the automation of this process. Today’s
fonts tend to have more and more glyphs, exceeding TEX’s limit of 256. It is common
that a font is divided to smaller TEX fonts. These sub-fonts should be merged in a
font editor after running TEXtrace on all of them. There might be difficulties with
kerning pairs and ligatures crossing font boundaries.

�������

Alternatives

The method used by TEXtrace isn’t ultimate, there are many other possible solutions.

Conversion of TEX fonts into Type1 format 203

Respects of comparison
(F)Final quality of the output. This is the most important respect. Legibility and

beauty must be considered in both low (screen) and high (printer) resolutions.
The converted font must be accurately reflect the original, there should be no
visual difference, not even in the smallest corners.

(C)Compatibility. The output must be compatible with both document preparation
and reader software.

(S)Size. Although the capacity of hard disks increase rapidly nowadays, font files must
be kept small because they might be loaded into printers very limited memory (even
as few as 512 kb). The font sizes also affect download time of the PDF document.

(A)Amount of human effort needed. The more automated the process is, the better.
Human effort is expected to be much for TEX fonts, because they are available in
many (often 10 or more) design sizes and many styles.

Possible approaches
� Avoid conversion by using a virtual fonts to get a mixture of fonts that are already

available in Type1 format. (See the subsection about EC fonts above.)
The most serious limitation is that this approach is useless if no similar font

is available in Type 1 format. (F), (C), (S): no problems. (A): it is not diffi-
cult to arrange that metrics and displacements in the virtual fonts are generated
automatically.
The AE, ZE and ZD fonts use this method.

� Design new fonts parallel in METAFONT and Type1. Develop a system that glues
existing tools to aid parallel font development by allowing generation of both fonts
from the same (new) source file (see [4]).
The most serious problem is that existing fonts cannot be converted this way.

� Modify METAFONT somehow to output Type1 fonts (or vector outlines) instead
of bitmaps.
Modifying the mf engine itself would require too much effort. Another way is to

modify only the output generation process of METAFONT by adding macros and
.log file processing scripts. Such utilities already exist (for example: mf2ps by
Daniel Berry and Shimon Yanai and the MF-PS package by Boguslav Jackowski),
but they no longer work, cannot comply the restrictions of the Type 1 format or
work only for .mf files specially written for using them.

� Interpret and execute .mf files directly, suppressing METAFONT altogether.
This would be as hard as to completely rewrite METAFONT from scratch having

Type 1 output capability in mind, because METAFONT is a full, complex program-
ming language and most .mf files make use of this complexity. A faithful rewrite
of METAFONT is really hard because there are too many (dirty) tricks in both the
language and the current implementation.

� Post-process METAFONT’s output.
Effectively, post-processing means tracing. This is what TEXtrace does. (F):

font quality is far from the best, because of hinting information is missing. Traced

204 Péter Szabó

fonts looks almost always ugly in low resolutions, unless (H) a hinting is inserted
manually, using a great deal of human resources. (S): font size can be reduced
with sophisticated tracing techniques, possibly exploiting the curve representation
model of the renderer. AutoTrace isn’t so sophisticated, so it generates somewhat
large fonts.

� Use METAPOST instead of METAFONT to interpret MF files. Post-process META-
POST’s output.

METAPOST is a METAFONT-clone with PostScript output. The PostScript it
generates is suitable for conversion to Type 1 outlines.
The commercial software MetaFog does this. It also makes the outline comply

restrictions in Type 1. Such a restriction is that all paths must be filled, not
stroked, and overlaps must be removed. It is theoretically possible to achieve this,
but currently no robust implementation exists, not even MetaFog.
There are fundamental problems with METAPOST itself. First, its language is

only a subset of METAFONT’s, so most fonts (including the EC fonts) don’t even
compile. Second, it cannot output strokes of elliptical or more complicated pens
(which is required by some fonts). So it is a matter of luck whether one can succeed
with METAPOST for a specific font.

� Apply a mixture of these methods.
For example, one may get most glyphs from existing Type 1 fonts, and trace

only the missing glyphs.

For the PDF problem
Our original goal was to find out a method for embedding TEX fonts into the PDF file
so that the document would look nice and display quickly in PDF viewers, especially
in Acrobat Reader.
It turned up that this can be ensured by inserting the fonts in some vector outline

format. The quality of the font (minimal file size, presence of good hinting) seemed
to be subsidiary when embeding it into PDF: current PDF viewers tend display even
medium-quality fonts nicely. The conversion target must be undoubtly a vector outline
format, but not necessarily Type 1. Another alternative is TrueType, which differs
from Type 1 in two main respects:

� Hinting mechanism is much better, fonts are eye-pleasing to read even on screen
and without antialiasing.

� It uses second order curves instead of third order (Bézier-) curves. Second level
curves approximate the outline less precisely, so more control points are needed to
achieve the quality of Type 1. This results larger file sizes.

For our intentions, neither of these respects is really relevant; the two font formats
provide an equally good solution for the problem. However, considering compatibility
issues, Type 1 turns out to be more adequate: it is older than TrueType, and more
TEX-related utilities support it. Moreover, Type 1 has no dialects, can be represented
in plain text canonically, and is easier to assemble and disassemble.

�������

Conversion of TEX fonts into Type1 format 205

Conclusion

For those dealing with computers, Ugly Bits are experienced in everyday life, not just
in memories. European TEX users have suffered for years because of an Ugly Bit in
font inclusion to PDF documents. With the appearance of TEXtrace, the problem
became less severe (and documents became much less ugly).
Font conversion retaining the quality of the original is almost as tough as designing

new fonts. For best results, both of them must be done manually. However, hand-
converting hundreds of similar fonts is an enormous work, needs expert level knowledge
and isn’t really inspiring. Probably that’s the reason why most of the TEX fonts
weren’t available in Type 1 format despite of the great need for it. (It is clear that the
conversion in high quality is possible.)
TEXtrace is an automatic and generic converter. It doesn’t provide the best quality

theoretically achievable in today’s technology and human resources, but its output is
good enough for most purposes. The three most important benefits of TEXtrace are
that it works for all TEX fonts (with a few technical exceptions), it runs completely
automatically, without any human intervention, and it is free.
Due to the reasons mentioned above, professional quality Type 1 variants of all

popular TEX fonts are not expected to appear for years. Until this happens, fonts
generated by TEXtrace will be the best alternative.

������

References

[1] Adobe Systems Inc. Adobe Type 1 Font Format. Addison–Wesley Publishing
Company, 1995.

[2] Alexander Berdnikov, Yury Yarmola, Olga Lapko and Andrew Janishewsky.
Some experience in converting LH Fonts from METAFONT to Type1 format.
Proceedings of the 2000 Annual Meeting, TUGboat, 21(3), 2000.

[3] Taco Hoekwater. Generating Type 1 Fonts from Metafont Sources. Proceedings
of the TUG conference, TUGboat 16(3), 1995.

[4] Boguslaw Jackowski, Janusz M. Nowacki and Piotr Strzelczyk. METATYPE1:
a METAPOST-based engine for generating Type 1 fonts. Proceedings of the
EuroTeX conference, 2001.

[5] Alan Jeffrey and Rowland McDonnell. fontinst – Font installation software for
TEX, fontinst v1.8. teTEX:doc/fontinst/fontinst.dvi.gz, 1998.

[6] Hàn Th´̂e Thành, Sebastian Rahtz and Hans Hagen. The pdfTEX user manual.
teTEX:doc/pdftex/base/pdftexman.pdf.gz, 1999.

[7] Tomas Rokicki. Dvips: A DVI-to-PostScript Translator. teTEX:doc/programs/
dvips.dvi.gz, 1997.

[8] George Williams. PfaEdit – A PostScript r© Font Editor, User’s manual. http:
//pfaedit.sourceforge.net/overview.html, 2000.

206 Péter Szabó

♦ ♦ ♦

Math typesetting in TEX:

The good, the bad, the ugly
Ulrik Vieth

abstract. Taking the conference motto as a theme, this papers examines the good,
the bad, and the ugly bits of TEX’s math typesetting engine and the related topic of
math fonts. Unlike previous discussions of math fonts, which have often focussed on
glyph sets and font encodings, this paper concentrates on the technical requirements
for math fonts, trying to clarify what makes implementing math fonts so difficult and

what could or should be done about it.

keywords: math typesetting, math fonts, symbol fonts, font metrics, font encodings

Introduction

The topic of math typesetting (in general) and math fonts (in particular) has been a
recurring theme at TEX conferences for many years. Most of the time these papers
and talks have focussed on developing new math font encodings [1–3], updating and
standardizing the set of math symbols in Unicode [4–6], or on implementing math fonts
for use with a variety of font families [7–11]. However, fundamental technical issues and
limitations of TEX’s math typesetting engine have only rarely been addressed [12–15],
usually in conjunction with a broader discussion of TEX’s shortcomings.

In this paper we shall examine the latter topic in detail, trying to clarify what are
the good, the bad, and the ugly bits of TEX’s math typesetting engine.

Math typesetting: some good and some bad news

Let’s start with the good news: Even after some twenty years of age, TEX is still very
good at typesetting math. While some other systems such as Adobe InDesign have
been catching up in the domain of text typesetting, even borrowing ideas from TEX’s
algorithms, math typesetting remains a domain where TEX is still at its best.

Whereas other systems usually tend to regard math as an add-on feature for a niche
market that’s very costly to develop and rarely pays off, math typesetting has always
played a central role in TEX. In fact, math typesetting has been one of the main
reasons why TEX was developed in the first place and why it has become so successful
in the academic community and among math and science publishers.

208 ulrik vieth

While there are some subtle details that TEX can’t handle automatically and that
might benefit from a little manual fine-tuning, TEX usually does a very good job of
typesetting properly-coded math formulas all by itself, without requiring users to care
about how TEX’s math typesetting engine actually works internally.

In general, an experienced TEX user, who has taken the time to learn a few rules and
pay attention to a few details, can easily produce publication-quality output of even
the most complicated math formulas by tastefully applying a few extra keystrokes
to help TEX a little bit. And even an average TEX user, who is unaware of all the
subtle details, can usually produce something good enough to get away with for use
in seminar papers or thesis reports, often producing better result than what a casual
user would get from so-called equation editors of typical word processors.

So, what’s the bad news, after all? Actually, the problems only begin to emerge
when leaving the user’s perspective behind and looking at TEX’s math typesetting
engine from the implementor’s point of view. While the quality of math typeset with
TEX is probably still unmatched, some aspects of the underlying math typesetting
engine itself are unfortunately far from perfect.

As anybody can tell, who has ever studied Appendix G of The TEXbook, trying
to understand what’s really going on when typesetting a math formula, TEX’s math
typesetting engine is a truly complicated beast, which relies on a number of peculiar
assumptions about the way math fonts are expected to be built. Moreover, there are
also some limitations and shortcomings where TEX begins to show its age.

Math typesetting: some technical background

Before we get into further details, it may be helpful to summarize how TEX’s math
mode differs from text mode and what goes on when typesetting text or math.

What goes on in text mode: \chars, fonts and glyphs

In text mode, when typesetting paragraphs of text, TEX essentially does nothing but
translate input character codes to output codes using the currently selected font,
assemble sequences of boxes and glue (i. e. letters or symbols represented by their font
metrics and interword spaces) into paragraphs, and subsequently break paragraphs
into lines and eventually lines into pages, as they are shipped out.

Whatever the levels of abstraction added by font selection schemes implemented in
complex macro packages such as latex or context, all typeset output is essentially
generated by loading a particular font (i. e. a specific font shape of a specific family
at a specific design size encoded in a specific font encoding) using the \font\f=〈font〉
primitive, selecting that font as the current font, and accessing glyphs from that font
through the code positions of the output encoding.

Most input characters typed on the keyboard (except for those having special
\catcodes for various reasons) are first translated to TEX’s internal encoding (based
on 7-bit ascii and the ^^ notation for 8-bit codes), from which they are further trans-
lated to output codes by an identity mapping. (There is no such thing as a global

math typesetting: the good, the bad, the ugly 209

\charcode table to control this mapping.) Additional letters and symbols (such as
\ss for ‘ß’) can be accessed through the \char〈code〉 primitive or by macros using
\chardef\c=〈code〉, where 〈code〉 depends on the font encoding.

In actual fact, there are, of course, some further complications to typesetting text
beyond this superficial description, such as dealing with ligatures, accented letters,
or constructed symbols. Moreover, there are additional input methods than just con-
verting characters typed on the keyboard or accessed through macros, such as using
active characters or input ligatures to access special characters, but we don’t want to
go too far into such encoding issues in this paper.1

What goes on in math mode: \mathchars, math symbols and math families

When it comes to math mode, things are, of course, a little more complicated than in
text mode. For instance, TEX doesn’t deal with specific fonts and character codes in
math mode, but uses the concepts of math families and math codes instead. Whereas
modern implementations of TEX provide room for several hundreds of text fonts, there
is a limit of only 16 math families, each containing at most 256 letters or symbols.
Compared to a text font, representing a specific font shape at a specific size, a math
family represent a whole set of corresponding symbol fonts, which are loaded at three
different sizes known as textstyle, scriptstyle and scriptscriptstyle.

In a typical setup of TEX, there should be at least four math families preloaded,
where family 0 is a math roman font, family 1 is a math italic font, family 2 contains
math symbols, and family 3 contains big operators and delimiters. Some assump-
tions about this are actually hard-wired into TEX, such as the requirement that the
fonts used in families 2 and 3 have to provide a number of \fontdimen parameters
controlling the placement of various elements of math formulas.

Any letter or symbol used in math mode, whether typed on the keyboard or accessed
through a macro, is always represented by a math code, usually written as 4-digit
hexadecimal number. In addition to specifying a math family and a character code,
the math code also encodes information about the type of a symbol, whether it is an
ordinary symbol, a big operator (such as ∫), a binary operator (such as +), a relation
(such as =), an opening or closing delimiter, or a punctuation character. (There is
also a special type of ordinary symbols, which are allowed to switch math families.
This particular type is mostly used for alphabetic symbols.)

The mapping of input characters typed on the keyboard to corresponding symbols
is controlled through a \mathcode table, which by default maps letters to math italics
and numbers to math roman. Additional math symbols including the letters of the
greek alphabet can be accessed by macros using \mathchardef\c=〈code〉, where 〈code〉
is a math code composed of type, math family and character code. In a similar way,
special types of symbols such as delimiters and radicals are handled using macros
involving \delimiter〈code〉 or \radical〈code〉.

1latex uses the inputenc and fontenc packages to deal with 8-bit input and output encodings
beyond 7-bit ascii. Most 8-bit input codes for accented letters are first mapped to replacement
macros through active characters. These, in turn, are subsequently mapped back to 8-bit output
codes. For a detailed discussion on what really goes on internally in the various processing stages
and what constitutes the subtle differences between characters, glyphs, and slots, see [16].

210 ulrik vieth

Considering the two-dimensional nature of typesetting math, it should be obvious
that there is much more to it than simply translating input math codes to output
character codes of specific fonts. In addition to choosing the proper symbols (based
on the math families and character codes stored in the math codes), it is equally
important to determine the proper size (based on the three sizes of fonts loaded in
each math family) and to place the symbols at the proper position relative to other
symbols with an appropriate amount of space in between. Here, the type information
stored in the math codes comes into play, as TEX uses a built-in spacing table to
determine which amount of space (i. e. either a thin space, medium space, thick space,
or no space at all) will be inserted between adjacent symbols.

Interaction between the math typesetting engine and math fonts

It is interesting to note that TEX’s math typesetting engine relies on a certain amount
of cooperation between its built-in rules, parameters set up in the format file, and
parameters stored in the font metrics of math fonts.

For example, when determining the spacing between symbols, the spacing table
that defines which amount space will be inserted is hard-wired into TEX, while the
amounts of space are determined by parameters such as \thinmuskip, \medmuskip
or \thickmuskip, which are set up in the format file. These parameters are defined
in multiples of the unit 1 mu = 1/18 em, which, in turn, depends on the font size.
Similarly, when processing complex sub-formulas, such as building fractions, attaching
subscripts and superscripts, or attaching limits to big operators, the actual typesetting
rules are, of course, built into TEX itself, whereas various parameters controlling the
exact placement are taken from \fontdimen parameters.

In view of the topic of this paper, it should be no surprise that such kind of close
cooperation between the math typesetting engine and the math fonts does not come
without problems. While there are good reasons why some of these parameters depend
on the font metrics, it might be a problem that their scope is not limited to the
individual fonts loaded in math families 2 and 3; they automatically apply to the
whole set of math fonts. (This is usually not a problem when a consistent set of math
fonts is used, but this assumption might break and might lead to problems when trying
to mix and match letters and symbols from different sets of math fonts.)

Specific problems of TEX’s math fonts

After reviewing the technical background of math typesetting, we shall now look into
some specific problems of TEX’s math typesetting engine. In particular, we will focus
on those problems that make it hard to implement new math fonts.

Glyph metrics of ordinary symbols: When the tfm width isn’t the real width . . .

Perhaps the most irritating feature of TEX’s math fonts is the counter-intuitive way,
in which glyph metrics are represented differently from those of text fonts. Normally,
the font metrics stored in tfm files contain four fields of per-glyph information for
each character or symbol: a height (above the baseline), a depth (below the baseline),

math typesetting: the good, the bad, the ugly 211

(a)VV VV (b)V̂ V̂ (c)V̂ V̂
figure 1: Placement of accents in text mode and math mode, comparing cmti10 and cmmi10

at 40 pt. (a) Comparing the glyph widths and side-bearings for text italic and math italic.
(b) Comparing the results of TEX’s default algorithm for accent placement, producing
slightly different results for slightly different metrics of text italic and math italic.
(c) Comparing the results of TEX’s \accent and \mathaccent primitives, illustrating the
correction due to \skewchar kerning.

a width, and an italic correction (which might be zero for upright fonts). In math fonts,
however, glyph metrics are interpreted differently. Since additional information needs
to be stored within the framework of the same four fields of per-glyph information,
some fields are interpreted in an unusual way: The width field is used to denote the
position where subscripts are to be attached, while the italic correction field is used
to denote the offset between the subscript and superscript position. As a result, the
real width isn’t directly accessible and can only be determined by adding up the width
and italic correction fields. Moreover, the information stored in the width field usually
differs from the real width, which causes subsequent problems.

Most importantly, this peculiar representation of glyph metrics causes a lot of extra
work for implementors of math fonts, since they can’t simply take an italic text font
and combine it with a suitable symbol font to make up a math font. Instead the
metrics taken from an italic text font have to be tuned by a process of trial and error
and subsequent refinements to arrive at optimal values for the placement of subscripts
and superscripts as well as for the side-bearings of letters and symbols.

Placement of math accents: When you need a \skewchar to get it right . . .

Another problem related to glyph metrics arises as an immediate consequence of the
previous one. Since the width field of the glyph metrics of math fonts doesn’t contain
the real glyph width, TEX’s default algorithm for placing and centering accents or
math accents doesn’t work, and a somewhat cumbersome work-around was invented,
the so-called \skewchar mechanism. The basic idea is to store the shift amounts to
correct the placement of math accents in a set of special kern pairs in the font metrics.
To this effect, a single character of each math font (usually a non-letter) is designated
as the \skewchar and kern pairs are registered between all other characters that may
be accented (letters or letter-like symbols) and the selected \skewchar.

As in the previous case, the most important problem of the \skewchar mechanism
(apart from being hack) is that it causes extra work to implementors of math fonts.
Instead of being able to rely on TEX’s default algorithm for the placement of accents,
the \skewchar kern pairs have to be tuned to arrive at optimal values. Moreover,
the choice of the \skewchar has to be considered carefully to avoid interference with
normal kern pairs in math fonts, such as between sequences of ordinary symbols or
between ordinary symbols and delimiters or punctuation.

212 ulrik vieth√√ (()) [[]] {{ }} 〈〈 〉〉
figure 2: Glyph metrics of big radicals and delimiters in math extension fonts (showing
cmex10 at 40 pt). The height above the baseline matches exactly the default rule thick-
ness, as required for the rule part of radicals. All glyphs of the same size are placed in
the same position to cope with limitations of the tfm file format.

(Another problem related to kerning in math fonts is that TEX doesn’t support
kerning between multiple fonts, so it isn’t possible to define kern pairs between upright
and italic letters taken from different fonts, but that’s another story.)

Glyph metrics of big symbols: When glyphs hang below the baseline . . .

Another quite different problem related to glyph metrics, which occurs only in the
math extension font, is the placement of big symbols (big operators, big delimiters
and radicals) within their bounding boxes. As anyone will have noticed, who has ever
printed out a font table of cmex10 using testfont.tex or has looked at Volume E of
Computers & Typesetting, most symbols in the math extension font have very unusual
glyph metrics, where the glyphs tend to hang far below the baseline.

The reasons for this are a little complicated and quite involved. To some extent
they are due to technical requirements, such as in the case of big radicals where the
height above the baseline is used to determine the rule thickness of the horizontal rule
on top of a root. However, in other cases, such as big operators and delimiters, there
are no technical requirements for the unusual glyph metrics (at least not in TEX82)
and the reasons are either coincidental or due to limitations of the tfm file format,
which doesn’t support more than 16 different heights and depths in one font.

(Incidently, the height of big radical glyphs is usually exactly the same as the default
rule thickness specified in the \fontdimen parameters, so one could have used just
that instead of relying on the glyph metrics to convey this information.)

What is particularly irritating about this problem is that math fonts featuring such
glyph metrics are usually not usable with any other typesetting system besides TEX.
While TEX automatically centers operators, delimiters and radicals on the math axis,
most other systems expect to find glyphs in an on-axis position as determined by the
type designer. It therefore becomes extremely hard, if not impossible, to develop math
fonts equally usable with TEX and with other math typesetting systems. (The font
set distributed with Mathematica avoids this problem by providing two different sets
of radicals, occupying different code positions in the font encoding.)

Extensible delimiters: When the intelligence lies in the font . . .

Speaking of math extension fonts, there is another issue related to the way intelligence
and knowledge is distributed between math fonts and TEX itself. As was mentioned
before, TEX uses so-called math codes to represent all kinds of math symbols, encoding

math typesetting: the good, the bad, the ugly 213

a type, a family and a code position in a 4-digit hexadecimal number. Depending on
the type, however, this might not be everything to it, as further information might
also be hidden in the font metrics of math fonts.

While ordinary symbols are represented by a single glyph in the output encoding,
big operators usually come in two sizes known as textstyle and displaystyle. However,
TEX’s macro processor only uses a single math code (and hence, only a single code
position) to represent the smaller version of a big operator, while it is left to the font
metrics of the relevant math font to establish a link to the bigger version through a
so-called charlist in the font metrics. (This kind of font information is, of course, also
accessible to TEX’s typesetting engine, but not to the macro processor.)

In a similar way, the big versions of delimiters and radicals also rely on the font
metrics to establish a chain of pointers to increasingly bigger versions of the same glyph
linked through a charlist. Additionally, the last entry of the chain might represent
an entry point to a so-called extensible recipe, referencing the various building blocks
needed to construct an arbitrarily large version of the requested symbol.

What is extremely confusing about this, is that the code positions used to access
extensible recipes could be completely unrelated to the actual content of these slots.
In some cases, they might be chosen carefully, so that the slots used as entry points
are the same as those containing the relevant building blocks. In other cases, however,
an entry point might be chosen simply because it isn’t already used for anything else,
but it might actually refer to glyphs taken from completely different slots.

Limitations and missing features of the math typesetting engine

So far, we have looked at some specific problems that are often brought up when
discussing the difficulties of implementing new math fonts for TEX. While TEX works
perfectly well as it is currently implemented, some of these very peculiar features may
well be considered examples of bad or ugly design that are worth reconsidering. Apart
from that, there are also some limitations as to what TEX’s math typesetting engine
can do and what it can’t do. Therefore, there is also some food for thought regarding
additional features that might be worth adding in a successor to TEX.

Size scaling and extra sizes in Russian typographical traditions

As explained in detail in Appendix G of The TEXbook, the functionality of TEX’s math
typesetting engine is based on a relatively small number of basic operations, such as
attaching subscripts and superscripts, applying and centering math accents, building
fractions, setting big operators and attaching limits, etc. In these basic operations,
TEX relies on some underlying concepts of size, such as that there are four basic styles
known as displaystyle, textstyle, scriptstyle and scriptscriptstyle, which are chosen
according to built-in typesetting rules that can’t be changed.

As was pointed out in [17], however, these built-in typesetting rules and the under-
lying concepts of size might not really be sufficient to cover everything needed when it
comes to dealing with specific requirements for traditional Russian math typesetting,
which has quite different rules than what is built into TEX.

214 ulrik vieth

While TEX only supports two sizes of big operators in textstyle and displaystyle,
Russian typography requires an additional bigger version (as well as an extensible
version of a straight integral) for use with really big expressions. Similarly, while TEX
essentially uses only three sizes to go from textstyle to scriptstyle and scriptscriptstyle
in numerators and denominators of fractions or in subscripts and superscripts, Russian
typography calls for another intermediate step, making it necessary to have a real
distinction between the font sizes used in displaystyle and in textstyle.

Extensible wide accents and over- and underbraces

While changes to fundamental concepts such as the range of sizes in math mode would
have far-reaching consequences that are very difficult to assess and to decide upon,
there are other potentially interesting features that might be easier to implement, even
within the framework of the existing tfm file format.

One such example would be extensible versions of wide accents, which might also
be used to implement over- and underbraces in a more natural way. The reason why
this would be possible is simply that the tfm file format supports charlist entries
and extensible recipes for any glyph. It only depends on the context whether or not
these items are looked at and taken into account by TEX. In the case of delimiters
and radicals, TEX supports a series of increasingly bigger versions linked through a
charlist as well as an extensible recipe for a vertically extensible version. In the case of
wide accents, however, TEX only supports a series of increasingly wider versions linked
through a charlist, but no extensible recipe for a horizontally extensible version, even
if the font metrics would support that.

Given a new mechanism for horizontally extensible objects similar to the existing
mechanism for vertically extensible delimiters, it would also be possible to reimplement
over- and underbraces in a more natural way, without having to rely on complicated
macros for that purpose. (The font set distributed with Mathematica already contains
glyphs for over- and underbraces in several sizes as well as the building blocks for
extensible versions. Moreover, the Mathematica font set also contains similar glyphs
for horizontally extensible versions of parentheses, square brackets and angle brackets,
which don’t exist in any other font set.)

Under accents, left subscripts and superscripts

Two other examples of potentially interesting new features would be mechanisms
for under accents and for left subscripts and superscripts. While support for under
accents might be feasible to implement given that over accents are a special type of
node in TEX’s internal data structures anyway, adding support for left subscripts and
superscripts would certainly be more complicated, considering that right subscripts
and superscripts are an inherent feature of all types of math nodes.

As for an implementation of under accents in the framework of the existing tfm file
format, it would probably be necessary to resort to another cumbersome workaround
similar to the \skewchar mechanism in order to store the necessary offset information.
A macro solution for under accents that uses reversed \skewchar kern pairs has already
been developed in the context of experimental new math font encodings [2].

math typesetting: the good, the bad, the ugly 215

Summary and Conclusions

What are the reasons for all these problems?

It is pretty obvious that most of the problems of math fonts discussed in this paper
can be traced back to the time when TEX was developed more than twenty years ago.
Given the scarcity and cost of computing power, memory and disk space at that time
(in the late 1970s and early 1980s), it is no surprise that file formats such as tfm files
for font metrics were designed to be compact and efficient, providing only a limited
number of fields per glyph and a limited number of entries in lookup tables.

Based on such a framework, compromises and workarounds such as overloading some
fields in math fonts to store additional information were unavoidable, even though such
hacks damaged the clarity of design and eventually lead to other problems, requiring
even further hacks to deal with the consequences (such as the \skewchar mechanism
to compensate for the fact that the tfm width didn’t represent the real glyph width).
In view of this, it is no surprise that overcoming limitations (such as being limited to
16 math families or 16 tfm heights and depths) is the highest priority on the wish list
before cleaning up other problems or adding new features.

What’s good, what’s bad, what’s ugly?

Speaking of good, bad and ugly bits, the conference motto suggests: “First of all,
keep up the good bits and extend them if possible. Analyze the ugly bits, learn from
them, and find easy and generic ways to get around them. Finally, find the bad bits
and eradicate them!” By these standards most of the problematic features discussed
in this paper can probably be classified as ugly bits, with very few exceptions that
might also be considered bad bits, whereas some (but not all) of the suggested new
features could be summarized as extending the good bits.

As for extending the good bits, adding extensible versions of wide accents or support
for under accents might be feasible examples, that could be implemented relatively
easily, whereas other suggested new features such as adding support for left subscripts
and superscripts or introducing additional sizes might have far-reaching consequences
that should be considered with care, so as not to introduce new problems.

As for eradicating the bad bits, reconsidering the algorithm for typesetting radicals
might be a high priority item on the wish list. As suggested by [13], using a repeated
glyph for the rule part instead of a horizontal rule whose height depends on the glyph
metrics might be a feasible solution for a better implementation.

As for learning from the ugly bits and finding better ways to get around them, start-
ing over with a completely new font metrics format as suggested in [15] to overcome
the current limitations would certainly help to avoid most of the remaining problems.
Given that compactness of file formats and efficiency of store are no longer real issues
with modern computers, it would be no problem to use a human-readable verbose file
format and to extend the font metrics by any number of additional fields as needed
to convey additional information. This way, many problems caused by overloading
certain fields of the glyph metrics or resorting to workarounds such as the \skewchar

mechanism could all be avoided. Considering that, there is hope that dealing with
math fonts could eventually become much easier than it is today!!!

216 ulrik vieth

references

[1] Alan Jeffrey. Math font encodings: A workshop summary. TUGboat, 14(3):293–
295, 1993.

[2] Matthias Clasen and Ulrik Vieth. Towards a new Math Font Encoding for
(la)tex. Cahiers GUTenberg, 28–29:94–121, 1998. Proceedings of the 10th
European TEX Conference, St. Malo, France, March 1998.

[3] Ulrik Vieth. Summary of math font-related activities at EuroTEX ’98. MAPS,
20:243–246, 1998.

[4] Taco Hoekwater. An Extended Maths Font Set for Processing MathML.
In EuroTEX’99 Proceedings, pages 155–164, 1999. Proceedings of the 11th
European TEX Conference, Heidelberg, Germany, September 1999.

[5] Patrick Ion. MathML: A key to math on the Web. TUGboat, 20(3):167–175,
1999.

[6] Barbara Beeton. Unicode and math, a combination whose time has come –
Finally! TUGboat, 21(3):176–186, 2000.

[7] Alan Jeffrey. PostScript font support in latex2ε. TUGboat, 15(3):263–268,
1994.

[8] Thierry Bouche. Diversity in math fonts. TUGboat, 19(2):121–134, 1998.

[9] Alan Hoenig. Alternatives to Computer Modern Mathematics. TUGboat,
19(2):176–187, 1998.

[10] Alan Hoenig. Alternatives to Computer Modern Mathematics. TUGboat,
20(3):282–289, 1999.

[11] Richard J. Kinch. Belleek: A call for METAFONT revival. TUGboat, 19(3):244–
249, 1998.

[12] Berthold Horn. Where are the math fonts? TUGboat, 14(3):282–284, 1993.

[13] Matthias Clasen. Ideas for improvements to TEX’s math typesetting in ε-tex/
NTS. unpublished paper, available from http://www.latex-project.org/

papers/etex-math-notes.pdf, 1998.

[14] David Carlisle. Notes on the Oldenburg ε-tex/latex3/context meeting.
unpublished paper, available form http://www.latex-project.org/papers/

etex-meeting-notes.pdf, 1998.

[15] NTG TEX Future Working Group. TEX in 2003: Part I: Introduction and
Views on Current Work. TUGboat, 19(3):323–329, 1998.

[16] Lars Hellström. Writing ETX format font encoding specifications. unpub-
lished paper, available from http://abel.math.umu.se/~lars/encodings/

encspecs.tex, 2001.

[17] Alexander Berdnikov. Russian Typographical Traditions in Mathematical Lit-
erature. In EuroTEX’99 Proceedings, pages 211–225, 1999. Proceedings of the
11th European TEX Conference, Heidelberg, Germany, September 1999.

♦ ♦ ♦

‘Typography’ and production of manuscripts

and incunabula
Paul Wackers

abstract. This paper describes how the modern type of books slowly came into
existence during the middle ages. The first printers modeled their products on these

handwritten books but needed – in time – some adjustments because of the differences
in production between a manuscript and a printed book and because of the differences

between producing for a patron or for an anonymous mass market.

keywords: Typography, manuscript, incunabulum

W
hen we try to produce well-structured books that are also pleasing to the

eye, we stand in a tradition of more than twenty centuries. The appearance
of modern western books, however, slowly developed during the middle ages

and got its definitive form in the decades round 1500, the first phase of book printing in
Europe. Most classical books had the form of scrolls but ‘our’ type of books, the codex
form, came into existence before the beginning of the fifth century. The typographical
conventions we follow, however, developed during the middle ages.

The Romans had two types of script: a ‘capital’ font used for inscriptions and
formal writing, and a ‘cursive’ font for personal use. The second type became the
book script of the early middle ages. In the seventh century, probably first on the
British Isles, these two were combined. One used single capital letters in the ‘cursive’
script to mark the beginning of sentences. This is the beginning of the use of capitals
and lower case in texts. Somewhat later the usage came into existence to distinguish
words by placing blanks in between. (In classical books all letters form one big mass.)
At the same time also the first punctuation signs were developed.

Capitals are used to distinguish sentences from each other. But most texts need
also ‘higher’ structures. To mark these ‘sections’ initials were developed, again in the
seventh century. Initials are larger letters (two, three, sometimes even more lines high)
which have often a different color and some decoration. Because these initials could
not be placed in the middle of normal text, they always came at the beginning of a
text line or in the margin. Thus also the idea of paragraphs developed.

This principle was gradually expanded. One got used to a hierarchy of initials and
other signs to mark specific elements of texts (e.g. paragraph signs: ¶)

When the need arose to add information to the main text which was related to it
but not part of it (e.g. explanatory notes) this happened in smaller script, sometimes

218 wackers

between the lines of the main text but often in the margins. These ‘notes’ are called
glosses. This is the beginning of our system of (foot)notes. The links between main
text and glosses was indicated by signs or by repeating some words from the main
text (the lemma) in the gloss.

In the early middle ages most books had pages with only one column of text on
each page (as in most of our books) but in the later middle ages most books had two
columns. This was caused by a wish to fill the pages as much as possible. The most
easily produced format of parchment was so wide that if one filled its width wholely
with only one line, this made reading difficult. Hence the system with the two smaller
columns was developed. This combined an optimum of text on a page with a good
readability.

The first printed books, normally called incunabula, were produced to look like hand
written books. After all everyone was used to that type of book. Because printing
could only be done in one color, this implied that the printed pages needed to be
completed manually afterwards. Initials, paragraph signs, chapter headings in red,
etc. were separately added in most copies.

This last part of the production of printed books was the most expensive part, so
printers sought ways to reduce the costs. Woodcuts were introduced als illustrations
instead of miniatures and also woodcut initials were developed that could be used
during the printing process instead of being added afterwards. Within a hunderd
years the manually completion of printed books disappeared.

A major difference between a manuscript and a printed book is that the first is
always a unique object and the second must be produced in large numbers to be
economically successful. The owner of a manuscript knows what he possesses, so he
does not need an indication of the contents. The potential buyer of a printed book
does not have this information but has need of it. To fill this need first colophons
were printed which gave some information about content and printer, but soon a title
page was developed which offered information about the book and which functioned
also as advertising.

During the conference these changes in lay out and production will be illustrated
by means of a series of images, from a fifth century Virgil manuscript to sixteenth
century fable collections. Special attention will be given to Gutenberg, the first printer
in European history.

I N T R O D U C T I O N

For the past five centuries type has been cut in wood and cast in metal. The idea
that a computer program could design type where letterforms are represented by
procedures which draw each letter with lines and beziér curves has appeared recently.
More than twenty centuries of build-up knowledge about geometry and curves proved
to be applicable in this transition.

In 1977 the first METAFONT fonts were created by D. E. Knuth. In 1984 the
first PostScript Type 1 fonts were created by Adobe Systems.

In Knuth’s approach, shapes are designed in a declarative manner and are drawn
with ‘simulated pens’. In other words, the relationships which convey the idea of
the design are encapsulated in a set of parameters and described in the language of
algebra. Computer has to figure how to satisfy those conditions and produce the
digitized image. For example, we could state that one curve should touch another in
the middle, or that a pair of curves should cross at right angle. The Adobe approach
is simpler. Shapes are described in an imperative manner. The outline of the letter is
desribed by a series of curves and this outline is filled with ‘ink’. Although Knuth’s
programs allow to generate endless variations of shapes, the world wide standard
become Adobe’s Type 1 outline font system, possibly because it is much easier to
draw something than to explain how to draw it.

TYPE

W8lodek Bzyl
matwb@univ.gda.pl

Nowadays, a great number of documents are produced every day.
Many authors would like their documents to stand out from the
rest not only by content but also by typographic design. For this
purpose one may use decorative letters, ornaments, dingbats
and special fonts. If each document would have to look different
from all the others a great many fonts and font deviations are
needed. This could be achieved by combining the METAPOST
language with the type 3 font format. This new font creation
technology enables users endless single-use-only variations in
weight and width, style and size, and in color. A new level of
control over the embellishment level of fonts in documents is
thereby achieved.

220 wJlodek bzyl

The PostScript language contains another method for defining a font named
Type 3. It employs almost all the usual PostScript operators including color. Color
inclusion could be vieved as an important extension to the old metal technology
where letters are printed in ink color. Unfortunately current versions of PostScript do
not cache color or grey images, so they are executed each time they are printed. This
could slow down printing considerably. Maybe this extra added inefficiency made
Type 3 fonts so rare species. But, even with today technology, there are areas where
these fonts could make printed texts more readable, personalized and attractive.
These include [2, p. 8–9]:

Display fonts — designed to catch the eye. Used in titles, headings, posters, signs
and adverbs.
Decorative fonts — designed to convey a statement or a particular mood. Their
choice depends on the job at hand. They are very susceptible to the vagaries
of fashion. These include: initial caps, ornaments, tilings, emotional (smileys),
logos.
Speciality fonts — designed for particular purposes. Areas catered for include:
phonetic symbols, mathematical operators, musical notation, dingbats and
various oddities.

In 1989 the METAPOST system appeared. The author, J. D. Hobby, realised the
power of Knuth’s approach and its weakness in outputing black & white bitmaps.
So he created a system which implements a picture drawing language like Knuth’s
METAFONT except it outputs PostScript commands instead of bitmaps. Because
Type 3 fonts have a very simple format it is possible to postprocess METAPOST

output and to create a Type 3 font.
I start with a quick glance into the past to show the use of special fonts in old

books. Then, back to the future. In this section, I would like to draw your attention
to several examples of Type 3 fonts usage. In the next two sections, I describe how
to create a Type 3 font with METAPOST and how easy is to open Pandora’s fonts
box. There I propose a way of controling of multitude derived fonts. In appendices,
I present a detailed description of Type 3 font format and basic METAPOST library
supporting development of Type 3 fonts.

T Y P O G R A P H I C A L J O U R N E Y
The first two figures are taken from the books published by the Kelmscott Press.
This publishing house was established and run by William Morris. Letterforms are
derived from his own studies in printing history. The letterforms are chosen for
their decorative quality. The third figure is taken from “The Art of Illuminating”
by Matthew Dingby Wyatt and W. R. Tymms. This book described the pioneering
efforts of its authors in the research of letterforms and manuscript illumination.

Note the use of ornaments and initial caps in Fig. 1. There is no ‘bézierness’
in their shapes, so I can hardly imagine to program them. In Fig. 2, in the text at

reintroducing type 3 fonts 221

Fig. 1. Kelmscott Press: The Story, 1891

the bottom, dingbats are used to fill unwanted white space. Similar shapes can be
found in contemporary computer fonts. The letter ‘P’ in Fig. 3 was hand colored.
I think that existing computer tools cannot make creating such a beauty possible.
Knuth [8] writes: “I do not believe that mathematical methods will resolve all the
problems of digital typography; but I do believe that mathematics will help.” This
should be no suprise. It will always be possible to create shapes with a brush or
chisel for which there is no mathematical description of their elegance and magic.
But I do believe that new font technologies will make typographers and programmers
collaborate eventually in a similiar manner as today designers and architects do.

So, let’s go on and explore what new computers have to offer.

B A C K T O T H E F U T U R E

Colored fonts. In traditional typography fonts could not be multicolored. “Poor
men” substitutes for coloring is overlaying letters with patterns or using color inks.
With Type 3 fonts created in METAPOST, shape, size, sidebearings, weight and
colors could be adjusted to match surrounding text.

222 wJlodek bzyl

Fig. 2. Frontispiece: News form Nowhere, 1892

Computer
Typography

1. Introduction to MetaPost

2. Constructions with compass and ruler

3. Introduction to TEX

4. Typography basics

5. Computer fonts

reintroducing type 3 fonts 223

Fig. 3. M. D. Wyatt. The Art of Illuminating

Special symbols. In [11, p. v] Knuth writes: “In order to make it possible for
many types of users to read this manual effectively, a special sign is used to designate
material that is for wizards only: When the symbol

appears at the beginning of a paragraph, it warns of a ‘dangerous bend’ in the train
of thought; don’t read the paragraph unless you need to.” This idea calls for more
special symbols. Here are a few more examples [18, 19, 10].

No man can be a pure specialist without being in the strict sense an idiot.

Were we faultless, we would not derive such satisfaction from remarking the
faults of others.

STOP Type design can be hazardous to your other interests. Once you get hooked,
you will develop intense feelings about letterforms; the medium will intrude on

the messages that you read. And you will perpetually be thinking of improvements
to the fonts that you see everywhere, especially those of your own design.

Frames. In [5] Gibbons writes: “Sadly, there is a shortage of good symbols for
creating such ornaments; not many typographic elements come in eight different
orientations! However, there is nothing to stop you designing your own symbols.”
You can not agree with that statement, can you [19].

224 wJlodek bzyl

A life without festivities is
a long road without inns

Various oddities Math is plenty difficult in normal type. Programmers realized
that their programs are easier to comprehend when typeset in color. So, what about
coloring math formulas?

Or about having your own signature and stamps:

reintroducing type 3 fonts 225

3
.1

4 1
5 9 26535

8
9
7
9
3

23846264
3
3
 WB

In this article I have used more Type 3 fonts than was really necessary, so it is high
time to show how to create one.

D E V E L O P I N G T Y P E 3 F O N T
Fonts are collections of shapes. A computer font is prepared in the form of a computer
program. There are several kinds of fonts. Each type of font has its own convention
for organizing and representing the information within it. The PostScript language
defines the following types of fonts [3, p. 322]: 0, 1, 2, 3, 9, 10, 11, 14, 32, 42. Text
fonts are mostly of Type 1. They are programmed with the special procedures. To
execute efficiently and to produce more legible output, these procedures, use features
common to collection of black & white letter-like shapes. They may not be used
outside Type 1 font. While any graphics symbol may be programmed as a character
in a Type 1 font, non-letter shaped symbols are better served by the Type 3 font
program which defines shapes with ordinary PostScript procedures including these
which produce color. Other font types are used infrequently.

Although Type 3 fonts are PostScript programs I prefer to program shapes in
the METAPOST language and convert mpost output into Type 3 font, because the
METAPOST language simplifies the programming due to its declarative nature. In
PostScript each curve is build from lines, arcs of circle and beziér curves. For
complicated shapes this requires a lot of nontrivial programming. METAPOST

implements ‘a magic recipe’ [10] for joining points in a pleasing way. This helps a lot.
Even if you are not satisfied with the shape, you can give the program various hints
about what you have in mind, therefore improving upon automatically generated
curve.

To use a font with TEX the font metric file is required. It contains data about
width, height and depth of each shape from the font. Because mpost could generate
metric file on demand, fonts prepared with METAPOST are immediately usable with
TEX.

Creation of a Type 3 font is multi step process.

1. A font must be imagined and designed.
2. It must be programmed. METAPOST does not support that, but a specially

created library of procedures does.
3. The program must be compiled.
4. The files thus created must be assembled into a font. This task is done by a

PERL program.

226 wJlodek bzyl

Additionally, the font must be made available to TEX and instructions must be given
to tell TEX to switch to this font.

METAPOST itself does not support font creation. So I have written a special
type3 library. It provides very basic routines for font creation. These include macros
for glyph and font administration, macros for annotations of hardcopy proofs, and
finally, macros which helps in the process of converting separate glyphs into a font.
The convertion is done by a PERL program named mptot3. This program was
designed after MF2PT3 tool [16] that generates a Type 3 font that correspond to a
METAFONT program.

Here is an example.
Let us create a font which contain one character— plus. Use an ascii text editor,

it does not have to be your favorite — any such editor works, to create a file called
plus-000.mp that contains the following lines of text.

Each font program should name the font it creates.

font_name "Plus-000";

These names are merely comments which help to understand large collections of
PostScript fonts.

family_name "Plus";

font_version "0.0final";

is_fixed_pitch true;

and following names play similiar rôle in the TEX world.

font_identifier:="PLUS 000";

font_coding_scheme:="FONT SPECIFIC";

The mpost program does all its drawing on its internal ‘graph paper’. We establish
100× 100 coordinate space on it.

grid_size:=100;

The font matrix array is used to map all glyphs to 1 × 1 coordinate space. This
PostScript convention allows consistent scaling of characters which come from different
fonts.

font_matrix

(1/grid_size,0,0,1/grid_size,0,0);

This particular font matrix will scale a plus shape by the factor 1/100 in the x
dimensions and by the same factor in the y dimension. If we had choosen scaling
by the factor 1/50 then plus shape would have appeared twice bigger comparing to
characters from other fonts.

The data below provides information about how to typeset with this font. A font
quad is the unit of measure that a TEX user calls one ‘em’ when this font is selected.
The normal space, stretch, and shrink parameters define the interword spacing when
text is being typeset in this font. A font like this is hardly ever used to typeset
anything apart from the plus, but the spacing parameters have been included just in
case somebody wants to typeset several pluses separated by quads or spaces.

reintroducing type 3 fonts 227

font_quad:=100;

font_normal_space:=33;

font_normal_stretch:=17;

font_normal_shrink:=11;

Another, more or less, ad hoc unit of measure is x_height. In TEX this unit is
available under the name ‘ex’. It it used for vertical measurements that depend on
the current font, for example for accent positioning.

font_x_height:=100;

The plus font is an example of a parametrized font. A single program like this could
be used to produce infinite variations of one design. For example, by changing the
parameters below we could make the plus character to paint in different color, change
width or change the stem width.

color stem_color;

stem_color:=red;

u:=1; % unit width

stem_width:=10;

The mode_setup macro could be used to override all the settings done above.
Typically, it is used to tell the mpost program to generate a font metric file or
proofsheets. Additionaly, mode_setup could execute any piece of valid METAPOST

code at this point. For example, we could change the stem color to blue and the stem
width to 5 units. The code to be executed could be read from a separate file (see the
next section how to prepare and use such a file). Thus we can make a variation of
this design or re-parameterize the font without changing the master plus-000.mp file.
Such a mechanism is required. Otherwise, we populate our hard disks with similiar
files.

mode_setup;

Type3 library makes it convenient to define glyphs by starting each one with:

beginpic (〈code〉, 〈width〉, 〈height〉, 〈depth〉)
where 〈code〉 is either a quoted single character like "+" or a number that represents
the glyph position in the font. The other three numbers say how big the glyph
bounding box is. The endpic finishes the plus glyph.

Each beginpic operation assigns values to special variables called w, h, and d,
which represent respective width, height, and depth of the current glyph bounding
box. Other pseudo-words are part of METAPOST language and are explained in [6].

beginpic("+",100u,100,0); "+ plus";

interim linecap:=butt;

drawoptions(withcolor stem_color);

pickup pencircle scaled stem_width;

draw (0,h/2)--(w,h/2);

draw (w/2,0)--(w/2,h);

endpic;

Finally, each font program should end with the bye command.

228 wJlodek bzyl

SIGN-000.MP

1

2

3

4

5

0

beginpic(127, 250, 125, 0); "Dangerous bend";
draw post ; draw info signboard ;
clearxy;
% the dangerous bend
numeric heavyline; heavyline := 27;
x5 = w − x0; x5 − x0 = 80; x1 = x2 = x5; x0 = x3 = x4;
y0 = −y5 = 1/2 h; y1 = −y4 = 1/3 h; y2 = −y3 = 1/11 h;
pickup pencircle scaled heavyline;
interim linecap := butt ;
draw z0 - - z1{z1 − z0} . . z2 - - - z3 . . z4{z5 − z4} - - z5

withcolor c.Dangerous Bend ;
labelcolor := white; dotcolor := white;
labels lft(1, 2, 3, 4, 5); labels rt(0);

endpic;

11:57 11 VII 2001 7

Fig. 4. Hardcopy proof of Signpost-500

bye

The last two steps are easy. We compile this file under LINUX with a command (or
something analogous for other operating systems)†:

mpost -mem=type3 plus-000.mp

This step produces the font metric file and the PostScript commands which draw the
plus shape. Finally, we collect the results of compilation into a Type 3 font with the
PERL program:

mptot3 plus-000

To use ‘plus font’ in a TEX document it suffices to insert these lines:

\font\plusf=plus-000 at 10pt

\centerline{\plusf +\quad+ +++ +\quad+}

This code produces the seven pluses below.

A font cannot be proved faultless. If some glyphs are defective, the best way to
correct them is to look at big hardcopy proof that shows what went wrong. For
example, the hardcopy proof above could be be generated with the following shell
commands:

mpost -mem=type3 ’\mode=proof ; \

input sign-000.mp’

tex \\input mproof sign-000.127

dvips mproof -o

† Unfortunately, the author does not know such commands for other operating
systems.

reintroducing type 3 fonts 229

Actually, the proof above contains some code which was pretty printed with mft tool
(which is also a part of any TEX distribution).

M A N A G I N G F O N T S
Note that it is not wise to make one-time-only variation of a font by changing the
font source. This kind of data multiplication resembles viruses spreading. To change
font parameters mode_setup in conjuction with change_mode macro should be used.
Again, I think that this concept is best explained by an example.

Assume that fictitious document doc.tex uses two fictitious Type 3 fonts named:
SuperFoo, SmashingBar , and the font programs reside in the files foo.mp, bar.mp.

To re-parameterize these fonts create file doc.mp with the following content:

mode_def doc_foo =

final_; % create metric file and execute:
metapost code for SuperFoo

enddef;

mode_def doc_bar =

final_;

metapost code SmashingBar
enddef;

Then create font metric files, Type 3 fonts, and dvips fontmap files with the following
commands (see Appendix B for an explanation):

mpost -mem=type3 \

’\change_mode("doc","doc_foo"); \

input foo.mp’

mptot3 -fontmap=foo.map foo.mp

mpost -mem=type3

’\change_mode("doc","doc_bar"); \

input bar.mp’

mptot3 -fontmap=bar.map bar.mp

It is convenient to concatenate fontmap files:

cat foo.map bar.map > doc.map

Now, we can compile doc.tex with:

tex doc.tex

and convert produced doc.dvi to PostScript with the command:

dvips -u doc.map doc.dvi -o

This should generate file named doc.ps which could be viewed and printed, for
example with the gv program.

F O N T D E S I G N T O T H E P E O P L E
Although the problems of letterform design are extremely subtle, more than most
people think, because our machines and our eyes interact with the shapes in

230 wJlodek bzyl

complicated ways [8], these arguments do not necessarily apply to Type 3 fonts.
Special purpose designs, for example geometric ones, could be programmed even by a
rank one amateur designer and programmer. The article proves this last statement, I
hope.

The font design is a fun. So, I decided to make available over a WEB all the
tools and fonts created during preparation of this manuscript.

The master sources, which hopefully reached the beta stage, could be picked up
from the following URL:

ftp.gust.org.pl/pub/TeX/fonts/mtype3.

There you will find the file named README. It contains detailed installation instructions.
Then turn to the files called Makefile. Most of them are very simple. They
encapsulate actions needed to create hardcopy proofs, fonts, etc. There are separate
directories with examples of use and a booklet presenting all fonts.

R E F E R E N C E S
[1] Adobe Systems Incorporated. 1985. Tutorial and Cookbook. Addison Wesley,

221–228.

[2] Adobe Systems Incorporated. 1992. The PostScript Font Handbook. Addison
Wesley.

[3] Adobe Systems Incorporated. 1999 (3rd ed.). PostScript Language Reference
Manual. Addison Wesley.

[4] Per Cederqvist et al. 1993. Version Management with CVS (for version 1.10.8).
Available online with the CVS package. Signum Support AB.

[5] Jeremy Gibbons. 1999. “Hey — it works!” (Hints & Tricks). TUGboat 20,
367–370.

[6] John D. Hobby. 1992. A user’s Manual for MetaPost. Technical Report 162.
AT&T Bell Laboratories, Murray Hill / New Jersey. Available online as a part
of METAPOST distribution.

[7] Bogus8law Jackowski at all. 1999. “Antykwa Pó8ltawskiego: a parametrized outline
font”. EuroTEX 99 Proceedings. Ruprecht-Karls-Univerität Heidelberg, 117–141.

[8] Donald E. Knuth. 1982. “The Concept of a Meta-Font”. Visible Language 16,
3–27.

[9] Donald E. Knuth. 1985. “Lessons Learned from METAFONT”. Visible Language
19, 35–53.

[10] Donald E. Knuth. 1986. The METAFONTbook. American Mathematical Society
and Addison Wesley.

[11] Donald E. Knuth. 1988. “A Punk Meta-Font”. TUGboat 9, 152–168.

[12] Donald E. Knuth. 1988. “Virtual Fonts: More Fun for Grand Wizards”. TUGboat
11, 13–23.

[13] Donald E. Knuth. 1992. Computer Modern Typefaces. Addison Wesley.

[14] Donald E. Knuth. 1994. The TEXbook. American Mathematical Society and
Addison Wesley.

reintroducing type 3 fonts 231

[15] Richard M. Stallman and Roland McGrath. 2000. GNU Make (for version 3.79).
Available online as a part of GNU MAKE package.

[16] Apostolos Syropoulos. 2000. The MF2PT3 tool. Available online from www.

obelix.ee.duth.gr/~apostolo.

[17] La Rochefoucauld. 1655-1678. Maxims.

[18] George B. Shaw. 1903. From the Revolutionist’s Handbook.

[19] Democritus. ca 400 B.C. Ethical Precepts.

A P P E N D I X A
Here the format of Type 3 font is described. This description is somehow
simplified with the respect to examples to be found in [1] and [3].

Each font should begin with two lines of comments.

%!PS-Adobe-2.0: Square 1.00

%%CreationDate: 1 May 2001

A Type 3 font consists of a single dictionary, possibly containing other
dictionaries, with certain required entries. The dictionary of size 99 should suffice
for fonts which consists of several characters.

99 dict begin

This dictionary should include following entries:

Variable FontType indicates how the character information is organized; for
Type 3 fonts it has to be set 3.

Variable LanguageLevel set to minimum language level required for correct
behavior of the font.

Array FontMatrix transforms the character coordinate system into the user
coordinate system. This matrix maps font characters to one-unit coordinate
space, which enables PostScript interpreter to scale font characters properly.
This font uses 1000-unit grid.

Array of four numbers FontBBox gives lower-left (lx, ly) and upper-right
(ux, uy) coordinates of the smallest rectangle enclosing the shape that would
result if all characters of the font were placed with their origins coincident,
and then painted. This information is used in making decisions about
character caching and clipping. If all four values are zero, no assumptions
about character bounding box are made.

/FontType 3 def

/LanguageLevel 2 def

/FontMatrix [0.001 0 0 0.001 0 0] def

/FontBBox [0 0 1000 1000] def

FontInfo dictionary is optional. All info stored there is entirely for the benefit
of PostScript language programs using the font, or for documentation.

FamilyName— a human readable name for a group of fonts. All fonts that
are members of such a group should have exactly the same FamilyName.

232 wJlodek bzyl

FullName— unique, human readable name for an individual font. Should
be the same name as one used when registering the font with definefont
operator below.
Notice— copyright, if applicable.
Weight— name for the “boldness” attribute of a font.
version— version number of the font program.
ItalicAngle— angle in degrees counterclockwise from the vertical of the
dominant vertical strokes of the font.
isFixedPitch— if true, indicates that the font is a monospaced font;
otherwise set false.
UnderlinePosition— recommended distance from the baseline for posi-
tioning underlining strokes (y coordinate).
UnderlineThickness— recommended stroke width for underlining, in units
of the character coordinate system.

/FontInfo <<

/FamilyName (Geometric)

/FullName (Square)

/Notice (Type 3 Repository.

Copyright \(C\) 2001 Anonymous.

All Rights Reserved.)

/Weight (Medium)

/version (1.0)

/ItalicAngle 0

/isFixedPitch true

/UnderlinePosition 0.0

/UnderlineThickness 1.0

>> def

Array Encoding maps character codes (integers) to character names. All unused
positions in encoding vector must be filled with the name .notdef. It is special in
only one regard: if some encoding maps to a character name that does not exist
in the font, .notdef is substituted. The effect produced by executing .notdef

character is at the discretion of the font designer, but most often it is the same
as space.

/Encoding 256 array def

0 1 255 {Encoding exch /.notdef put} for

CharacterProcedures dictionary contains individual character definitions. This
name is not special. Any name could be used, but this name is assumed by the
BuildGlyph procedure below.

/CharacterProcedures 256 dict def

Each character must invoke setcachedevice or setcharwidth operator before
executing graphics operators to define and paint the character. The setcache-

device operator stores the bitmapped image of the character in the font
cache. However, caching will not work if color or gray is used. In such cases

reintroducing type 3 fonts 233

the setcharwidth operator should be used. It is similiar to setcachedevice

(explained below), but it declares that the character being defined is not to be
placed in the font cache.

wx wy lx ly ux uy setcachedevice –

wx, wy — comprise the basic width vector, ie. the normal position of the
origin of the next character relative to origin of this one
lx, ly, ux, uy — are the coordinates of this character bounding box

wx wy setcharwidth –

wx wy — comprise the basic width vector of this character

CharacterProcedures /.notdef {

1000 0 0 0 1000 1000 setcachedevice

1000 0 moveto

} put

Encoding 32 /space put

CharacterProcedures /space {

1000 0 0 0 1000 1000 setcachedevice

1000 0 moveto

} put

Encoding 83 /square put % ASCII ‘S’

CharacterProcedures /square {

1000 0 setcharwidth

0 1 1 0 setcmykcolor % red

0 0 1000 1000 rectfill

} put

Procedure BuildGlyph is called within the confines of a gsave and a grestore,
so any changes BuildGlyph makes to the graphics state do not persist after it
finishes.

BuildGlyph should describe the character in terms of absolute coordinates
in the character coordinate system, placing the character origin at (0, 0) in this
space.

The Current Transformation Matrix (CTM) and the graphics state is
inherited from the environment. To ensure predictable results despite font
caching, BuildGlyph must initialize any graphics state parameters on which
it depends. In particular, if BuildGlyph executes the stroke operator, it
should explicitly set: dash parameters, line cap, line join, line width. These
initializations are unnecessary, when characters are not cached, for example if
the setcachedevice operator is not used.

When a PostScript language interpreter tries to show a character from a
font, and the character is not already present in the font cache it pushes on
the operand stack: current font dictionary and character name. The BuildGlyph

procedure must remove these two objects from the operand stack and use this
information to render the requested character. This typically involves finding the
character procedure and executing it.

234 wJlodek bzyl

/BuildGlyph { % stack: font charname

exch

begin

% initialize graphics state parameters

% turn dashing off: solid lines

[] 0 setdash

% projecting square cap

2 setlinecap

% miter join

0 setlinejoin

% thickness of lines rendered by

% execution of the stroke operator

50 setlinewidth

% the miter limit controls the stroke

% operator’s treatment of corners;

% this is the default value and it

% causes cuts off mitters at

% angles less than 11 degrees

10 setmiterlimit

CharacterProcedures exch get exec

end

} bind def

currentdict

end % of font dictionary

Finally, we register the font name as a font dictionary defined above and associate
it with the key Square. Additionally the definefont operator checks if the font
dictionary is a well-formed.

/Square exch definefont pop

If the following lines are not commented out the Ghostscript program (a
public domain PostScript interpreter) will show the text below online. Obviously,
these lines should be commented out in the final version of the font program.

/Square findfont

72 scalefont setfont

0 72 moveto (S) show

showpage

M E T A P O S T M A C R O S F O R T Y P E 3 F O N T S

T Y P E 3 D R I V E R F I L E
This driver file serves as chief executive for the files which supports Type 3 font
generation process.

reintroducing type 3 fonts 235

When the equality below is true, this file has been input.

if base name = "type3": endinput fi

The first few lines usually give the base file a name and version number.

string base name, base version ; base name = "type3"; base version = "1.27";
message "Preloading the type3 mem file, version "& base version ;

Supporting macros are divided into several files.

input type3adm % glyph and font administration.
input type3mop % modes of operation
input type3pf % support for hardcopy proofs
input type3ps % PostScript specific items.

endinput

G L Y P H A N D F O N T A D M I N I S T R A T I O N
Each glyph is build between beginpic . . . endpic. The beginpic was designed
after plain beginchar macro. Each beginpic begins a group, which end at the
next endpic. Then the given glyph code is stored and character box dimensions
in mpost internal variables charwd, charht, chardp and it sets box dimensions w,
h, and d. Finally it clears the z variables, the current picture, and the current
pen. TEX needs to know the size of each characters’s “bounding box”. A total of
four dimensions is given for each character:
• charwd, the width of the bounding box
• charht, the height above baseline of the bounding box
• chardp, the depth below baseline of the bounding box
• charic, the character “italis’s correction”.

The mpost records the value of its internal quantities, and writes them onto tfm

file, at the time of shipit command.

def # = /(grid size/designsize) enddef ;

def beginpic(expr c, width, height , depth) = % character code c
begingroup
charcode := if known c: byte c else: 0 fi;
w := width; h := height ; d := depth;
charic := 0; clearxy; clearit; clearpen;
drawoptions();
scantokens extra beginpic;

enddef ;

def italcorr expr x = if x > 0: charic := x# fi enddef ;

newinternal proofscale ; proofscale := 1;

236 wJlodek bzyl

Glyph widths are written onto file named 〈jobname〉.pcw. These widths are read
by mptot3 script which uses them as parameters to the PostScript setcharwidth
operator.

def endpic = scantokens extra endpic;
write decimal charcode & ":" & decimal w to jobname& ".pcw";
charwd := w#; charht := h#; chardp := d#;
if proofing > 0: makebox(proofrule);

currentpicture := currentpicture scaled proofscale ;
fi
shipit;
endgroup

enddef ;

def shipit = if proofing ≥ 0:
shipout currentpicture transformed (identity shifted (xoffset , yoffset)) fi

enddef ;
newinternal xoffset , yoffset ;

string extra beginpic, extra endpic;
extra beginpic = extra endpic = "";

The designsize of a font is another internal quantity that is output to tfm file.
When a TEX user asks for a font ‘at’ a certain size, the font is scaled by the
ratio between the “at size” and the “design size”.
The designsize must be at least 1 pt and must be less than 2048 pt and every
dimension of the font should be less than 16 times the design size in absolute
value.
The “design size” is an imprecise notion, because there need be no connection
between the design size and any specific measurement in a font. It is something
like dress size or shoe sizes. For Type 3 fonts we set the design size to
100 bp, which seems to be a good compromise between the accuracy of the
mpost calculations and the maximum size of a grid.

designsize := 100;

It is suggested that fonts use a 1000-unit grid. This is the default grid size used
in Type 1 fonts programs.

newinternal grid size; grid size := 1000;

The other type information that appears in tfm file applies to a font as a whole.
These include numeric data specified in “fontdimen” commands. Note that math
symbols fonts are required to have at least 22 fontdimen parameters and math
extensions at least 13.

def font slant expr x = fontdimen 1: x enddef ; % no hash here!
def font normal space expr x = fontdimen 2: x# enddef ;
def font normal stretch expr x = fontdimen 3: x# enddef ;

reintroducing type 3 fonts 237

def font normal shrink expr x = fontdimen 4: x# enddef ;
def font x height expr x = fontdimen 5: x# enddef ;
def font quad expr x = fontdimen 6: x# enddef ;
def font extra space expr x = fontdimen 7: x# enddef ;

def font identifier expr x = font identifier := x enddef ;
def font coding scheme expr x = font coding scheme := x enddef ;

string font identifier , font coding scheme ;
font identifier = font coding scheme = "UNSPECIFIED";

TEX relies on lots of parameters when it typesets math formulas. He will not
typeset a math formula unless symbol fonts contain at least 22 fontdimen
parameters.

vardef font num @# expr x = if (@# < 1) or (@# > 3):
errmessage "Wrong suffix to font_num: "& decimal @#

else: fontdimen 7 + @#: x# fi
enddef ;

vardef font denom @# expr x = if (@# < 1) or (@# > 2):
errmessage "Wrong suffix to font_denom"& decimal @#

else: fontdimen 10 + @#: x# fi
enddef ;

vardef font sup @# expr x = if (@# < 1) or (@# > 3):
errmessage "Wrong suffix to font_sup"& decimal @#

else: fontdimen 12 + @#: x# fi
enddef ;

vardef font sub @# expr x = if (@# < 1) or (@# > 2):
errmessage "Wrong suffix to font_sub"& decimal @#

else: fontdimen 15 + @#: x# fi
enddef ;

def font sup drop expr x = fontdimen 18: x# enddef ;
def font sub drop expr x = fontdimen 19: x# enddef ;

vardef font delim @# expr x = if (@# < 1) or (@# > 2):
errmessage "Wrong suffix to font_delim"& decimal @#

else: fontdimen 17 + @#: x# fi
enddef ;

def font axis height expr x = fontdimen 22: x# enddef ;

Extension fonts should contain at least 13 fontdimen parameters.

def font default rule thickness expr x = fontdimen 8: x# enddef ;

vardef font big op spacing @# expr x = if (@# < 1) or (@# > 5):
errmessage "Wrong suffix to font_big_op_spacing"&decimal @#

238 wJlodek bzyl

else: fontdimen 8 + @#: x# fi
enddef ;

endinput

M O D E S O F O P E R A T I O N
The standard way to create a Type 3 font is to start up the mpost program by
saying

mpost -mem=type3 \mode=〈mode name〉; input 〈font program〉
and afterwards to collect glyphs created by mpost into a Type 3 font with Perl
script

mptot3 〈font program〉
The mode is omitted if mode=final. The mode name should have been predeclared
in your base file, by the mode def routine below. If, however, you need special
modes that aren’t in the base, you can put its commands into a file (e.g.,
‘specmodes.mp’) and invoke it by saying

mpost -mem=type3 \change mode("specmodes", 〈mode name〉);
input 〈font program〉

instead of giving a predeclared mode name.

Here is the mode setup routine, which is usually one of the first macros to be
called after a font program establishes the values of all font parameters. The first
‘scantokens’ in mode setup either reads a special file or calls a macro that
expands into commands defining the mode.

transform currenttransform; def t = transformed currenttransform enddef ;

def mode setup = if unknown mode: mode = final ; fi
numeric aspect ratio; transform currenttransform;
if unknown aspect ratio: aspect ratio = 1; fi
if string mode: scantokens("input "&mode);

for i := 1 upto number of modes :
if mode name[i] = requested mode : scantokens mode name[i]; fi

endfor
else: scantokens mode name[mode];
fi
scantokens extra setup; % the user’s special last-minute adjustments
currenttransform :=

if unknown currenttransform: identity else: currenttransform fi
yscaled aspect ratio;

clearit;
enddef ;

def change mode(expr file name, mode name) =
string mode; mode := file name;

reintroducing type 3 fonts 239

requested mode := mode name & "_"

enddef ;
string requested mode ;

string extra setup, mode name[];
extra setup = ""; % usually there’s nothing special to do

When a mode is defined (e.g., ‘proof’), a numeric variable of that name is
created and assigned a unique number (e.g., 1). Then an underscore character
is appended, and a macro is defined for the resulting name (e.g., ‘proof_’).
The mode name array is used to convert between number and name (e.g.,
mode name1 = proof_).

def mode def suffix $ =
$:= incr number of modes ;
mode name[$] := str $ & "_";
expandafter quote def scantokens mode name[$]

enddef ;
newinternal number of modes ;

Three basic modes are now defined, starting with two for proofing.

Proof mode — for initial design of characters.

mode def proof =
proofing := 2; % yes, we’re making full proofs
fontmaking := 0; % no, we’re not making a font
tracingtitles := 1; % yes, show titles online

enddef ;

Smoke mode — for label-free proofs.

mode def smoke =
proof ; % same as proof mode, except:
proofing := 1; % yes, we’re making unlabeled proofs
fontmaking := 0; % no, we’re not making a font
let makebox = maketicks; % make the boxes less obtrusive

enddef ;

Final mode — a typical mode for font generation (note, that we get a TEX font
metric file if mpost internal quantity fontmaking is positive at the end of our
job).

mode def final =
proofing := 0; % no, we’re not making proofs
fontmaking := 1; % yes, we are making a font
tracingtitles := 0; % no, don’t show titles at all
prologues := −2; % high resolution bounding box.

enddef ;

240 wJlodek bzyl

newinternal grayproofing ;

mode def grayproof =
proofing := 2; % yes, we’re making full proofs
fontmaking := 0; % no, we’re not making a font
tracingtitles := 1; % yes, show titles online
grayproofing := 1; % use ‘proofcolor’ for drawing

enddef ;

localfont := final ; % the mode most commonly used to make fonts

It is not likely that additional modes are needed, but if they are, additional
mode def commands should be in another input file that gets loaded after the plain
base. The auxiliary file should set base version := base version & "/localname"

P R O O F L A B E L S A N D R U L E S
The next main section of type3.mp is devoted to macros for the annotations on
proofsheets.

newinternal proofing; % < 0 to supress output; > 1 to do labels
color proofcolor ; % color for output when proofing > 0
proofcolor = .3[white , black];
color background ; background = white ;
color dotcolor , labelcolor ; dotcolor = black ; labelcolor = black ;

newinternal defaultdotsize ; defaultdotsize := 3;
newinternal defaultrulethickness ; defaultrulethickness := 1;

Labels are generated at the lowest level by makelabel and makepiclabel:

Put string s near point z.

vardef makelabel @#(expr s, z) = picture p;
if proofing > 1: if known z:

p = s infont defaultfont scaled defaultscale ;
draw p shifted

(z + labeloffset ∗ laboff
@#−

(labxf
@#∗lrcorner p+labyf

@#∗ulcorner p+(1−labxf
@#−labyf @#)∗llcorner p))

withcolor labelcolor ;
interim linecap := rounded ;
draw z withpen pencircle scaled defaultdotsize
withcolor dotcolor ;

fi
fi

enddef ;

Put string s near point z shifted by shift and scaled by scale.

vardef makepiclabel @#(expr s, z, shift , scale) =

reintroducing type 3 fonts 241

save zz ; pair zz ; zz = z shifted shift scaled scale;
makelabel @#(s, zz);

enddef ;

Users generally don’t invoke makelabel directly, because there’s a convenient
shorthand. For example, ‘labels(1, 2, 3)’ expands into ‘makelabel("1", z1);
makelabel("2", z2); ‘makelabel("3", z3)’ (But nothing happens if proofing ≤
1.)

vardef labels @#(text t) =
forsuffixes $ = t: makelabel @#(str $, z$); endfor

enddef ;

vardef piclabels @#(expr shift , scale)(text t) =
forsuffixes $ = t: makepiclabel @#(str $, z$, shift , scale); endfor

enddef ;

vardef penlabels @#(text t) = forsuffixes $$ = l, , r: forsuffixes $ = t:
makelabel @#(str $$$, z$.$$); endfor endfor

enddef ;

vardef picpenlabels @#(expr shift , scale)(text t) =
forsuffixes $$ = l, , r: forsuffixes $ = t:

makepiclabel @#(str $$$, z$.$$, shift , scale); endfor endfor
enddef ;

When there are lots of purely numeric labels, you can say, e.g.,

labels(1, range 5 thru 9, range 100 thru 124, 223)

which is equivalent to ‘labels(1, 5, 6, 7, 8, 9, 100, 101, . . . , 124, 223)’. Labels are
omitted from the proofsheets if the corresponding z value isn’t known, so it
doesn’t hurt (much) to include unused subscript numbers in a range.

def range expr x = numtok [x] enddef ;
def numtok suffix x = x enddef ;
tertiarydef m thru n = m for x = m + 1 step 1 until n: , numtok [x] endfor
enddef ;

A straight line will be drawn on the proofsheet by proofrule.

def proofrule(expr w, z) =
begingroup interim linecap := squared ;
draw w . . z withpen pencircle scaled defaultrulethickness
withcolor proofcolor
endgroup

enddef ;

You can produce lots of proof rules with makegrid, which connects an arbitrary
list of x coordinates with an arbitrary list of y coordinates:

242 wJlodek bzyl

def makegrid(text xlist , ylist) =
xmin := min(xlist); xmax := max(xlist);
ymin := min(ylist); ymax := max(ylist);
for x = xlist : proofrule((x, ymin), (x, ymax)); endfor
for y = ylist : proofrule((xmin , y), (xmax , y)); endfor

enddef ;

vardef labelfont suffix $ = defaultfont := str $ enddef ;

def makebox(text r) =
for y = 0, h, −d: r((0, y), (w, y)); endfor
for x = 0, w: r((x, −d), (x, h)); endfor

enddef ;

def maketicks(text r) =
for y = 0, h, −d: r((0, y), (w/10, y)); r((w − w/10, y), (w, y)); endfor
for x = 0, w: r((x, h/10− d), (x, −d)); r((x, h− h/10), (x, h)); endfor

enddef ;

MACROS FOR FILLING AND ERASING

def pc = hide(if grayproofing > 0: def pc = do pc enddef ; else: def pc =
enddef ; fi) pc
enddef ;
def do pc = withcolor proofcolor enddef ;

def fill expr c = addto currentpicture contour c t op pc enddef ;

def draw expr p = addto currentpicture
if picture p: also p
else: doublepath p t withpen currentpen
fi op pc

enddef ;

def filldraw expr c = addto currentpicture contour c t withpen currentpen
op pc

enddef ;
def drawdot expr z = addto currentpicture contour makepath currentpen

shiftedz t op pc
enddef ;

endinput

T Y P E 3 S P E C I F I C I T E M S
One of required entries in each font dictionary is the array FontMatrix. This
array is used by a PostScript interpreter to transform glyph coordinate system

reintroducing type 3 fonts 243

into the user system coordinate system. This matrix maps font characters to
one-unit coordinate space, which enables PostScript interpreter to scale font
characters properly. It is suggested that fonts use a 1000-unit grid. This implies
the following FontMatrix:

FontMatrix [.001 0 0 .001 0 0] def

But what matrix is used is up to user, as long as the FontMatrix would
be adjusted accordingly. The FontMatrix will be read from a file named
〈jobname〉.par. The parameters written to this file are read by the mptot3 script.

A two dimensional transformation is described in math as 2× 3 matrix[
a b tx
c d tx

]

In the PostScript language, this matrix is represented as a six-element array
object

[a b c d tx ty]

For example, scaling by the factor sx in the x dimension and sy in the y
dimension is accomplished by the matrix:[

sx 0 0
0 sy 0

]

or by an array object:
[sx 0 0 sy 0 0]

def font matrix(expr a, b, c, d, tx , ty) = write "FontMatrix ["&
decimal a & " " & decimal b & " " & decimal c & " " & decimal d&

" " & decimal tx & " " & decimal ty & "]" to jobname& ".par"

enddef ;

Each PostScript font has a name and belongs to some family, has attached
version etc. These parameters are written onto jobname.par file too.

def font name expr name = write "FontName "&nametojobname&".par"

enddef ;
def family name expr name = write "FamilyName "& name to jobname&
".par"

enddef ;
def font version expr x = write "FontVersion "& x to jobname& ".par"

enddef ;
def is fixed pitch expr b = write "isFixedPitch "&

if b: "true" else: "false" fi to jobname& ".par"

enddef ;

endinput

♦ ♦ ♦

Literate Programming
not just another pretty face

M.A. Guravage (NLR)

abstract. The structure of a software program may be thought of as a “web” that
is made of many interconnected pieces. To document such a program, we want to

explain each individual part of the web and how it relates to its neighbors. – D.E.K.

My association with literate programming was love at first sight. I admired the
crisp form and clear content of the programs I read. I simply became jealous; I
wanted my programs to look and work like that. When I first read Professor Knuth’s
description of a program as a “web” of interconnections, I became curious whether
the pattern of connections particular to literate programs could be modeled, analyzed,
and quantified.

The most obvious model to represent information about the relationship between
the pieces of a web is a graph. Graphs have been used extensively to model all sorts
of relationships, and the theory of graph metrics is well developed. The trick is to
interpret the various standard graph metrics, e.g. flow, width, depth, size, and edge-
to-node ratio, in the context of a web’s literate structure. If the same can be done for a
traditional program’s call-graph structure, it might be possible to compare objectively
literate and traditional programming styles.

The two graphs below represent two different metrics applied to the same literate
program. The left graph was created using an ‘activation’ metric; that correctly
identified, in thick blue, the main conceptual threads through the program. The right
graph was created using an ‘upward flow’ metric; that colored yellow the paths to
nodes most often reused.

Using graph visualization software developed at CWI in Amsterdam, I hope to
show how various metrics can shed light onto the structure of both literate and tradi-
tional programs. For example, a measure called ‘tree impurity’ can tell us how far a
graph deviates from being a tree, might allow us to compare literate and traditional
programming styles.

literate programming 245

