
NUMMER 29 • NAJAAR 2003

R E D A K T I E

Wybo Dekker, waarnemend hoofdredakteur
Frans Goddijn
Taco Hoekwater
Siep Kroonenberg
Piet van Oostrum

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

Voorzitter
Hans Hagen

pragma@wxs.nl

Secretaris
Willi Egger

w.egger@boede.nl

Penningmeester
Wybo Dekker

wybo@servalys.nl

Bestuursleden
Erik Frambach

erik.frambach@planet.nl

Frans Goddijn
frans@goddijn.com

Karel Wesseling
k.h.wesseling@planet.nl

Postadres
Nederlandstalige TEX Gebruikersgroep

Maasstraat 2
5836 BB Sambeek

Postgiro
1306238

t.n.v. NTG, Deil
SWIFT/BIC-code: ING BNL 2A

IBAN-code: NL05PSTB0001306238

E-mail bestuur
ntg@ntg.nl

E-mail MAPS redaktie
maps@ntg.nl

WWW
www.ntg.nl

Copyright © 2003 NTG

De Nederlandstalige TEX Gebruikersgroep (NTG) is een vereniging die tot doel heeft
de kennis en het gebruik van TEX te bevorderen. De ntg fungeert als een forum voor
nieuwe ontwikkelingen met betrekking tot computergebaseerde document-opmaak in het
algemeen en de ontwikkeling van ‘TEX and friends’ in het bijzonder. De doelstellingen
probeert de ntg te realiseren door onder meer het uitwisselen van informatie, het orga-
niseren van conferenties en symposia met betrekking tot TEX en daarmee verwante pro-
grammatuur.
De ntg biedt haar leden ondermeer:

2 Tweemaal per jaar een ntg-bijeenkomst.
2 Het ntg-tijdschrift maps.
2 De ‘TEX Live’-distributie op dvd/cdrom inclusief de complete ctan software-

archieven.
2 Verschillende discussielijsten (mailing lists) over TEX-gerelateerde onderwerpen,

zowel voor beginners als gevorderden, algemeen en specialistisch.
2 De ftp server ftp.ntg.nl waarop vele honderden megabytes aan algemeen te

gebruiken ‘TEX-producten’ staan.
2 De www server www.ntg.nl waarop algemene informatie staat over de ntg,

bijeenkomsten, publicaties, en links naar andere TEX sites.
2 Korting op (buitenlandse) TEX-conferenties en -cursussen en op het lidmaatschap van

andere TEX-gebruikersgroepen.

Lid worden kan door overmaking van de verschuldigde contributie naar de ntg-giro (zie
links); vermeld iban- zowel als swift/bic-code en selecteer shared cost. Daarnaast dient
via www.ntg.nl een informatieformulier te worden ingevuld. Zonodig kan ook een papie-
ren formulier bij het secretariaat worden opgevraagd.
De contributie bedraagt e 40; voor studenten geldt een tarief van e 20. Dit geeft alle
lidmaatschapsvoordelen maar geen stemrecht. Een bewijs van inschrijving is vereist. Een
gecombineerd ntg/tug-lidmaatschap levert een korting van 10% op beide contributies
op. De prijs in euro’s wordt bepaald door de dollarkoers aan het begin van het jaar. De
ongekorte tug-contributie is momenteel $65.

MAPS bijdragen kunt u opsturen naar maps@ntg.nl, bij voorkeur in LaTEX- of ConTEXt
formaat. Bijdragen op alle niveaus van expertise zijn welkom.

Productie. De Maps wordt gezet met behulp van een LaTEX class file en een ConTEXt
module. Het pdf bestand voor de drukker wordt aangemaakt met behulp van pdfetex 1.11b
Web2C 7.5.2 draaiend onder Linux 2.4. De gebruikte fonts zijn Adobe Times-Roman met
Old Style Figures, Adobe Frutiger en de vrije txfonts fontset.

TEX is een door professor Donald E. Knuth ontwikkelde ‘opmaaktaal’ voor het letter-
zetten van documenten, een documentopmaaksysteem. Met TEX is het mogelijk om
kwalitatief hoogstaand drukwerk te vervaardigen. Het is eveneens zeer geschikt voor
formules in mathematische teksten.
Er is een aantal op TEX gebaseerde producten, waarmee ook de logische structuur van
een document beschreven kan worden, met behoud van de letterzet-mogelijkheden van
TEX. Voorbeelden zijn LaTEX van Leslie Lamport, AMS-TEX van Michael Spivak, en
ConTEXt van Hans Hagen.

Inhoudsopgave
Nummer 29, najaar 2003

Redactioneel, Wybo Dekker 1

32e NTG-bijeenkomst, Frans Goddijn 2

TEX user groups worldwide – what’s cooking?, Erik Frambach 6

LaTEX: een newbie-ervaring, Koen Wybo 10

BachoTEX2003, Kees van der Laan 15

Toolbox, Wybo Dekker 24

Docbook In ConTEXt, Simon Pepping 26

Drawing Message Sequence Charts with LaTEX, Sjouke Mauw and Victor Bos 38

Labels voor gevaarlijke stoffen met LaTEX, Roland Smith 44

Aligning Metapost graphs in ConTEXt combinations, Karel H Wesseling 50

Drawing a type-case in ConTEXt, Willi Egger 53

Optisch uitvullen in de Maps, Siep Kroonenberg 60

Installing fonts in LaTEX: a user’s experience, Ferdy Hanssen 61

The Font Installation Guide, Philipp Lehman 65

Najaar 2003 iii

Redactioneel

Wybo Dekker
wybo@servalys.nl

Voor u ligt het negenentwintigste nummer van de maps.
Het is het eerste nummer van dit jaar en het zal ook het
enige nummer blijven. De oorzaak hiervan is dat binnen
de redactie en met name bij de hoofdredacteur, Johannes
Braams, te weinig tijd beschikbaar was om de leden, u dus,
achter de vodden te zitten en u te bewegen tot het opschrij-
ven van een verhaal over een van de vele leuke en voor
anderen interesssante dingen die u met TEX doet. Johannes
Braams heeft daarom besloten zijn functie terug te geven
en het bestuur heeft Niels Moes bereid gevonden om zijn
taak over te nemen. Niels is echter nog druk bezig met het
schrijven van zijn proefschrift en zal daarom pas over en-
kele maanden zijn functie kunnen gaan uitoefenen. Hij zal
de hoofdredacteur voor de voorjaars-maps van 2004 wor-
den.

Tegenover die niet verschenen maps staat, dat we u dit
jaar nog zullen verblijden de TEXlive distributie 2003 (die
deze keer ook de ctan-dump bevat en uit twee cdroms en
een dvd bestaat) en met een prachtig handzaam boekje van
de hand van Hans Hagen en Willi Egger, dat een overzicht
geeft van alle outline fonts die op de nieuwe TEXlive dis-
tributie beschikbaar komen.

Verder heeft het bestuur Ernst van der Storm bereid ge-
vonden de maps-redactie te versterken. De redactie zal dus
bestaan uit Niels Moes, Piet van Oostrum en Ernst van der
Storm. Daarnaast zullen Frans Goddijn en ikzelf vanuit het
bestuur de redactie voorlopig blijven ondersteunen.

Dat wil niet zeggen dat Siep Kroonenberg en Taco
Hoekwater zich niet meer met de maps zullen bemoeien:
integendeel, zij zullen het leeuwendeel van het werk blij-
ven verrichten. Zij vormen het productie-team, dat zich
primair richt op de vormgeving en het zetten van de maps.

Bij gebrek aan een actieve redactie is de voor u liggende
maps grotendeels door Frans Goddijn en mijzelf bijeen-
gebracht en we denken dat we daar, in intensieve samen-
werking met Siep Kroonenberg, in geslaagd zijn; en dat is
vooral daaraan te danken dat we enkelen van u bereid heb-
ben gevonden het hart uit te storten:

2 Frans Goddijn levert een eloquent en rijk geïllustreerd
verslag van de 32e ntg-bijeenkomst.

2 Erik Frambach laat zien dat ook andere Local
Users Groups niet ontkomen aan problemen bij het
produceren van hun tijdschriften en dat niet alleen...

2 Koen Wybo beschrijft zijn ervaringen als beginneling
op LaTEX-gebied en geeft een overzicht van veel
documentatie-bronnen,

2 Kees van der Laan doet uitgebreid verslag van de
BachoTEX2003.

2 Wybo Dekker probeert de Toolbox weer nieuw leven
in te blazen.

2 Simon Pepping laat zien hoe conTEXt kan worden
gebruikt om DocBook documenten te zetten,

2 van twee niet-NTG-leden, Sjouke Mauw en Victor Bos
hebben we een interessant verhaal uit TUGboat mogen
overnemen over het tekenen van Message Sequence
Charts.

2 Roland Smith laat zien hoe hij etiketten die we in
doe-het-zelf zaken en drogisterijen nog wel eens
tegenkomen in LaTEX genereert.

2 Karel Wesseling laat zien hoe metapost-figuren
onderling kunnen worden uitgelijnd,

2 Willi Egger gunt ons een blik in een ouderwetse zetkast
en laat en passant zien hoe de \btable ... \etable
omgeving gebruikt kan worden om een lade daaruit te
tekenen.

2 Siep Kroonenberg heeft een primeur met de toepassing
van pdfTEX’s protruding characters in onze mapsen
schrijft er een prijsvraag zonder prijzen over uit.

2 Ferdy Hanssen neemt ons mee op de queeste van
enkele font-istallaties. Hij verwijst daarbij naar Philipp
Lehman’s Font Installation Guide:

2 en last, but not least: we willen meer aandacht gaan
schenken aan fonts. Daarom is in dit nummer een
facsimile opgenomen van de buitengewoon heldere
en practisch bruikbare Font Installation Guide van
Philipp Lehman.

We wensen u veel leesplezier!

Najaar 2003 1

communityFrans Goddijn

32e NTG-bijeenkomst

Voor de 32e NTG-bijeenkomst was “vorm en inhoud” als thema vastgesteld. Een thema
waarvan je denkt “dat we daar niet eerder op zijn gekomen.” Tal van onderwerpen passen
immers in die jas.

We waren voor de derde maal te gast in het Arnhemse Hotel Haarhuis. Na de koffie in
de bekende wandelgangen van het hotel begonnen we de dag met een ledenvergadering.
Van het bestuur zaten voorzitter Hans Hagen en secretaris Willi Egger aan de tafel voorin
de zaal. Eerst dreigde de hele agenda (notulen, mededelingen, ingekomen stukken…) in
vijf minuten gedaan te zijn, inclusief vrolijke mededelingen over de maps (komt eraan)
en 4TEX (conflict opgelost, Wietse Dol vriendelijk akkoord, Erik laat zijn aandeel in de
opbrengst aan de NTG, applaus).

Maar gelukkig kwam het onderwerp OSOSS ter sprake, een ingewikkelde kwestie

Piet van Oostrum,
door Dilys Bronkhorst

waar slechts enkele experts het woord over kunnen voeren. Dat deden deze deskundigen
dan ook en wel zodanig dat de geplande vergadertijd ruim werd gevuld.

Piet van Oostrum opende de reeks voordrachten met een volledige verhandeling over
bibTEX, een onderdeel van TEX waarmee bibliografieën zijn te maken bij opstellen,
artikelen en boeken. Piet had de voorafgaande nacht tot twee uur doorgewerkt aan zijn
presentatie en zoals we van hem gewend zijn, leverde hij een perfect verhaal. Naast de
technische aspecten was het ook interessant om te horen hoe merkwaardig men in de
ons omringende landen denkt over alfabetisch sorteren. Bij het op de gewenste volgorde
krijgen van een lijst van auteursnamen leidt dit tot allerlei verrassende ingrepen.

Ledenvergadering geleid door voorzitter Hans Hagen (r) Johan Vromans vertelt over MMDS.

2 MAPS

NTG-bijeenkomst community

Intussen was gasttekenares Dilys Bronkhorst gearriveerd en zij zou gedurende de dag
een aantal portrettekeningen maken.

Johan Vromans schaamt zich er niet voor een hacker te zijn. Hij is er juist trots op. Hij

Johan Vromans,
door Dilys Bronkhorst

vertelde over het ontstaan van MMDS, zijn op Perl gebaseerde pakket waarmee mensen
die echt niets van TEX weten toch door middel van TEX documenten kunnen maken. Jo-
hans Perl-scripts behappen de door de gebruiker ingetikte tekst, begrijpen wat een aanhef
is, wat een kopje, een opsomming... en de brief, het artikel en de offerte worden keurig
in TEX gezet en voorzien van briefhoofd en paginering drukklaar gemaakt. Overigens,
ook webpagina’s kunnen op dezelfde manier worden vervaardigd. De ontwikkeling van
MMDS is tevens een afspiegeling van de computerhistorie, want Johan Vromans werkt al
aan het pakket sinds de jaren tachtig van de vorige eeuw.

Tijdens de lunch konden de NTG-leden onderling ideeën uitwisselen en aan alle tafels
klonk een enthousiast rumoer. Dilys Bronkhorst tekende er een interpretatie van René van
der Heijden.

Sanne Dijkstra was vlak voor de lunch gekomen, niet alleen omdat we er bekend om
staan onze gasten in de watten te leggen maar ook om vlak voor haar lezing even te peilen
wat voor volkje TEX gebruikers nu eigenlijk vormen. Er was haar verteld dat het gaat om
nerds met verstand van typografie, maar met een andere bril op dan normale typografen.
Haar voordracht was voor velen in de zaal een fris en ander geluid: typografen op een
kunstacademie kijken anders dan wij gewend zijn naar de wetten en regels van het zetwerk.
Sommige dingen die Sanne in haar verhaal aanstipte zijn voor ons gesneden koek, zoals de
onwenselijkheid van kleinkapitalen als deze worden verkregen door hoofdletters domweg
verkleind te zetten, of het vet maken van letters door bestaande letters in dikker zwart te
plaatsen. Andere benaderingswijzen van vlakverdeling waren voor een aantal luisteraars
wel nieuw, zoals het bepalen van een ideaal vlak voor tekst op een vel door middel van
het tekenen van diagonalen over een samenstel van twee pagina’s. Tenslotte gaf Sanne aan
de hand van dia’s van de 4TEX manual haar suggesties voor de manier waarop je kritisch
naar functionele vormgeving zou kunnen kijken.

Sanne Dijkstra Tenar van Kooten Niekerk en pianiste Cathelijne Maat

Najaar 2003 3

community Frans Goddijn

Wonderlijk mooi sloot de voordracht van Willi Egger hier op aan. De diagonalen

René van der Heijden,
door Dilys Bronkhorst

die door Sanne Dijkstra werden genoemd, bleken een startpunt van zijn verhandeling
over gulden snede en eenvoudige constructietekeningen waarmee feilloos kan worden be-
paald waar je het beste je kantlijnen kunt plaatsen en hoeveel tekst je volgens beproefde
vuistregels op je pagina kunt zetten. Daarbij deed Willi ook uit de doeken hoe het komt dat
boekjes die op A5-formaat zijn geproduceerd meestal zo vervelend in de hand liggen. De
afgelopen keren dat Willi Egger voordrachten hield op NTG-dagen bleek de tijd telkens zo
krap bemeten door uitgelopen lezingen dat hem was verzocht zijn verhaal wat in te korten,
reden waarom we ditmaal nadrukkelijk een héle lezing hadden gevraagd. Niemand had
daar spijt van en na het verhaal van Willi kwamen er allerlei vragen en discussies los,
beantwoord en gestuurd door zowel Willi Egger als Sanne Dijkstra, die speciaal voor de
lezing van Willi was gebleven.

Ferdy Hanssen liet daarna zien hoe je, door de aanwijzingen van een paar handleidin-
gen secuur en geduldig toe te passen, zonder al te veel vallen en opstaan zelf een Type1
font kunt installeren. Hoe ingewikkeld dat is, hangt deels af van de keuze van het font.
Voor veel fonts staat al bijna alles op de TEXLive CD/DVD, voor andere moeten tal van
bestanden worden gegenereerd, gekopieerd, veranderd van naam…

Na de theepauze nam Hans Hagen plaats achter de sprekerstafel. Als Hans vertelt over
de nieuwste ontwikkelingen dan is het opletten geblazen. Soms verschijnen er dermate
nooit-vertoonde beelden op het beamerscherm dat er enige tijd overheen gaat voordat je je
realiseert wat er eigenlijk aan de hand is. Als je dan een deel van Hans’ tekst hebt gemist,
moet je je stevig concentreren om de boot niet ernstig te missen. In dit geval kwam er een
PDF document op het scherm waar allerlei dingen op konden worden ingevuld. Andere
schermen werden geopend en gesloten en een typisch TEX-run log-scherm flitste voorbij
waarna een ander document in PDF werd bekeken.

Na verloop van tijd bleek het een systeem te zijn dat in principe verwantschap heeft met
de aanpak van Johan Vromans’ MMDS. Hier kon de gebruiker allerlei keuzes en opties
menugestuurd aanklikken, waarmee op simpele wijze mogelijkheden beschikbaar komen
die er normaal alleen zijn voor mensen die niet bang zijn van gecompliceerde command
line variabelen. Een opvolger voor 4TEX?

Michael Guravage smeedt TEX plannen met Patrick Gundlach. Roland Kwee (l) en Willi Egger (r)

4 MAPS

NTG-bijeenkomst community

Hans heeft weleens verteld dat bij grotere instellingen die TEX voor publicaties
gebruiken de trend bestaat om TEX te beschouwen en te gebruiken als back-end, als een
applicatie waar de meeste gebruikers niet veel meer mee te maken hebben omdat TEX
op de achtergrond zijn werk doet. Deze nieuw getoonde schil, een slim PDF document
waarmee op de achtergrond allerlei TEX trucs kunnen worden aangestuurd, lijkt ook die
richting op te gaan.

Intussen arriveerden zangeres Tenar van Kooten Niekerk en pianiste Cathelijne Maat.

Siep Kroonenberg,
door Dilys Bronkhorst

Ondanks de erbarmelijk ontstemde piano van het hotel brachten de beide vrouwen met
grote flair en helderheid een sprankelend programma. Deze weken staan zij met twee
collega’s in een Arnhems theater met een show rond een reeks liedjes over de liefde. Willi
Egger had een aantal liedteksten met behulp van ConTEXt in een kleine programmafolder
gezet.

Mede dankzij het inspirerende en verfrissende optreden van Tenar en Cathelijne waren
de leden vervolgens in een puike stemming om tijdens de borrel in het hotelcafé over van
alles met elkaar te brainstormen. Niet iedereen bleef over TEX bezig, maar hier en daar
werden toch nog TEX-plannen gesmeed.

Ook tijdens de eenvoudige doch voedzame maaltijd in het restaurant van Haarhuis
was het typesetten her en der nog onderwerp van gesprek, maar in het algemeen ging de
conversatie meer de richting op van vrije kunsten, atletiek en liefde. Toch was er ook
nog gelegenheid voor een korte vergadering aan een tafeltje apart, van de mensen die
momenteel met de Maps bezig zijn.

Ja, het werd erg laat, maar er ging deze dag geen uur verloren!

Erik Frambach geniet van Dilys Bronkhorst met Frans Goddijn
een geslaagde NTG-bijeenkomst.

Najaar 2003 5

community

TEX user groups worldwide – what’s cooking?

Erik Frambach

abstract
This article is based on a presentation given at the UK TUG

meeting in Oxford in October 2002. It describes some current
problems that TEX user groups face and it attempts to distill

lessons learned and recommendations from almost 25 years of
TEX user groups history.

keywords
TEX user groups, lugs, problems, volunteer work, history

Introduction

During discussions by email and at TEX meetings in The
Netherlands, Germany, Poland, the UK and the USA, it
became clear that currently several TEX user groups (local
user groups, ‘lugs’ for short) are facing similar problems.
These problems include constitutional crises, failures to
produce journals, membership decline and financial diffi-
culties.

We will point out and discuss some of these problems
and we will attempt to provide recommendations for solv-
ing and/or preventing them.

History

Since the ‘birth’ of TEX in 1978 many lugs were formed.
In Table 1 we’ve listed some highlights in lugs history. It’s
remarkable that most lugs were formed in the last decade.
Undoubtably the Internet has played a major role here by
providing easy and cheap means of software distribution
(FTP servers and World Wide Web servers) and personal
contacts (Usenet News and email).

Gathering a historic overview of the founding (and dis-
solving) of lugs proved be be rather difficult. No one seems
to be keeping track of the history of lugs. Even websites of
existing user groups often provide little or no information
on their history.

Analysis of the development of user groups over the
years shows a distinct geographical bias:

2 Europe: very many lugs were founded.
2 North America: very few lugs were founded.
2 Asia: only a few lugs were founded.

2 South America: no lugs were founded.
2 Africa: no lugs were founded.
2 Other continents: neither.

The many European lugs can be explained by the need
for support for their own language in TEX(e.g. DANTE,
NTG, GUTenberg, CSTUG). This also (partially) explains
why there are so few in North America. The oldest lug
(TUG) resides there, and by nature TEX is English language
oriented. Nevertheless, the vastness of the continent could
have encouraged more local groups to start their own activ-
ities. In Asia TEX seems to be much less known than in
the western world. Although typesetting eastern languages
with TEX is possible, it’s hardly as easy as typesetting west-
ern (Latin based) languages. There may also be a cultural
barrier here. South America and Africa (in fact, all contin-
ents on the southern hemisphere) lack lugs. We can only
speculate on the reasons for this.

Ups and downs

Many lugs have had and/or are having their share of prob-
lems, but there are also successes to celebrate. In this sec-
tion we will list some of them.

Internal problems
Running a lug is not a trivial task. Many things can go
wrong. Some of the problems that have occurred are:

2 Constitutional problems: bylaws and articles may prove
to be extremely limiting or paralysing under difficult or un-

1978: TEX ‘final’ version released
1980: TUG founded
1987: UK TUG founded
1988: NTG founded, GUTenberg founded
1989: DANTE e.V. founded
1992: GUST founded
1997: 19 lugs
2002: 25 lugs

Table 1. Highlights in user groups history

6 MAPS

TEX user groups worldwide – what’s cooking? community

foreseen circumstances. E.g., constitutions may require a
certain hard coded number of members to be present at a
meeting for any decision to be taken. Sometimes nothing is
specified about disolving the lug which can lead to endless
discussions.

2 Boards that don’t perform (well): struggle for power, in-
compatible personalities, poor discussion technique, poor
management and hidden agendas are only a few of the
problems that a lug (or any organization) may have to face.
Part of the problem is that the goals of a lug are often un-
clear or too abstract (“promote usage of TEX”).

2 Financial problems: fuzzy bookkeeping, insufficient in-
sight and control, an amateurish approach and poor (in-
dependent) auditing are some the problems that have oc-
curred. Big risks can be involved. Who can afford a big
conference like EuroTEX? What will happen if the tax man
starts an inquiry?

2 CD-rom production problems: we’ve seen 4TEX thrive
for several year, but then it died because of internal con-
flicts. TEXlive has been very successful but is very vulner-
able because of the extremely small size of the team that
produces it.

2 Journals: MAPS, Baskerville, TUGboat, TEXnische
Komödie are having problems acquiring enough articles
and/or publishing on time.

2 Meetings: the organization and timing of meetings is of-
ten more or less random, cheap locations can be hard to
find, conferences can be costly (risky), and some lugs opt
for electronic only “meetings” (e.g., the Nordic group).

2 Volunteers: you can’t rely on them to live up to expect-
ations (4TEX, TEXlive, journals, conferences, etc.). You
can’t force them either, so you need a more subtle manage-
ment style to encourage and support them.

International cooperation
Although all lugs have similar goals, their activities may
interfere with each other and opportunities for cooperation
and synergy may be missed.

2 Conferences: lack of coordination may cause dates of
major meetings to clash; too often the organization depends
on the same volunteers; financial risks are unclear and cer-
tainly not covered by the whole group of lugs.

2 Journals: distribution of journals to all lugs is still not in
place; exchange of interesting articles and translation ser-
vices are still poor; indexes of all journals or an index of all
journals combined is lacking – better still would be a data-
base, but that is definitely beyond reach; online availabil-
ity of journals/articles and crossreferencing is very poor or
non-existing.

2 Finance: banking costs are not (well) managed, result-
ing in loss of money; conference budgets and reports on
financial results are not standardized or not available at all.

2 EuroTEX & TUG Conference: coordination and selec-
tion of organizing parties is very obscure – nevertheless
conferences are usually very successful.

2 pdfTEX: international cooperation made this product
flourish; NTS: many lessons were learned but this aca-
demic exercise doesn’t justify its costs; Omega: lack of
cooperation repels users and volunteers and frustrates de-
velopment.

The Good News
The gloomy list of internal problems above may give you
the impression that lugs are doomed. Indeed there is lots
of room for improvement, but let’s not forget what we’ve
achieved. Here’s an overview of only a few successes in
which lugs played an important role:

2 TEXlive cd-rom: this product made TEX easily access-
able to users on all major operating systems, standardizing
the way TEX installations are configured.

2 CTAN and CTAN cd-roms: CTAN has been a valu-
able repository of all TEX related software where countless
users with Internet access have found the resources they
needed. The cd-rom versions are very useful for those with
no or limited access to the Internet. Though not intended
to, the cd-roms also serve as historic snap shots by freezing
archives at regular intervals.

2 4TEX: this product was the first to provide a true plug
& play TEX environment that could run completely from
cd-rom (remember, disk space was expensive back then)
and contained all tools usually found in commercial word
processors.

2 pdfTEX: this product instantly warped TEX into the new
era of PDF documents and all their extra features like hy-
pertext and web links. pdfTEX even made Adobe admit it
had no software that could produce documents of the level
of complexity that pdfTEX could (easily) generate.

2 NTS: this ‘New Typesetting System’ was initially sup-
posed to be the successor of TEX as we know it, but even-
tually it turned out that for various reasons it could only
be a complete rewrite of TEX in a different programming
language which should make the implementation of exten-
sions much easier. This may or may not happen, but any-
way this project proved that the TEX community at large,
represented by many lugs, is capable of (re)building a sys-
tem as complex as TEX. A true successor to TEX will be-
come essential soon enough as the world progresses…

Najaar 2003 7

community Erik Frambach

2 Mailing lists and news groups: several of these have
been very successful in providing support to TEX users
of all levels, and as a platform for discussions of various
TEXnical issues.

2 Conferences: every year there are at least a few success-
ful meetings which last half a day up to a week, where
progress is made by discussing TEXniques and where rep-
resentatives of lugs can gather to coordinate their efforts in
a friendly environment.

2 International contacts during lug meetings: over the
years some of the meetings of lugs which used to be ‘local’
have become more and more international (e.g., GUST,
DANTE, UKTUG and NTG meetings).

2 New: Webcalendar is a web based system that all lugs
can use to publish their meetings and other events to the
whole world. Potential date clashes are easy to track be-
cause the Webcalendar can show all events of all lugs sim-
ultaneously.

2 New: a central ‘TEX bank’ account should help in min-
imizing international money transfers which are always
costly.

2 New: an attempt has been made to get European funding
for the further development of TEX. This is a joint effort of
several European lugs.

Patterns or Lessons learned

Looking back at more than two decades of lugs at work,
we can distinguish some recurring patterns, and there are
several lessons to be learned:

2 Amateurs operating on (semi) professional levels can de-
liver astonishing products. But, reliability and consistency
are weak.

2 There is no shortage of money, but not enough activit-
ies to spend it on. There are no established procedures for
requesting support from lugs.

2 Volunteers are tough to manage, especially by volunteers
:-) It’s not clear how the precious time and energy of vo-
lunteers can be managed and/or supported in a successful
way.

2 New lugs are mostly oriented on ‘difficult’ languanges
(e.g., Indian, Chinese, Hungarian, Vietnamese), not on ap-
plication, working field or computer system.

2 Formalities have frustrated many projects and activities.
However, anarchy hasn’t done much better.

2 Many successes in the TEX world can be attributed to
individuals, with little or no involvement/support of lugs

(e.g., LaTEX, emTEX, CTAN, Web2c, ConTeXt, Omega,
fpTEX, MikTEX).

2 We don’t learn from each other’s mistakes. There is no
sense of history. All too often a new lug board means that
much knowledge and experience goes down the drain.

Do’s and Don’ts

From the experience gained by lugs we can extract the fol-
lowing recommendations to lugs:

2 Review your constitution (compare it to others) on a reg-
ular basis. Watch out for potential deadlocks (voting rules!)
and unforeseen events such as dissolvement of the lug.

2 Check your legal and financial position on a regular
basis. Get independent professional advice before it’s too
late (read: the tax man will strip you down…).

2 Find the right size of your board (not too big, not too
small) so you can actually get things done.

2 Think twice before you hire personnel e.g. for running a
lug office. This could generate more problems than it will
solve.

2 In case of internal problems, talk to other lugs. Chances
are your problems are not unique.

2 Cherish your volunteers! They are your most valuable
assets.

Bold statements

Naturally we don’t have all the answers to all the problems.
However, we do have several items we think would be use-
ful for lugs to discuss among themselves or with other lugs.
We list them here as ‘bold statements’. Note that we de-
liberately chose provocative expressions and that they do
not nessecarily represent our view on the issue. They are
primarily meant to evoke discussions.

1. There is no good definition of a lug. There are no cri-
teria for becoming a ‘formal’ lug. Or an ‘informal’ lug,
whatever that is.

2. Vision and mission of lugs are poorly developed. Most,
if not all, lugs have no long term strategy, which makes
them vulnerable to lots of problems.

3. The model of user groups based on a common country
or language no longer suffices.

4. Information and expertise is no longer hard to find be-
cause of the Internet. Therefore lugs have to find new reas-
ons for being. A new lug model is needed.

8 MAPS

TEX user groups worldwide – what’s cooking? community

5. Most lugs are clueless when it comes to promoting TEX
or even themselves. This is a threat for the entire TEX com-
munity.

6. Lugs should be more involved in the process of defining
and implementing a successor to TEX and accompanying
software.

7. Inter-lug communication depends only on a few per-
sons who meet only a few times a year. Email communic-
ation among lugs is subminimal. Joint projects could help
to improve this.

8. Intra-lug communication should be improved. Sending
a cd-rom and a journal, and organizing one or two meetings
a year is not enough. Members will not become involved,
which is why it’s hard to find volunteers.

9. Lugs should not have professional staff members. This
scenario is bound to lead to problems, as history has
proven.

10. Lugs growing too big to handle (2000 members?)
should split into smaller groups.

Conclusion

For already two decades lugs have been around to promote
TEX and support TEX users. They have had their ups and
downs, but most of them have survived in spite of the in-
credible advances and changes that the computer world has
gone through and is still going through. We are sure that
in the next decade lugs should play a major role in keeping
TEX and the whole TEX community alive and kicking. So
let’s redefine and revive lug activities!

Najaar 2003 9

advocacyKoen Wybo

LaTEX: een newbie-ervaring

abstract
Hoe ik een LaTEX-adept werd; argumentatie pro LaTEX en contra zijn grafische concurrenten:
Word en OpenOffice.

Inleiding

Reflecterend op de weg die ik heb afgelegd om uiteindelijk bij LaTEX aan te komen, kan
je niet anders dan verwonderd zijn. Want na negen jaar werken met diverse varianten van
grafische tekstverwerkers ben ik nu tevreden met mijn prestatie die ik maak met een sim-
pele editor. Graag vertel ik je ‘hoe het zover is kunnen komen’ ;–), waarom ik uiteindelijk
met LaTEX werk en geef ik graag nog enkele aanbevelingen voor newbies.

Kleine routebeschrijving

Het is gek om te bedenken dat ik zo’n tien jaar terug mijn thesis heb verwerkt met een
elektronische typmachine met geheugen. Van opmaak was niet veel sprake. Ik beschikte
slechts over twee typmagrietwielen die gebruikt werden voor respectievelijk gewone tekst
en voetnoottekst. Door te werken met hoofdletters, onderstrepen en vet kon uniforme
lay-out worden aangebracht. Voor mijn studentenbudget was dit wonder van techniek
een prijzige aankoop. Financiële argumenten hebben toen de doorslag gegeven want de
veredelde typmachine kostte toen maar de helft van een PC zonder software (jawel het
tijdperk van de i286) en was zelfs drie keer goedkoper dan een Mac. Gevolg van het
budgetteren is dat ik nu enkel een getypte versie heb van mijn thesis en de digitale variant
enkel kan geraadpleegd worden op de typmachine die de tekst mooi presenteert op een
scherm van 10 regels hoog. Conversie naar PC of Mac is niet mogelijk.

Het eerste schooljaar dat ik les gaf maakte ik op deze machine mijn –– weinige –– cursusma-
teriaal. Maar de informatica was niet langer te stuiten: een tweedehands PC gekocht met
daarop Word6. Een wereld van mogelijkheden ging open. Meerdere lettertypes, invoegen
van clipart, landscape afdrukken, uitwisselen van documenten … Het nodige overtypwerk
werd erbij genomen als ook de eerste strubbelingen met nukkige software.

Groot was m’n opluchting toen de opvolger Word97 verscheen. Dit pakket had dui-
delijk meer onder de motorkap. M’n enthousiasme leidde zelfs tot het delen van m’n
opgedane kennis. In de scholengroep waar ik werkzaam ben, gaf ik meerdere navor-
mingssessies Word97.

Het gratis pakket Staroffice 5.1 wist mij te verleiden om over te stappen. Niet enkel om-
dat het gratis is, maar ook omdat het een platform-onafhankelijk programma is. Staroffice
was/is immers ook verkrijgbaar voor Linux, een besturingssysteem dat vanaf 1999 meer
en meer mijn aandacht kreeg. Gelukkig is de dochter: OpenOffice [13] in zijn huidige
toestand heel wat stabieler en sneller.

De eerste stappen met LaTEX dateren van rond de milleniumwende. Toen echter kreeg
het een onvoldoende en heb ik het lang niet gebruikt. De steile leercurve was er op dat
ogenblik teveel aan, de tijd ontbrak om alles op het net op te zoeken. Pas nadat er bij een
samenwerkingsverband met linux-vrienden werd geopteerd om documenten aan te maken
in LaTEX, heb ik het echt weten waarderen. Het begin was even doorbijten totdat de

10 MAPS

LaTEX: een newbie-ervaring advocacy

basisprincipes geleerd waren. Nadien kreeg ik mijn werk gedaan. Maar zoals altijd wenst
men meer: speciale hoofding, aangepaste paginavoetnoten, invoegen van afbeeldingen
met tekstomloop, conversie naar html en pdf … De zoektocht naar meer informatie op
internet en usenet was begonnen.

Waarom overstappen?

Naast de ‘sociaal-gedwongen’ overstap naar LaTEX zijn er meerdere argumenten waarom
ik niet afkerig ben van LaTEX.

Emotioneel
WYSIWYG mag dan als slogan vlot verkopen, het werkt toch niet zoals beloofd. Pagina-
eindes die niet meer weg te halen zijn, afbeeldingen die maar niet op de juiste plaats
willen blijven staan, opmaak die verdwijnt na het knippen/plakken in een ander bestand,
hoofdingen die ‘plots’ de standaardstijl niet meer respecteren, enzovoorts … Al deze el-
lende begint je na verloop van tijd de keel uit te hangen. Gekoppeld aan het gevoel dat jij
moet voldoen aan de software in plaats van omgekeerd, leidt dit bij mij tot de conclusie
dat WYSIWYG-software niet ‘optimaal’ is.

Een ander belangrijk emotioneel aspect is toch wel het esthetisch verschil tussen pagina’s
opgemaakt met LaTEX en die van een grafisch tekstverwerkingsprogramma. Daar kan je
alleen maar jaloers op worden.

Economisch
Je zou het nauwelijks verwachten dat ook een Vlaming naar zijn portemonnee kijkt. En
toch … Schaf je je verschillende versies aan van het officepakket van de marktleider dan
mag je tweejaarlijks een behoorlijk bedrag op tafel leggen. Je kan het natuurlijk wel bij
het oorspronkelijke product houden van een tiental jaar terug maar dan is het hopen dat je
collega’s niet upgraden naar meer recente versies. Jij zal dan onmogelijk hun document
kunnen openen. Om nog maar te zwijgen van de restrictieve licenties, de Rights Manage-
ment Services en de verplichte upgrade van het totale Windows besturingssysteem die de
maker van het meest verspreide office-pakket zal inbouwen in zijn nieuw product.1 Niet te
vergeten natuurlijk de aanschaf van een virusscanner want deze documenten blijken soms
‘beestjes’ in zich te dragen.2

Als tijd geld is, dan is de overstap naar LaTEX zeker aan te raden. Door het gescheiden
houden van inhoud en vormgeving spaart mij dit heel wat uurtjes oplapwerk uit. Niet enkel
voor mijn eigen documenten maar ook deze die ik ontvang van collega’s. Immers door
printerinstellingen, aanwezige lettertypes, enzovoorts … verschilt een Word-document op
twee verschillende computers.

Tekstverwerkingsprogramma’s zorgen voor het nodige comfort om op een efficiënte wijze
je resultaat (in mijn geval: een cursus godsdienst) te verwezenlijken. Men kijkt graag naar
dit gebruiksgemak en gaat al te vaak voorbij aan de effecten van het gebonden zijn aan een
bepaald programma op lange termijn. Ben je zeker dat je na twintig jaar je documenten
nog kan openen? Hoeveel geld zul je in die tijd gespendeerd hebben aan ‘noodzakelijke’
upgrades? Stel dat de producent van het programma failliet gaat: beschik je over vol-
doende conversiemogelijkheden om dit naar een ander programma over te brengen? Al-

1. voor de nieuwe versie van Word2003 plant Microsoft een nieuwe documentindeling. Het zal voor men-
sen van de ’oude’ versie onmogelijk zijn de nieuwe versie te openen en te bewerken. Ook zal de conversie
van Word-documenten door andere grafische tekstverwerkingsprogramma’s zal niet meer mogelijk zijn.
[17]
2. Gelukkig bestaat er voor mensen die liever grafisch werken een gratis office-pakket dat zeker niet moet
onderdoen voor zijn commerciële tegenhangers. Openoffice [13] is niet enkel kostenloos, het realiseert
bovendien nog één van mijn principiële doelstellingen.

Najaar 2003 11

advocacy Koen Wybo

lerlei zaken die je in overweging moet nemen, wil je niet gebonden zijn aan één bepaalde
producent. Niet enkel de grafische tekstverwerkers lijden aan dit euvel. Ook bepaalde
TEX-varianten zijn van commerciële aard.

Economisch betekent ook dat je software gewoon moet werken. Wat ben je met een Office-
pakket waar je jezelf continu moet herinneren om tijdig op te slaan omdat een crash op
de minst verwachte, meest ongelegen tijdstippen kan plaatsvinden. Anders uitgedrukt:
crashes genereren altijd een vorm van verlies. Zij het in verlies van typtijd of inspirerende
gedachten ‘van het moment’ die verloren zijn gegaan.

Principieel
LaTEX is ‘Vrije software’. Dit betekent dat elke gebruiker het recht heeft om de software
te gebruiken, kopiëren, verspreiden, bestuderen, veranderen en verbeteren.3 Het resultaat
hiervan is zichtbaar in de opkomst van het GNU/Linux-besturingssysteem: een juweeltje
van OS dat naast de kernel een gans scala aan vrije software omvat. Deze GNU-gedachte
brengt een ‘ecosysteem’ tot stand waar mondiaal mensen werken aan software die voor
iedereen beschikbaar is. Hierdoor ontstaat niet een –– wat sommigen noemen –– ‘commu-
nistische’ variant van software maar brengt het betere kwaliteit tot stand. Bovendien ont-

Richard M. Stallman, Linus Torvalds, and Donald E.
Knuth engage in a discussion on whose impact on

the computerized world was the greatest.
Stallman: God told me I have programmed the best

editor in the world!
Torvalds: Well, God told me that I have

programmed the best operating system in the world!
Knuth: Wait, wait – I never said that.

From rec.humor.funny. submitted by ermel@gmx.de
(Erik Meltzer)

staat zo een schare aan men-
sen die zich willen inzetten
voor het project en is vanaf
een bepaald ‘point of no re-
turn’ ook de overlevingskans
vergroot. Herman Bruyninckx,
prof aan de K.U. Leuven en
heftig voorstander van vrije
software, heeft heel wat argu-
menten [14] in het voordeel
van Open Software.4 Produc-
ten gebaseerd op TEX die niet
open zijn, beveel ik niet aan bij
vrienden die ook met een TEX-variant willen beginnen. Een uitspraak die erg cru lijkt.
Uiteindelijk komt het neer op je niet laten inpalmen door een producent die je afhankelijk
wil maken van zijn software.5 Voor je het weet ben je vastgeklonken aan één bepaald pro-
duct. Naast een vlotte interface is het wijs om oog te hebben voor duurzaamheid op lange
termijn.6 Het voordeel van een open standaard is bekend. Internet heeft er zijn bestaan
aan te danken. Juist door het feit dat iedereen de technische aspecten van de standaard
ter inzage heeft, kan het niet gemonopoliseerd worden door één bepaalde fabrikant. Het
naleven van een standaard garandeert een langere levensduur van de software: standaar-
den worden pas vervangen als er technologische nood aan is, niet als één of ander bedrijf
verwacht er commercieel voordeel uit te halen. Daarom ook is LaTEX zalig om mee te
werken. Je bent gerust dat:

1. heel veel mensen werken met de software en je dus altijd wel ergens terecht kan met
je vragen

2. de software wordt uitgebreid en onderhouden

3. LaTEX is opgenomen in de lijst van de vrije software [1]. Meer info over vrije software is te vinden op
[2]
4. Je kan het eens nalezen op [15] Op [4] krijg je nog enkele argumenten mee voor efficient ICT-gebruik
die ook deels ook opgaan voor de LaTEX-gebruiker. Ook op [8] krijg je argumenten mee waarom een
pakket als LaTEX te verkiezen is boven een WYSIWYG.
5. Voor extra argumenten: zie supra, het internetartikel van Dhr. Bruyninckx
6. Naast open standaarden bestaat er inderdaad ook open content. Een thema dat we hier buiten beschou-
wing laten.

12 MAPS

LaTEX: een newbie-ervaring advocacy

3. zonder de bedoeling om je financieel uit te knijpen als een citroen

4. en je weet dat je kennis van het pakket niet weggeërodeerd zal zijn na de volgende
o-zo-noodzakelijke update.

It takes guts to LaTEX

LaTEX is niet voor iedereen. Volgens mij zijn er enkele basisvoorwaarden waaraan je
moet voldoen om met LaTEX te kunnen werken. Voor alle duidelijkheid: spreek hier
enkel vanuit mijn ervaring met tetex, de unix-variant.

1. WYSIWYG geeft je het gevoel alsof je controle hebt over de software en je eindpro-
duct dat je maakt. Je hebt een instant-kijk op je eindproduct. Met een paar muisklikken
boks je een tekst in elkaar die voldoet aan je inhoudelijke en esthetische normen. Om
de stap te zetten naar een programma dat je terugwerpt naar het inhoudelijke en het esthe-
tische voor eigen rekening neemt, is veel moed en lef gevraagd. Als je die stap kan maken,
ben je goed op weg om ook LaTEX een kans te geven.

2. Wil je een serieuze inspanning leveren om je teksten, artikels, boeken … ook op
esthetisch vlak een voltreffer te maken, dan kan LaTEX je ‘companion’ zijn.

3. Je moet durven in te gaan tegen de algemene mentaliteit van collega’s en vrienden
die grafisch nog altijd gelijkstellen met superieure programma’s. Bovendien wordt een
Worddocument gezien als een ‘standaard’.7 Het is bijna ongehoord om een alternatief te
formuleren.

4. Als je de beslissende keuze maakt om te gaan voor jouw eindproduct en niet voor het
programma waarmee het moet gemaakt worden, dan ben je op de goede weg.

5. Uiteindelijk: als je HTML kan schrijven in een editor: waarom dan ook niet LaTEX?

Startblok voor nieuwe benen

Nuttige tips die je kan geven als iemand aan LaTEX begint. Anders uitgedrukt: om de
frustratiedrempel te verlagen is het goed om:

1. Op weg gezet te worden met iemand die reeds LaTEX kent.

2. Of je kan je natuurlijk inschrijven op de mailinglijst van de ntg.8 Ook in de (engels-
talige) discussiegroep comp.text.tex is er heel wat info te vragen (en te vinden).

3. Zoek eerst documentatie op en vooral: lees ze aandachtig. Heel wat documentatie
is reeds online te vinden. Naast de ntg-site [11] kan je ook je inspiratie opdoen bij [9]
en [16] Een algemene beginnersinleiding op LaTEX is te vinden op [7] De elektronische
versie van maps [10] is ook niet te versmaden.

4. Wil je na de eerste stappen heel specifiek gaan werken dan zijn de boeken van on-
der andere Leslie Lamport [6] en Michel Goossens [3] uitstekende begeleiders. Ook A
Guide to LATEX [5] krijgt positieve recensies.9 Je kan ze kopen of –– goedkoper –– bij de
bibliotheek ontlenen (eventueel via het bibliotheek-uitleensysteem.)

5. Weet ook dat er bij LaTEX onopgeloste mysteries blijven bestaan. De meest hardnek-
kige W-vragen die je zal blijven stellen zijn:

7. Wat het uiteraard niet is omdat de specificaties niet zijn.
Zie ook http://www.openstandaarden.be/teksten/definitie
8. Inschrijven kan op [12]
9. De meeste van deze boeken krijgen in het voorjaar van 2004 een update.

Najaar 2003 13

advocacy Koen Wybo

2 Wanneer verschijnt LaTEX3?

2 Waarom werken niet meer mensen met dit systeem?

2 Waarom enkel EPS in LaTEX en niet JPG?

2 Waar ergens op de CTAN-server?

2 Waar is mijn fontmap en hoe gebruik ik nu die fonts?

2 Wat is het verschil met XML en welke is nu de beste?

2 Wie maakt die LaTEX-packages en waarom?

2 Waar vind ik voorbeeld-PDF’s?

2 Welke editor/front-end is gemakkelijker dan Vi?

Referenties

[1] http://www.gnu.org/directory/all/. Lijst van vrije software.

[2] http://www.gnu.org/home.nl.html. Nederlandstalige gnu-site.

[3] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LaTeX
companion. Addison-Wesley, 1994.

[4] http://people.mech.kuleuven.ac.be/˜bruyninc/efficiente-ict/#ach-

tergronden. Argumentatie waarom open standaarden te verkiezen zijn boven
propriëtaire in het uitwisselen van documenten.

[5] Helmut Kopka and Patrick W. Daly. A guide to LaTeX2e: Document Preparation
for Beginners and Advanced Users. Addison-Wesley, third edition, 1999.

[6] Leslie Lamport. LaTeX: a document preparation system. Addison-Wesley, second
edition, 1994.

[7] http://ludit.kuleuven.be/software/latex/. Introductiepagina LaTEX van de
K.U. Leuven met heel wat interessante links voor newbies.

[8] http://www.northernjourney.com/opensource/newbies/newb020.html. Intro-
ductie voor LaTEX-newbies die gebruik maken van linux.

[9] http://www.win.tue.nl/latex/documentation.html. Uitgebreide Nederlands-
talige documentatie over LaTEX.

[10] http://www.ntg.nl/maps/electromaps.html. Elektronische versie van het
ledenblad van de NTG: degelijke info.

[11] http://www.ntg.nl/whatislatex.html. Wat is LaTEX?

[12] http://www.ntg.nl/mail.html. Bekende site van de Nederlandstalige Tex
Gebruikersgroep ;-).

[13] http://www.openoffice.org. OpenOffice homepage.

[14] http://people.mech.kuleuven.ac.be/˜bruyninc/. Homepagina van Dhr.
Bruyninckx, heftig voorstander van de open-source gedachte in Vlaanderen.

[15] http://people.mech.kuleuven.ac.be/˜bruyninc/ictvisie.html. ICT-visie van
Dhr. Bruyninckx, pleidooi voor open formaten en open software.

[16] http://theory.uwinnipeg.ca/localfiles/infofiles/teTeX/. Veel (Engels-
talige) links en vooral info over TEX maar vooral over LaTEX.

[17] http://www.aaxnet.com/editor/edit029.html#office. About conversion of
Word documents.

14 MAPS

community Kees van der Laan
Hunzeweg 57
9893 PB Garnwerd Gr
The Netherlands
cgl@hetnet.nl

http://home.hetnet.nl/

~cgvanderlaan/

BachoTEX2003
as of old, and some more

abstract
A (partial) report of GUST’s 11th meeting at Bachotek, Poland is given. It is incomplete because I
could not understand most of the Polish contributions and I skipped the LaTEX day. It reflects
just of one of the threads through BachoTeX03’s life. A question is raised: can the TEX-world
follow with pdfTEX the evolving PDF standard?

keywords
BachoTEX2003, GUST, Poland

Motivation

Nobody asked me to write a trip report, so I just did it for myself to increase awareness, to
remember better what I have picked up, to ponder aloud about ideas which popped up, and
not to let it fall into oblivion, not to let it go with the wind. Moreover, it was interesting
to experience with this report as a pdfTEX e-paper, with links to WWW addresses, e.g.
for the photos. This note is available at http://home.hetnet.nl/˜cgvanderlaan/notes/
bachotex03.pdf or with the .tex extension for the source, instead of the .pdf extension.
A version with pages of screen size I will consider once I have created a BLUe Φ OutpuT
Routine for the purpose.1

Around the meeting

This was the first time I did not really contribute to a BachoTEX I attended, except for me
being there.2 Roughly 60 people participated, of which 6 from Holland, 3 from Germany,
1 from the UK, and 1 from France. No longer the Polish people consider BachoTEX a
family affair, also the Dutchies come with their spouses, children and pets. Michael is the
example and Sveta + Beer joined me again. Taco and Bianca preferred to celebrate their
10th wedding anniversary at home.

On the (strenuous) way back,3 I had as driver plenty of time to think it over, while
glimpsing the beautiful Polish May landscape, to let the highlights flash-back, to ponder
about ‘might-have-been’s, about missed opportunities, to resmell the smoke of the bonfire,

1. Is it still needed with scrolling Acrobat? Yes, definitely, it is much nicer. Most likely I will use this
approach in next year’s report.
2. Well… maybe I contributed in the backwash by writing this report and making earlier BachoTEX reports
available on my site. It seems to me that I contributed similarly to TEX’s life by my overview notes: What is
TEX and MetaFont all about? of 1992, Catching up — pdf and html at the heart of 1998, and my last year’s
Professionals and amateurs. TEXnically I also contributed, IMHO, but it seems that these contributions
have not been perceived as I hoped for, have not gained adherents as Ulrik mentioned to me. However,
my paradigm series of notes is available at the TEX-Live 6 CD-ROM (see directory texmf/doc/paradigm),
and who knows what more notes of mine are out there, because usually I’m not asked, whether I agree or
consider it better to unpublish. All my work published in MAPS is available on NTG’s jubileum CD-ROM
of 2001 which contains MAPS1–24, as a wealth of PDFs with search facilities. MAPS issues in HTML
are available on the TEX Live CD-ROM.
3. Sveta in her trip report in Russian paid attention to this aspect, and some more.

Najaar 2003 15

community Kees van der Laan

to retaste the (smoked) sausages and (ashes-baked) potatoes, to allow the fire-spitters,4

redo their job on my retina, and… last but not least to hear the music, again.
Remarkable about the participants was that quite a few are retired TEXies already, are

no longer active with TEX&Co. They only use TEX&Co now and then for their pleasure,
while in day-to-day life they are not allowed to use it or just don’t use it for various reasons.
This reminded me of one of my earlier thoughts about the lifetime of a TEXie.

The logistics of the organization was in good hands: Jola and her team did as usual a
good job, all went as smooth as smooth can be. Thank you! The lodging in the various
bungalows spread along the lakeside was OK, the weather as usual, the food tasty5 — de
GUSTibus non (TEX) disputandum6 — and more than sufficient. However, there is one
Polish soup — flaki (Eng: tripe), a gourmet of good repute — which I just can’t swallow,
but Beer really liked it.

The program/conference/organizing committees had it all well organized. The LaTEX
issues were concentrated on one day, so plain TEXies like me had a day off. Thank you.

The proceedings were available at the spot as GUST bulletin 19. Thank you, Tomek,
Stachek and Piotr! It is a pity that it is not complete, some authors could apparently not
make it to submit in time.7

The lecture room compared to early BachoTEXs has improved and is technically well-
equipped with a ‘beamer’ connected to a PC to assist the lecturer.8 The computers in the
computer room form an ethernet, and are connected by ASDL to the internet.9 So, email
and browsing the WWW was available for the participants and their families.

Well-done! Thank you Jerzy, Marek…
I should have hanged around more in that room and learn from the experience of those

present. For example Ronald Kwee contacted expressions of interest site where he traced
the origins of the famous 20%-80% rule.

New, since 1998, is also a bar/café with terraces, to facilitate socializing.
Poland seems to prosper. The countryside is beautiful, especially in May with all those

bloosming trees, lilacs, and you name it. Money machines in the streets are common and
convenient. There is less police than 10 years ago on the roads near for us foreigners
difficult to recognize village/built-up areas to check your speed.10

The next BachoTEX will be special: on the 1st of May, Poland will officially join the
EEC! Moreover, Poland traditionally celebrates its proclamation on the 3rd of May 1791
of the first modern constitution of all Europe! And for me personally, it will be 10 years
ago that I visited BachoTEX for the first time, and 11002 years ago that I visited for the
first time Hanna, Janusz Bien, Włodek, Jacko and GUST avant la lettre.

4. Peter is the children’s hero: his rockets captivated Maarten among others and with the bonfire Maarten
was Peter’s best assistent.
5. I love the Polski grip the Polish mushrooms.
6. The slogan on this year’s T-shirt.
7. Jacko’s second paper is not in there because the editors considered the documentation which comes
along with the macros sufficient. I tend not to submit any longer. I freed myself from restrictions/deadlines
and I put the material on my WWW site when I’m done with it, like this report. Editors can include the
links after verification in their column. There are disadvantages to publishing on the WWW, I know, but I
consider the freedom as an extra for the time being, and the way of doing in general for the future — and
my TEX&Co future started in 1998 — if not the way out when forced by costs.
8. Or the lecturer can just team up (wirelessly?) the beamer to his private laptop.
9. So, I downloaded my last years work from my site in order to put the notes on display, but… no way:
my PDF files could be watched on the screen but not printed?!? After all, I’m happy that it did not work
because the pdfbookmark macros contained some serious flaws, /.
10. A village/built-up area is/was defined by one or more houses nearer than 50 yards to the road?!?

16 MAPS

BachoTEX2003 community

Presentations

For the conference program visit http://www.gust.org.pl/BachoTeX/2003. Nice was as
usual the handy map.

Presentation tools
Nowadays pdfscreen11 seems to be the tool to be used. Although it is handy to have the
buttons on the screen I prefer (hidden) links, which don’t disturb the contents. It seems
that people like to show their new acquired TEXnologies, nothing wrong with that, and
forget about the main purpose to convey the matter. It must be said that pdfscreen is more
modest than just Acrobat reader with its full control bar.

For me a hypertexted pdf file supported by the keyboard buttons for next, previous,
end and begin and some hidden links, is enough.

Hans Hagen seemed to have realized this earlier, because in one of his screen-oriented
documentations (MetaFun) he realized tiny, very tiny buttons almost hidden in the border,
nearly invisible because of the coloured and changing modest passe-partouts. Jacko also
practices this approach as can be witnessed from his presentations. Nice!

Lectures
I realize that I won’t do justice below to the majority of Polish speakers by not mention-
ing them. I just could not profit from most of the lectures because they were in Polish
(no English abstracts let alone summaries, but… the titles were in English, fortunately.).
And… sigh, after so many years I only can approximately say: in (w), yes (tak), no (nie),
OK (dobry), bad (zły), good morning/day (dzień dobry), good evening (dobry wieczór),
sorry (przepraszam), thank you (dzi̧ekuje), don’t mention it (niema za co), please (prosz̧e),
goodbye (dowidzenia), lake (jezioro), lecture room (sala wykładowa), open (otwarte),
closed (zamkniȩte), key (klucz), how (jak), silent (tigo), sir (pan), dining room (stolowka),
breakfast (sniadania), lunch (obiad), dinner (kolacja), menu (karta), beet soup (barszcz),
sauerkraut and meat (bigos), mushroom (grip), bon appetit (smasnego), I love you (ja
kocham ciewie). I can order a beer/vodka (edno piwo/edna wodka) or a cup of tea/coffee
(herbata/kawia) and similar trivia in Polish. No way of reading Polish let alone under-
standing a lecture, despite my recently acquired knowledge of Russian.12 I’m sorry.13

But… there is hope: I learned some more words: plit(ok), streszczenie and klesh,14 one
diminitive Katarzyna, and from my guide the pronunciation of the combination of let-
ters: sz pronounced as sch, cz as tsch, examples steszczin, streszczenie, rz as z, example
Andrzej, ch as h, example chchałbym.

There is some good news, however. Zofia Walcsak coined the idea of teaching us
Polish before, along and after the conference informally, but more structured than along
the meals, social gatherings or during the guitars in the night. And why not a weekly-
follow-up of lessons by email? Some sort of network academy? Splendid, we like that.15

So GUST why don’t you give it a try?16

11. I could not spot it, nor its documentation, on the CTAN 2002 CD-ROMs nor on the TEX-live 6 CD-
ROM. A keyword facility similar to the one on NTG’s MAPS 1–24 CD-ROM of 2001 would be useful.
12. I was pointed out to some dangers: zapomnjat means in Russian to remember and in Polish the oppos-
ite: to forget!
13. The simultaneous translations for a small group somewhere in the room is not sufficient either.
14. At home Beer suffered again from several ticks; since last year I go to Bachotek with a tickpincer.
15. Since Januari Sveta and I enjoy satellite TV next to the cable and we can watch Russian TV and…Po-
land I and II! Who knows what that will bring. I know, I know, no way of picking up a single word at the
moment, but maybe there are some educational broadcasts for children?
16. Maybe it will attrack more foreign participants ,. My wishes? To pronounce the words correctly. To
understand the songs and to be able to join the quire in at least one of the traditional Polish bonfire songs.
Sveta even talked about a BachoTEX hymn. Katia has promised to send me in PDF one of the Polish songs
typeset in Latin Modern, of course, along with an English translation which I’ll put on my WWW site, next
to the already available Russian songs. Other practicalities are for example to be able to understand the

Najaar 2003 17

community Kees van der Laan

Installing PostScript fonts for TEX, Janusz Nowacki
It was obviously meant for a PC environment, not aimed at people like me, the Mac-ies. I
got it that he summarized the files involved — .tfm .pfb .enc .map (.fd .sty)— and
what to do where, meaning what these files should contain, and where they should be
stored and under what name. Moreover, he used BoP’s TOIL, ie the Type One Installing
UtiLity. I like it when people write down the results after one has found one’s way through
the mass.

So, the installation and (mixed) use of (new) fonts in TEX is still a nuisance, not yet
solved in an easy way, I presume?

Anecdote. Janusz has the reputation of not understanding nor speaking English, but
since The EuroTEX at Kerkrade, since his lecture supported by slides/e-paper in English,
he has proven that Polish TEX-ies improve on themselves. So Janusz rehearse on it another
time, if it is not too cumbersome.

Latin Modern, or an abundant extension of the Computer Modern family by
accented characters using MetaType1, Bogusław Jackowski
It was all about diacritical characters as extensions to the CM fonts. As usual Jacko’s
contributions are very well-prepared. It seems that he is a professional in the sense of
G.E.Forsythe: ‘a professional starts where an amateur ends.’ He provided English copies
of his e-pages, the digital follow-up of the old transparencies, slides or foils. Moreover,
the underlying paper in the proceedings was in English. Thank you Jacko! His walk
along history lane of character embellishments, well necessary extras, was apparently
influenced by the lecture style of Andrzej Tomaszewski. Nice! These new Latin Modern
fonts, geared towards Polish diacritical characters, will be released in the exotic Hawaii.
Thank you Jacko, your BoP company and the sponsors: DANTE, NTG….

Polishing TEX has a history already. I remember the beginnings where the precise
positioning of the embellishments were at stake. Now it is about uniting elements, about
composed characters as one integrated symbol, in order to get rid of the problems in
scaling among others, I presume?

MetaPost macros for dashing of closed areas, Bogusław Jackowski
He made use of the fact that MetaPost allows multiple occurrences of the operator
withcolor in a single drawing statement. Thanks to that property the operator withcolor
can cleverly be redefined to perform hatching rather than filling. Nice! I have to study
the details and (re)do it to get the hang of it. I guess that the macros are available on the
GUST fileserver for TEX&Co materials.17

Indexing in Polish textbooks, Włodek Bzyl
His approach to indexing — linear sorting on the fly — is interesting. We’ll soon be able to
watch the real-life example of the Polish version of the TEXbook. One remark, however.
Why not just improve on Knuth by doing the sorting as sidestep from TEX,18 ie as a
subtask controlled by TEX, and not necessarily done by TEX as I did?

Typesetting tables using Metapost, Piotr Bolek
An interesting contribution because he essentially introduced the concept of layers — as
we know already from Adobe’s Photoshop — to TEX&Co.19 Volker Schaa communicated

information on the street about car parking, and when and where we sould obey what speed limits.
17. The GUST fileserver was also subject of a BoF.
18. The magical \write18 with functionality to have access to system commands from within TEX, was in
the early nineties opposed by… Knuth!
19. Well, not true. Knuth already in his OTR approach used the overlay idea for printing multi-columns. I
guess that Hans created a ConTEXt OTR in order to include (coloured/changing) backgrounds of all sorts,
not in the least for his e-papers. In PS we had the old overprint of DRAFT or CONFIDENTIAL all over
the page in a shade of grey. I know, I know, one of those other missed opportunities: I should have talked

18 MAPS

BachoTEX2003 community

that there are problems to come when the tables interact with for example the text around.
Moreover, Volker mentioned that layers are the new issue of Acrobat 6, which triggered
some thoughts with respect to the evolving pdf standard and pdfTEX, or better the niche
for TEX in there.

TEX tools in Windows XP or how to bite a cactus, Pawel Jackowski
Yes, this is the first time I attended a TEX- lecture of Jacko’s son. As far as I understood,
he mentioned the confusing differences in how to use TEX under various OS’s on a PC.
How to cope with it — bite the cactus — I could not grasp. Funny, and well-done in the
family tradition.

Typescripts: the ConTEXt way of combining font families, Hans Hagen
Interesting and powerful how Hans solved the problem of mixing fonts, while paying
attention to the quality aspects. Apparently, the virtual fonts idea is not enough. As of yet
I have no hands-on with ConTEXt, but I’ll give it a try once I have a new computer, and
will pick from Hans’ brains by looking under the hood.

How to make Jerzy love TEX again?, Hans Hagen
This lecture was all about showing the power of PDF forms when used together with
TEX&Co. The text is not entered through an editor but through a pdf form, which he be-
lieves is a user-friendly way of using TEX. The user doesn’t have to be aware that TEX&Co
are under the hood. Hmmm, I see the claim, but…. What are the applications suited for
this approach? What are the limitations? Let us wait and see for Jerzy’s answer.20

Hans uses for the purpose: pdfTEX, Acrobat based GUI, ConTEXt macros, PERL and
Ruby scripts, XML dataflows, a watched folder system, collection of Ruby modules,
classes and applications. Impressive!

Hyperref package, Martin Schröder
A bit fast to my taste he summarized the possibilities of this package written by Sebastian
Rahtz in the late nineties. I missed examples. I pity that he did not mention that PS
pictures should separately be converted to PDF (or PNG), as he told me later privately. So,
older scripts to be enriched by hyperrefs should also be adapted with respect to markup
and the accompanying (PostScript, …) pictures should be transformed into PDF (or PNG)
as well.21

It is just a pity that I could not understand Grzegorz lecture ‘Towards better quality of
pdf files,’ which I guess is related to the above and to the work I started last year, although
I took the quality for granted.22

to Hans about this and about a lot more.
20. By the way Jerzy’s complaint is that TEX is not user-friendly.
21. As far as I understand, ConTEXt does support creation of PS pictures via MetaPost and inclusion of
these in PDF e-paper on the fly.
22. Yes, yes, I agree I should have talked to him, this is one of the might-have-beens I realized too late.
Equally well — another missed opportunity — I should have talked to my friend Radek, about his usage
of the Titanium Mac, simply because I’m about to buy a G4 Mac, either the Quicksilver or the Titanium
notebook. I also would have liked to ask him about audio→MP3 conversion, and maybe he could have
demonstrated it, and I could have judged the results. The results I get are insufficient, maybe because my
hardware is too limited. Erik, yes he uses a Titanium nowadays, could not demonstrate it either because it
seems that iTunes 3 with respect to MP3 conversion offers you the possibility to burn a CD in MP3, and
not the possibility to simply convert an audio file into MP3. iTunes 4 seems to offer what I need. Radek’s
wireless contacting the ethernet access-point through the built-in airport (extreme?) did not work on the
spot, alas. The functionality is nice and I would have liked to watch its performance.

Najaar 2003 19

community Kees van der Laan

BoFs

One was about the GUST file server for TEX&Co materials — o Polskiej Bibliotece In-
ternetowej — in Polish, /. This was in parallel with Jerzy’s BoF, so we were not left
unattended.

The future of European LUGs, Jerzy Ludwichowski
Maybe there was a change in the program, because his guidance was all about fund-raising
from ‘Brussels’ and what sensible projects we could define for the purpose.23

Hmmm, I wish him all the success he can get, but I doubt it that he will succeed.
The reason?
We had great and appealing projects like NTS, and we failed!24

Moreover, I think that we are too narrow-minded, too much involved with TEX’s pur-
pose and possibilities. We should have an eye for multi-media — oh yes I know it is a
buzzword — but 10 years ago I already day-dreamed in this direction, see my What is TEX
and Metafont all about?

We could start a multi-media project in teaching, eg ‘Polish for foreigners’, with
TEX&Co somewhere under the hood.25 Hans’ forms could be used as interface for drilling,
such that one can only proceed when results of the tests so far are sufficient. This kind
of computer-assisted multi-media training I watched in practice when Sveta was learning
Dutch. It is the modern way of learning foreign languages.

The point I like to make is that next to typesetting one badly needs compact sound
(and video) for e-paper on CD-ROM/DVD and WWW, but this is beyond TEX’s purpose.
For acceptable transport time on the WWW we need still better compression techniques
and/or faster transmission possibilities.26 MP3 as compression for audio is not perceived
as good enough. The multi-media examples I like are art CD-ROMs such as ‘Escher
Interactief’ and ‘Het mysterie Margritte — een surrealistische ontmoeting met Margritte,’
the various CD-ROM encyclopedia, the e-dictionaries with pronunciation options, and the
‘Wining-and-Dinings’ to learn Spanish cooking for example.

Another aspect why we are in a weak position with respects to grants is that volunteers-
biased User Groups, are not the structures for making real advances. Developments are
made! Definitely! Somebody,27 sometime, somewhere at BachoTEX made the remark
that real progress can apparently only be made at an University where PHD-students may
invent new techniques supervised by a professor with vision, like Knuth, in want for the
results. Hàn Thế Thành, with his pdfTEX, guided by Jir̆i Zlatus̆ka, seems to be an example.

Workshops

As usual before and after the meeting tutorials were offered. Very useful for the new-
comers and for those who want to embark on a new corner of TEX&Co.

Andrzej on bookcover design, Chris on digital presentations tools, Janusz Bien on GNU
emacs for LaTEX users, Jacek Kmiecik on LaTEX–a second step, and Stachek on config-
uring and fine-tuning of TEX installations under windows and linux.

23. I’m sorry that I did not make notes of the projects Jerzy listed.
24. A less ambitious project was LaTEX3 which also seems to have slipped of the road. eTEX and PDFTEX,
a nearly one man’s effort, are successful, though.
25. Is the functionality–Polish for foreigners on CD-ROM/DVD–already available? If not that can be
granted, I’m sure.
26. Maybe, internet via satellite?
27. Was it Ulrik?

20 MAPS

BachoTEX2003 community

Social events

Bonfire
The social event is the traditional bonfire with sausages to be grilled and potatoes to be
baked in the ashes, while the ‘guitars in the night’ are playing with the people around as
quire.

Jacko and his family are really great, not only because of their guitar playing: their a
capella is something you should have listened to at least once in your life.

It must be said that not only Polish songs are sung, but also Ukrainean, Russian, and…
English! In the early BachoTEX’s we had Phil’s share and last year David Kastrup treated
us on some of Leonard Cohen. Then, I was very much surprised by Marek Czubenko,
who did not only join in singing the Polish, Ukrainean and Russian songs but als those of
Cohen!

Orienting competition
Another off-off social event was the orienting competition. These competitions are quite
popular in Russia and apparently in Poland. Pecular! Funny! Tuned for the ocasion, was
how you could score. Not only by finding the spots but also by emptying the bottle of
beer: bringing the empty bottle(s) yields 1 extra point for each bottle and a cap yields 2
bonus points. Nice, well-done! Thank you Piotr and …

Annual assembly

I really can’t tell what it was all about, but big laughter there was. I trust the GUST
membership to decide the right things, so my default in voting is to obstain. Two motions
were tabled, explained in English, and after voting accepted with one obstention, ,. To
understand the words of a motion is one thing, to realize the implications is another.

Pictures, alas no sound nor video

What is the value of a BachoTEX report without pictures, without sound?28 From the
last EuroBachoTEX a wealth of photo galleries is available at http://www.gust.org.pl/
BachoTeX/2002. I guess that when you read this report the photos of the corresponding
year 2003 will also be available.

Paveł Jackowski mentioned http://www.jaroslaw.pl/festiwal.29

I don’t know about a site with Polish music (sound, lyrics (translated), but those who
want some Russian–lyrics (with transliterations or translations)–are invited to visit my site
and find some links to Russian (bard) music.

I wonder when we may enjoy the bonfire songs from GUST’s site.

Evolving PDF standard

At the moment we have PDF 1.5 with Acrobat 6 around the corner. Jacko’s octopussy
model of several years ago with PS at the heart, is replaced by PDF as the essential format

28. One or two pictures won’t do, although as for all we know a picture is worth a thousand words.
Moreover, I have to wait untill I have ended my film in my camera and have the film developed, printed
and digitally written to CD. (My digital Quicktake 200 is out of order, alas.) Pondering over an e-paper
approach I don’t know as of yet what is the good approach compatible with TEX&Co. If we also like to
have video in TEX&Co then we have to use Adobe’s Acrobat. Acrobat ≥ version 5 allows sound and video
import, and I read that pdfTEX offers facilities for this. So, we have either the old approach of just (digital)
picture inclusion for books, reports and ilks or the CD-ROM multi-media approach. Interesting! For this
report I only included links to WWW’s with photos (gallery of pictures), no sound as of yet, alas. For the
music you still have to join a BachoTEX, nothing can replace BachoTEX-live.
29. It is about last years festival in the fall: pesni nashi koreni (songs of our roots).

Najaar 2003 21

community Kees van der Laan

to go to and from.
If we use one or more layers of PDF 1.5 for TEX&Co then we can always go back form

this PDF layer to TEX, realizing the functionality of .tex ↔ .pdf, after another tool has
been used to modify some other layer.30

The complexity of cooperating tools is decoupled, as long as we don’t flatten the layers.
PDF 1.5 and Acrobat 6 are potentially very useful.

Adobe Nederland in their recent Acrobat 6 introductory seminar advocated the use
of layers for languages: a PDF file may contain layers with English, Dutch, Polish…
translations. Automatic translation just has started but the results are still very poor.

Maybe, the workflow .tex
TEX
−→ .dvi

DVIPS
−→ .ps

Distiller
−→ .pdf is better suited for

keeping pace with the evolving PDF standard than the shortcut .tex
pdfTEX
−→ .pdf.

In my e-paper paradigm notes I will exercise both approaches–with or without PostScript–
summarize the advantages and disadvantages and come up with conclusions.

I wonder whether we can keep pace with the evolving PDF standard in pdfTEX. Apple
has the same problem because from OS X onwards the screen is PDF oriented.

Conclusions

As one can see it is no surprise that the BachoTEXs are well-attended. All the TEXnical
ingredients are there and well-cooked. Social life is very cosy and the location excellent.
Moreover, if the meal goes with some music it can’t be but a success. This time was
no exception. For me the BachoTEXs are the off-off-TUG meetings, they substantiate the
TEX-life I like.

Acknowledgements

Thank you GUST for having invited me again,31 you have definitely switched me in
TEX&Co active mode again, although there is much activity in the world outside, the
world beyond TEX&Co’s purpose. Thank you conference committee and speakers for the
nice material you offered. Thank you Jola for all the care you gave us, especially for
organizing the lunch package which paved our way back. Thank you photographers for
making your photos available, such that I could incorporate in this report links to them.32

Thank you all those present for the nice and cosy atmosphere.
See you next year,33 if not earlier. My case rests, have fun and all the best.34

Appendices

Experience in writing this e-paper
I ended up with a hybrid, a mixture, of a classical paper and an e-paper, take for example
the page size which is A4 biased and that photos are not included but just linked to, which
adheres to the hypertext idea.

30. The functionality, meaning, we can just refresh the TEX&Co layer(s) independently of (what we did
with) the other layers.
31. But, as promised on the EuroBachoTEX I would have come, nonetheless.
32. Not all photos linked to are taken at BachoTEX2003, but IMHO that does not really matter for conveying
the impression.
33. For next year I intend not only to contribute a lecture or two, but also try the near to impossible to
familiarize myself with the flavour of Polish, and grasp the opportunity to talk to people, getting rid of the
missed-opportunities syndrome. Then there is my long-standing wish to join the ‘guitars in the night’ on
my ocarino donated by Grizina, some years ago… keep fingers crossed.
34. Errors in this note? Do drop me an email: mailto:cgl@hetnet.nl.

22 MAPS

BachoTEX2003 community

Troublesome is the handling of links to WWW addresses. My macros have been ad-
apted such that the links are also written to a file, in order to maintain a survey of what is
used. There is no warning whatshowever when an address becomes obsolete and the link
dangling. That is what modern general hypertexts entail, I’m afraid.

Photos I did not include but just hyperlinked to them. This entailed a separation of the
text and coloured photos. Watched interactively, it adds context information to the photos
which is added value compared to just a photo gallery.

A PDF file put in a directory on my site won’t be searched by search engines for META
information. The search engines just look for the META information provided in a HTML
page.

It seems that my pdfTEX version, based on PDF 1.2 according to the file info, contains
a flaw with respect to apostroph’s, where the apostroph disappears.

Used WWW links
P15 http://home.hetnet.nl/~cgvanderlaan/

P15 mailto:cgl@hetnet.nl

P15 http://home.hetnet.nl/~cgvanderlaan/notes/bachotex03.pdf

P15 http://home.hetnet.nl/~cgvanderlaan/notes/bachotex03.tex

P15 http://www.gust.org.pl/EuroBachoTeX/photos/PBolek/imagepages/image15.htm

P15 http://home.hetnet.nl/~cgvanderlaan/notes/overview.pdf

P15 http://home.hetnet.nl/~cgvanderlaan/notes/texandco.pdf

P15 http://home.hetnet.nl/~cgvanderlaan/notes/profsandamateurs.pdf

P15 http://home.hetnet.nl/~slmorozova/notes/polen03ru.txt

P16 http://www.gust.org.pl/EuroBachoTeX/photos/KBazargan/imagepages/image2.htm

P16 http://www.gust.org.pl/EuroBachoTeX/photos/PBolek/imagepages/image9.htm

P16 http://www.gust.org.pl/EuroBachoTeX/photos/TSheibak/imagepages/image10.htm

P16 http://home.hetnet.nl/~cgvanderlaan/plaatjesmap/bungalow.jpg

P16 http://www.gust.org.pl/BachoTeX/2003/plan_bacho.html

P16 http://www.xs4all.nl/~rkwee/20030430bachotex/web/

20030502Hanna_Kimia_Albert_Maarten_Kim_Peter_Sam_water_rocket_launcher_at_lake.jpg

P16 http://www.gust.org.pl/EuroBachoTeX/photos/PBudzik/imagepages/image5.htm

P16 http://eoi.cordis.lu

P16 http://www.xs4all.nl/~rkwee/eurobachotex/web/20020503x_Stanislav_x.jpg

P16 http://www.gust.org.pl/BachoTeX/2003

P17 http://home.hetnet.nl/~cgvanderlaan/notes/bachotex94.pdf

P18 http://www.gust.org.pl/EuroBachoTeX/photos/MWolinski/imagepages/image10.htm

P19 http://www.xs4all.nl/~rkwee/20030430bachotex/web/20030503Radek_Anna.jpg

P20 http://home.hetnet.nl/~cgvanderlaan/notes/overview.pdf

P21 http://www.gust.org.pl/BachoTeX/2002

P21 http://www.jaroslaw.pl/festiwal

P21 http://home.hetnet.nl/~cgvanderlaan/russian.html

Najaar 2003 23

LaTEX

Toolbox

Wybo Dekker
wybo@servalys.nl

abstract
Nieuwe avonturen in TEX-land.

keywords
index, rules, tooltips, uitvullen

Tegen fraudeurs

Sander van Geloven schreef:
Weet iemand hoe ik een \hrulefill kan maken die iets
hoger ligt, eigenlijk precies in het midden van de hoogte
van een gewone kleine letter. Nu heb ik met \hrulefill
dit
maar ik wil eigenlijk (maar dan tot het einde van de regel)
dit ———————
Het is om te voorkomen dat iemand op de hardcopy nog
tekst na het einde van de regel kan plaatsen. Nu kreeg ik
van Piet van Oostrum de volgende twee tips:

\def\mrulefill{\leavevmode\leaders%

\hbox{-}\hfill\kern0pt}

Maar die resulteert in een onderbroken streepjeslijn die op-
gebouwd is uit een heleboel ‘-’ karakters:--------------------
De tweede tip:

\def\mrulefill{%

\leavevmode\leaders%

\hrule height 3pt depth -2pt\hfill%

\kern0pt}

was precies wat ik wilde, een ononderbroken lijn op halve
x-hoogte:
Nu heb ik dit nog aangepast tot:

\def\mrulefill{%

~\leavevmode\leaders%

\hrule height .6ex depth -2pt\hfill%

\kern0pt}

Dan is er nog een spatie tussen het einde van de regel met
tekst en het begin van de lijn:
Verder heb ik ook de hoogte aangepast om het er beter uit
te laten zien en die met de fontgrootte mee te laten schalen.

Tenslotte: ik zou ook wel mijn statuten document willen
veranderen in een statuten LaTEX-klasse, alleen doe ik dit
liever samen met iemand die hier al wat meer ervaring in
heeft om gelijk een goed bruikbare statuten.cls te maken
voor ieders gemak. Bij deze ook hier een oproep aan men-
sen die hier een steentje willen bijdragen.

Noot Wybo:
Door de ex als eenheid te gebruiken zorg je dat de rule-
afmetingen meeschalen met het font, maar dat moet je dan
ook voor de diepte doen. De height .6ex genereert een
\hrule die op de baseline ligt en een hoogte heeft die 0.6
maal de x-hoogte is. De depth -2pt verwijdert aan de on-
derkant 2pt, zodat, als 0.6 maal de x-hoogte kleiner is dan
2pt, de \hrule zelfs helemaal verdwijnt!
De oplossing is dus:

\def\mrulefill{%

~\leavevmode\leaders%

\hrule height .6ex depth -.5ex\hfill%

\kern0pt}

zodat je \hrule 0.55–0.45 = 0.1ex breed wordt en met
zijn midden op (0.55+0.45)/2 = een halve x-hoogte
terechtkomt:

Cursieve indextermen

Maarten Wisse schreef:
Als ik dit compileer:

\documentclass{article}

\usepackage{makeidx}

\makeindex

\begin{document}

Ik doe dit in de hoofdtekst:

\index{ambitus@\textit{ambitus}}

en ergens anders:

\footnote{%

\index{ambitus@\textit{ambitus}}

Een voetnoot met een indexterm}

\printindex

\end{document}

dan wordt een .ind file gegenereerd met daarin:

24 MAPS

Toolbox LaTEX

\begin{theindex}

\item \textit {ambitus}, 1

\item \textit{ambitus}, 1

\end{theindex}

met als gevolg dat de indexterm ambitus tweemaal in de
index komt. Weet iemand een manier om dit te vermijden?
Er wordt in de LC van alles gezegd over protecten van com-
mando’s binnen voetnoten, maar wat ik protect (footnote,
index of textit) het effect is hetzelfde: twee index items in
plaats van één.

Johannes Braams antwoordde:
Een manier om het te vermijden weet ik zo 1-2-3 niet. Wel
kan ik het verklaren, wellicht dat dat een clue levert. De
twee items worden door makeindex als verschillend gezien
vanwege de spaties. Die spaties worden veroorzaakt door
het \protect-ed commando mechanisme van de huidige
LaTEX; die die zorgt er namelijk voor dat het commando
\index expandeert naar \index (waarbij de een spatie
voorstelt). In de meeste gevallen zijn die spaties irrele-
vant en ziet LaTEX de volgende keer weer het commando
\index, expandeert naar \index en dan hebben we twee
spaties tussen \index en zijn argument …

Piet van Oostrum schreef:
Dit is een oud probleem. Zie LaTEX bug 1435. (Gevolgd
door een citaat van dat LaTEX-bug-rapport, dat voor mij
niet te volgen was, dus dat laat ik maar even weg …) Maar
Piet kwam ook met een minder obscure oplossing: Gebruik
footnote.sty en genereer de voetnoot met:

\begin{footnote}

\index{ambitus@\textit{ambitus}}

Een voetnoot met een indexterm

\end{footnote}

Of, als alternatief: redefinieer \index met:

\let\origindex\index

\renewcommand{\index}[1]{\origindex{#1}}

Maar dit vereist dat je geen speciale tekens zoals % $ en \

in je index entries gebruikt zonder daar een \ voor te zetten
(zoals dat in \index wel kan).

Vervolgens kwam Piet met nog een derde oplossing, af-
komstig van Jeremy Gibbons uit TeX and TUG news (Hey,
it works!): maak en gebruik een style file met daarin:

% plainfootnote.sty: incorporate plain

% TeX’s trickery into \LaTeX’s footnote

% macros, to allow \verb"..." within

% footnotes (the argument to \footnote is

% not read before it is executed)

\long\def\@footnotetext{%

\insert\footins\bgroup

\footnotesize

\interlinepenalty

\interfootnotelinepenalty

\splittopskip\footnotesep

\splitmaxdepth \dp\strutbox

\floatingpenalty \@MM

\hsize\columnwidth \@parboxrestore

\edef\@currentlabel{%

\csname p@footnote\endcsname

\@thefnmark}%

\@makefntext{\rule{\z@}{\footnotesep}%

\ignorespaces}%

\futurelet\next\fo@t

}

\def\fo@t{\ifcat\bgroup\noexpand\next

\let\next\f@@t

\else \let\next\f@t\fi \next}

\def\f@@t{\bgroup\aftergroup\@foot\let\next}

\def\f@t#1{#1\@foot}

\def\@foot{\strut\egroup}

Al Piets oplossingen bleken te werken, de tweede zelfs be-
ter dan hij zelf verwachtte.

Tenslotte kwam Johannes Braams met de suggestie:
probeer eens makeindex -c (als je tenminste makeindex

gebruikt). Volgens Frank Mittelbach zou dat moeten hel-
pen zonder ander truken te moeten toepassen …Maar dat
bleek niet te werken: de -c-optie comprimeert weliswaar
meer dan één spatie tot één spatie, maar ten opzichte van
nul spaties blijft er dan toch nog een verschil over.

Tenslotte, als ik dan als spuit 11 nog een duit in het zakje
mag doen: met een nieuw index-commando vang je twee
vliegen in één klap:

\newcommand{\ITX}[1]{\index{#1@\textit{#1}}}

want ten eerste wordt \index net als in Piets tweede oplos-
sing nu altijd vanuit een ander commando (\ITX) aangeroe-
pen, zodat in de .ind-file geen verschillen ontstaan, en ten
tweede kan in plaats van

\index{ambitus@\textit{ambitus}}

nu eenvoudig

\ITX{ambitus}

worden gebruikt.

Najaar 2003 25

26 MAPS

Simon Pepping xml
Docbook In ConTEXt,
a ConTEXt XML mapping
for DocBook documents

What is Docbook In ConTEXt?

Docbook In ConTEXt combines two technologies that are widely used by authors of
technical literature: the Docbook DTD and the ConTEXt macro package for TEX.

It is a ConTEXt module that allows one to produce a typeset version of a Docbook
XML file, in dvi or pdf format.

It takes a Docbook XML file as input for TEX. ConTEXt’s built-in XML parser parses
the file and applies ConTEXt commands when it reads opening and closing tags. Which
ConTEXt commands are applied, and therefore how the output is formatted, is determined
by the Docbook In ConTEXt module.

Docbook
Docbook1 has been available since the early 1990s. Over the years it has evolved into
an extensive DTD for technical literature. Long ago extensive, customizable stylesheets2

became available, first in DSSSL, later also in XSLT. The Jade program and the JadeTEX
macro package made it possible to run the DSSSL style sheets and print the output with
high-quality free tools. This enabled one to author, format and print Docbook documents
without expensive software tools. With the advent of XML and XSLT more free tools
have become available.
These combined features have made the Docbook DTD the DTD of choice for tech-
nical literature. The Linux Documentation Project is one well-known project that
switched over from a private DTD to the Docbook DTD. Due to this strong posi-
tion, the toolset for working with Docbook documents is growing rapidly, see e.g.
http://www.miwie.org/docbookinfo.html3.

How did it start and where is it now?

During EuroTEX 2001 in Kerkrade I had become interested in using ConTEXt because of
the beautiful presentation styles used by Hans Hagen and several other speakers. While
I was following the ConTEXt email list, I also became interested in ConTEXt’s XML
capabilities. These seemed so wonderful to me, that I had to understand how this could
be done using TEX macro programming. I started asking questions. Sometimes Hans
answers such questions with the suggestion that one take up some or other project. So he
suggested that I start an XML mapping for Docbook.

I really had other plans, but I was so intrigued with ConTEXt’s XML capabilities that
I could not resist and gave it a start. As an added benefit, I would become more familiar
with the Docbook DTD. When I started I certainly was aware that this would not be a
small task. Docbook is such a large DTD, allowing its authors to use the hundreds of

1. http://www.oasis-open.org/docbook/
2. http://sourceforge.net/projects/docbook
3. http://www.miwie.org/docbookinfo.html

Docbook In ConTEXt xml

Najaar 2003 27

elements in innumerable combinations. But only while the project evolved did it become
evident to me how large it really is.

Michael Wiedmann, who is interested in all possible tools to render Docbook docu-
ments, heard about the project soon after I started it. He made several contributions. His
support and interest helped me to continue through the difficult phase when a project is
no longer new, but you do not yet have anything really usable and you know all too well
how much work still has to be done.

Now, a year later, I have some sort of an answer as to how it is possible to program
ConTEXt’s XML capabilities in TEX macros: Theoretically TEX macro programming is
complete (is it called NP-complete?). Hans Hagen is one of the few programmers who
can turn this theory into practice.

I also have a working XML mapping for DocBook documents in ConTEXt, which I
call Docbook In ConTEXt (DIC). It contains good layout instructions for a number of oft
used elements in their more common combinations.

Running Docbook In ConTEXt

Before one can typeset an XML file myfile.xml, one should create a TEX driver file
myfile.tex, which should look something like this:

\input xtag-docbook

\starttext
\processXMLfilegrouped{\jobname.xml}
\stoptext

Then TEX is invoked as: texexec myfile.tex to get a dvi file, or as texexec �pdf
myfile.tex to get a pdf file.

In the driver file xtag-docbook is the file name of the module. The XML document
is input with the \processXMLfilegrouped command. The filename \jobname.xml is
always correct provided the driver file and the XML file have the same base name.

Alternatively, one can always use the same driver file, in which the name of the XML
file is changed each time.

The ConTEXt documentation indicates that one can also run the XML file as texexec
�xmlfilter=docbook testxml.xml. This will not work because the name of the Doc-
book In ConTEXt module does not conform to ConTEXt’s naming conventions. It works
if the module is renamed as xtag-doc.tex.

Customizing Docbook In ConTEXt

A Docbook XML document is a normal ConTEXt document. The commands that make
up a ConTEXt document are also at work when a Docbook XML document is processed.
They are just one layer away from what the user sees. Therefore the output can be cus-
tomized as for any ConTEXt document with ConTEXt’s setup commands. The setup
commands should be given after the Docbook In ConTEXt module has been read, so that
they override the default setup commands in the module. If you do not give additional
setup commands, ConTEXt’s defaults are applied. This is an example of a driver file with
ConTEXt setup commands:

\input xtag-docbook
\setupindenting[medium]
\setupheadertexts[section][pagenumber]
\setupheader[leftwidth=.7\hsize,style=slanted]
\setuppagenumbering[location=]
\setupitemize[each][packed][before=,after=,indentnext=no]

xml Simon Pepping

28 MAPS

\starttext
\processXMLfilegrouped{\jobname.xml}
\stoptext

Docbook In ConTEXt defines a few setup commands and other customizations of its own.

Section blocks
ConTEXt always applies pagebreaks around section blocks, and it treats the Table of
Contents and the Index as chapters. This behaviour can be changed with the pagebreaks
option of the \setupXMLDB command:

\setupXMLDB[pagebreaks=all]: Default ConTEXt behaviour.
\setupXMLDB[pagebreaks=sectionblocks]: ToC and Index do not start a new
page, and they are treated as sections. All other section blocks retain their default
ConTEXt behaviour.
\setupXMLDB[pagebreaks=none]: In addition to the sectionblocks option,
bodymatter, appendices and backmatter do not start a new page.

Titles
Titles are formatted with a command of the form XMLDB\XMLparent title, where
\XMLDBparent should be replaced with the name of the element to which the title be-
longs, e.g. XMLDBarticletitle. These commands can be redefined. They take one
argument, the title. For example, the article title could be redefined as:

\def\XMLDBarticletitle#1%
{\startalignment[left]\bfb #1\stopalignment \blank}

The section titles can be customized with ConTEXt’s usual \setuphead command.

blockquote, epigraph and attribution
The elements epigraph and blockquote have their own setup commands
\setupepigraph and \setupblockquote, which have the following options:

narrower. Both epigraph and blockquote are formatted using ConTEXt’s nar-
rower environment. The value of this option is a list of left, right and middle
that is passed on to the \startnarrower command. See the ConTEXt documenta-
tion for \startnarrower for the effect of these settings.
quote. The value is on or off. When on, quotation marks are applied as with
ConTEXt’s quotation environment.
command. The value is a command or set of commands, which are applied at the
start of the narrower environment.

The element attribution is customized with the command \setupattribution, which
has one option: command. The value is applied at the start of the attribution.

More customizations
Customization has only recently obtained the attention it deserves. More setup com-
mands like those for blockquote and epigraph will follow. The distribution contains a
document Customization.xml which will contain an up to date description of the cus-
tomization options.

Other tools for the same task

Docbook In ConTEXt is not the only tool for typesetting a Docbook document. The
canonical tool for typesetting any XML file is XSL + FO. An XSL stylesheet is used to
define the desired output in terms of Formatting Objects (FO). The FO description can be
thought of as a formatter independent layout description. Then an FO processor is used
to produce actual printed output, on paper or as an electronic document.

Docbook In ConTEXt xml

Najaar 2003 29

XSL stylesheets for Docbook have been available for several years, written by Norman
Walsh. They implement a large part of the Docbook elements—not all elements, that
seems impossible. And they are extensively parametrized, so that users can customize
many aspects without modifying the XSL code.

The objective of XSL + FO is: one stylesheet, many processors. Several FO proces-
sors are available, among which two free tools: FOP and TEX. FOP is a dedicated FO
processor, that produces output in PDF. It is available from the Apache website4. TEX
can be used as an FO processor using David Carlisle’s xmltex and Sebastian Rahtz’s
passivetex package, which runs under LaTEX.
ConTEXt is a prospective FO processor. It already has an XML parser. Mappings should
be defined for Formatting Objects, in the same way as I have done for Docbook In
ConTEXt.

Future plans

Currently, Docbook In ConTEXt is not completely integrated with the ConTEXt distribu-
tion. I have strictly used the ConTEXt API wherever I could, and avoided to develop my
own variants. But I have preferred to develop this module in separation from the devel-
opment of ConTEXt itself. The time has now come to work on a better integration. I hope
this can be achieved over the next year.

If good, customizable XSL stylesheets for Docbook exist, and if ConTEXt could be an
FO processor for the resulting output, then why would it be a good idea to spend so much
effort on writing a special Docbook stylesheet for ConTEXt?

In the ConTEXt community the idea of a special Docbook stylesheet for ConTEXt has
been greeted with enthousiasm. Apparently, here the theory of one stylesheet for many
processors succumbs to the practice that users prefer to work with their tools of choice.
For a popular set of tools like Docbook and ConTEXt users afford the effort of another
style sheet. Such a style sheet is more manageable for them and running the required
tools is easier.

On the other hand, until now, I have spent most of the required effort. And my answer
tends to be: Maybe it is not the best way to support Docbook and XML in ConTEXt.
Maybe it would be more useful to work on FO mappings in ConTEXt.

Over the past year I have set up this stylesheet. I have investigated the main struc-
ture of Docbook and come up with a way to map that to a ConTEXt document. I have
implemented a framework for the mapping. I have enjoyed doing all that, and my in-
sight and skills in TEX macro programming have increased immensely. But the time has
come that others take this over, add mappings for more elements, add customizations,
add new ideas. I plan to move forward to more generic work to support formatting of
XML documents using TEX as the typesetting tool.

Availability

Currently, Docbook In ConTEXt is available separately from the ConTEXt distribution,
from my web site5. Michael Wiedmann’s web page6 with Docbook tools has a link to
the Docbook In Context files.

Programming Docbook In ConTEXt

ConTEXt and XML
ConTEXt can take XML documents as input. For that purpose it contains a non-validating
XML parser, which recognizes XML tags as markup instructions. And it has an API

4. http://xml.apache.org/fop
5. http://www.hobby.nl/˜scaprea/context
6. http://www.miwie.org/db-context/index.html

xml Simon Pepping

30 MAPS

(Application Programmer’s Interface) which allows one to define actions for those tags.
This is called mapping XML tags to ConTEXt. A typical mapping instruction is

\defineXMLenvironment[element]{start action}{stop action}.

During the start and stop actions one has access to the attribute values of the element. For
example, this is how one reads the align attribute of an entry element (in a table) and
issues the corresponding setup command for ConTEXt’s TABLE environment:

\doifXMLvar{entry}{align}%
{\expanded{\setupTABLE[align=\XMLvar{entry}{align}{}]}}

ConTEXt’s programming interface for XML mapping is robust. Rarely if ever does
one get tangled in expansion problems. But, as is seen in the above example, tim-
ing the expansion remains an issue: The command to retrieve the attribute value,
\XMLvar{entry}{align}{}, must be expanded before the setup command can be read
by TEX. That is what \expanded does.

It is easy, is it not?
In principle, writing a mapping for an XML document in ConTEXt is simple. You state
which ConTEXt commands you want to use for the start and stop of each element, and
ConTEXt takes care of the rest. Practice is more complicated, certainly if you want to
write a useful, extensible and customizable mapping for a complicated DTD. In the fol-
lowing sections I discuss a number of noteworthy features of the Docbook In ConTEXt
mapping.

Encoding and language

An XML document declares its encoding in the xml declaration at the start of the doc-
ument. ConTEXt supports several encodings, among which the XML default encoding
utf-8. Correctly reading an encoding is one thing. Making all characters available that
can be addressed by an encoding is quite another thing. Unicode and its utf-8 encod-
ing have brought all characters in the Unicode range, currently more than 50,000, within
scope in a single document. At the moment many of these are mapped to ‘unknown char-
acter’. Work is ongoing to bring more characters within reach of ConTEXt in a single
document.

A Docbook document may declare its language in the xml:lang attribute of the doc-
ument element. The Docbook in ConTEXt module contains at the moment translated
strings for four languages: English, German, Dutch and Italian. These are used for au-
tomatically generated strings, such as the titles of the table of contents, the abstract, and
the index.

Features for each element

Context stack
Because an XML document has a tree structure, each element in the document has a list
of ancestors. I call that the context, or the context stack, which contains the ancestors
from the document root to the current element.

An element may push itself onto the context stack when it starts, and pop itself when
it finishes. In principle all elements should do so. In practice a number of elements omit
this because they or their children do not use the context stack in their formatting.

During formatting, the context stack can be inspected with the following commands:

\XMLDBcurrentelement: The current element’s name.
\XMLancestor#1: The name of the ancestor at level #1 The current element is at
level 0.
\XMLparent: The name of the current element’s parent.

Docbook In ConTEXt xml

Najaar 2003 31

\the\XMLdepth: The depth of the context stack.
\doifXMLdepth#1: Execute the following instruction if the context stack has a cer-
tain depth.
\XMLDBprintcontext: Print the context stack in the log file (mainly for debugging
purposes).

ConTEXt also defines the context stack. I have redefined it because ConTEXt’s imple-
mentation did not satisfy my plans. Later I have simplified my usage of the context stack.
ConTEXt’s implementation may now be perfectly satisfactory, but I have not checked this.

ConTEXt defines \currentXMLelement, which also holds the name of the current ele-
ment. But it is only guaranteed to be valid while ConTEXt reads the XML tag. Indeed, the
mapping of some start tags in Docbook in ConTEXt emit an \egroup command, which
invalidates the value of \currentXMLelement.

Ignorable white space
XML has the interesting feature of ignorable white space. It can be used to give the
raw XML document a nice formatting and make it fairly readable. (It did not exist in
SGML. As a consequence, SGML documents may be practically unreadable in an ASCII
editor.) For applications that read the DTD, this feature is rather clear: white space in
elements whose content may only consist of elements, is ignorable. For example, when
the content model of a section only contains paragraphs, all white space that surrounds
the paragraphs is ignorable. Applications like ConTEXt that do not read the DTD, must
resort to other means to find out whether white space is ignorable or not.

I have introduced a feature that is similar to the mechanism used in XSLT.
One can declare that an element preserves white space with the command
\defineXMLDBpreservespace#1, and that it ignores white space with the command
\defineXMLDBstripspace#1. For these declarations to work, the elements should be on
the context stack, and they and their children should use the command \XMLDBdospaces
as the last command in their start and end tags. \XMLDBdospaces has the effect of ig-
noring spaces following the XML tag if the current element has been declared to ignore
spaces.

In practice this is only used by elements that would suffer if white space is not ignored.
Note that TEX itself already ignores a lot of white space, viz. all white space that it reads
in vertical mode. In the example of white space surrounding paragraphs in a section, TEX
would do the right thing by itself.

The correct functioning of \XMLDBdospaces is rather subtle. The following is a generic
element mapping:

\defineXMLenvironment[xxx]
{\XMLDBpushelement{\currentXMLelement} \XMLDBdospaces}
{\XMLDBpopelement \XMLDBdospaces}

The command \XMLDBdospaces in the start tag is executed while xxx is the current ele-
ment. So it ignores white space if xxx has been declared to contain ignorable white space.
But the same command in the end tag is executed after xxx has popped itself from the
context stack. So its parent is the current element, and the command ignores white space
if that parent has been declared to ignore white space. That is indeed exactly what we
want, because the spaces following the end tag </xxx> are in the parent’s content.

There is a class of ignorable white space that TEX refuses to ignore: blank lines are
converted to \par commands by TEX’s input scanner, before we can tell TEX whether
white space is ignorable or not. Even this does not always matter to TEX because TEX
discards empty paragraphs or paragraphs that consist of white space only. In the above
example we could insert blank lines between the paragraphs without ill effect. But a
blank line between the start tag of a footnote and its first paragraph has a notably bad

xml Simon Pepping

32 MAPS

effect: it introduces a \par command between the footnote number and the start of the
text, so that the footnote number is in a paragraph by itself.

Such harmful blank lines can only be removed by preprocessing of the XML docu-
ment. I wrote a tool to do that. It is a SAX document handler written in Java, which
removes all ignorable white space. I call it ‘Normalizer’, and it is available on my web
site7.
The output of this tool is not only good for the ConTEXt mapping. Looking over it is
informative for authors of XML documents. Every amount of white space that is left by
the tool, is regarded as meaningful white space by XML parsers. Is that really what the
author wants?

Every element
In principle every element should contain the following commands:

\defineXMLenvironment[xxx]
{\XMLDBpushelement\currentXMLelement
\XMLDBseparator \XMLDBdospaces}
{\XMLDBpopelement \XMLDBdospaces}

That is, it pushes itself onto the context stack. It checks whether it should typeset a
separator. And it checks whether it should ignore following white space. In its end
tag, it pops itself from the context stack, and it checks whether its parent should ignore
following white space.

The separator is used by such elements as author, which may generate a comma or
the word ‘and’ between consecutive elements. By default it is set to \relax. A parent
element should give it a suitable definition to be used by its children, and reset it to the
default when it finishes.

Which element is next?

ConTEXt’s XML parsing is event based. This means that the parser generates events, such
as the start or stop of an element, and calls the associated actions. During the actions one
only sees the current event. One cannot look back at past events, except for the data
that one saved. One can certainly not look forward to check which elements follow. In
contrast, XSLT is tree based. That means that one can scan all elements, preceding and
following, in the formatting commands of an element. Event-based parsing may present
serious problems to the programmer.

Is there a title?
An abstract may but need not have a title. When there is no title, I want to print the
default title ’Abstract’. Because of the event-based nature of the parse, one cannot at the
start of the abstract look forward to see if a title will follow. One can only try to find a
future event at which one may safely conclude that there is no title if one has not yet seen
a title.

In an abstract the optional title may be followed by three types of element, para,
simpara and formalpara. When any of these elements is started, one may safely con-
clude that either the title has been seen or there is no title.

One solution is to save the title, and to redefine the mappings of each of these three
elements, such that they output the title or the default title if there was no title. And then
restore their default definitions for the following elements.

Another way to tackle this problem is to save the whole abstract and process it twice.
In the first pass we check whether there is a title. During this pass, all output should be
suppressed. In the second pass we first output the title or the default title if no title was

7. http://www.hobby.nl/˜scaprea/context

Docbook In ConTEXt xml

Najaar 2003 33

found in the first pass, and then we output the content. Again this requires a redefinition
of the three possible elements that may follow the title, so that they suppress their output
at the first pass.

The third option is provided by TEX itself, not by the XML mapping. We redirect the
typesetting of the abstract into a vbox. At the same time we save the title in the variable
\XMLDBtitletext, which removes it from the typeset content in the vbox. Then we
output the saved title or the default title if there is no saved title, and next we output the
vbox. This is the best option, and I use it.

In a section this solution would be more problematic: we run the risk of saving a large
vbox. Working with options one or two is also not fun, because there are more elements
to be redefined. I think the only viable alternative would be to work with \everypar,
because \everypar is TEX’s low-level signal that there is new text. Fortunately, in a
section a title is required, so I did not (yet) have to work out this problem.

This is an example of the problems that arise because in an event-based parse it is hard
to determine if an optional element is not present. The following section presents an
example of the problems that arise because in an event-based parse it is equally hard to
determine when a certain group of elements is finished.

Sectioning
Like many systems, ConTEXt partitions its document in frontmatter, bodymatter, appen-
dices and backmatter (called section blocks). The section block governs such properties
as the numbering of the chapters and sections. I use the end of the frontmatter to print
the table of contents.

Docbook does not have the equivalent of section blocks. There is not a single element
that contains the frontmatter, the bodymatter or the backmatter. Therefore I analysed the
top-level structure of a docbook document, and divided the elements that may occur as
top-level elements into frontmatter elements, bodymatter elements and backmatter ele-
ments. When the first top-level bodymatter element is seen, the frontmatter is complete
and the bodymatter starts. Similarly for the backmatter.

For a book in Docbook the situation is rather clear: The bodymatter starts with the first
part, chapter, article or reference.

For an article the situation is much more fuzzy. While I counted only 6 top-level front-
matter elements, I identified 60 top-level bodymatter elements. The situation is compli-
cated by the fact that some of these 60 top-level bodymatter elements may occur in the
frontmatter at a lower level. For example, abstract, authorblurb and address may
occur within the element articleinfo, which itself is a main constituent of the front-
matter. They may also occur as top-level elements, in which case I consider them as part
of the bodymatter.

The transitions between the other section blocks are fortunately more clearly marked.
The complete analysis is contained in the documentation in the module itself.

The situation is programmed using the commands \XMLDBmayensurebodymatter and
\XMLDBmayensurebackmatter. All top-level bodymatter and backmatter elements exe-
cute the appropriate command. These commands check if the element is a direct child
of the document element, i.e. if the depth of the context stack equals 2, and if the corre-
sponding section block has not yet been started. The current section block is kept in the
variable \XMLDBsectionblock.

Specific elements

Tables
Docbook uses the CALS table model. ConTEXt uses two different table models. One is
the tabulate environment, which is based upon TEX’s \halign. It is quite sensitive to ex-
pansion timing errors. The other is the TABLE environment, also called natural tables. It

xml Simon Pepping

34 MAPS

is a very powerful and flexible environment, with much customization possibilities using
\setupTABLE commands. A special feature of this table model is that rows, columns and
cells can be configured both before and after their content has been given, at any time
before the end-of-table (\eTABLE) command.

Because ConTEXt’s natural tables have much similarities to CALS tables, the mapping
is in principle very easy: a row corresponds to TR, an entry to TD, colspec elements
can be mapped to \setupTABLE commands.

There are three main complications.

The top, bottom, left and right frames of a CALS table are determined by the
frame attribute of the table; the rowsep and colsep attributes of the correspond-
ing rows and cells should be ignored.
CALS tables can have multiple tgroup elements, each with their own number of
columns, and their own alignment and frame settings (colspec elements).
Each tgroup may have its own thead and tfoot elements, which may contain
their own colspec elements.

These requirements have led to the following model: The table element generates a
ConTEXt table, i.e. the table float, using the \placetable command. Each tgroup
element generates its own TABLE environment, i.e. the actual table.

The table is not openend by the start tag of the table, because at that moment the title
is not yet known. Instead, it is opened by the start tag of the first tgroup (command
\XMLDBopentable, which contains the ConTEXt command \placetable). The start tag
of each following tgroup typesets the previous tgroup (command \XMLDBendTABLE).
Before typesetting, the left and right frames are set up. The start tag of the second tgroup
also sets up the top frame. The end tag of the table does the same as the start tag of the
next tgroup would do. In addition it sets up the bottom frame of the table, and closes the
vbox of the \placetable command.

The rest is careful attribute processing, and issuing the required \setupTABLE com-
mands at the right time. Attribute processing generates a lot of overhead, because
both the attribute names and their possible values have to be translated from CALS
to \setupTABLE. That makes the code somewhat less readable, but the logic is quite
straightforward.

Issuing the required \setupTABLE commands is a precise work.

The start tag of the first tgroup applies the frame, colsep and rowsep attributes
of the table (\XMLDBopentable), so that they apply to all TABLEs in this CALS
table. The start tag of each tgroup applies its own align, colsep and rowsep at-
tributes, within its own TABLE environment.
colspec elements of a tgroup apply their attributes to the whole column of this
TABLE. The colspec elements in the thead and tfoot elements, on the other
hand, must save their attributes (\XMLDBsavecolspec); they will be applied per
entry in the thead and tfoot.
row elements apply their attributes immediately to the whole row.
entry elements first check whether they are in a thead or tfoot; if so, they apply
the saved colspec attributes. Then they apply their own attributes. This order is
important. ConTEXt gives precedence to properties set up per cell over properties
set up for the whole table or per row or column. But in this case we apply what
was originally a column specification per cell, so we must take care of the prece-
dence ourselves.

Revision history
The revision history contains a number of revisions. Each revision specifies one or more
fields out of five possible fields. I wanted to represent this in a table which should only

Docbook In ConTEXt xml

Najaar 2003 35

contain those columns for which at least one revision specifies data. Programming this
was my first challenge in this project.

Hans Hagen suggested the solution. The revision history is saved, and then processed
twice.

For the first pass of the saved revision history, we define the revision fields such that
they register themselves when they occur, but suppress all output. We also count the
number of revisions, so that we will know which row must contain the bottom rule of the
table. Now we know which fields occur and we can setup the table and output its header
row.

For the second pass we define the revision element such that it outputs the row with
the fields. So that the fields are output in the same order as in the header row, regardless
of their order in the XML document, we first save the fields in a revision, and at the end
tag of the revision we output the whole row in the desired order.

I worked this out both in ConTEXt’s tabulate environment and with its natural tables.
I decided to keep the solution with the natural tables, because natural tables are more
flexible and less prone to expansion errors.

This procedure demonstrates a powerful feature of ConTEXt’s XML processing: It is
possible to save a node of the XML document with its subtree; in other words, the content
of an element, complete with embedded elements, is saved in a variable without parsing.
Later one can process the saved subtree as often as one likes. In between one is free to
redefine the behaviour of the embedded elements. In TEX’s macro language this is quite
normal behaviour :

\def\savevar#1{\def\var{#1}}
... % redefine \processvar
\processvar{\var}
... % redefine \processvar
\processvar{\var}

In other programming languages it is not nearly as easy. Saving a node with its subtree
in a SAX content handler so that it can be processed later is not a trivial task.

It is a disadvantage of the above procedure that the code is not easily read, certainly
not if one is not used to the procedure. Recently, I have discussed an alternative proce-
dure using Giuseppe Bilotta’s xdesc module. It would achieve the same result but make
the programming more transparent. Another advantage would be that it is more easily
customizable by the user.

Program listing and CDATA
I have spent an enormous amount of time on program listings. At first it seemed easy:
ConTEXt has a verbatim environment which suits our purpose.

Then it was pointed out to me that some program listings contain CDATA sections,
which were not treated well by my solution. I realized that a program listing is not
really a verbatim environment because it does not disable XML tags. I dived deep into
ConTEXt’s verbatim environment and came up with a variant that supported two types of
verbatim: one real verbatim for CDATA sections and one that did only line oriented layout
for program listings. Moreover, it was nestable, so that it could deal with CDATA sections
within program listings.

But it remained problematic to get it quite right. When the end of the CDATA section or
of the program listing element was followed by text on the same line, this text was lost.
And my white space tool did exactly that: put the following text right behind the end of
the program listing element.

When I revisited the problem a few months later it dawned on me that the whole ver-
batim approach was wrong. Neither CDATA sections nor program listing environments
have anything to do with TEX’s notion of verbatim. CDATA sections just disable XML

xml Simon Pepping

36 MAPS

markup. They may occur anywhere in an XML document, and have no semantic mean-
ing. Indeed, an XML parser does not even report whether CDATA sections are used in an
XML document; it simply resolves them.

For the program listing I found a simple solution. It avoids scanning a whole line at a
time, therefore it avoids scanning the text following the end of the program listing with
the wrong catcodes in place. It uses \obeylines and \obeyspaces and it places struts
at the start of a line to prevent the leading spaces to be discarded by TEX’s paragraph
mechanism. That is all, and it does the job well.

Hyperlinks, URLs and external documents
Docbook documents mark hyperlinks with the ulink element; the url is contained in
its url attribute. If we were writing HTML documents it would be easy: <ulink
url="URL">text</ulink> would be translated to text</href> and
the browser would do the rest.

But not such an easy solution in a PDF document. Links to PDF documents should
be treated differently from links to other documents, and relative links to non-PDF docu-
ments are not allowed. Therefore, we have to analyse the URL and complete it if neces-
sary.

In ConTEXt strings can be split into parts with commands like

\beforesplitstring string\at substring\to\var

which splits string at substring and stores the first part in \var. I use this and similar
commands to check whether the URL has an authority (this is the term used by RFC2396,
which specifies URIs; usually it is called the protocol, e.g. http) and whether it is an
absolute or a relative URL. If a local file is specified, we also check whether it has the
extension pdf. Links to local PDF documents are created using the ConTEXt command
\useexternaldocument, links to other documents use the ConTEXt command \useURL.

A special problem is posed by URLs like slashdot.org. Is it a web server, or is it
a file in the current directory? Cf. the URL myfile.html, which has exactly the same
pattern. After the terminology of RFC2396 I call this abbreviated URLs. By default
they are not recognized. Thus myfile.html is correctly linked to as a local document,
while slashdot.org is incorrectly linked similarly. The user can switch recognition of
abbreviated URLs on by setting \XMLDBcheckabbrURItrue, and can switch if off again
by setting \XMLDBcheckabbrURIfalse.

Unfortunately, I do not know how to get the working directory in a ConTEXt run, so
that relative URLs are currently not properly completed.

Customization

For a long time I did not pay much attention to customization. Recently, I received
requests to make a mapping for the blockquote and epigraph elements. Togeth-
er with that request a discussion arose on the ConTEXt mailing list about customiza-
tion. As a consequence these two elements and their child element attribution have
proper setup options, viz. the commands \setupblockquote, \setupepigraph and
\setupattribution. I am sure that more such setup commands will follow.

The same discussion on the ConTEXt mailing list touched upon attributes whose range
of values is not constrained. An example is the role attribute of the para element. It is
not possible to define actions for such attributes in the stylesheet, because the possible
values are not known. The idea arose to put a hook in the stylesheet for the user’s own for-
matting command. Something like \attributeaction[para][role]. The user could
define such an action with something like \defineXMLattributeaction[para][role].

The stylesheet should invoke the attribute action within a group in order to allow the
user to change fonts etc. for this element. Therefore ConTEXt cannot invoke the attribute
action automatically, because it cannot know where it should do so. For example, some

Docbook In ConTEXt xml

Najaar 2003 37

mappings for the opening tag invoke \egroup; if the attribute action had been invoked
automatically, its scope would be ended immediately. This idea has not yet been imple-
mented.

I am not sure how far customization can go. Enabling extreme customizability would
come down to defining a new language for describing the formatting of a Docbook doc-
ument. This would go too far. On the other hand, customizability is a strong feature of
ConTEXt. It is not difficult to add customizability options to the stylesheet; ConTEXt has
some good commands for that.

Acknowledgement

The first versions of the mappings for several elements, a.o. the ulink element, were
contributed by Michael Wiedmann. He also contributed the string literal files for English
and German. Giuseppe Bilotta contributed the string literals file for Italian.

And of course, nothing of this would have been possible without Hans Hagen’s
ConTEXt.

application

Drawing Message Sequence Charts with LaTEX

Sjouke Mauw
Computing Science Department
Eindhoven University of Technology
P.O. Box 513
NL-5600 MB, Eindhoven
The Netherlands
sjouke@win.tue.nl

Victor Bos
Software Construction Laboratory
Turku Centre for Computer Science
Lemminkäisenkatu 14 A
FIN-20520, Turku
Finland
v.bos@abo.fi

abstract
The MSC macro package facilitates LaTEX users to easily include

Message Sequence Charts in their texts. This article describes
the motivation for developing the MSC macro package, the

features of the MSC macro package, and the design of the MSC

macro package.

Introduction

The Message Sequence Chart (msc) language is a visual
formalism to describe interaction between components of
a system. The language is standardized by the itu (Inter-
national Telecommunication Union) in Recommendation
Z.120 [IT01]. An introductory text on msc can be found
in [RGG96]. MSCs have a wide application domain, ran-
ging from requirements specification to testing and docu-
mentation.

An example of a Message Sequence Chart is given in
Figure 1. The msc shows an ftp login session to a ctan
archive. Three players, called instances, are involved
in the session: User, ftp client, and CTAN at location
ftp.tex.ac.uk. The instances are denoted by vertical lines.
Interaction between instances is denoted by labeled arrows.
For instance, the arrow ftp.tex.ac.uk is a message from
User to ftp client. Sending and receiving of a message are
special types of events; each message has a send event and
a receive event. Later we will see other types of events.
Events occur on instance lines. Events are ordered in time
and for each instance, time is supposed to run from top to
bottom. Furthermore, the send event of a message never

User ftp client ftp.tex.ac.uk

CTAN

ftp.tex.ac.uk

connect

getlogin

login

anonymous

anonymous

Ok

command
successful

msc ftp login to CTAN archive

Figure 1. An ftp login to the CTAN at ftp.tex.ac.uk

occurs after the receive event of the message. For example,
from Figure 1, we can derive that the ftp.tex.ac.uk message
occurs before the connect message, because the receive
event of the first message occurs before the send event of
the second message.

In order to include mscs in LaTEX documents, we have
developed the msc macro package. The current version
of the msc macro package supports almost the full msc
language as defined in the standard. In this article we
will describe the motivation of the msc macro package,
the features of the msc macro package, the design of the
msc macro package, and the limitations of the msc macro
package. This paper does not describe all features of the
msc macro package. For a thorough treatment of the msc
macro package we refer to the user manual [BM02b].

Motivation

Several commercial and non-commercial tools are avail-
able, which support drawing or generating Message Se-
quence Charts. However, these tools are in general not
freely available and often not flexible enough to satisfy

38 MAPS

Drawing Message Sequence Charts with LaTEX application

all users’ wishes with respect to the layout and graphical
appearance of an msc. Furthermore, they often do not
allow the user to include LaTEX code in the mscs. Another
drawback of these tools is that quite often they restructure
mscs automatically. Though for simple mscs this might be
what the user wants, for more complex mscs the result of
automatic restructuring is usually not desired.

Therefore, people often use general drawing tools, such
as xfig (see http://www.xfig.org/) to draw mscs. How-
ever flexible this approach is, it has some drawbacks. First
of all, general drawing tools have (and should have) a low
level of abstraction; their interface is defined in terms of
coordinates, points, lines, polygons, etc. To draw mscs, the
user would probably be more comfortable if the interface
was defined in terms of instances, messages, actions, etc.
For example, if you are drawing a message in an msc using
a general drawing tool, you would probably have to draw
a line with an arrow head from a position (x0, y0) to a
position (x1, y1), instead of drawing a message from an
instance i0 to an instance i1 of the msc.

Another drawback of using general drawing tools is
that they usually do not provide libraries of msc symbols.
Therefore, if you have to draw many mscs, it will take much
effort to get a set of consistent looking mscs. Furthermore,
if you want to change a parameter of the mscs, e.g., the
width of the instance head symbols, you would probably
have to edit all mscs manually.

For these reasons, we developed the msc macro package
for LaTEX. The macros in the package enable a textual
representation of an msc in a LaTEX source document. By
compiling the LaTEX document into PostScript, a graphical
representation of the msc is generated.

The design requirements for the msc macro package
were:

1. The package should follow the itu standard with
respect to shape and placement of the symbols of an
msc.

2. The interface of the package should be at the right level
of abstraction.

3. There should only be a limited amount of automatic
restructuring and layout of the mscs.

4. The appearance of (sets of) mscs should be
configurable by an appropriate set of parameters.

5. The msc macro package should run on standard LaTEX
distributions.

User interface

In this section we will briefly describe the user interface of
the msc macro package. We will do this by giving examples
and showing the LaTEX code that produced the examples.

MSC environment mscs are drawn in the msc environ-
ment. The syntax of this environment is

\begin{msc}[titlepos]{title}...\end{msc}

The title of the msc is defined by the title parameter. The
optional parameter titleposdetermines the position of the
title. By default it is l (left aligned). Other possible values
are c (centered) and r (right aligned).

Instances Instances are declared with the
\declinst[*]{nn}{an}{in}

command. The starred version produces a fat instance
which will not be discussed in this paper. The nn parameter
defines a nickname of the instance. Nicknames identify
instances and are used to draw messages and events. The
an parameter defines the above name of the instance. This
is the text to be placed above the instance head symbol
(the rectangle at the top of an instance). The in parameter
defines the inside name of the instance. This is the text to
be placed inside the instance head symbol. Both the inside
name and the above name may be empty.

Messages Messages are drawn with the
\mess[pos]{txt}{s}{r}[offset]

command. The optional pos parameter defines the position
of so-called self messages: messages from an instance to
itself. The default value of pos is l (to the left of the
instance) and another possible value is r (to the right of
the instance). The txt parameter defines the label of the
arrow representing the message. The s parameter is the
nickname of the instance on which the send event occurs,
i.e., the nickname of the sender. The r parameter is the
nickname of the instance on which the receive event occurs,
i.e., the nickname of the receiver. The optional parameter
offset defines the number of levels the receive event is
shifted vertically with respect to the send event. Levels are
discussed in the next paragraph. Offsets are useful if two
instances send messages to each other and then wait for
the messages to be received. For example, Figure 2 shows
messages a and b between instances i and j. The receive
event of message a occurs after the send event of message b
and vice versa. Both messages have offset = 2 in order to
place the receive events two levels below the send events.

Levels The height of an msc environment is determined
by the number of levels and a fixed amount of vertical
space above and below the first and last level, respectively.
Levels are created by the \nextlevel[num] command. The
optional parameter denotes the number of levels to be
added; its default value is 1. Levels are used to order events
in time. Recall that time runs from top to bottom, i.e., it
runs from higher levels to lower levels. Events in the same
level are drawn at equal vertical distance from the top of the
msc. The send event of a message will always be drawn in

Najaar 2003 39

application Sjouke Mauw and Victor Bos

i j

a

b

msc Messages

\begin{msc}{Messages}

\declinst{i}{i}{}

\declinst{j}{j}{}

\mess{a}{i}{j}[2]

\nextlevel

\mess{b}{j}{i}[2]

\nextlevel[2]

\end{msc}

Figure 2. Using non-zero message offsets

the current level. The receive event of a message can be
drawn in another level using the offset parameter of the
\mess command. Note that levels are not part of the msc
language, they are just an implementation means to draw
mscs.

Using the commands described so far, we can generate the
msc of Figure 1. The LaTEX input to generate that msc is
given below. The length \instdist, used in the last \mess
command, defines the distance between instances of an msc
and is one of the parameters to configure the msc macro
package. Here, it is used to create a \parbox that is 15%
smaller than the distance between the instances of the msc.

\begin{figure}[tb]

\begin{center}

\begin{msc}{ftp login to CTAN archive}

\declinst{usr}{User}{}

\declinst{ftp}{ftp client}{}

\declinst{ctan}{ftp.tex.ac.uk}{CTAN}

\mess{ftp.tex.ac.uk}{usr}{ftp}

\nextlevel

\mess{connect}{ftp}{ctan}

\nextlevel

\mess{getlogin}{ctan}{ftp}

\nextlevel

\mess{login}{ftp}{usr}

\nextlevel

\mess{anonymous}{usr}{ftp}

\nextlevel

\mess{anonymous}{ftp}{ctan}

\nextlevel

\mess{Ok}{ctan}{ftp}

\nextlevel[2]

\mess{\parbox[b]{.85\instdist}

{\centering command successful}}{ftp}{usr}

\end{msc}

\end{center}

\end{figure}

Actions Actions are events that can be used to model
internal activity of a particular instance. Actions are
defined with the \action{txt}{nn} command. The txt

parameter defines the text to be placed inside the action
symbol. The nn parameter is the nickname of the instance
that executes the action. The action will be drawn at the
current level with its top aligned with send events at the
same level.

For example, suppose CTAN has to do some compu-
tations in order to determine if the anonymous login is
allowed. The computation could be modeled by a check
action, as depicted in Figure 3. The LaTEX code for the
msc of Figure 3 is:

\begin{msc}{Action}

\declinst{ftp}{ftp client}{}

\declinst{ctan}{ftp.tex.ac.uk}{CTAN}

\nextlevel

\mess{anonymous}{ftp}{ctan}

\nextlevel

\action{Check}{ctan}

\nextlevel[2]

\mess{Ok}{ctan}{ftp}

\end{msc}

Regions Another way to model internal activity, or in-
activity, is by using regions. Regions are defined by
the \regionstart{regtype}{nn} and the \regionend{nn}

commands. The regtype parameter defines the type of
the region: activation, coregion (which will not be dis-
cussed in this paper), or suspension. The nn parameter is

40 MAPS

Drawing Message Sequence Charts with LaTEX application

ftp client ftp.tex.ac.uk

CTAN

anonymous

check

Ok

msc Action

Figure 3. An MSC with an action

the nickname of the instance on which the region should
be drawn. If an instance is active, e.g., doing some com-
putations, this can be modeled by an activation region. If
an instance is inactive, e.g., waiting for results, this can
be modeled by a suspension region. For example, the
computation of the CTAN could be modeled by an activ-
ation region. Furthermore, the ftp client is inactive during
this computation, which could be modeled by a suspension
region. Figure 4 shows the resulting msc. The LaTEX code
for the msc of Figure 4 is:

\begin{msc}{Regions}

\declinst{usr}{User}{}

\declinst{ftp}{ftp client}{}

\declinst{ctan}{ftp.tex.ac.uk}{CTAN}

\regionstart{activation}{ftp}

\mess{anonymous}{usr}{ftp}

\nextlevel

\regionstart{suspension}{ftp}

\regionstart{activation}{ctan}

\mess{anonymous}{ftp}{ctan}

\nextlevel[2]

\mess{Ok}{ctan}{ftp}

\regionend{ctan}

\regionstart{activation}{ftp}

\nextlevel

\mess{\parbox[b]{.85\instdist}

{\centering command successful}}{ftp}{usr}

\regionend{ftp}

\end{msc}

Note that the space between the activation region of the
ftp client and the anonymous message from the ftp client
to ctan is very small. In the next paragraph we will show

User ftp client ftp.tex.ac.uk

CTAN

anonymous

anonymous

Okcommand
successful

msc Regions

Figure 4. An MSC with activation and suspension regions

how redefining one of the msc parameters can increase this
space.

MSC parameters The msc macro package has almost 30
parameters to change the layout of mscs. For example,
the width of instances, the distance between instances, the
distance between the head symbols and the msc frame, and
the width and height of action symbols can all be changed.
These parameters are represented by the LaTEX lengths
\instwidth, \instdist, \topheaddist, \actionwidth,
\actionheight, respectively. For instance, in the msc of
Figure 4, the distance between the instances should be
slightly bigger, in order to increase the space between the
activation region of the ftp client and the anonymous mes-
sage from the ftp client to ctan. Figure 5 shows the same
msc, but now the distance between instances is increased
by 10%. The LaTEX code for this msc is the code for Fig-
ure 4 in which just after the line \begin{msc}{regions} the
line \setlength{\instdist}{1.1\instdist} is included.

The location where an msc parameter is changed in
the LaTEX source document determines its effect. Since
the msc parameters are normal LaTEX macros or LaTEX
lengths, the normal LaTEX scoping rules for these entities
apply. For example, if a length parameter is changed
outside any LaTEX environment, its effect is visible for all
msc environments defined after the change. However, if
it is changed inside an msc environment, its effect is only
visible for that msc.

Since there are many parameters to configure the msc
macro package, there are three predefined parameter set-
tings to generate small, normal, or large mscs. The com-
mand \setmscvalues{parset} can be used to change the
selected parameter settings. The parset parameter should
be small, normal, or large. The default setting is normal.

Najaar 2003 41

application Sjouke Mauw and Victor Bos

User ftp client ftp.tex.ac.uk

CTAN

anonymous

anonymous

Okcommand
successful

msc Regions 2

Figure 5. An MSC with larger distance between instances.

Implementation

In this section we will describe some aspects of the imple-
mentation of the msc macro package.

Drawing MSCs In general, and as shown by the examples
of the previous sections, an msc consists of a number of
vertically oriented instances that are connected by horizont-
ally oriented messages. So, the width of an msc is related
to the number of instances and the height of an msc is
related to the number of (ordered) messages. Based on this
observation, there are several implementations possible.

To define the width of an msc, we could use an additional
parameter of the msc environment. However, this strategy
has some drawbacks. First of all, an extra parameter,
the horizontal position, is required to declare instances.
Furthermore, this parameter probably changes whenever a
new instance is added to the left of an existing instance.
Finally, the user should calculate the value of this parameter
carefully in order to get evenly spaced instances.

Therefore, we chose to compute the width of an msc
based on the number of instances declared by the user
and the, user definable, \instdist length that defines the
distance between instances. This decision does not violate
requirement 3 of Section , no automatic structuring and
layout, since the number of instances is under control of
the user. Furthermore, the user can adjust the space to the
left of the first instance and the space to the right of the last
instance by redefining the length parameter \envinstdist.

The messages are partially ordered based on the relative
position of their send and receive events on instances.
We could have decided to provide commands to order
the events and then let the package compute the final
layout of the msc. However, apart from the fact that this

computation is not trivial, this strategy fails with respect to
requirement 3: no automatic structuring and layout.

Another strategy is to use an extra parameter of the msc

environment to define the vertical size of an msc. There
are several drawbacks to this approach. First of all, the
vertical size has to be computed. Secondly, commands to
draw messages, actions, regions, etc., should have one or
more additional parameter to indicate the vertical position
at which they should be drawn. Finally, if a new message is
to be added somewhere in the msc, the vertical placement
parameter of commands below the new message should
probably be updated.

Therefore, we chose to only provide a command,
\nextlevel, to advance the current height of the msc. By
increasing the current height between two messages, the
partial order can be defined. Furthermore, one can eas-
ily add new messages to the msc at any vertical position
without having to change parameters of existing messages.

These decisions resulted in an msc environment in which
the msc is drawn in a top-left bottom-right fashion.

Nicknames As explained above, the msc macro package
uses nicknames to identify instances. If an instance is
declared, the following attributes are associated to its nick-
name:

� The inside name,� The above name,� The width of the instance line,� A flag indicating if it is a normal or a fat instance,� The left, center, and right x-position of the instance,� The y-position from which this instance still has to be
drawn,� The style of the instance line, and� The style of the region of the instance.

The \declinst command defines the attributes using the
following TEX code pattern:
\expandafter\def

\csname inst〈attrnickname〉\endcsname
{〈value〉}

where 〈attrnickname〉 is the concatenation of the attribute,
e.g., abname (above name), and the nickname and where
〈value〉 is the value of the attribute. For instance, the
declaration

\declinst{usr}{User}{}

defines the following commands:
\instabnameusr, \instinnameusr,
\instbarwidthusr, \instisfatusr, \instxposusr,
\instlxposusr, \instrxposusr, \instyposusr,
\instlinestyleusr, and \instregionstyleusr.

For each instance attribute, there is an internal command
to read the value of the attribute. For example, to read

42 MAPS

Drawing Message Sequence Charts with LaTEX application

the value of the above name of instance usr, one should
use \msc@instabname{usr}. For some attributes, like
the current y-position, there is a command to change the
value of the attributes. For example, to change the y-
position of instance usr to the value y, one could use
\msc@setinstypos{usr}{y}.

Underlying drawing engine The msc macro package
uses the pstricks package, see [vZ93] or Chapter 4
of [GMS94], to draw lines, arrows, and frames. This
package is now commonly available in LaTEX distribu-
tions, so relying on this package does not violate require-
ment 5. A drawback of pstricks is that it is incompatible
with pdfLaTEX. Consequently, our msc macro package is
incompatible with pdfLaTEX, too. However, there are other
ways to generate pdf from LaTEX documents. One option
is to first convert the dvi file into PostScript, e.g., using
dvips, and then convert the PostScript file into pdf, e.g., us-
ing the ps2pdf utility included in ghostscript distributions
(http://www.cs.wisc.edu/˜ghost/).

Availability

The msc macro package is freely available at CTAN,
see directory macros/latex/contrib/supported/msc, and
at http://www.win.tue.nl/˜sjouke/mscpackage.html. It
is distributed under the LaTEX Project Public License,
see http://www.latex-project.org/lppl.txt.

Documentation of the package consists of a user
manual [BM02b] and a reference manual [BM02a]. These
documents are included in the distribution.

Conclusions

The msc macro package enables users to include mscs in
LaTEX documents. Furthermore, the mscs have a consist-
ent layout that can be configured by an appropriate set of
parameters. The package supports almost the complete itu
standard of the msc language, including msc documents
and high level mscs (which were not discussed in this
paper).

1. The abstraction level of the msc macro package is as
desired.

2. The user has full control over the relative position of
instances, messages, etc.

3. Changing mscs, e.g., adding extra instances or
messages, is easy and does not require computations
by the user.

4. The msc macro package is highly configurable. There
are about 30 user definable length parameters and a
small number of text parameters.

The developers of the msc macro package consider
the package more or less complete. Therefore, the only
changes to the package will be bug fixes and/or code
documentation.

References

[BM02a] Victor Bos and Sjouke Mauw. A LaTEX macro
package for Message Sequence Charts—Reference
Manual—Describing msc macro package version 1.13,
April 2002. Included in MSC macro package
distribution.

[BM02b] Victor Bos and Sjouke Mauw. A LaTEX
macro package for Message Sequence Charts—User
Manual—Describing msc macro package version 1.13,
April 2002. Included in MSC macro package
distribution.

[GMS94] Michel Goossens, Frank Mittelbach, and
Alexander Samarin. The LaTEX Companion. Addison-
Wesley, 1994.

[IT01] ITU-TS. ITU-TS Recommendation Z.120:
Message Sequence Chart (MSC). ITU-TS, Geneva,
2001.

[RGG96] E. Rudolph, P. Graubmann, and J. Grabowski.
Tutorial on message sequence charts (msc’96). In
FORTE, 1996.

[vZ93] Timothy van Zandt. Pstricks, PostScript macros
for Generic TEX. User’s Guide, available at every
CTAN site, (CTAN:graphics/pstricks/), 1993.

Najaar 2003 43

toepassingRoland Smith
rsmith@xs4all.nl

Labels voor gevaarlijke stoffen met
LaTEX

abstract
Volgens Europese regelgeving (67/548/EEC) is men verplicht om verpakkingen voor gevaarlijke
stoffen te voorzien van labels die bepaalde informatie moeten bevatten. Met behulp van het
labels package en een aantal in postscript geschreven pictogrammen is het mogelijk deze
labels zelf te maken.

keywords
gevaarlijke stoffen, labels, 67/548/EEC, latex

Inleiding

Volgens de EG-richtlijnen moeten gevaarlijke stoffen en preparaten op de verpakking ge-
kenmerkt worden. Als men zulke stoffen koopt, zijn ze door de leverancier van een label
volgens de richtlijnen voorzien. Als men ze vervolgens overhevelt in een andere verpak-
king, moet men deze zelf van een dergelijk label voorzien.

Er zijn programma’s verkrijgbaar voor het maken van zulke labels. Maar door het
relatief kleine markt ervoor is deze software vaak niet zo goed van kwaliteit en relatief
kostbaar. Het bedrijf waar ik werkzaam ben had voor het maken van deze labels een DOS
programma, dat niet meer aan de praat te krijgen was onder windows. Een zoektocht naar
alternatieven leverde alleen een veredeld tekenprogramma op waarbij je ook een speciale
kleurenprinter moest kopen, of speciale voorbedrukte labels. Dit programma kon ook niet
overweg met de database van stoffen die we voor het oude programma hadden aangelegd.
Aangezien we al de beschikking hebben over een kleuren laserprinter, heb ik de labels in
LaTEX 2ε te gemaakt.

Inhoud en opmaak van een label

Deze labels moet bepaalde informatie bevatten;

2 handelsnaam van de stof of het preparaat

2 naam van de gevaarlijke componenten

2 gevarensymbolen

2 R- en S-zinnen

2 naam en adres van de leverancier

Deze informatie is te vinden op het veiligheidsinformatieblad volgens 93/112/EEG. Elke
leverancier van gevaarlijke stoffen is verplicht een dergelijk informatieblad te beschikking
te stellen.

De gevarensymbolen zijn ondermeer het bekende doodshoofd voor vergiftige stoffen
en een kruis voor schadelijke en irriterende stoffen. Een overzicht van de symbolen en
hun betekenis is weergegeven in tabel 1.

44 MAPS

Labels voor gevaarlijke stoffen met LaTEX toepassing

Tabel 1. Overzicht gevarensymbolen

Symbool Kenletter Betekenis

C bijtend

N milieugevaarlijk

E ontplofbaar

F licht ontvlambaar

F+ zeer licht ontvlambaar

Symbool Kenletter Betekenis

Xn schadelijk

Xi irriterend

O oxiderend

T vergiftig

T+ zeer vergiftig

De term “R- en S-zinnen” staat voor de risks en safety aanbevelingen. Dit zijn een
aantal standaard zinnen (vertaald in alle Europese talen) die aanduiden wat de risico’s van
een bepaalde stof zijn en hoe je er veilig mee om kunt gaan. De R- en S-zinnen die van
toepassing zijn op gedenatureerde alcohol zijn hieronder als voorbeeld weergegeven:

R11: Licht ontvlambaar

R20/21/22: Schadelijk bij inademing, opname door de mond en aanraking
met de huid

R68/20/21/22: Schadelijk: bij inademing, aanraking met de huid en opname
door de mond zijn onherstelbare effecten niet uitgesloten

S7: In goed gesloten verpakking bewaren

S16: Verwijderd houden van ontstekingsbronnen – niet roken

S36/37: Draag geschikte handschoenen en beschermende kleding

S45: In geval van ongeval of indien men zich onwel voelt,
onmiddellijk een arts raadplegen (indien mogelijk hem dit
etiket tonen)

Een label voor een container tot 50 liter moet minstens 150 mm breed en 74 mm hoog zijn.
Gewoonlijk staan maximaal twee gevarensymbolen links, en de rest van de tekst rechts.
De symbolen zijn circa 3 cm in het vierkant.

Implementatie

De benodigde symbolen heb ik gevonden op het internet. Deze waren echter uitgevoerd
als .gif bestanden van lage resolutie en hetgeen er erg lelijk uitzag. Daarom heb ik de sym-
bolen zelf geïmplementeerd in postscript, gevolgd door conversie naar pdf met epstopdf.
De meeste symbolen zijn met de hand gedaan. De symbolen voor ontplofbaar en oxide-
rend zijn gemaakt met autotrace.1

Oorspronkelijk is het label gezet als een geneste minipage omgeving. Als relatieve
nieuwkomer in LaTEX kon ik deze opmaak niet krijgen zoals ik het hebben wilde. Daarom
is het label nu uitgevoerd in een picture omgeving, met daarin een \parbox voor de tekst
aan de rechterkant.

1 % -*- latex -*-

2 % $Id: ethanol.tex,v 1.3 2003/01/29 17:24:00 rsmith Exp $

1. http://autotrace.sourceforge.net/

Najaar 2003 45

toepassing Roland Smith

3 %

4 % LaTeX sourcecode file for making 105x74 stickers for

5 % chemicals. Suited for containers up to 50 liters.

6 %

7 % Written by R.F. Smith <rsmith@xs4all.nl> in 2003 and placed

8 % in the public domain

9 %

Op de volgende regels worden de macro’s gedefinieerd die de inhoud van de labels
bepalen. Te beginnen met de handelsnaam, de gevaarlijke stoffen en eventuele codenum-
mers

10 %%%% Contents of the sticker; change these to suit you %%%%

11 % \Chemname should contain the trade name for the substance

12 \newcommand{\Chemname}{Ethanol}

13 % \Contains describes the main ingredient

14 \newcommand{\Contains}{Bevat: ethanol, 5\% methanol}

15 % \Codenumber is for the code your organization has given this

16 % material (if any). You can leave it empty.

17 \newcommand{\Codenumber}{1322 501 33801}

Vervolgens kunnen er maximaal twee symbolen met bijbehorende betekenis opgeno-
men worden. Het zou waarschijnlijk eleganter zijn om macro’s te definiëren die een sym-
bool en de bijbehorende tekst combineren. Maar in het opgenomen overzicht is duidelijk
genoeg te zien welke combinaties gebruikt moeten worden.

18 % Possibilities for Upper-/LowerSymbol and Upper-/LowerText:

19 % Symbol English text Dutch text

20 % E explosive.pdf explosive ontplofbaar

21 % O oxide.pdf oxidising oxiderend

22 % F flammab.pdf highly flammable licht ontvlambaar

23 % F+ flammab.pdf extremely flammable zeer licht ontvlambaar

24 % T toxic.pdf toxic vergiftig

25 % T+ toxic.pdf very toxic zeer vergiftig

26 % C corrosive.pdf corrosive bijtend

27 % Xn harmful.pdf harmful schadelijk

28 % Xi harmful.pdf irritant irriterend

29 % N environ.pdf dangerous for the milieugevaarlijk

30 % environment

31 % none template.pdf

32 %

33 % The next four lines select the two symbols that can go on the

34 % sticker, and the accompanying texts. If you want to leave a

35 % symbol empty, use template.pdf

36

37 \newcommand{\UpperSymbol}{flammab}

38 \newcommand{\UpperText}{licht ontvlambaar}

39 \newcommand{\LowerSymbol}{harmful}

40 \newcommand{\LowerText}{schadelijk}

41

Vervolgens worden de R- en S-zinnen opgenomen. Deze zijn gezet als description
elementen. Het zou mooi zijn om een macro te definiëren die automatisch de juiste zin
genereert op basis van het nummer, bijvoorbeeld \R{20/21/22}. Maar dat is mij op dit
moment TEXnologisch te hoog gegrepen.

46 MAPS

Labels voor gevaarlijke stoffen met LaTEX toepassing

42 % Next are the R&S sentences. You should be able to find them

43 % on the MSDS for the substance. They are set as

44 % _description_ items.

45

46 \newcommand{\RSsentences}{

47 \item[R11:] Licht ontvlambaar

48 \item[R20/21/22:] Schadelijk bij inademing, opname door de mond

49 en aanraking met de huid

50 \item[R68/20/21/22:] Schadelijk: bij inademing, aanraking met

51 de huid en opname door de mond zijn onherstelbare effecten

52 niet uitgesloten

53 \item[S07:] In goed gesloten verpakking bewaren

54 \item[S16:] Verwijderd houden van ontstekingsbronnen --

55 niet roken

56 \item[S36/37:] Draag geschikte handschoenen en

57 beschermende kleding

58 \item[S45:] In geval van ongeval of indien men zich onwel

59 voelt, onmiddelijk een arts raadplegen (indien mogelijk

60 hem dit etiket tonen)

61 }

62

Tenslotte wordt nog naam en adres van de leverancier toegevoegd, en de datum waarop
het bestand gecompileerd is.

63 % The name, address and phone number of the supplier should

64 % go here.

65 \newcommand{\Firma}{Chemproha -- Donker Duyvisweg 44, 3316 BM

66 Dordrecht\\ tel. 078-6544944}

67 \newcommand{\filedate}{\number\year-\number\month-\number\day}

Deze macro’s bevatten alle variabele informatie van een label. Nu volgt de algemene
code. Uitgegaan wordt van de standaard article class, met het labels package. Indien
men labels in een andere taal wil maken, moet men natuurlijk een ander argument aan het
babel package meegeven. Omdat ik meestal .pdf bestanden maak van dergelijke labels,
heb ik het times package gebruikt om ervoor te zorgen dat er postscript fonts gebruikt
worden.

68 %%%%%%%%%% Normally no changes required below here %%%%%%%%%%

69 \documentclass[a4paper]{article}

70 \usepackage{times}

71 \usepackage[dutch]{babel}

72 \usepackage[latin1]{inputenc}

73 \usepackage{graphicx}

74 \usepackage{labels}

75

76 % Settings for the label package; 8 105x74 stickers on an

77 % A4 page.

78 \LabelCols=2

79 \LabelRows=4

80 \LeftBorder=0mm

81 \RightBorder=0mm

82 \TopBorder=1mm

Najaar 2003 47

toepassing Roland Smith

83 \BottomBorder=0mm

84 \numberoflabels=8

85

De inhoud van het \genericlabel commando is de werkelijke definitie van de inhoud
van de sticker. De maten die gebruikt zijn om de verschillende elementen van de picture
omgeving te plaatsen zijn proefondervindelijk bepaald. De macro’s die boven gedefinieerd
zijn worden hier gebruikt. Dit deel van het bestand hoeft dan ook zelden aangepast te
worden om een ander label te maken. Al komt het voor dat op regel 86 \huge vervangen
moet worden door \Large indien de handelsnaam van de stof erg lang is.

86 \begin{document}

87 \genericlabel{%

88 \raisebox{-35mm}{

89 \setlength{\unitlength}{1mm}

90 \renewcommand{\sfdefault}{phv}\sffamily

91 \begin{picture}(104,74)

92 \put(5,40){\makebox(29,29){%

93 \includegraphics[width=29mm]{\UpperSymbol}}}

94 \put(5,36.5){\makebox(29,5){%

95 \textbf{\textsc{\scriptsize\UpperText}}}}

96 \put(5,8){\makebox(29,29){%

97 \includegraphics[width=29mm]{\LowerSymbol}}}

98 \put(5,4.5){\makebox(29,5){%

99 \textbf{\textsc{\scriptsize\LowerText}}}}

100 \put(35,62){\parbox[t][62mm][t]{60mm}{

101 {\huge\textbf{\Chemname}}\\\scriptsize

102 \textbf{\Contains}\\

103 \Codenumber\\

104 \rule[2pt]{60mm}{.5pt}

105 \setlength{\leftmargini}{0pt}\vspace{-7pt}

106 \begin{description}

107 \setlength{\itemsep}{0pt}\setlength{\topsep}{0pt}

108 \setlength{\parskip}{1pt}

109 \RSsentences

110 \end{description}

111 \vfill

112 \rule[2pt]{60mm}{.5pt}\\

113 \tiny\Firma\hfill\filedate

114 }

115 }

116 \end{picture}

117 }

118 }

119 \end{document}

Het resultaat ziet eruit zoals (verkleind) weergegeven in figuur 1.
Een LaTEX voorbeeld bestand en de bijbehorende postscript bestanden zijn te vinden

onderaan op de software pagina van mijn website2. Op het moment dat ik dit schrijf is de
laatste versie chemlabels-20030208.tar.gz.

2. http://www.xs4all.nl/˜rsmith/software/

48 MAPS

Labels voor gevaarlijke stoffen met LaTEX toepassing

LICHT ONTVLAMBAAR

SCHADELIJK

Ethanol
Bevat: ethanol, 5% methanol
1322 501 33801

R11: Licht ontvlambaar
R20/21/22: Schadelijk bij inademing, opname door de
mond en aanraking met de huid
R68/20/21/22: Schadelijk: bij inademing, aanraking met
de huid en opname door de mond zijn onherstelbare
effecten niet uitgesloten
S07: In goed gesloten verpakking bewaren
S16: Verwijderd houden van ontstekingsbronnen – niet
roken
S36/37: Draag geschikte handschoenen en bescher-
mende kleding
S45: In geval van ongeval of indien men zich onwel
voelt, onmiddelijk een arts raadplegen (indien mogelijk
hem dit etiket tonen)

Chemproha – Donker Duyvisweg 44, 3316 BM Dordrecht
tel. 078-6544944 2003-11-26

LICHT ONTVLAMBAAR

SCHADELIJK

Ethanol
Bevat: ethanol, 5% methanol
1322 501 33801

R11: Licht ontvlambaar
R20/21/22: Schadelijk bij inademing, opname door de
mond en aanraking met de huid
R68/20/21/22: Schadelijk: bij inademing, aanraking met
de huid en opname door de mond zijn onherstelbare
effecten niet uitgesloten
S07: In goed gesloten verpakking bewaren
S16: Verwijderd houden van ontstekingsbronnen – niet
roken
S36/37: Draag geschikte handschoenen en bescher-
mende kleding
S45: In geval van ongeval of indien men zich onwel
voelt, onmiddelijk een arts raadplegen (indien mogelijk
hem dit etiket tonen)

Chemproha – Donker Duyvisweg 44, 3316 BM Dordrecht
tel. 078-6544944 2003-11-26

LICHT ONTVLAMBAAR

SCHADELIJK

Ethanol
Bevat: ethanol, 5% methanol
1322 501 33801

R11: Licht ontvlambaar
R20/21/22: Schadelijk bij inademing, opname door de
mond en aanraking met de huid
R68/20/21/22: Schadelijk: bij inademing, aanraking met
de huid en opname door de mond zijn onherstelbare
effecten niet uitgesloten
S07: In goed gesloten verpakking bewaren
S16: Verwijderd houden van ontstekingsbronnen – niet
roken
S36/37: Draag geschikte handschoenen en bescher-
mende kleding
S45: In geval van ongeval of indien men zich onwel
voelt, onmiddelijk een arts raadplegen (indien mogelijk
hem dit etiket tonen)

Chemproha – Donker Duyvisweg 44, 3316 BM Dordrecht
tel. 078-6544944 2003-11-26

LICHT ONTVLAMBAAR

SCHADELIJK

Ethanol
Bevat: ethanol, 5% methanol
1322 501 33801

R11: Licht ontvlambaar
R20/21/22: Schadelijk bij inademing, opname door de
mond en aanraking met de huid
R68/20/21/22: Schadelijk: bij inademing, aanraking met
de huid en opname door de mond zijn onherstelbare
effecten niet uitgesloten
S07: In goed gesloten verpakking bewaren
S16: Verwijderd houden van ontstekingsbronnen – niet
roken
S36/37: Draag geschikte handschoenen en bescher-
mende kleding
S45: In geval van ongeval of indien men zich onwel
voelt, onmiddelijk een arts raadplegen (indien mogelijk
hem dit etiket tonen)

Chemproha – Donker Duyvisweg 44, 3316 BM Dordrecht
tel. 078-6544944 2003-11-26

LICHT ONTVLAMBAAR

SCHADELIJK

Ethanol
Bevat: ethanol, 5% methanol
1322 501 33801

R11: Licht ontvlambaar
R20/21/22: Schadelijk bij inademing, opname door de
mond en aanraking met de huid
R68/20/21/22: Schadelijk: bij inademing, aanraking met
de huid en opname door de mond zijn onherstelbare
effecten niet uitgesloten
S07: In goed gesloten verpakking bewaren
S16: Verwijderd houden van ontstekingsbronnen – niet
roken
S36/37: Draag geschikte handschoenen en bescher-
mende kleding
S45: In geval van ongeval of indien men zich onwel
voelt, onmiddelijk een arts raadplegen (indien mogelijk
hem dit etiket tonen)

Chemproha – Donker Duyvisweg 44, 3316 BM Dordrecht
tel. 078-6544944 2003-11-26

LICHT ONTVLAMBAAR

SCHADELIJK

Ethanol
Bevat: ethanol, 5% methanol
1322 501 33801

R11: Licht ontvlambaar
R20/21/22: Schadelijk bij inademing, opname door de
mond en aanraking met de huid
R68/20/21/22: Schadelijk: bij inademing, aanraking met
de huid en opname door de mond zijn onherstelbare
effecten niet uitgesloten
S07: In goed gesloten verpakking bewaren
S16: Verwijderd houden van ontstekingsbronnen – niet
roken
S36/37: Draag geschikte handschoenen en bescher-
mende kleding
S45: In geval van ongeval of indien men zich onwel
voelt, onmiddelijk een arts raadplegen (indien mogelijk
hem dit etiket tonen)

Chemproha – Donker Duyvisweg 44, 3316 BM Dordrecht
tel. 078-6544944 2003-11-26

LICHT ONTVLAMBAAR

SCHADELIJK

Ethanol
Bevat: ethanol, 5% methanol
1322 501 33801

R11: Licht ontvlambaar
R20/21/22: Schadelijk bij inademing, opname door de
mond en aanraking met de huid
R68/20/21/22: Schadelijk: bij inademing, aanraking met
de huid en opname door de mond zijn onherstelbare
effecten niet uitgesloten
S07: In goed gesloten verpakking bewaren
S16: Verwijderd houden van ontstekingsbronnen – niet
roken
S36/37: Draag geschikte handschoenen en bescher-
mende kleding
S45: In geval van ongeval of indien men zich onwel
voelt, onmiddelijk een arts raadplegen (indien mogelijk
hem dit etiket tonen)

Chemproha – Donker Duyvisweg 44, 3316 BM Dordrecht
tel. 078-6544944 2003-11-26

LICHT ONTVLAMBAAR

SCHADELIJK

Ethanol
Bevat: ethanol, 5% methanol
1322 501 33801

R11: Licht ontvlambaar
R20/21/22: Schadelijk bij inademing, opname door de
mond en aanraking met de huid
R68/20/21/22: Schadelijk: bij inademing, aanraking met
de huid en opname door de mond zijn onherstelbare
effecten niet uitgesloten
S07: In goed gesloten verpakking bewaren
S16: Verwijderd houden van ontstekingsbronnen – niet
roken
S36/37: Draag geschikte handschoenen en bescher-
mende kleding
S45: In geval van ongeval of indien men zich onwel
voelt, onmiddelijk een arts raadplegen (indien mogelijk
hem dit etiket tonen)

Chemproha – Donker Duyvisweg 44, 3316 BM Dordrecht
tel. 078-6544944 2003-11-26

Figuur 1. de opgemaakte pagina

Najaar 2003 49

50 MAPS

Karel H Wesseling
k.h.wesseling@planet.nl

27 November 2003

metapost
Aligning METAPOST graphs in
CONTEXT combinations

Introduction

For scientific plotting I like to use the Graph package by John Hobby within Context
and when I have two or more separate graphs made I combine them into one figure with
one figure caption. Combining is easy but aligning the graphs in a pleasing way required
a trick.

Attempt 1

To demonstrate the problem I prepared two graphs plotting blood pressure and heart
interval versus time (of course, it could be any signal) and added the result of spot mea-
surements (BRS) to the graph. The vertical scales differ for each signal and these scales
must be indicated in the graph. Each graph in isolation looks beautiful and a particularly
nice feature is its seemingly endless scalability. Blowing the graph up from a design size
of 5 cm width to 50 cm width or bigger is no problem.

Context then performs the combination of the graphs in one column aligned vertically
using the \startcombination[1*2] command. The METAPOST pictures have been
given an invisible outer box size, the so--called “bounding box” and this is a narrow fit to
the total spaced used. METAPOST doesn’t care about centering the actual graph area in
the bounding box. The graph areas, therefore, are not aligned vertically. See Fig. 1 left
two panels.

Attempt 2

Adding the vertical scale values to the graphs, that differ in width, causes the miss--align-
ment. The plot areas are exactly 5 cm but the lettering sticks out on either side of it. This
unbalancing effect could be annihilated by adding invisible texts of equal width, sticking
out left and right of the graph area by an equal amount. An \hbox command comes to
mind. An hbox can be given a horizontal width. In Context a \framed command could
also be used. Don’t try it, however, they don’t work unless they are filled with something
that prints (thus not spaces) or as long as the empty \framed has a frame that’s not made
invisible. Clearly, METAPOST refuses to adapt its bounding box to invisible matter. We,
on the other hand, refuse to have extraneous matter printed.

Here is a solution that works, nevertheless. We let METAPOST draw a fullsquare
xyscaled(10cm,8cm) centered at the midpoint of the graph area. This makes both graphs
of equal width and height and alignment in a \startcombination is perfect. This is
shown in Fig. 1 right two panels. The fullsquare is opaque. Anything plotted before
it is drawn disappears behind it, anything plotted later is visible. It must therefore be the
first plot command in the picture. In addition, it must be given a color and the color might
be considered undesirable. The solution to that is to plot it withcolor .9999white. For
all practical purposes this is as white as white paper is.

Here is the program for two curves within one graph:

Aligning METAPOST graphs in Context combinations metapost

Najaar 2003 51

\startreusableMPgraphic{outlier}
picture Panel; % .9999white for a white panel
Panel:=image(fill fullsquare xyscaled(10cm,8cm) withcolor .9white);

draw begingraph(5cm,5cm); % the plot area is 5 x 5 cm
setcoords(linear,linear); % always set coordinates, or else
setrange(210,100,230,125); % then set range
gdraw (220,112.5) plot Panel; % center horizontal & vertical
glabel.top(btex ibi (ms) etex,231,126);
glabel.bot(btex time (s) etex,220,96);
gdraw "sy13lb.ups" withpen pencircle scaled 1.5bp; % data plot
autogrid(,); % always an autogrid, here empty
setcoords(linear,linear); % hidden effect: resets scaling
setrange(210,500,230,1500); % note a different vertical scale
gdraw "in13lb.ups" withpen pencircle scaled .7bp; % data plot
autogrid(otick.bot,grid.rt); % draw horizontal & vertical scales
endgraph;

\stopreusableMPgraphic

And this is how two of them are used in a Context combination.

\placefigure[middle][fig:outlierb013]
{Both left panels...
}
{\startcombination[1*2]
{\reuseMPgraphic{outlier1}} {}
{\reuseMPgraphic{outlier2}} {}

\stopcombination}

Postscript

A true hacker would have thought of a solution in less time than it cost me. The manual
that comes with Hobby’s Graph package is written for experts, not for the common user.
Graph’s output is so accurate and scalable that one wants to use it anyway but experi-
mentation is time consuming and when one must finish a production on time and within
budget the level of experimentation required is bedeviling. The solution for that is to post
a question with the Context user group.

metapost Karel H Wesseling

52 MAPS

sys

time (s)
140 145 150 155 160

100

105

110

115

120

125
brs

0

20

40

60

80

100

sys

time (s)
140 145 150 155 160

100

105

110

115

120

125
brs

0

20

40

60

80

100

ibi (ms)

time (s)
210 215 220 225 230

600

800

1000

1200

1400

ibi (ms)

time (s)
210 215 220 225 230

600

800

1000

1200

1400

Figure 1 Both left panels on white background are clearly shifted with respect to each
other as indicated by the dashed lines that do not meet. Right panels on a gray back-
ground show a correctly aligned system of diagrams. In all diagrams: the thick line
represents systolic pressure variations in mmHg, over a 20 s observation window in a
person (use ‘sys’ vertical scale), the thin line similarly is the time interval between heart
beats in ms (use ‘ibi’ vertical scale), the crosses represent estimates of the sensitivity of
blood pressure control by the bodies baroreflex expressed in ms/mmHg (use brs vertical
scale) derived from the combined blood pressure and beat interval variability data which
clearly move up and down in synchronism.

Najaar 2003 53

applications
Drawing a type-case in ConTEXt

Willi Egger

abstract
There are different environments with which one can typeset
tables; all of them have their advantages and disadvantages.

One of the recent problems I had to solve was to draw a
typesetter’s type-case from the lead-typesetting era. Since it

looks like a table, I built the drawing in the \bTABLE
. . .\eTABLE environment.

Introduction

Formerly, when text was typeset by hand, fonts, e.g.
letters, were stored in special drawers called type-cases
(Dutch: letterkast, German: Setzkasten). These cases were
strong wooden frames divided into four compartments by a
wooden cross. Each compartment was divided into a series
of boxes by thin wooden strips. The depth of such type-
cases was small, normally not exceeding 3 cm. The layout
of type-cases varied over time. Our drawing is an example
of a three-quarter type-case popular in The Netherlands.

When typesetting text by hand, most of the letters are lower
case. To facilitate picking the letters, lower case letters
were located in the lower part of the type-case. From the
size and location of the different boxes, one can deduce
the number of single letters needed to assemble a text. The
layout of a type-case was optimized for typesetting speed.

You might have realized that the expression of ‘lower
case’ and ‘upper case’ (capitals) letters for the different
fonts is linked to the location of the letters in the type-case.
This is true for both English and Dutch: ‘onderkast’ en
‘bovenkast’ (kapitalen).

Analysis of the type-case

While looking for a straightforward approach to this draw-
ing, it seemed best to build the type-case from four tables
with the following characteristics arranged in a two by two
matrix.

− All four tables have the same width.
− All table rows are 6em high.
− The width of the columns of the upper and lower left

tables have a relation of 1.75: 2.
− The two top tables each have four rows.
− The two lower tables each have eight rows. Part of

the cells are combined rows and / or columns.

Building the tables

General setups for the tables
The row height and the alignment of text within the cells
are identical for all cells. These dimensions are defined
outside the \bTABLE . . .\eTABLE environment.

\setupTABLE[row]
[even]
[align={middle,lohi},
height=6ex]

\setupTABLE[row]
[odd]
[align={middle,lohi},
height=6ex]

applications Willi Egger

54 MAPS

The table for upper case letters

A B C D E F G

H I K L M N O

P Q R S T V W

X Y Z J U „ – — ’

\bTABLE
\setupTABLE[c]

[1,2,3,6,7,8]
[width=3em]

\setupTABLE[c]
[4,5]
[width=1.5em]

\bTR
\bTD A \eTD
\bTD B \eTD
\bTD C \eTD
\bTD[nc=2] D \eTD
\bTD E \eTD
\bTD F \eTD
\bTD G \eTD \eTR

\bTR
\bTD H \eTD
\bTD I \eTD
\bTD K \eTD
\bTD[nc=2] L \eTD
\bTD M \eTD
\bTD N \eTD

\bTD O \eTD \eTR
\bTR

\bTD P \eTD
\bTD Q \eTD
\bTD R \eTD
\bTD[nc=2] S \eTD
\bTD T \eTD
\bTD V \eTD
\bTD W \eTD \eTR

\bTR
\bTD X \eTD
\bTD Y \eTD
\bTD Z \eTD
\bTD J \eTD
\bTD U \eTD
\bTD \char132 \eTD
\bTD -- --- \eTD
\bTD \char146 \eTD \eTR

\eTABLE

Drawing a type-case in ConTEXt applications

Najaar 2003 55

The special character table

É È Ê Ë ff fl fi ffl ffi
ÆŒ

æœ
Ç]

á é í ó ú â ê î ô û
∗
† §

à è ì ò ù ä ë ï ö ü ! ?

1 2 3 4 5 6 7 8 9 0 (-

\bTABLE
\setupTABLE[c]

[even]
[width=1.75em]

\setupTABLE[c]
[odd]
[width=1.75em]

\bTR
\bTD \’E \eTD
\bTD \‘E \eTD
\bTD \ˆE \eTD
\bTD \"E \eTD
\bTD ff \eTD
\bTD fl \eTD
\bTD fi \eTD
\bTD ffl \eTD
\bTD ffi \eTD
\bTD {\tfxx \AE \OE \\ \ae \oe}\eTD
\bTD \c{C} \eTD
\bTD $]$ \eTD \eTR

\bTR
\bTD \’a \eTD
\bTD \’e \eTD
\bTD \’i \eTD
\bTD \’o \eTD
\bTD \’u \eTD
\bTD \ˆa \eTD
\bTD \ˆe \eTD
\bTD \ˆi \eTD
\bTD \ˆo \eTD
\bTD \ˆu \eTD

\bTD $*$ \\ \dagger \eTD
\bTD \char167 \eTD \eTR

\bTR
\bTD \‘a \eTD
\bTD \‘e \eTD
\bTD \‘i \eTD
\bTD \‘o \eTD
\bTD \‘u \eTD
\bTD \"a \eTD
\bTD \"e \eTD
\bTD \"i \eTD
\bTD \"o \eTD
\bTD \"u \eTD
\bTD ! \eTD
\bTD ? \eTD \eTR

\bTR
\bTD 1 \eTD
\bTD 2 \eTD
\bTD 3 \eTD
\bTD 4 \eTD
\bTD 5 \eTD
\bTD 6 \eTD
\bTD 7 \eTD
\bTD 8 \eTD
\bTD 9 \eTD
\bTD 0 \eTD
\bTD $($ \eTD
\bTD - \eTD \eTR

\eTABLE

applications Willi Egger

56 MAPS

The table with part of the lower case letters

&
b

k
d

eç c

g
l m n

z i

y
v u t pasjes

x

\bTABLE
\setupTABLE[c]

[1,2]
[width=2.625em]

\setupTABLE[c]
[3,4,5]
[width=5.25em]

\bTR
\bTD \& \eTD
\bTD[nr=2] b \eTD
\bTD k \eTD
\bTD[nr=2] d \eTD
\bTD[nr=3] e \eTD \eTR

\bTR
\bTD \c{c} \eTD
\bTD c \eTD \eTR

\bTR
\bTD g \eTD

\bTD[nr=2] l \eTD
\bTD[nr=2] m \eTD
\bTD[nr=2] n \eTD \eTR

\bTR
\bTD z \eTD
\bTD i \eTD \eTR

\bTR
\bTD y \eTD
\bTD[nr=2] v \eTD
\bTD[nr=2] u \eTD
\bTD[nr=2] t \eTD
\bTD[nr=3] {\tfx pasjes} \eTD \eTR

\bTR
\bTD x \eTD \eTR

\eTABLE

Drawing a type-case in ConTEXt applications

Najaar 2003 57

The table with the rest of the letters
Due to the fact that the last row of this table has the height of two ordinary rows, this has
to be setup so:
\setupTABLE[r][last][height=12ex]

w
dunne

spaties
f g h

j hel

s ; :

o p ij
sup.

dunne

spaties
spaties

1
2 pt inf. vierkanten

a r , . kwadraat wit

\bTABLE
\setupTABLE[c]

[1]
[width=5.25em]

\setupTABLE[c]
[2,3,4,5,6,7]
[width=2.625em]

\setupTABLE[r]
[last]
[height=12ex]

\bTR
\bTD w \eTD
\bTD[nr=2] {\tfx dunne spaties} \eTD
\bTD[nr=2] f \eTD
\bTD[nr=2] g \eTD
\bTD[nr=2] h \eTD
\bTD j \eTD
\bTD hel \eTD \eTR

\bTR
\bTD s \eTD
\bTD ; \eTD

\bTD : \eTD \eTR
\bTR

\bTD[nr=2] o \eTD
\bTD[nr=2] p \eTD
\bTD[nr=2] ij \eTD
\bTD {\tfx sup.} \eTD
\bTD {\tfxx dunne spaties} \eTD
\bTD[nc=2] {\tfx spaties} \eTD \eTR

\bTR
\bTD {\tfx $\frac{1}{2}$pt} \eTD
\bTD {\tfx inf.} \eTD
\bTD[nc=2] {\tfx vierkanten} \eTD \eTR

\bTR
\bTD a \eTD
\bTD[nc=2] r \eTD
\bTD , \eTD
\bTD . \eTD
\bTD[nc=2] {\tfx kwadraat wit} \eTD \eTR

\eTABLE

applications Willi Egger

58 MAPS

Assembly of the type-case

In order to present the drawing as a type-case, the four tables are put into a frame. To get
the placement right, several steps are necessary:
First, two times two tables are placed into a \hbox. The horizontal placement is achieved
by \removeunwantedspaces\quad. Vertically the two \hboxes are separated by a
\vskip of 2ex.

Finally, to enclose the drawing in a frame, the whole is placed into a \framed command.

\framed
[frame=on,
rulethickness=1pt,
offset=.5em,
align=normal]
{\hbox{\getbuffer[Caps]

\removeunwantedspaces\quad
\getbuffer[Spec-Char]
\removeunwantedspaces}

\vskip2ex
\hbox{\getbuffer[Lower-Case1]

\removeunwantedspaces\quad
\getbuffer[Lower-Case2]
\removeunwantedspaces}}

A B C D E F G

H I K L M N O

P Q R S T V W

X Y Z J U „ – — ’

É È Ê Ë ff fl fi ffl ffi
ÆŒ

æœ
Ç]

á é í ó ú â ê î ô û
∗
† §

à è ì ò ù ä ë ï ö ü ! ?

1 2 3 4 5 6 7 8 9 0 (-

&
b

k
d

eç c

g
l m n

z i

y
v u t pasjes

x

w
dunne

spaties
f g h

j hel

s ; :

o p ij
sup.

dunne

spaties
spaties

1
2 pt inf. vierkanten

a r , . kwadraat wit

Drawing a type-case in ConTEXt applications

Najaar 2003 59

This is a large table, and will scale with the fontsize (height definitions in ex and width
definitions in em). However, in order to typeset this drawing to fit in a given typesetting
layout one can use the following mechanism:

A B C D E F G

H I K L M N O

P Q R S T V W

X Y Z J U „ – — ’

É È Ê Ë ff fl fi ffl ffi
ÆŒ

æœ
Ç]

á é í ó ú â ê î ô û
∗
† §

à è ì ò ù ä ë ï ö ü ! ?

1 2 3 4 5 6 7 8 9 0 (-

&
b

k
d

eç c

g
l m n

z i

y
v u t pasjes

x

w
dunne

spaties
f g h

j hel

s ; :

o p ij
sup.

dunne

spaties
spaties

1
2 pt inf. vierkanten

a r , . kwadraat wit

Figure 1 Layout1 of an ordinary (dutch) type-case

\placefigure
[here]
[]
{Layout
\footnote{\quote{{\sc BOEK}
{\em over het maken van boeken
({\sc BOOK} on making books)}},
H. van Krimpen, 1966}

of an ordinary (dutch) type-case}
{\externalfigure[Type-Case]

[type=buffer,
width=\textwidth]}

1. ‘BOEK over het maken van boeken (BOOK on making books)’, H. van Krimpen, 1966

typografie

Optisch uitvullen in de Maps

Siep Kroonenberg

In deze maps wordt voor het eerst gebruik gemaakt van op-
tisch uitvullen met behulp van protruding characters, dat
wil zeggen dat wordt gepoogd de rechterkantlijn er rechter
uit te laten zien door tekens met horizontale uitsteeksels,
zoals onder andere afbreekstreepjes, iets in de kantlijn te
laten uitsteken.

Dit is een optie van pdfTEX die niet aanwezig is in een
klassieke TEX. Hàn Thế Thàn gaat uitgebreid hierop in in
zijn proefschrift.1 Hans Hagen heeft er al eens over ge-
schreven in de Maps,2 maar nu wordt het eindelijk ook in
de Maps in praktijk gebracht, althans in de meeste LaTEX
stukken.

Om dit te aktiveren moet je deze optie eerst aanzetten:

\pdfprotrudechars=1

Een waarde van 1 betekent: aan maar doe het pas nadat
de alinea in regels is verdeeld zodat als je om wat voor
reden dan ook toch een dvi-bestand wilt maken, er geen
tekstverloop optreedt. Andere mogelijke waarden zijn 0
(uit) en 2 (wel tekstverloop).

Je geeft per font aan hoever welke tekens in de linker-
of rechterkantlijn moeten uitsteken. LaTEX heeft een
perfekt handvat hiervoor: de derde parameter van het
\DeclareFontFamily commando of de zesde parameter
van het \DeclareFontShape commando. Hier kun je al-
lerlei initialisatiecode kwijt. Meestal staat daar niets:

\DeclareFontFamily{T1}{ptm}{}

Voor de Maps Times-en-Frutiger fontfamilie staat daar nu:

\DeclareFontFamily{LY1}{ptfs}{%

\rpcode\font ‘-=120

\rpcode\font ‘,=100

\rpcode\font ‘.=100

\rpcode\font ‘:=50

\rpcode\font ‘;=50

\lpcode\font 96=100 % quoteleft

\rpcode\font 39=100 % quoteright

\lpcode\font 147=250 % quotedblleft

\rpcode\font 148=250 % quotedblright

\rpcode\font 150=150 % endash

\rpcode\font 151=100 % emdash

}

Elke regel definieert een linker (\lpcode) of rechter
(\rpcode) protrude-faktor voor één teken uit één lettertype.
In de \DeclareFontFamily en \DeclareFontShapemacro’s
staat \font voor: het font waar we het nu over hebben.
Het teken wordt aangeduid met zijn plaats in de encoding
vector. Bovenstaand voorbeeld is voor texnansi-encoding;
voor de meer gangbare T1-encoding zou dat moeten zijn:

\DeclareFontFamily{T1}{...}{%

\rpcode\font ‘-=120

\rpcode\font ‘,=100

\rpcode\font ‘.=100

\rpcode\font ‘:=50

\rpcode\font ‘;=50

\lpcode\font 96=100 % quoteleft

\rpcode\font 39=100 % quoteright

\lpcode\font 16=250 % quotedblleft

\rpcode\font 17=250 % quotedblright

\rpcode\font 21=150 % endash

\rpcode\font 22=100 % emdash

}

Als je een echte fijnproever bent of een erg buitenissig let-
tertype hebt dan zal het wel eens de moeite lonen om per
lettertype protrude-factors te definiëren, maar zover ben ik
niet gegaan. Het is ook wel de moeite om protrude-factors
te definiëren voor letters zoals de ‘T’ en ‘W’ die erg uitste-
ken.

Op het moment van schrijven maken vier stukken geen
gebruik van protrude-factors. Kijk maar eens of je die eruit
kunt halen.

1. Hàn Thế Thàn, Micro-typographic extensions to the TEX typeset-
ting system, Masaryk University, Brno, 2000.
2. Hans Hagen, Hanging punctuation, a pdfTEX microtypographic ex-
tension, Maps 25, najaar 2000.

60 MAPS

fonts

Installing fonts in LaTEX: a user’s experience

Ferdy Hanssen

abstract
This paper presents a user’s experience with installing fonts for

use in LaTEX. It will be shown that it is not hard to make a
standard Type 1 font work, if you use modern font installation

software for LaTEX. All the steps necessary to install the
example fonts will be shown. The example fonts used are

Adobe Garamond from Adobe and Mrs. Eaves from Emigre.

keywords
fonts, LaTEX, user

Introduction

Installing fonts in LaTEX has the name of being a very hard
task to accomplish. But it is nothing more than following
instructions. However, the problem is that, first, the proper
instructions have to be found and, second, the instructions
then have to be read and understood. We will show that it is
not hard, by sharing with you our experience with installing
two commercially available font families, that work out of
the box on most computer systems.

We will only deal with fonts in the so-called Type 1, or
Postscript, format. Truetype fonts are not within the scope
of this paper. Also so-called expert fonts, containing lots
of special characters, will not be discussed. We confine
ourselves to fonts containing the Latin alphabet, with ac-
cents used in Western Europe. Furthermore we have in-
stalled all fonts within a TEX Live 7 installation on the
Linux operating system. But the procedures should be sim-
ilar on any TEX system which adheres to the TEX Directory
Standard.

A very good book on the subject of installing fonts
for use with TEX and LaTEX is Alan Hoenig’s “TEX un-
bound” [5]. We have not read it completely, but what we
have read indicates this book goes into quite some depth
on explaining the issues with installing fonts for use with
TEX. Unfortunately it is a rather expensive book, and when
you have spent a lot of money on acquiring a set of nice,
new fonts, you do not want to spend another substantial
amount of money on a 580 page book. And you definitely
do not want to spend a few days reading and (trying to) un-
derstand that book to be able to use your fonts with your
favorite typesetting software.

Fortunately, there is another document available. An ex-
cellent guide is Philipp Lehman’s guide [7]. Maybe its best
feature is that it is available for free. You can simply down-
load it from CTAN [3]. It certainly is a very good guide to
help you installing and using your fonts without having to
read hundreds of pages.

Both Alan Hoenig and Philipp Lehman recommend the
use of the programme fontinst to help you install your
fonts. Before we tried to install the font Mrs. Eaves, avail-
able from Emigre [4], we had never used this programme
before. But with the use of Philipp Lehman’s “Font In-
stallation Guide” it turned out not to be too difficult to
use, at least when the installation of a simple Latin al-
phabet is all that is required. Philipp Lehman suggests to
read at least the general, introductory bits of the fontinst
manual [6], the Fontname scheme by Karl Berry [2] and
the standard LaTEX font selection guide [1], all available
from CTAN [3], to acquire a reasonable understanding of
the material.

Installing Adobe Garamond

The standard font family Adobe Garamond, also known as
Adobe’s Type 1 font package number 100, consists of six
fonts. These are called:

AGaramond-Regular AGaramond-Italic
AGaramond-Semibold AGaramond-SemiboldItalic
AGaramond-Bold AGaramond-BoldItalic

When you buy this package from Adobe, these fonts
are what you get. Adobe provides nice instructions on how
to install and use them, just not for TEX. Luckily for you
and me, TEX and LaTEX support has already been taken
care of.

Table 1. Renaming of Adobe Garamond files

Original New Fontname
Font name file name file name

AGaramond-Regular gdrg____.pfb padr8a.pfb

AGaramond-Italic gdi_____.pfb padri8a.pfb

AGaramond-Semibold gdsb____.pfb pads8a.pfb

AGaramond-SemiboldItalic gdsbi___.pfb padsi8a.pfb

AGaramond-Bold gdb_____.pfb padb8a.pfb

AGaramond-BoldItalic gdbi____.pfb padbi8a.pfb

Najaar 2003 61

fonts Ferdy Hanssen

When you want to use a newly acquired font, it is import-
ant to always check first if ready-made support is available,
to save you a lot of work. For many Type 1 fonts this is
the case, and it can be found on CTAN [3] in the direct-
ory /fonts/psfonts. Adobe Garamond support has been
written by Sebastian Rahtz and is available on CTAN in the
directory /fonts/psfonts/adobe/agaramon.

All that is needed now are only two things. First, the
actual font files need to be renamed according to Karl
Berry’s Fontname scheme. Second, all files need to be
copied to the correct spot in the standard TEX directory tree.
All of this is nicely documented by Philipp Lehman [7].

The renaming bit is easy in this case, as the fonts are
actually listed literally in Karl Berry’s Fontname [2]. In
the current version, which dates from May 2003, they are
listed on page 37. But the best way to look for them is
by performing a file contents search on all files with file
extension map in the fontname subdirectory of your TEXMF
tree. The files, as supplied by Adobe, should be renamed
according to table 1. We only need the actual font data files,
with file extension pfb, in this case. Note that the font name
we will use in TEX or LaTEX later is pad.

Then the files should be copied to the proper place.
But, what is that proper place. Actually that is pretty
straightforward. First of all, all locally added TEX things
should be installed in your TEXMFLOCAL tree. Where this
actually is, depends on your installation. With TEX Live,
you can select this location when you install it. In this
local tree, you should create a directory fonts (if it not
already exists), with subdirectories tfm, type1, and vf.
Within each of these subdirectories a directory with the
name of the foundry should be created. For Adobe we
use the name adobe. And within each of these three dir-
ectories we need a directory with the name agaramon,
the same as the name Sebastian Rahtz gave to his pack-
age. In the same way we also need a dvips/config and
tex/latex/adobe/agaramon subdirectory in TEXMFLOCAL.
So we now have a directory tree which contains at least
the directories shown in figure 1.

We now need to simply copy all files with extension tfm
to the fonts/tfm/adobe/agaramon directory, all files with
extension pfb to the fonts/type1/adobe/agaramon direct-
ory, and all files with extension vf to the fonts/vf/adobe/
agaramon directory. All files with extension fd need to be
copied to the tex/latex/adobe/agaramon directory. And
finally the supplied file pad.map needs to be copied to the
dvips/config subdirectory.

To make sure the TEX engine can find all these files, we
now need to update the search database. For the TEX Live
system the actual command is mktexlsr or texhash, but
yours may be different. This can be found in the document-
ation of your TEX distribution. After this step we need to
enable the map file. Again, on TEX Live just run the com-

T
E
X
M
F
L
O
C
A
L

dvips config

fonts

tfm adobe agaramon

type1 adobe agaramon

vf adobe agaramon

tex latex adobe agaramon

Figure 1. Directory tree for Adobe Garamond

mand updmap �enable Map pad.map. You should look in
your documentation for the exact way of doing this.

Now all is set to use the newly installed Adobe Gara-
mond font. You simply need to add the line

\renewcommand{\rmdefault}{pad}

to the preamble of your LaTEX document and you are in
business. Or you can write a simple package by creating a
file containing this line, followed by the line \endinput,
naming it agaramon.sty, and placing it in the direct-
ory tex/latex/adobe/agaramon. Sebastian Rahtz did not
include such a file in his package, although he did include
it in some other packages.

Partially installing Mrs. Eaves

For the installation of Emigre’s Mrs. Eaves we did not have
the luxury of a ready-made package. Up to now we only
have a very basic set of these fonts installed. The entire
package consists of nine fonts, three of which contain only
a large set of ligatures. The fonts in the base package are:

MrsEavesRoman MrsEavesItalic
MrsEavesBold MrsEavesSmallCaps
MrsEavesPetiteCaps MrsEavesFractions

The special fonts with ligatures are called:

MrsEavesJustLigRoman MrsEavesJustLigItalic
MrsEavesJustLigBold

The only fonts we have installed for use under TEX
and LaTEX up to now are the first four. The petite caps
font is a special variant of the small caps font, with even
smaller capitals. The fractions font and the ligatures we
have not yet looked at in detail.

We will provide you with the steps we needed for using

62 MAPS

Installing fonts in LaTEX: a user’s experience fonts

Table 2. Renaming of Mrs. Eaves files

Original New Fontname
Font name file name file name

MrsEavesRoman MEAVROMA.AFM fevr8a.afm

MrsEavesRoman MEAVROMA.PFB fevr8a.pfb

MrsEavesItalic MEAVITAL.AFM fevri8a.afm

MrsEavesItalic MEAVITAL.PFB fevri8a.pfb

MrsEavesBold MEAVBOLD.AFM fevb8a.afm

MrsEavesBold MEAVBOLD.PFB fevb8a.pfb

MrsEavesSmallCaps MEAVSMCA.AFM fevrc8a.afm

MrsEavesSmallCaps MEAVSMCA.PFB fevrc8a.pfb

the first four within TEX, and we simply followed the first
tutorial of Philipp Lehman’s installation guide [7], which
is suitable for installing simple fonts with a Latin alphabet.
The first problem was that Mrs. Eaves is not mentioned in
Karl Berry’s Fontname scheme, so we had to come up with
a new font name. We selected fev. The letter f stands for
small, public foundries. The Emigre foundry seems to fit
the bill here. The two-letter combination ev is unused up
to now, and seems fitting for the name Mrs. Eaves. With
the other guidelines for font naming we came up with the
precise naming as seen in table 2. Note that the files with
both extension afm and extension pfb need to be renamed.
Renaming them in this way greatly simplifies the use of
fontinst later.

We need to create a temporary directory with all re-
named files in them. We also need a special driver file
for fontinst. It has to look exactly like the one shown
in figure 2 and it could be named drv-fev.tex. We then
run fontinst in the temporary directory with the command
tex drv-fev. This creates a lot of files.

We now need to compile the metric and virtual fonts.
This is done by running the programme pltotf on all files
with extension pl and by running the programme vptovf
on all files with extension vpl. This step creates even more
files.

We now have almost all files needed to use Mrs. Eaves
within TEX. Analogous to the Adobe Garamond fonts, we
now need a directory structure to place our files. The neces-
sary tree is shown in figure 3. Then we need to copy all files
with extension tfm into the directory fonts/tfm/emigre/

\input fontinst.sty

\latinfamily{fev}{}

\bye

Figure 2. Driver file for Mrs. Eaves

T
E
X
M
F
L
O
C
A
L

dvips config

fonts

tfm emigre mrseaves

type1 emigre mrseaves

vf emigre mrseaves

tex latex emigre mrseaves

Figure 3. Directory tree for Mrs. Eaves

mrseaves, all files with extension pfb into the direct-
ory fonts/type1/emigre/mrseaves, and all files with ex-
tension vf into the directory fonts/vf/emigre/mrseaves.
All files with extension fd should be copied to the direct-
ory tex/latex/emigre/mrseaves.

We also need a map file, so programmes like xdvi and
dvips know what to look for. It can be tricky to write such
a file, but using Philipp Lehman’s tutorial it turns out to be
not very hard to do. The map file we created can be seen
in figure 4. We actually do not know if the value 0.167 as
parameter to create a slanted font provides an aesthetically
pleasing typeface. The designer obviously never intended
such a font to exist. The map file should be named fev.map
and placed in the dvips/config directory.

A simple package file, like the one shown in figure 5,
makes using the font in LaTEX very easy. Note that we use
the T1 font encoding. We simply follow Philipp Lehman’s
advice in this. Those encodings are not yet clear to us.
This LaTEX package is called mrseaves.sty and placed in
the directory tex/latex/emigre/mrseaves.

All that is needed to make the new font work now is
running the command mktexlsr or texhash, followed by
enabling the map file with the command updmap �enable
Map fev.map. It must be said that it was a pleasant surprise
to see it actually work after this.

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{mrseaves}

[2003/09/03 v0.1 Emigre MrsEaves]

\RequirePackage[T1]{fontenc}

\RequirePackage{textcomp}

\renewcommand*{\rmdefault}{fev}

\endinput

Figure 5. Simple package for Mrs. Eaves

Najaar 2003 63

fonts Ferdy Hanssen

fevb8r MrsEavesBold "TeXBase1Encoding ReEncodeFont" <8r.enc <fevb8a.pfb

fevbo8r MrsEavesBold "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <fevb8a.pfb

fevr8r MrsEavesRoman "TeXBase1Encoding ReEncodeFont" <8r.enc <fevr8a.pfb

fevrc8r MrsEavesSmallCaps "TeXBase1Encoding ReEncodeFont" <8r.enc <fevrc8a.pfb

fevri8r MrsEavesItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <fevri8a.pfb

fevro8r MrsEavesRoman "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <fevr8a.pfb

Figure 4. Map file for Mrs. Eaves

Conclusions

This paper describes our experience with installing two
font families for use with TEX Live. It is a lot easier than
we thought at first. We owe, of course, many thanks to all
the people who wrote the wonderful software, manuals and
tutorials to make it so practical.

We only installed part of the Mrs. Eaves family. The
intention is to make the others work within TEX as well.
As time permits we will look into this, partly as a learning
experience, partly to be able to actually use that font within
TEX, and partly to share the resulting files and experience
with you.

References

[1] LaTEX3 Project Team. LaTEX2e font selection,
Sept. 2000. Latest edition available on-line at
http://www.ctan.org/tex-archive/macros/latex/

doc/fntguide.pdf.

[2] K. Berry. Fontname—filenames for TEX fonts,
May 2003. Latest edition available on-line at http:
//www.ctan.org/tex-archive/info/fontname/

fontname.pdf.
[3] Comprehensive TEX Archive Network web site.

http://www.ctan.org/.
[4] Emigre web site. http://www.emigre.com/.
[5] A. Hoenig. TEX unbound: LaTEX & TEX Strategies

for Fonts, Graphics, & More. Oxford University
Press, 1998. ISBN 0-19-509685-1.

[6] A. Jeffrey and R. McDonnell. fontinst—font
installation software for TEX, June 1998. Latest
edition available on-line at http://www.ctan.org/
tex-archive/fonts/utilities/fontinst/doc/

manual/fontinst.ps.
[7] P. Lehman. The font installation guide, Aug.

2003. Latest edition available on-line at http:
//www.ctan.org/tex-archive/info/Type1fonts/

fontinstallationguide.pdf.

64 MAPS

Philipp Lehman schreef bijgaande handleiding voor het installeren

van Postscript Type 1 fonts. Fontinstallatie zal nooit een fluitje van

een cent worden, maar met deze handleiding bij de hand en

de documenten die erin worden aanbevolen is het in elk geval niet

langer een hachelijk avontuur voor helderzienden.

Wie de aangegeven stappen volgt, kan niet verdwalen. Lehmans

handleiding is bovendien een lust voor het oog, fraai van functionele

opzet en ook daarom drukken we het graag af in deze MAPS.

The Font
Installation Guide

P H I L I P P L E H M A N

ifFf noOo
nsNn ttTt

A U G U S T 2 0 0 3

The Font
Installation Guide

Using Postscript fonts to their full

potential with Latex

P H I L I P P L E H M A N

V E R S I O N 1 . 2 3

Copyright © –, Philipp Lehman, lehman@gmx.net

Permission is granted to copy, distribute and/or modify this document
under the terms of the gnu Free Documentation License, version ., with
no invariant sections, no front-cover texts, and no back-cover texts.

A copy of the license is included in the appendix.

This document is distributed in the hope that it will be useful, but without
any warranty; without even the implied warranty of merchantability or
fitness for a particular purpose.

contents

introduction . 

i the basics . 

i. Renaming the files –  • i. Using fontinst –  • i. Installing the files –
 • i. Creating map files –  • i. Using the fonts –  • i. Computer
Modern and t1 encoding – 

ii standard font sets . 

ii. The fontinst file –  • ii. The latinfamily macro revisited –  • ii.
Map files revisited – 

iii optical small caps and hanging figures 

iii. The fontinst file –  • iii. The map file –  • iii. The style file –  •
iii. Fonts supplied with Tex – 

iv the euro currency symbol . 

iv. Uncoded euro symbol –  • iv. Euro symbol encoded as currency
symbol –  • iv. Euro symbol taken from external symbol font –  • iv.
Euro symbol taken from external text font – 

v expert font sets, regular setup 

v. Basic fontinst file –  • v. Verbose fontinst file –  • v. Inferior and
superior figures –  • v. The map file –  • v. The style file –  • v.
Using the fonts – 

vi expert font sets, extended setup 

vi. The fontinst file –  • vi. Text ornaments –  • vi. The map file –
 • vi. Extending the user interface –  • vi. A high-level interface for
ornaments –  • vi. The style file – 

code tables . 

the gnu free documentation license 

revision history . 

introduction

This guide to setting up Postscript Type  fonts for use with Tex and Latex is
not systematic but task-oriented. It will discuss the most common scenarios
you are likely to encounter when installing Postscript fonts. The individual tu-
torials collected here are not self-contained, though: the second tutorial will
presuppose that you have read the first one and so on. All the tools employed
in the installation process are documented well, the actual difficulty most users
are facing when trying to install new fonts is understanding how to put all the
pieces together. This applies to fontinst, the Tex font installation tool, in partic-
ular. Controlled by Tex commands, fontinst is a powerful and extremely flexible
tool. While its manual documents all available commands individually, you will
most likely wonder how to actually employ them after reading the manual. This
is what this guide is about. Because of its concept, you will need the following
additional manuals when working with it:

The fontinst manual – Shipping as fontinst.dvi, the fontinst manual is
the most important piece of documentation you will need when working
with this guide since most files required for proper Postscript font support
are generated by fontinst. You do not need to work through the sections
explaining all low-level commands in detail, but make sure that you have
read the more general parts and that you have a basic understanding of
what fontinst is and what it does. If this manual is not included in your
distribution, get it from the Comprehensive Tex Archive Network (ctan).¹

The Fontname scheme – Fonts used with Tex are usually renamed according
to a dedicated naming standard, the Fontname scheme by Karl Berry. Take
a look at the outline of the scheme as given in fontname.dvi and make
sure you have copies of the individual map files at hand. These lists define
names for a large number of commercial Postscript fonts. You will need
them while working with this guide. If the documentation of the Fontname
scheme is not part of your distribution, you can read it online² or download
the complete package from a ctan ftp server.³

The Latex font selection guide – It might be a good idea to read the Latex
font selection guide as well before proceeding with the first tutorial. It pro-
vides an overview of the New Font Selection Scheme (nfss). This scheme is
not used during font installation, but it will help you to understand certain
aspects of the installation process. This guide ships with most Tex distribu-
tions as fntguide.dvi and is also available in pdf format from ctan.⁴ Feel

 http://www.ctan.org/tex-archive/fonts/utilities/fontinst/doc/manual/
 http://www.ctan.org/tex-archive/info/fontname/
 ftp://tug.ctan.org/tex-archive/info/fontname.tar.gz
 http://www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf



 introduction

free to skip the chapter about math fonts as we are only going to deal with
text fonts. Setting up math fonts is a science in its own right.

Please note that this guide was written with version . of fontinst in mind. On
July , , Lars Hellström has released fontinst . to the public.¹ The recipes
proposed here should still work with the latest version, but they do not exploit
the new features of the new release. I will try to update this guide as my time
permits. The latest release of this guide can always be found at ctan.²

Acknowledgments

I am indebted to Timothy Eyre for taking the time to proofread and comment
on an earlier revision of the entire guide. I would also like to thank William
Adams, Adrian Heathcote, and Adrian Burd for pointing out spelling mistakes.

 http://www.ctan.org/tex-archive/fonts/utilities/fontinst/
 http://www.ctan.org/tex-archive/info/Type1fonts/fontinstallationguide.pdf

tutorial i

the basics

This introductory tutorial serves two purposes. It covers the most basic instal-
lation scenario by explaining how to use fontinst’s \latinfamily macro to
integrate a small font family into a Tex system. By providing step-by-step in-
stallation instructions, it will also discuss the installation procedure as a whole.
The later tutorials will focus on the more advanced capabilities of fontinst. Be-
fore we begin, let’s take a look at an overview of the installation procedure:

Step 1: renaming the font files – First of all, we copy all Type  fonts (ex-
tension pfb) and the corresponding Ascii metric files (afm) to a temporary
directory and rename them according to the Fontname scheme.

Step 2: creating metrics and virtual fonts – We will use fontinst, a font
installer that works with Adobe font metric files in Ascii format (afm), to
generate metric files and virtual fonts. Fontinst is normally not used inter-
actively but controlled by a Tex file. Since the fontinst file is specific to a
given font family, we need to write a suitable file for our fonts first and run
it through Tex afterwards.

Step 3: compiling metrics and virtual fonts – Fontinst will generate font
metrics and virtual fonts in a human-readable format which need to be con-
verted to a machine-readable form afterwards. Hence we run all property
list files (pl) created by fontinst through pltotf to create Tex font met-
rics (tfm) and all virtual property list files (vpl) through vptovf to create
virtual fonts (vf) and the corresponding Tex font metrics for them.

Step 4: installing the files – We install all font metrics (afm), Type  font
outlines (pfb), Tex font metrics (tfm), virtual fonts (vf), and font defini-
tion files (fd) into the local Tex tree. The remaining files are not required
anymore and may be deleted.

Step 5: creating map files – The fonts are now set up for Tex and Latex, but
not for dvi and pdf drivers, which are configured separately. We create map
files for dvips, pdftex, and, if a version of xdvi with native support for Post-
script fonts is available, for xdvi. We install the map files and add them to
the applications’ configuration files.

Step 6: updating the hash tables – Finally, we run texhash to update the
file hash tables used by the kpathsea search library.

i. Renaming the files

Users unfamiliar with fontinst tend to moan when introduced to the Fontname
scheme for the first time. This file naming standard, which is also known by
the name of its creator as the Karl Berry scheme, is often regarded as overly



 the basics

complicated, cumbersome, unclear, and unmanageable. And indeed, it will ap-
pear somewhat cumbersome to anyone working with an operating system that
does not impose silly limits on the lengths of file names. All of that is not the
fault of its creator, however, but an inevitable result of the historical need to en-
code a complete font designation in a string of eight characters in order to cope
with the limitations of the dos filesystem as well as the iso- filesystem used
for data cd-roms. The most important asset of the Fontname scheme is that it
is the only formalized naming system widely used within the Tex community.
Given the large number of files required to integrate a given typeface into a
Tex system, installations without formal file naming would quickly get out of
control. So, if the next couple of paragraphs should sound a bit cumbersome
to you, you are in good company. Rest assured that after installing a few font
families and watching your installation grow, you will understand the benefits
of this scheme.

In order to understand the basic principles of the Fontname scheme, see the
file fontname.dvi for an overview as well as excerpts from various map files.
Browse the map files of individual vendors for the complete listings. When us-
ing the \latinfamily macro, strict adherence to the scheme is required. If you
write a custom fontinst file using lower-level commands, the naming is techni-
cally up to you. It is still a good idea to stick to the naming system where possi-
ble. If a given typeface is not included in the map file for the respective foundry,
take the foundry code from supplier.map and the code of the typeface from
typeface.map. If the typeface is not listed at all, you will need to create a new
code. This should be an unused one if possible. Try handling weight, variant,
and encoding codes as strictly as possible. Foundry and typeface codes may be
handled more liberally.

For large text font families, most font vendors do not put all fonts in a sin-
gle package. They usually offer a base package containing upright and italic/
oblique fonts plus an advanced package complementing the former. The ad-
vanced package will usually contain one of the following additional font sets: a
set of optical small caps¹ and hanging figures,² a set of expert fonts,³ additional
weights, or a combination of these sets. This package has to be purchased sep-

 ‘Optical’ or ‘real’ small caps, as opposed to ‘mechanical’ or ‘faked’ ones, are special glyphs
found in a dedicated small caps font. They are preferable to mechanical small caps since they
were actually drawn by the font designer. Mechanical small caps are generated by taking the
tall caps of the font and scaling them down.

 While hanging or ‘old style’ figures have ascenders and descenders to blend in with lowercase
and mixed case text, lining figures are aligned with the height of the capital letters (compare
 to 1369). Hanging figures are designed for use within mixed case text whereas lining
figures are suitable for all uppercase text only. The latter also work well for applications like
numbered lists and, since they are usually monospaced, for tabular settings.

 ‘Expert’ fonts are complements to be used in conjunction with regular text fonts. They usu-
ally contain optical small caps, additional sets of figures, ligatures as well as some other sym-
bols. Please refer to tutorial v for further information.

using fontinst 

arately and can normally not be used independently in a sensible way. We will
use Sabon as an example in this tutorial. The Sabon family offered by Adobe is
split up into two packages. The base package contains upright and italic fonts
(with lining figures) in regular and bold weights, while the so-called sc & osf
package provides optical small caps and hanging figures. Hanging figures are
also known as “old style figures”, hence the name sc & osf. In the first and the
second tutorial we will deal with the base package only. Adding the sc & osf
package to the base install will be discussed in the third tutorial. As we receive
the package from Adobe or from a vendor, it contains the following files:

sar_____.afm sai_____.afm sab_____.afm sabi_____.afm
sar_____.inf sai_____.inf sab_____.inf sabi_____.inf
sar_____.pfb sai_____.pfb sab_____.pfb sabi_____.pfb
sar_____.pfm sai_____.pfm sab_____.pfm sabi_____.pfm

Of those files, we only need two types: the font metrics in Ascii format (afm)
and the binary font outlines (pfb). We copy these to our working directory
to rename them. In this case, finding the proper names is simple because the
typeface is listed explicitly in adobe.map:

psbr8a Sabon-Roman A 088 sar_____
psbri8a Sabon-Italic A 088 sai_____
psbb8a Sabon-Bold A 088 sab_____
psbbi8a Sabon-BoldItalic A 088 sabi____

The first column indicates the Fontname name and the last column the orig-
inal name of the files as shipped by the vendor.¹ After renaming, we find the
following files in the working directory:

psbr8a.afm psbri8a.afm psbb8a.afm psbbi8a.afm
psbr8a.pfb psbri8a.pfb psbb8a.pfb psbbi8a.pfb

We can now begin with the installation process.

i. Using fontinst

Since writing a fontinst file can be quite a time-consuming thing to do, fontinst
provides a special macro which is able to deal with standard scenarios like this
one. You can look up the \latinfamily command in the fontinst manual to
understand what it does in detail. For our situation, it will suffice to say that
it is able to recognize the standard fonts we provide by their file name – hence
the need for strict adherence to the Fontname scheme in this case. Fontinst will
create all metric and auxiliary files required by Latex without further directions
in the form of lower-level commands. Therefore our fontinst file is as simple as
it can get:

 The fourth column may also prove helpful: it indicates the number of the Adobe font package
to which this font belongs. This number will save you a lot of time if you are trying to locate
updated metric files for a font on Adobe’s ftp server since the files are sorted by package
number there.

 the basics

₁ \input fontinst.sty
₂ \latinfamily{psb}{}
₃ \bye

After loading fontinst () we simply call the \latinfamily macro with the base
of the file names (the foundry code plus the typeface code) as the first argument
(). The second argument is code to be executed whenever this typeface is used.
This is often employed to suppress hyphenation of fixed-width typefaces by
setting the hyphenation character to a non-existing encoding position. If we
wanted to suppress hyphenation for this font family, we would call the macro
like this:

₂ \latinfamily{psb}{\hyphenchar\font=-1}

We save the file as drv-psb.tex, for example, and run it through tex:

tex drv-psb.tex

The \latinfamily macro will create metric files, virtual fonts, and auxiliary
files for four different encodings: Tex Base , ot1, t1, and ts1. While Tex Base 

serves as the basis for virtual fonts using other encodings, it is usually not em-
ployed as such on the Latex level, although \latinfamily provides font defi-
nition files for the Tex Base  encoded fonts as well.

The ot1 encoding is a -bit legacy encoding solely suitable for text using
the English alphabet only because it requires the use of composite glyphs when
typesetting accented letters. These glyphs are inferior to the native glyphs pro-
vided by Postscript fonts. When using ot1 encoding and typesetting the letter a
with a grave accent, for example, Tex does not use the real glyph à as provided
by the font because ot1 discards all accented letters. This amounts to almost
half of the glyphs found in common Postscript fonts. Instead, Tex will use the
stand-alone grave accent and move it over the lowercase letter a to form a com-
posite glyph. Apart from their inferior typographic quality, composite letters
break Tex’s hyphenation algorithm so that words containing an accented let-
ter are not hyphenated beyond this letter. Another problem with them is that
they break searching for words containing accented letters in pdf files. In short,
ot1 should be considered obsolete unless you need the letters of the English
alphabet only. But even in this case, t1 encoding would be a sound choice.

t1, also known as Cork encoding, is a more recent text encoding suitable
for a wide range of Latin scripts. Also known as Text Companion encoding,
ts1 complements t1 by providing additional glyphs such as currency signs and
other frequently used symbols like ‘copyright’ or ‘registered’. ts1 is never used
as the main text encoding because it merely contains symbols. A user interface
to the glyphs found in ts1 is provided by the textcomp package.

When running the fontinst file through tex, fontinst will write a lot of
messages to the terminal. These will include warnings about glyphs not being
found, since a few glyphs defined in ot1 and t1 encoding are missing from the
glyph set of our fonts:

using fontinst 

(/usr/share/texmf/tex/fontinst/base/ot1.etx
Warning: missing glyph ‘dotlessj’.
Warning: missing glyph ‘lslashslash’.

(/usr/share/texmf/tex/fontinst/base/t1.etx
Warning: missing glyph ‘perthousandzero’.
Warning: missing glyph ‘dotlessj’.
Warning: missing glyph ‘Eng’.
Warning: missing glyph ‘eng’.

These warnings are normal, the missing glyphs are simply not provided by most
Postscript fonts. In addition to that, you will most likely be lacking the ligatures
‘ff ’, ‘ffi’, and ‘ffl’. This means that they will not be typeset as a single glyph but
as a sequence of characters. There is no warning message in this case as fontinst
will construct the ligatures using the single-letter glyphs at hand. You will usu-
ally find these ligatures in so-called expert fonts which complement the base
fonts. Some foundries however, like FontFont, include them in the base fonts.
Standard Postscript fonts should always provide the ligatures ‘fi’ and ‘fl’. The
situation is worse for ts1 encoding since parts of it are rather exotic, defin-
ing glyphs not found in industry-standard fonts such as a ‘copyleft’ symbol, or
glyphs which should rather go in a dedicated symbol font such as arrow sym-
bols:

(/usr/share/texmf/tex/fontinst/base/ts1.etx
Warning: missing glyph ‘arrowleft’.
Warning: missing glyph ‘arrowright’.
Warning: missing glyph ‘tieaccentlowercase’.
Warning: missing glyph ‘tieaccentcapital’.
Warning: missing glyph ‘newtieaccentlowercase’.
Warning: missing glyph ‘newtieaccentcapital’.
Warning: missing glyph ‘blank’.
Warning: missing glyph ‘hyphendbl’.
Warning: missing glyph ‘zerooldstyle’.
Warning: missing glyph ‘oneoldstyle’.
Warning: missing glyph ‘twooldstyle’.
Warning: missing glyph ‘threeoldstyle’.
Warning: missing glyph ‘fouroldstyle’.
Warning: missing glyph ‘fiveoldstyle’.
Warning: missing glyph ‘sixoldstyle’.
Warning: missing glyph ‘sevenoldstyle’.
Warning: missing glyph ‘eightoldstyle’.
Warning: missing glyph ‘nineoldstyle’.
Warning: missing glyph ‘angbracketleft’.
Warning: missing glyph ‘angbracketright’.
Warning: missing glyph ‘Omegainv’.
Warning: missing glyph ‘bigcircle’.
Warning: missing glyph ‘Omega’.
Warning: missing glyph ‘arrowup’.
Warning: missing glyph ‘arrowdown’.
Warning: missing glyph ‘born’.
Warning: missing glyph ‘divorced’.
Warning: missing glyph ‘died’.
Warning: missing glyph ‘leaf’.
Warning: missing glyph ‘married’.
Warning: missing glyph ‘musicalnote’.

 the basics

Warning: missing glyph ‘hyphendblchar’.
Warning: missing glyph ‘dollaroldstyle’.
Warning: missing glyph ‘centoldstyle’.
Warning: missing glyph ‘colonmonetary’.
Warning: missing glyph ‘won’.
Warning: missing glyph ‘naira’.
Warning: missing glyph ‘guarani’.
Warning: missing glyph ‘peso’.
Warning: missing glyph ‘lira’.
Warning: missing glyph ‘recipe’.
Warning: missing glyph ‘interrobang’.
Warning: missing glyph ‘interrobangdown’.
Warning: missing glyph ‘dong’.
Warning: missing glyph ‘pertenthousand’.
Warning: missing glyph ‘pilcrow’.
Warning: missing glyph ‘baht’.
Warning: missing glyph ‘numero’.
Warning: missing glyph ‘discount’.
Warning: missing glyph ‘estimated’.
Warning: missing glyph ‘openbullet’.
Warning: missing glyph ‘servicemark’.
Warning: missing glyph ‘quillbracketleft’.
Warning: missing glyph ‘quillbracketright’.
Warning: missing glyph ‘copyleft’.
Warning: missing glyph ‘circledP’.
Warning: missing glyph ‘referencemark’.
Warning: missing glyph ‘radical’.
Warning: missing glyph ‘euro’.

While this may seem like a long list, it is not unusual when installing fonts not
specifically designed for Tex. You will get the most common symbols such as
currency signs and other frequently used symbols, and chances are that you
are not going to miss the lacking ones. If you want to learn more about these
encodings, simply run fontinst’s encoding vectors through latex to get a dvi
file containing a commented listing of all the glyphs:

latex 8r.etx
latex ot1.etx
latex t1.etx
latex ts1.etx

After fontinst is finished, we run all property list files (pl) through pltotf to
create Tex font metric files (tfm) and all virtual property list files (vpl) files
through vptovf to create virtual fonts (vf). When using the Bash shell, this
can be done as follows:

for file in *.pl; do pltotf $file; done
for file in *.vpl; do vptovf $file; done

The generation of Tex font metrics, virtual fonts, and font definition files is now
complete.

i. Installing the files

The Tetex distribution supports a total of three Tex trees: a global one, a local
one, and a user tree. The global tree is usually maintained by package man-

installing the files 

agement software. The local tree is for everything that is not part of the Tetex
distribution but should be available system-wide. The user tree is for private
files of individual users on the system.

Fonts and everything related to them should go in the local tree if you have
administrative access on the system. Putting them in the global tree is a bad idea
because they might get overwritten when you update Tetex; putting them in a
private one will restrict access to them to a single user which is probably not
what you want if you have administrative access. It is a good idea to define the
variable $TEXMF (all trees) in a way that references $TEXMFLOCAL (the local tree)
before $TEXMFMAIN (the global tree). This will allow you to install newer ver-
sions of selected packages in the local tree without updating the whole install. I
recommend defining $TEXMF as follows in texmf.cnf:

TEXMF = {$HOMETEXMF,!!$TEXMFLOCAL,!!$TEXMFMAIN}

This will give you two levels on top of the global install: your local extensions
will be preferred over files in the global tree and can in turn be overridden
by individual users who put files in their private tree ($HOMETEXMF). These set-
tings should go into the global configuration file for the kpathsea search library,
texmf.cfg. For the rest of this section we will assume that we are installing the
fonts in the local tree and that its top directory is /usr/local/share/texmf.
The relevant branches of the local tree are as follows:

/usr/local/share/texmf/
/usr/local/share/texmf/dvips/
/usr/local/share/texmf/dvips/config/
/usr/local/share/texmf/fonts/
/usr/local/share/texmf/fonts/afm/
/usr/local/share/texmf/fonts/afm/adobe/
/usr/local/share/texmf/fonts/afm/adobe/sabon/
/usr/local/share/texmf/fonts/tfm/
/usr/local/share/texmf/fonts/tfm/adobe/
/usr/local/share/texmf/fonts/tfm/adobe/sabon/
/usr/local/share/texmf/fonts/type1/
/usr/local/share/texmf/fonts/type1/adobe/
/usr/local/share/texmf/fonts/type1/adobe/sabon/
/usr/local/share/texmf/fonts/vf/
/usr/local/share/texmf/fonts/vf/adobe/
/usr/local/share/texmf/fonts/vf/adobe/sabon/
/usr/local/share/texmf/pdftex/
/usr/local/share/texmf/pdftex/config/
/usr/local/share/texmf/tex/
/usr/local/share/texmf/tex/latex/
/usr/local/share/texmf/tex/latex/adobe/
/usr/local/share/texmf/tex/latex/adobe/sabon/
/usr/local/share/texmf/xdvi/
/usr/local/share/texmf/xdvi/config/

The main components of this directory structure are defined by the Tex Di-
rectory Structure (tds),¹ another standard introduced to cope with the large

 http://www.tug.org/tds/

 the basics

number of files that make up a typical Tex system. The appropriate locations
for the different file types should be more or less obvious. The fonts/ branch
has subdirectories for Ascii font metrics (afm/), Tex font metrics (tfm/), Type 

fonts (type1/), and virtual fonts (vf/). It is customary to create subdirectories
for the foundry and for each font family. You can take the names of these subdi-
rectories from the Fontname scheme as well, although this is not a requirement.
The standard directory name for the foundry is given in the file supplier.map,
the standard name for the typeface in typeface.map. Here are the relevant
lines from both files for Sabon:

p adobe @r{Adobe (@samp{p} for PostScript)}
sb sabon Sabon b:ClassicalGaramondBT

The font description files (fd) for Latex go in a subdirectory of tex/latex/.
The exact location is up to you but I recommend using the foundry/typeface
scheme as well. We do not need the directories dvips/, pdftex/, and xdvi/ at
this point, but we are going to use them later. Now we create all directories and
copy the files into the local tree as follows:

cp *.afm /usr/local/share/texmf/fonts/afm/adobe/sabon/
cp *.tfm /usr/local/share/texmf/fonts/tfm/adobe/sabon/
cp *.pfb /usr/local/share/texmf/fonts/type1/adobe/sabon/
cp *.vf /usr/local/share/texmf/fonts/vf/adobe/sabon/
cp *.fd /usr/local/share/texmf/tex/latex/adobe/sabon/

All files left in the working directory will not be used any more and may be
deleted.

i. Creating map files

All the files that Tex and Latex need in order to use Sabon are now available.
At this point we could create a perfectly valid dvi file with the right amount
of blank space for every glyph – but we would not see a single glyph when
looking at a dvi preview. Note that Tex itself is completely indifferent to the
actual font files. It will only use the metrics in the tfm files without accessing
the glyph outlines. Rendering or embedding fonts is at the responsibility of
the application which displays the dvi file or processes it further in order to
generate Postscript. pdftex is a special case because it combines the roles of
Tex and of a pdf driver. All of these applications need to know which fonts
to use. This information is provided in ‘map’ files which map font metrics to
font outlines. We will deal with the three most popular applications, the Post-
script driver dvips, the dvi viewer xdvi, and pdftex. All of them need to be
provided with a suitable map file. For dvips, the syntax of this file is explained in
detail in the dvips manual.¹ For pdftex, it is is explained in the pdftex manual,
and for xdvi in the documentation that comes with the source distribution.
Fortunately, xdvi and pdftex are capable of reading dvips’s map files to a certain

 http://www.radicaleye.com/dvipsman/

creating map files 

extent. If written with a little bit of care, dvips, pdftex, and xdvi can share the
same map file. This section will explain how to do that.

Let’s take a look at the first line of what will become psb.map, our map file
for Sabon. The first column indicates the name of the raw Tex font without any
file extension:

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

Since the \latinfamily macro reencodes all regular text fonts from Adobe
Standard encoding (Fontname code 8a) to Tex Base  (8r) when creating metric
files for Tex, it corresponds to the name of the pfb file with encoding 8r instead
of 8a. In this case, psbr8a.pfb becomes psbr8r.

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

The second column is the Postscript name of the font. Do not try to guess the
right name or copy it from some map file you found somewhere on the web
some time ago. If your font is included in one of the foundry-specific lists of
the Fontname scheme, the Postscript name is given in the second column of the
respective table. If it is not or if you are in doubt, the Postscript name should be
taken from the header of the afm file for every font. Here are a few lines from
psbr8a.afm:

StartFontMetrics 2.0
Comment Copyright (c) 1989 Adobe Systems Incorporated. All Rights Reserved.
Comment Creation Date:Fri Mar 10 16:47:51 PST 1989
FontName Sabon-Roman
FullName 12 Sabon* Roman 05232
FamilyName Sabon
EncodingScheme AdobeStandardEncoding

The relevant part is the line starting with “FontName” – the Postscript name
of this font is “Sabon-Roman.” For each font, we copy this name verbatim to
psb.map.

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

The third column of our map file is a reencoding instruction. As mentioned
above, the \latinfamily macro reencodes all fonts from Adobe Standard en-
coding to Tex Base  when creating metric files for Tex. This affects the metrics
only, which are defined in the tfm files generated by fontinst, while the glyph
outlines as defined in the pfb file still use the font’s native encoding. Therefore,
we add a reencoding directive to the map file that will instruct all applications
dealing with the actual glyph outlines to reencode them accordingly.

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

Finally, the last column contains a list of files that dvips will embed in the Post-
script file. In this case, we need the Postscript encoding vector 8r.enc for Tex
Base  encoding and the pfb file, since we want the fonts to be embedded in the
Postscript file. Now the map file for our basic Sabon set looks like this:

 the basics

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb
psbri8r Sabon-Italic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbri8a.pfb
psbb8r Sabon-Bold "TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb
psbbi8r Sabon-BoldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbi8a.pfb

In addition to that, we need to tell dvips about the slanted versions of all upright
fonts which \latinfamily creates by default. We copy the lines for Sabon-
Roman and Sabon-Bold and insert o, the Fontname code for slanted fonts, after
the weight code of the Tex font name; psbr8r becomes psbro8r and psbb8r is
changed to psbbo8r:

psbro8r Sabon-Roman "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb
psbbo8r Sabon-Bold "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb

Note that the name of the pfb file does not change. We also add a “SlantFont”
instruction to the third column. By default, \latinfamily uses a slant factor
of . when creating the modified metrics and our map file has to indicate
this accordingly. Our complete map file looks like this:

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb
psbri8r Sabon-Italic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbri8a.pfb
psbb8r Sabon-Bold "TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb
psbbi8r Sabon-BoldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbi8a.pfb
psbro8r Sabon-Roman "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb
psbbo8r Sabon-Bold "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb

The format suggested here is suitable for xdvi, dvips, and pdftex. We copy psb.
map to the branch dvips/config/ in the local Tex tree. In order to configure
dvips, we locate the default configuration file of dvips (config.ps) in the main
Tex tree and copy it to the same location. If the search order for all Tex trees
is set up as suggested above, this local copy will now be picked up instead of
the global one. We open this file in a text editor, locate the section for map files
(lines defining map files begin with a lowercase “p”), and add the new map file
so that the updated section looks as follows:

% Standard map file provided by default
p +psfonts.map
% New map file for Sabon
p +psb.map

The procedure for pdftex is similar: the configuration file is called pdftex.
cfg and map files are marked with the string “map” at the beginning of the
line. After copying the file to the branch pdftex/config of the local tree and
updating it, the relevant section should look similar to the following example:

% Standard map file provided by default
map +pdftex.map
% New map file for Sabon
map +psb.map

We repeat this step one more time for xdvi. The configuration file for xdvi is
called xdvi.cfg, the local branch is xdvi/config and lines indicating a map
file begin with “dvipsmap”:

using the fonts 

% Map files provided by default
dvipsmap ps2pk.map
dvipsmap ...
% New map file for Sabon
dvipsmap psb.map

In addition to that, we have to make sure that an encoding definition for Tex
Base  encoding is provided as well. The configuration file for xdvi should con-
tain the following line:

% Tag Suffix Encoding name Encoding file
enc 8r TeXBase1Encoding 8r.enc

The installation is now finished. Do not forget to update the file hash tables by
running texhash or an equivalent command!

i. Using the fonts

Everything you need to know about using the fonts can be found in the Latex
font selection guide.¹ The second chapter of this guide documents the standard
nfss commands used to switch fonts under Latex. Let’s take a look at some
examples. To select Sabon at any point in a Latex file, we use a command like:

\fontfamily{psb}\selectfont

Sabon provides two weights which are readily available using compact font se-
lection macros like \textbf and \bfseries. Larger font families may offer
more than two weights. To select a particular weight, we use the \fontseries
command in conjunction with the nfss series codes defined during the instal-
lation of the font family. Please refer to the code table on page  of this guide
for a list of the most common nfss codes. To select the semibold (sb) weight
for example, we would use the following construct:

\fontseries{sb}\selectfont

Compact font switching macros such as \mdseries and \bfseries do not
switch to a fixed nfss font series, they use \mddefault and \bfdefault for
the regular and bold weight respectively. If we want to use semibold as the de-
fault bold weight, for example, we simply redefine \bfdefault accordingly:

\renewcommand*{\bfdefault}{sb}

In order to use Sabon as the default roman typeface for the whole document,
we redefine \rmdefault in the preamble:

\renewcommand*{\rmdefault}{psb}

It is much more convenient to put the initialization of the font family into a
dedicated style file (sty), though. Our file sabon.sty might look like this:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon]

 http://www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf

 the basics

₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \renewcommand*{\rmdefault}{psb}
₆ \endinput

Essentially, we redefine \rmdefault in order to use Sabon as the default roman
typeface for the whole document. In addition to that, we load the fontenc
package and switch to t1 encoding, which is more appropriate for Postscript
fonts than the ot1 encoding used by default. We also load the textcomp package
which provides a user interface for the symbols found in ts1 encoding. This will
allow us to access symbols such as ‘copyright’ or ‘registered’. If the textcomp
package is used in conjunction with inputenc, it is even possible to enter most
of these symbols directly in a Latex file.

There is one thing we have to keep in mind when switching to t1 encod-
ing. The default encoding is a global setting that applies to all text fonts used
in a Latex file, unless the encoding is reset explicitly using the nfss macro
\fontencoding. It will affect the font family defined as \rmdefault, but also
the families set up as \sfdefault and \ttdefault. By default, these are Com-
puter Modern Sans Serif (cmss) and Computer Modern Typewriter (cmtt). Us-
ing these fonts in conjuction with t1 encoding will pose some problems most
European Tex users are already well familiar with. It is perfectly possible, pro-
vided that we use a suitable version of the Computer Modern fonts. Choosing
a suitable version, however, can be quite difficult. We will discuss some typical
issues related to that in the following section. Alternatively, we could use other
t1 encoded sans serif and typewriter typefaces available in Postscript format.
For example, here is an enhanced version of sabon.sty using Helvetica (phv)
and Courier (pcr):

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon with PS fonts]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \renewcommand*{\rmdefault}{psb}
₆ \renewcommand*{\sfdefault}{phv}
₇ \renewcommand*{\ttdefault}{pcr}
₈ \endinput

This setup is certainly not the most fortunate one in terms of typography, but
it should be safe from a technical perspective. Helvetica and Courier are part of
the Postscript base fonts built into every Level  Postscript device. Most Tex dis-
tributions do not ship with the original versions of these fonts but they provide
suitable replacements for them. For our setup of Sabon, the next section is only
relevant if you want to use Computer Modern Sans Serif and Computer Mod-
ern Typewriter in conjunction with Sabon. If you deploy different t1 encoded
sans serif and typewriter typefaces, which are available in Postscript format, all
you need to do is redefine \sffamily and \ttfamily in sabon.sty or in the
preamble of the respective Latex file as shown above for Helvetica and Courier.

computer modern and t1 encoding 

i. Computer Modern and t1 encoding

The Computer Modern fonts designed for t1 and ts1 encoding are called ec and
tc fonts respectively, together known as European Computer Modern. When
switching to t1 encoding, we implicitly switch to these fonts. Note that Euro-
pean Computer Modern, while being derived from Donald Knuth’s original
Computer Modern typefaces, is not simply a t1 encoded drop-in replacement.
Over the years it has evolved into an independent typeface. The additional fonts
created for the European Computer Modern family have been subject to debate
based on their design. Some of them are considered to be typographically infe-
rior to the original designs. From a technical perspective, the problem with the
European Computer Modern fonts is that, historically, they have been available
in Metafont format only. This implies that Postscript and pdf files will contain
bitmap representations of these fonts when we switch to t1 encoding. Bitmap
fonts, however, have a fixed resolution and so are not independent of the output
device. They are not suitable for on-screen display and a major inconvenience
for every print shop, if they are tolerated at all.

Donald Knuth had designed the Computer Modern fonts in Metafont for-
mat and with ot1 encoding in mind. Blue Sky Research and Y&Y developed
Postscript versions of these fonts later, which were donated to the public in
 and have been shipping with most Tex distributions ever since. While these
fonts work fine for Postscript and pdf files, they are not suitable for tasks re-
quiring letters not found in the English alphabet because their glyph base is
still restricted to ot1 encoding. Jörg Knappen’s European Computer Modern
fonts address this issue by providing a more comprehensive set of glyphs, but
they have in turn been subject to the limitations of Metafont. In the following,
I will briefly introduce several solutions which try to address these problems.
Most of them are trade-offs in one way or another. Tables  and  try to provide
an overview of the major design variations over the Computer Modern theme
along with their implementations. The tables are by no means exhaustive, there
are even more fonts derived from the original Computer Modern typefaces.

To work around the hyphenation problem of ot1 encoding while sticking
to the original Computer Modern fonts, there is a choice of two packages on
ctan which provide t1 encoded virtual fonts based on the original Computer
Modern family of fonts: the ae¹ and the ze² fonts. The ae fonts are built on top
of Computer Modern exclusively, but unfortunately they lack almost a dozen
t1 characters including the French double and single guillemets, which makes
their default setup unsuitable for all French and a lot of German texts. For Com-
puter Modern Typewriter, the situation is even worse. There is a supplemental
package called aecompl which adds Metafont versions of the missing charac-
ters, but that again brings up the problem we were trying to avoid in the first

 http://www.ctan.org/tex-archive/fonts/ae/
 http://www.ctan.org/tex-archive/fonts/zefonts/

 the basics

typeface fonts

name format

Computer Modern cm Metafont
cm, Blue Sky Postscript
cm, Bakoma Postscript
ae virtual fonts
ze virtual fonts

European Computer Modern ec & tc Metafont
ec & tc, Micropress Postscript
Tt Postscript
cm-super Postscript

Latin Modern lm Postscript
European Modern em Postscript

Table 1: Computer Modern, fonts and formats

place. A different complement called aeguill¹ at least adds Postscript versions
of the guillemets. An enhanced version of sabon.sty might then look like this:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon with AE]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \RequirePackage{ae}
₆ \RequirePackage{aeguill}
₇ \renewcommand*{\rmdefault}{psb}
₈ \endinput

The ze fonts take a different approach to work around this problem: the miss-
ing characters are taken from standard Postscript fonts such as Times and Hel-
vetica. This means that there will be some typographical inconsistencies, but we
are safe from a technical point of view. While the ae fonts and the correspond-
ing supplemental packages ship with most Tex distributions, you might need
to download the ze fonts from ctan. When using the ze fonts, our enhanced
version of sabon.sty would look like this:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon with ZE]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \RequirePackage{zefonts}
₆ \renewcommand*{\rmdefault}{psb}
₇ \endinput

There is a more robust solution you might be interested in if you require t1 en-
coded Computer Modern fonts. Free Postscript versions of the European Com-
puter Modern fonts have been made available, although they might not have
made their way into every Tex distribution yet. As mentioned before, one prob-

 http://www.ctan.org/tex-archive/macros/latex/contrib/supported/aeguill/

computer modern and t1 encoding 

fonts encoding

native supported

cm ot1 ot1
cm, Blue Sky ot1 ot1
cm, Bakoma font specific ot1
ae ot1 t1, with composite glyphs
ze ot1 t1, with composite glyphs
ec, tc t1, ts1 t1, ts1
cm-super a t1, ts1, t2a, t2b, t2c, x2
lm font specific t1, ts1, ly1, qx1

Table 2: Computer Modern, fonts and encodings

lem with ot1 encoded fonts is that they rely on composite glyphs which break
searching for words containing accented letters in pdf files. Both the ae and
the ze fonts, although they enable Tex to hyphenate words containing accented
letters properly, still suffer from this particular problem as they are based on
ot1 encoded fonts internally. It is highly advisable to switch to a real t1 version
of the Computer Modern fonts in Postscript format. Such fonts are included in
two independent packages: Péter Szabó’s Tt¹ as well as Vladimir Volovich’s
more recent cm-super² package. Both packages include Postscript fonts which
are traced and post-processed conversions of their Metafont counterparts.

Unless you know that a specific font you need is provided by the Tt

package only, go with the more advanced cm-super package which will bring
you as close to a real solution as you can possibly get when using free versions of
the European Computer Modern fonts. Note, however, that it is a rather large
download. Since it includes a huge number of fonts, the compressed package
is about  mb in size. The cm-super fonts use Adobe Standard as their native
encoding, but the glyph set provided by these fonts includes Cyrillic letters as
well. In addition to t1 and ts1, cm-super supports the Cyrillic encodings t2a,
t2b, t2c, and x2. See the package documentation for installation instructions
and answers to the most frequently asked questions. Here is a version of our
style file for use in conjunction with cm-super:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon with CM-Super]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \RequirePackage{type1ec}
₆ \renewcommand*{\rmdefault}{psb}
₇ \endinput

Recently, yet another new implementation of Computer Modern has been re-

 http://www.ctan.org/tex-archive/fonts/ps-type1/ec/
 http://www.ctan.org/tex-archive/fonts/ps-type1/cm-super/

 the basics

leased to the public, the promising Latin Modern fonts created by Bogusław
Jackowski and Janusz M. Nowacki. Unlike Tt and cm-super, Latin Modern
is derived from the original Computer Modern designs and augmented with
accented letters as well as other glyphs missing from the very restricted glyph
base of the original fonts. While the Latin Modern fonts are younger than Eu-
ropean Computer Modern, they are a parallel development from a systematic
perspective. Consequently, they are not affected by the controversial design de-
cisions underlying certain parts of the European Computer Modern family of
fonts. They use a font specific encoding by default and feature a glyph base suit-
able for t1, ts1, ly1 as well as the Polish encoding qx1. Even though these fonts
are still under development, they are already perfectly usable as of this writing.
Here is yet another iteration of our style file for Sabon, combined with Latin
Modern for the sans serif and typewriter families:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{sabon}[2003/07/27 v1.0 Adobe Sabon with LM]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \RequirePackage{lmodern}
₆ \renewcommand*{\rmdefault}{psb}
₇ \endinput

Apart from these free fonts, there are also commercial offerings from Y&Y¹
and Micropress.² Judging by the vendors’ websites, Micropress offers Postscript
versions of European Computer Modern while the European Modern fonts by
Y&Y are augmented Postscript versions of the original Computer Modern type-
faces. Please refer to the respective website for details and pricing. Since I have
never used any of these fonts, I cannot comment on their quality or on any
possible shortcomings.

 http://www.yandy.com/em.htm
 http://www.micropress-inc.com/fonts/ecfonts/ecmain.htm

tutorial ii

standard font sets

While the \latinfamily shorthand is very convenient, it is not capable of cop-
ing with complex installation scenarios. Sooner or later you will probably have
more specific requirements or simply desire more control over the basics. This
will require using lower-level fontinst commands in most cases.

ii. The fontinst file

In this tutorial, we will essentially repeat the scenario discussed in the previous
one. This time, however, we will employ lower-level commands. The verbose
file introduced here will also serve as a template for subsequent tutorials.

₁ \input fontinst.sty
₂ \substitutesilent{bx}{b}

After loading fontinst we set up an alias that will suppress a warning when the
respective font is substituted. Why would we want to set up this particular alias?
Note that bx is the nfss code of the ‘bold extended’ series. The Latex macros
\textbf and \bfseries do not switch to a fixed series, they use \bfdefault
instead which is set to bx by default. As long as you are using the Computer
Modern fonts this is fine since they actually include bold extended fonts. For
font families which do not, however, using these macros would result in a warn-
ing. To avoid that, you would need to redefine \bfdefault to a suitable weight.
The problem here is that \bfdefault is a global setting applying to all of La-
tex’s font families (\rmdefault, \sfdefault, and \ttdefault), but it is not
safe to assume that all of them will offer the same weights. To avoid any need
to redefine \bfdefault unless we really want to, we set up an alias so that ev-
ery request for ‘bold extended’ (bx) is substituted by ‘bold’ (b).¹ Unless bold
extended fonts are available, simply think of bx as the default bold weight.

The standard weight is selected by Latex in a similar way. The relevant
macro is called \mddefault and defaults to m. Make sure that the nfss series m
is always defined, either mapped to actual fonts or as a substitution. In this case
our font family provides regular-weight fonts so we will simply use them for
the m series. Some font families, however, are based on the main weights ‘light’
and ‘demibold’ instead of ‘regular’ and ‘bold’. In this case, we would either just
map these weights to the m and b series directly or use the proper nfss series
codes (l and db) plus the following substitutions:

\substitutesilent{m}{l}
\substitutesilent{bx}{db}

 This is a default substitution that fontinst will always silently include. We could omit line 

here, but if semibold fonts are available you might prefer using those as a substitute for bx.



 standard font sets

Again, think of m as the default weight if regular-weight fonts are not available.
Every font family should provide mappings for the nfss series m and bx in the
font definition file. If fonts matching these series exactly are not available, use
substitutions to ensure that the defaults for \mddefault and \bfdefault will
work without user intervention. Since \mddefault and \bfdefault are overall
settings applying to all of Latex’s families, redefining them explicitly may cause
problems. Doing so should be an option, not a requirement.

₃ \substitutesilent{sc}{n}

We also add a substitution for the sc shape, which will in fact be used by the
ts1 encoded families only. Since ts1 contains symbols and figures, we do not
need an additional small caps font for this encoding as it would be identical to
the upright variant anyway. However, to ensure that all text commands of the
textcomp package will always work, even if the active nfss shape is sc, we set
up this shape substitution.

₄ \setint{smallcapsscale}{800}

The basic Sabon set we are dealing with offers upright and italic fonts but no
optical small caps. As a substitute, fontinst is capable of transparently gener-
ating so-called ‘mechanical’ or ‘faked’ small caps – as opposed to ‘optical’ or
‘real’ small caps which are actual glyphs found in a dedicated small caps font.
Mechanical small caps are generated by taking the tall caps of the font and scal-
ing them by a certain factor:  means full size,  means .. Since Type 

fonts scale linearly, scaling down tall caps implies that they will appear lighter
than the corresponding lowercase glyphs, thus disturbing the color of the page.
However, if they are too tall they do not mix well with the lowercase alphabet.

Optical small caps match the ‘x-height’ of the font. This is the height of the
lowercase alphabet without ascenders and descenders. They blend in seamlessly
with lowercase and mixed case text. Depending on the typeface, this usually
corresponds to a value in the range of –. If you scale down tall caps so
that they match the x-height of the font, they will appear too light in running
text. Finding a suitable value for this is obviously a trade-off. We are going to
use fontinst’s default setting of  here but you might want to experiment
with a value in the range of –. For serious applications of small caps
we would need optical small caps, provided in a dedicated small caps or in an
expert font. For details on small caps and expert sets, please refer to tutorial iii
and v respectively.

₅ \setint{slant}{167}

The integer variable smallcapsscale is a predefined variable used by fontinst’s
encoding vectors. We could use it in conjunction with \latinfamily as well.
The variable slant is specific to our fontinst file. We define it for convenience
so that we can set the slant factor for all subsequent font transformations glob-
ally. The slant factor defines how much the glyphs slope to the right. It is a real

the fontinst file 

number equivalent to the tangent of the slant angle. Fontinst represents this
number as an integer though, so we have to multiply the tangent by . The
value  (~ .°) is a reasonable default. Any value significantly greater that 

(~ °) is usually too much.¹

₆ \transformfont{psbr8r}{\reencodefont{8r}{\fromafm{psbr8a}}}
₇ \transformfont{psbri8r}{\reencodefont{8r}{\fromafm{psbri8a}}}
₈ \transformfont{psbb8r}{\reencodefont{8r}{\fromafm{psbb8a}}}
₉ \transformfont{psbbi8r}{\reencodefont{8r}{\fromafm{psbbi8a}}}

We start off with some basic font transformations: all fonts are reencoded from
Adobe Standard (Fontname code 8a) to Tex Base  encoding (8r). Please re-
fer to the fontinst manual for an explanation of the syntax of the individual
commands used here and in the following.

₁₀ \transformfont{psbro8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbr8a}}}
₁₁ \transformfont{psbbo8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbb8a}}}

Like the \latinfamily shorthand, our fontinst file should create slanted fonts
as well. These need to be reencoded and, well, slanted. We are using the slant
variable defined in line  to set the slant factor. The raw, Tex Base  encoded
fonts are now prepared for the generation of virtual fonts.

₁₂ \installfonts
₁₃ \installfamily{T1}{psb}{}
₁₄ \installfamily{TS1}{psb}{}

The installation of a font family is enclosed in an environment which we open
in line  and close later in line . First of all, the font family we are about to
install has to be declared: we have Adobe Sabon and we are going to install it
in t1 encoding (Fontname code 8t) as well as in ts1 (8c). The third argument
to \installfamily corresponds to the second one of the \latinfamily com-
mand: it is used to include code in the font definition file that will be read by
Latex whenever the font is selected. t1 will serve as our base encoding in Latex’s
text mode later. It is complemented by ts1 which provides additional glyphs
such as currency signs and other frequently used symbols. The \latinfamily
command also provides ot1 (7t) and Tex Base  encoded fonts. We will omit
both encodings here as we do not need them. While raw Tex Base  encoded
fonts (8r) form the basis of all virtual fonts, they are usually not deployed as
such on the Tex level, and the ot1 encoding is not suitable for Postscript fonts
anyway. We will therefore deliberately ignore it and focus on t1 and ts1 exclu-
sively.

₁₅ \installfont{psbr8t}{psbr8r,latin}{t1}{T1}{psb}{m}{n}{}

 I suggest you do not bother trying to match the slope of the italic fonts when creating a
slanted variant of a roman font. This will usually not work for typefaces with true italics
because the latter are an independent design.

 standard font sets

To create the individual virtual fonts, we use fontinst’s \installfont com-
mand. The first argument to \installfont is the virtual font we are going
to create, the second one is a list of files used to build this font. These can be
afm, mtx, or pl files, their extension is omitted. If multiple fonts are provided,
\installfont does not overwrite any encoding positions when reading in ad-
ditional files, it simply fills vacant slots if it finds suitable glyphs in the next
font. The metric file latin.mtx is an auxiliary file provided by fontinst which
should always be read when creating ot1 or t1 encoded text fonts. The third
argument is the file name of an encoding vector without the file extension, in
this case t1.etx. The remaining arguments are written verbatim to the font
definition file and declare the respective font in a format that the Latex font
selection scheme (nfss) can process: t1 encoding, Adobe Sabon¹, medium²,
normal (that is, upright or roman). The last argument is only relevant if fonts
with different design sizes are available. It is empty for linearly scaled fonts.

₁₆ \installfont{psbrc8t}{psbr8r,latin}{t1c}{T1}{psb}{m}{sc}{}

The small caps font is slightly different. Since we do not have any Type  font
containing optical small caps we need to ‘fake’ them by scaling the uppercase
alphabet and putting the scaled glyphs in the encoding positions of the low-
ercase alphabet. Fortunately, we do not have to deal with the actual low-level
glyph scaling. We simply load t1c.etx, a special encoding vector which will
take care of that, using the value of smallcapsscale as the scale factor.

₁₇ \installfont{psbro8t}{psbro8r,latin}{t1}{T1}{psb}{m}{sl}{}
₁₈ \installfont{psbri8t}{psbri8r,latin}{t1}{T1}{psb}{m}{it}{}

Since the slanting was already performed on the raw fonts, the virtual slanted
and the italic fonts are handled just like the upright ones. Now all regular fonts
are done and we can repeat this part (–) for the bold fonts:

₁₉ \installfont{psbb8t}{psbb8r,latin}{t1}{T1}{psb}{b}{n}{}
₂₀ \installfont{psbbc8t}{psbb8r,latin}{t1c}{T1}{psb}{b}{sc}{}
₂₁ \installfont{psbbo8t}{psbbo8r,latin}{t1}{T1}{psb}{b}{sl}{}
₂₂ \installfont{psbbi8t}{psbbi8r,latin}{t1}{T1}{psb}{b}{it}{}

After that, we add virtual fonts for ts1 encoding:

₂₃ \installfont{psbr8c}{psbr8r,textcomp}{ts1}{TS1}{psb}{m}{n}{}

Like latin.mtx, textcomp.mtx is an auxiliary metric file provided by fontinst.
It should always be added when creating ts1 encoded fonts for the textcomp
package. The third argument, the encoding vector, refers to ts1.etx in this
case. As ts1 encoding is for symbols only and we did set up a shape substitu-
tion, we do not need a ts1 encoded small caps font. Slanted and italic fonts are
handled like the upright one:

 Latex does not really care about the name of the font or the foundry. This argument simply
defines the code that identifies the font within the nfss.

 In fact, the more appropriate name would be regular because medium is a moderate bold
weight with the nfss code mb.

the latinfamily macro revisited 

₂₄ \installfont{psbro8c}{psbro8r,textcomp}{ts1}{TS1}{psb}{m}{sl}{}
₂₅ \installfont{psbri8c}{psbri8r,textcomp}{ts1}{TS1}{psb}{m}{it}{}

We repeat – for the bold fonts:

₂₆ \installfont{psbb8c}{psbb8r,textcomp}{ts1}{TS1}{psb}{b}{n}{}
₂₇ \installfont{psbbo8c}{psbbo8r,textcomp}{ts1}{TS1}{psb}{b}{sl}{}
₂₈ \installfont{psbbi8c}{psbbi8r,textcomp}{ts1}{TS1}{psb}{b}{it}{}

Finally, we close the install environment and terminate:

₂₉ \endinstallfonts
₃₀ \bye

ii. The latinfamily macro revisited

Note that our fontinst file is not strictly equivalent to the \latinfamily macro
but rather stripped down to the most useful parts with respect to typical Post-
script fonts. Essentially, we did not create any font description files for the raw
Tex Base  encoded fonts and we dropped ot1 encoding. If you are curious,
you should be able to reconstruct all the steps taken by \latinfamily when
looking at the log file created by fontinst while keeping our file in mind. Here
are the relevant lines from the log file after running \latinfamily on the basic
Sabon set. Only lines beginning with “INFO> run” are relevant in this context
as they indicate lower-level macros used by \latinfamily:

INFO> run \transformfont <psbr8r> from <psbr8a>
INFO> run \installrawfont <psbr8r><psbr8r,8r><8r><8r><psb><m><n>
INFO> run \installfont <psbr7t><psbr8r,latin><OT1><OT1><psb><m><n>
INFO> run \installfont <psbr8t><psbr8r,latin><T1><T1><psb><m><n>
INFO> run \installfont <psbr8c><psbr8r,textcomp><TS1><TS1><psb><m><n>
INFO> run \installfont <psbrc7t><psbr8r,latin><OT1c><OT1><psb><m><sc>
INFO> run \installfont <psbrc8t><psbr8r,latin><T1c><T1><psb><m><sc>
INFO> run \transformfont <psbro8r> from <psbr8r> (faking oblique)
INFO> run \installrawfont <psbro8r><psbro8r,8r><8r><8r><psb><m><sl>
INFO> run \installfont <psbro7t><psbro8r,latin><OT1><OT1><psb><m><sl>
INFO> run \installfont <psbro8t><psbro8r,latin><T1><T1><psb><m><sl>
INFO> run \installfont <psbro8c><psbro8r,textcomp><TS1><TS1><psb><m><sl>
INFO> run \transformfont <psbri8r> from <psbri8a>
INFO> run \installrawfont <psbri8r><psbri8r,8r><8r><8r><psb><m><it>
INFO> run \installfont <psbri7t><psbri8r,latin><OT1i><OT1><psb><m><it>
INFO> run \installfont <psbri8t><psbri8r,latin><T1i><T1><psb><m><it>
INFO> run \installfont <psbri8c><psbri8r,textcomp><TS1i><TS1><psb><m><it>
INFO> run \transformfont <psbb8r> from <psbb8a>
INFO> run \installrawfont <psbb8r><psbb8r,8r><8r><8r><psb><n>
INFO> run \installfont <psbb7t><psbb8r,latin><OT1><OT1><psb><n>
INFO> run \installfont <psbb8t><psbb8r,latin><T1><T1><psb><n>
INFO> run \installfont <psbb8c><psbb8r,textcomp><TS1><TS1><psb><n>
INFO> run \installfont <psbbc7t><psbb8r,latin><OT1c><OT1><psb><sc>
INFO> run \installfont <psbbc8t><psbb8r,latin><T1c><T1><psb><sc>
INFO> run \transformfont <psbbo8r> from <psbb8r> (faking oblique)
INFO> run \installrawfont <psbbo8r><psbbo8r,8r><8r><8r><psb><sl>
INFO> run \installfont <psbbo7t><psbbo8r,latin><OT1><OT1><psb><sl>
INFO> run \installfont <psbbo8t><psbbo8r,latin><T1><T1><psb><sl>
INFO> run \installfont <psbbo8c><psbbo8r,textcomp><TS1><TS1><psb><sl>
INFO> run \transformfont <psbbi8r> from <psbbi8a>

 standard font sets

INFO> run \installrawfont <psbbi8r><psbbi8r,8r><8r><8r><psb><it>
INFO> run \installfont <psbbi7t><psbbi8r,latin><OT1i><OT1><psb><it>
INFO> run \installfont <psbbi8t><psbbi8r,latin><T1i><T1><psb><it>
INFO> run \installfont <psbbi8c><psbbi8r,textcomp><TS1i><TS1><psb><it>

This listing is a complete summary of what the \latinfamily macro does in
this case, broken down into lower-level commands. The order of the commands
differs slightly from our file, because the \transformfont calls are not grouped
at the beginning but rather used ‘on demand’ for each shape. This difference is
irrelevant from a technical point of view. \transformfont must obviously be
called before \installfont or \installrawfont tries to use the transformed
fonts, but the exact location does not matter. Since we did not create any font
description files for Tex Base  encoding, we did not use the \installrawfont
macro in our fontinst file. This macro does not build a virtual font but rather
sets up a raw, Tex Base  encoded font for use under Latex.

Here are some crucial points we would have to keep in mind when writ-
ing a fontinst file that does exactly what \latinfamily would do: the macro
\installrawfont is used in conjunction with 8r.mtx instead of latin.mtx,
the encoding file is obviously 8r.etx in this case. Creating ot1 encoded vir-
tual fonts requires latin.mtx and ot1.etx. You will also notice that, in ad-
dition to ot1c.etx and t1c.etx, fontinst used encoding files like ot1i.etx
and t1i.etx when creating italic virtual fonts. For t1 encoding, t1.etx and
t1i.etx are equivalent because t1i.etx reads t1.etx internally, hence we did
not use t1i.etx in our fontinst file. The situation is the same with ts1.etx
and ts1i.etx. For ot1 encoding, however, the difference is crucial because this
encoding differs depending on the shape: the upright shape features a dollar
symbol while the italic shape puts an italic pound symbol in the slot of the
dollar. This is yet another idiosyncrasy of ot1.

ii. Map files revisited

With all of that in mind, let’s now go back to the dvips map file from the first
tutorial and take another look at it. The meaning of the reencoding and slanting
instructions should be much clearer now:

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb
psbri8r Sabon-Italic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbri8a.pfb
psbb8r Sabon-Bold "TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb
psbbi8r Sabon-BoldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbi8a.pfb
psbro8r Sabon-Roman "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb
psbbo8r Sabon-Bold "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb

Note that the t1 and ts1 encodings are used for the virtual fonts only, they are
what Tex will work with. A Postscript file created by dvips, however, does not
contain any virtual fonts. They will have been resolved into the raw fonts they
are based on by dvips. The raw fonts used to build virtual ones were reencoded
to Tex Base  encoding during the installation. But this reencoding step affects
the font metrics only while the pfb files embedded in the Postscript code still

map files revisited 

use Adobe Standard as their native encoding. Therefore every application read-
ing the final file has to repeat the reencoding step for the font outlines before
rendering the fonts. This is what the “ReEncodeFont” instruction is all about.
Since we cannot expect every application to know about Tex Base  encoding,
we embed the respective encoding vector (8r.enc) along with the fonts. Com-
pare the first \transformfont command in the fontinst file to the first line of
the map file:

\transformfont{psbr8r} {\reencodefont{8r} {\fromafm{psbr8a}}}
psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

The situation is similar for the slanted fonts. The font files embedded in the
Postscript file are not slanted, they are upright. Fontinst has performed the
slanting for the font metrics only, it does not touch the font outlines at all.
The slanting of the glyph outlines will be performed by a Postscript printer or
an interpreter like Ghostscript. After resolving the virtual fonts, all that dvips
does as far as the raw fonts are concerned is reading the files listed in psb.map
and embedding them along with the “SlantFont” instruction. The transforma-
tion of the glyph outlines takes place when the Postscript code is rendered on
screen or on paper. Both “ReEncodeFont” and “SlantFont” are instructions for
the application finally performing the rendering. The value of the “SlantFont”
instruction has to correspond to the slant factor used in the fontinst file. As
mentioned above, fontinst’s representation of the slant factor is slightly differ-
ent. The value used in the map file is a real number corresponding to fontinst’s
(integer) slant factor divided by . That’s why its precision is fixed to three
decimal places. Let’s compare a line of the map file to the corresponding line of
the fontinst file:

\transformfont{psbro8r}{\slantfont{167}\reencodefont{8r}{\fromafm{psbr8a}}}
psbro8r Sabon-Roman "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

Essentially, think of map files as a way of recording all encoding and shape
modifications applied to the font metrics during the installation, so that they
can be repeated for the font outlines when the final Postscript file is displayed
or printed. This information is required for the raw fonts only because all the
information concerning the virtual fonts is contained in the virtual font files.
When using dvi or pdf as the final output format, the division of labor be-
tween the various tools involved differs since pdftex combines the roles of Tex
and dvips, while dvi viewers deal with both the virtual fonts and the render-
ing of the font outlines on screen. The principle, however, remains the same.
Therefore pdftex and xdvi require map files as well.

tutorial iii

optical small caps and
hanging figures

When choosing a new typeface, bear in mind that optical small caps and hang-
ing figures are not available for all commercial Postscript fonts. If they are
available for a certain typeface, they are usually provided separately, either in
a sc & osf or in an expert font package. We will deal with the former case in
this tutorial, the latter will be discussed in tutorial v. Suppose we have acquired
the Sabon sc & osf package to complement our base install of Sabon. This pack-
age provides four additional fonts: a regular sc & osf, an italic osf, a bold osf,
and a bold italic osf font. These fonts will provide us with hanging figures for
all shapes in both weights. Small caps are available for the regular weight only;
we will still have to make do with mechanical small caps for the bold weight.
Adobe does not include a separate regular-weight upright osf font. The respec-
tive figures are to be found in the small caps font instead. Our original file set
looks like this:

sar_____.afm sai_____.afm sab_____.afm sabi_____.afm
sar_____.inf sai_____.inf sab_____.inf sabi_____.inf
sar_____.pfb sai_____.pfb sab_____.pfb sabi_____.pfb
sar_____.pfm sai_____.pfm sab_____.pfm sabi_____.pfm

sarsc___.afm saiof___.afm sabof___.afm sabio___.afm
sarsc___.inf saiof___.inf sabof___.inf sabio___.inf
sarsc___.pfb saiof___.pfb sabof___.pfb sabio___.pfb
sarsc___.pfm saiof___.pfm sabof___.pfm sabio___.pfm

After renaming and choosing the required files, we could start off with the fol-
lowing set of files:

psbr8a.afm psbri8a.afm psbb8a.afm psbbi8a.afm
psbr8a.pfb psbri8a.pfb psbb8a.pfb psbbi8a.pfb

psbrc8a.afm psbrij8a.afm psbbj8a.afm psbbij8a.afm
psbrc8a.pfb psbrij8a.pfb psbbj8a.pfb psbbij8a.pfb

But before we begin, let’s take a closer look at the encoding of the fonts. We
will have to deal with some peculiarities characteristic for typical sc & osf sets.
Taking a look at psbr8a.afm, you will see that in Adobe Standard encoding,
which is the native encoding of all fonts of the Sabon family, the figures are
encoded as “zero”, “one”, “two” etc.:

C 48 ; WX 556 ; N zero ; B 52 -15 504 705 ;
C 49 ; WX 556 ; N one ; B 91 0 449 705 ;
C 50 ; WX 556 ; N two ; B 23 0 507 705 ;

Compare that to the glyph names of figures in an expert font:

C 48 ; WX 511 ; N zerooldstyle ; B 40 -14 480 436 ;
C 49 ; WX 328 ; N oneoldstyle ; B 35 -3 294 425 ;
C 50 ; WX 440 ; N twooldstyle ; B 44 -3 427 436 ;



 optical small caps and hanging figures

The different glyph names are appropriate because regular Postscript fonts usu-
ally come with lining figures by default while expert fonts feature hanging (‘old
style’) figures amongst other things. Now let’s take a look at psbrc8a.afm:

C 48 ; WX 556 ; N zero ; B 41 -15 515 457 ;
C 49 ; WX 556 ; N one ; B 108 0 448 442 ;
C 50 ; WX 556 ; N two ; B 72 0 512 457 ;

When comparing these glyph names to the actual outlines in psbrc8a.pfb,¹
we would see that this font in fact comes with hanging (‘old style’) figures even
though the figures are labeled using the standard names. This is the case with
all osf fonts included in the sc & osf package. The reason why this complicates
the installation procedure will become clear when we take a look at the Tex
side. In t1 encoding, for example, the figures are (essentially) encoded like this
by default:

\setslot{zero}\endsetslot
\setslot{one}\endsetslot
\setslot{two}\endsetslot

While ts1 encoding (essentially) references them as follows:

\setslot{zerooldstyle}\endsetslot
\setslot{oneoldstyle}\endsetslot
\setslot{twooldstyle}\endsetslot

We face a similar problem with small caps. The lowercase letters in psbr8a.afm
are labeled like this:

C 97 ; WX 500 ; N a ; B 42 -15 465 457 ;
C 98 ; WX 556 ; N b ; B 46 -15 514 764 ;
C 99 ; WX 444 ; N c ; B 25 -15 419 457 ;

Expert fonts, which provide small caps as well but do not need to follow Adobe
Standard encoding, encode small caps as follows:

C 97 ; WX 457 ; N Asmall ; B -15 -3 467 446 ;
C 98 ; WX 481 ; N Bsmall ; B 34 -3 437 437 ;
C 99 ; WX 501 ; N Csmall ; B 38 -14 477 448 ;

Our font psbrc8a features small caps in place of lowercase letters but it has to
follow Adobe Standard encoding:

C 97 ; WX 556 ; N a ; B 10 0 546 509 ;
C 98 ; WX 556 ; N b ; B 49 0 497 490 ;
C 99 ; WX 556 ; N c ; B 49 -12 512 502 ;

This is one of the tricky parts when installing typical sc & osf sets. Fontinst’s en-
coding vectors expect distinct names for distinct glyphs while the metric files of
sc & osf fonts do not provide unique names for optical small caps and hanging
figures. The other idiosyncrasy of sc & osf sets is specific to a few font foundries
(including Adobe) only: there is no separate upright osf font so we have to

 The correct name of this font is psbrcj8a, but we will stick to the naming proposed in
adobe.map here.

the fontinst file 

take the upright hanging figures from the small caps font when building virtual
fonts.

iii. The fontinst file

For fontinst, we use the file introduced in the last tutorial as a template and
add the features we need. We will create two Latex font families: psb and psbj.
The former will provide lining figures while the latter will use the hanging fig-
ures of the osf fonts instead. Both families will incorporate optical small caps
where available. In the following, all comments concerning the fontinst file will
be restricted to those aspects diverging from our template. Please refer to the
previous tutorial for a commentary on the original template.

₁ \input fontinst.sty
₂ \substitutesilent{bx}{b}
₃ \substitutesilent{sc}{n}
₄ \setint{smallcapsscale}{800}
₅ \setint{slant}{167}
₆ \transformfont{psbr8r}{\reencodefont{8r}{\fromafm{psbr8a}}}
₇ \transformfont{psbri8r}{\reencodefont{8r}{\fromafm{psbri8a}}}
₈ \transformfont{psbb8r}{\reencodefont{8r}{\fromafm{psbb8a}}}
₉ \transformfont{psbbi8r}{\reencodefont{8r}{\fromafm{psbbi8a}}}

₁₀ \transformfont{psbrc8r}{\reencodefont{8r}{\fromafm{psbrc8a}}}
₁₁ \transformfont{psbrij8r}{\reencodefont{8r}{\fromafm{psbrij8a}}}
₁₂ \transformfont{psbbj8r}{\reencodefont{8r}{\fromafm{psbbj8a}}}
₁₃ \transformfont{psbbij8r}{\reencodefont{8r}{\fromafm{psbbij8a}}}

The first couple of lines of our template remain unchanged (–). After the
reencodings inherited form our template, we insert the additional fonts since
they need to be reencoded as well (–).

₁₄ \transformfont{psbro8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbr8a}}}
₁₅ \transformfont{psbbo8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbb8a}}}
₁₆ \transformfont{psbrco8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbrc8a}}}
₁₇ \transformfont{psbboj8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbbj8a}}}

In addition to that, we need slanted versions of the new fonts. Slanting the small
caps font () may seem like a strange thing to do at first since we do not really
want to create a slanted small caps shape. But since regular-weight hanging
figures are found in the small caps font, we need a slanted version of that as
well to provide matching figures for the slanted shape of the psbj family later.

₁₈ \installfonts
₁₉ \installfamily{T1}{psb}{}
₂₀ \installfamily{TS1}{psb}{}
₂₁ \installfont{psbr8t}{psbr8r,latin}{t1}{T1}{psb}{m}{n}{}
₂₂ \installfont{psbrc8t}{psbrc8r,unsetnum,kernoff,psbr8r,kernon,latin}{t1}{T1}{psb}{m}{sc}{}

The file psbrc8r provides small caps and hanging figures, but we want psb
to be a consistent family using lining figures throughout. Therefore, we read
psbrc8r first and clear the encoding positions of all figures using commands
from a separate metric file, unsetnum.mtx, right after that. This file is listed
further down; all it does is clear all figure slots. When adding psbr8r after-

 optical small caps and hanging figures

wards, the figure slots of the virtual font psbrc8t will be filled using the lining
figures found in psbr8r. Note that \installfont does not overwrite any en-
coding slots when processing additional metric files, it simply fills vacant slots
if it finds suitable glyphs in the next font. This allows us to insert the lining
figures of psbr8r in the virtual font while the rest of the glyphs including the
small caps is taken from psbrc8r. As to the encoding vector, we use the regular
encoding file t1.etx in this case since psbrc8r uses standard glyph names for
the small caps so that t1c.etx would be inappropriate.

There is one more thing we have to take into account: adding a metric file to
the \installfont command also adds kerning information provided by that
file. The problem here is that some of the glyph names in our raw fonts are not
unique since the small caps in psbrc8r are encoded and labeled just like the
lowercase letters in psbr8r. The kerning data in psbr8r, however, refers to or-
dinary lowercase letters. Under certain circumstances, misleading kerning data
might thus be included in the virtual small caps font psbrc8t. To avoid that,
we add two auxiliary files provided by fontinst, kernon.mtx and kernoff.mtx,
which enable and disable fontinst’s \setkern command. When added to the
input file list as shown above, this will effectively ignore the kerning data in
psbr8r.

₂₃ \installfont{psbro8t}{psbro8r,latin}{t1}{T1}{psb}{m}{sl}{}
₂₄ \installfont{psbri8t}{psbri8r,latin}{t1}{T1}{psb}{m}{it}{}
₂₅ \installfont{psbb8t}{psbb8r,latin}{t1}{T1}{psb}{b}{n}{}
₂₆ \installfont{psbbc8t}{psbb8r,latin}{t1c}{T1}{psb}{b}{sc}{}

Optical small caps are available for the regular weight only. For the bold series
we have to make do with ‘faked’ small caps, so we use the encoding file t1c.etx
here (). The remaining lines for t1 encoding do not require any adjustments:

₂₇ \installfont{psbbo8t}{psbbo8r,latin}{t1}{T1}{psb}{b}{sl}{}
₂₈ \installfont{psbbi8t}{psbbi8r,latin}{t1}{T1}{psb}{b}{it}{}

That’s it for t1 encoding. While ts1 is primarily intended for symbols comple-
menting t1, it includes hanging figures as well. Since the only way to use them is
loading the textcomp package and typing rather cumbersome text commands
like \textzerooldstyle it is not very useful to have them in ts1. Our psbj
family will make them the default figures anyway so that they are readily avail-
able. But we are being picky. We have put down some hard, cold cash for the
Sabon sc & osf package and we want to make the most of it. Let’s see how we
can put hanging figures in TS1/psb as well. As mentioned above, the problem
here is that the osf fonts use regular glyph names for the hanging figures while
fontinst’s ts1 encoding vector references them by oldstyle names. Hence we
have to turn regular figures – which are in fact hanging figures not encoded as
such – into hanging figures. To do that, we need an additional resource pro-
vided by fontinst, the metric file resetosf.mtx. With this in mind, let’s add a
section for ts1 encoding to our fontinst file:

the fontinst file 

₂₉ \installfont{psbr8c}{psbr8r,unsetnum,kernoff,psbrc8r,kernon,resetosf,textcomp}{ts1}%
₃₀ {TS1}{psb}{m}{n}{}

For the upright fonts, the hanging figures are in fact in the small caps font which
complicates the installation even more. But we have dealt with this problem be-
fore and the first steps should therefore look familiar: we read psbr8r, clear the
standard figures using unsetnum, and read psbrc8r. Since we are dealing with
ts1 here, one additional step is required. We add resetosf.mtx to the input file
list of this \installfont command to rename the figures found in psbrc8r
(the figures in psbr8r have already been discarded by unsetnum). resetosf
will rename the figures to “zerooldstyle” and so on. We also add kernon.mtx
and kernoff.mtx to protect the kerning data. Typing \textthreeoldstyle in
a Latex file when the textcomp package has been loaded would now typeset a
proper hanging three.

₃₁ \installfont{psbro8c}{psbro8r,unsetnum,kernoff,psbrco8r,kernon,resetosf,textcomp}{ts1}%
₃₂ {TS1}{psb}{m}{sl}{}

The slanted shape is handled in a similar way because it relies on the figures in
the small caps font as well. For the remaining virtual fonts, the installation is
simpler. Since the osf fonts already provide hanging figures, all we need to do
is rename them for ts1 encoding by adding resetosf.mtx:

₃₃ \installfont{psbri8c}{psbrij8r,resetosf,textcomp}{ts1}{TS1}{psb}{m}{it}{}
₃₄ \installfont{psbb8c}{psbbj8r,resetosf,textcomp}{ts1}{TS1}{psb}{b}{n}{}
₃₅ \installfont{psbbo8c}{psbboj8r,resetosf,textcomp}{ts1}{TS1}{psb}{b}{sl}{}
₃₆ \installfont{psbbi8c}{psbbij8r,resetosf,textcomp}{ts1}{TS1}{psb}{b}{it}{}
₃₇ \endinstallfonts

This is the first half of our fontinst file which is dealing with the psb family.
Compared to the template introduced in the previous tutorial it adds optical
small caps to t1 and hanging figures to ts1 encoding. We will create an addi-
tional font family called psbj which we want to use hanging figures through-
out.

₃₈ \installfonts
₃₉ \installfamily{T1}{psbj}{}
₄₀ \installfont{psbrj8t}{psbr8r,unsetnum,kernoff,psbrc8r,kernon,latin}{t1}{T1}{psbj}{m}{n}{}

If we want the psbj family to incorporate hanging figures, we need to exchange
the figure set of the virtual font like we did when creating the regular-weight
small caps font above. But this time, we do it the other way around: we read
psbr8r first, clear the encoding slots of all figures, and add psbrc8r afterwards
to fill the figure slots using the hanging figures found in psbrc8r. Only the
figures found in psbrc8r will be included in the virtual font as all other en-
coding slots were already filled by psbr8r. Again, care needs to be taken with
the kerning data here. The kerning information in psbrc8r refers to small caps
although the glyphs are encoded as ordinary lowercase letters. Hence we need
to add kernon.mtx and kernoff.mtx to discard the kerning data in psbrc8r.

 optical small caps and hanging figures

₄₁ \installfont{psbrcj8t}{psbrc8r,latin}{t1}{T1}{psbj}{m}{sc}{}

The small caps font does not require any modifications this time. psbrc8r al-
ready contains hanging figures so we can use it as-is. Since psbrc8r uses stan-
dard glyph names for small caps and hanging figures, we use the regular encod-
ing vector t1.etx.

₄₂ \installfont{psbroj8t}{psbro8r,unsetnum,kernoff,psbrco8r,kernon,latin}{t1}{T1}{psbj}{m}{sl}{}

The slanted shape is straightforward to the upright one: we read psbro8r, clear
the figures, and add the slanted hanging figures provided by psbrco8r. We also
toggle fontinst’s \setkern macro by adding kernon and kernoff.

₄₃ \installfont{psbrij8t}{psbrij8r,latin}{t1}{T1}{psbj}{m}{it}{}

Building the italic virtual font is trivial because we have an italic osf font with
easily accessible hanging figures in the standard slots. Since there are osf fonts
for all bold shapes as well, they do not require any special modifications either.
We simply use the appropriate osf fonts instead of the fonts from the basic
Sabon package:

₄₄ \installfont{psbbj8t}{psbbj8r,latin}{t1}{T1}{psbj}{b}{n}{}
₄₅ \installfont{psbbcj8t}{psbbj8r,latin}{t1c}{T1}{psbj}{b}{sc}{}

We create ‘faked’ bold small caps using the special t1c.etx encoding file be-
cause there is no bold small caps font.

₄₆ \installfont{psbboj8t}{psbboj8r,latin}{t1}{T1}{psbj}{b}{sl}{}
₄₇ \installfont{psbbij8t}{psbbij8r,latin}{t1}{T1}{psbj}{b}{it}{}
₄₈ \endinstallfonts
₄₉ \bye

This is the complete fontinst file for the nfss font families psb and psbj. It
requires the metric file unsetnum.mtx which is part of the fontinst package.
Metric files always begin with \relax and enclose all commands in a metrics
environment. Essentially, unsetnum.mtx consists of several \unsetglyph com-
mands which clear all figure slots:

\relax
\metrics
\unsetglyph{zero}
\unsetglyph{one}
\unsetglyph{two}
\unsetglyph{three}
\unsetglyph{four}
\unsetglyph{five}
\unsetglyph{six}
\unsetglyph{seven}
\unsetglyph{eight}
\unsetglyph{nine}
\endmetrics

You probably will have noticed that we did not create ts1 encoded fonts for the
psbj family. The reason is quite simple: since ts1 is not a regular text encoding
TS1/psbj would be identical to TS1/psb anyway. To ensure that the textcomp

the map file 

package works for the psbj family nonetheless, we need to set up some substi-
tutions. Since fontinst does not support family substitutions we cannot create
them automatically. We have to write a font definition file manually. The file
ts1psbj.fd should like this:

\ProvidesFile{ts1psbj.fd}
\DeclareFontFamily{TS1}{psbj}{}
\DeclareFontShape{TS1}{psbj}{m} {n} {<-> ssub * psb/m/n} {}
\DeclareFontShape{TS1}{psbj}{m} {sc}{<-> ssub * psb/m/sc}{}
\DeclareFontShape{TS1}{psbj}{m} {sl}{<-> ssub * psb/m/sl}{}
\DeclareFontShape{TS1}{psbj}{m} {it}{<-> ssub * psb/m/it}{}
\DeclareFontShape{TS1}{psbj}{b} {n} {<-> ssub * psb/b/n} {}
\DeclareFontShape{TS1}{psbj}{b} {sc}{<-> ssub * psb/b/sc}{}
\DeclareFontShape{TS1}{psbj}{b} {sl}{<-> ssub * psb/b/sl}{}
\DeclareFontShape{TS1}{psbj}{b} {it}{<-> ssub * psb/b/it}{}
\DeclareFontShape{TS1}{psbj}{bx}{n} {<-> ssub * psb/b/n} {}
\DeclareFontShape{TS1}{psbj}{bx}{sc}{<-> ssub * psb/b/sc}{}
\DeclareFontShape{TS1}{psbj}{bx}{sl}{<-> ssub * psb/b/sl}{}
\DeclareFontShape{TS1}{psbj}{bx}{it}{<-> ssub * psb/b/it}{}
\endinput

The syntax of font definition files is explained in the Latex font selection guide
and will not be discussed in detail here.¹ The main point of this file should be
evident: for all series and shapes, we substitute TS1/psb for TS1/psbj because
we did not create virtual fonts for TS1/psbj. The ssub directive is a silent sub-
stitution. For details, see chapter  of the font selection guide, section . in
particular. With this additional font definition file we now have a fully func-
tional setup for psb and psbj in t1 and ts1 encoding.

iii. The map file

After running the fontinst file through Tex and installing the new fonts, we
still need to update the map file psb.map. We add the following lines for the
additional fonts found in the sc & osf package:

psbrc8r Sabon-RomanSC "TeXBase1Encoding ReEncodeFont" <8r.enc <psbrc8a.pfb
psbrij8r Sabon-ItalicOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <psbrij8a.pfb
psbbj8r Sabon-BoldOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbj8a.pfb
psbbij8r Sabon-BoldItalicOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbij8a.pfb

In addition to this, we need slanted versions of the new fonts. For the bold osf
font this is obvious. Since regular-weight hanging figures are found in the small
caps font, we need a slanted version of this font as well to provide matching
figures for the slanted shape of the psbj family. This leads us to the slanted
small caps variant:

psbrco8r Sabon-RomanSC "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbrc8a.pfb
psbboj8r Sabon-BoldOsF "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbbj8a.pfb

This is the complete map file:

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

 http://www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf

 optical small caps and hanging figures

psbri8r Sabon-Italic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbri8a.pfb
psbb8r Sabon-Bold "TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb
psbbi8r Sabon-BoldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbi8a.pfb
psbrc8r Sabon-RomanSC "TeXBase1Encoding ReEncodeFont" <8r.enc <psbrc8a.pfb
psbrij8r Sabon-ItalicOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <psbrij8a.pfb
psbbj8r Sabon-BoldOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbj8a.pfb
psbbij8r Sabon-BoldItalicOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <psbbij8a.pfb
psbro8r Sabon-Roman "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb
psbbo8r Sabon-Bold "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbb8a.pfb
psbrco8r Sabon-RomanSC "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbrc8a.pfb
psbboj8r Sabon-BoldOsF "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbbj8a.pfb

iii. The style file

With two Sabon families at hand, we might want to update sabon.sty to make
them readily available. We add the two options oldstyle and lining for the
respective font families (–) and make hanging figures the default (). Loading
the package with the option oldstyle or without any option will set up psbj
as the default roman family while using the lining option will make it select
psb instead. It might also be handy to have dedicated text commands to switch
between the two figure sets. Since such commands will need to work with all
font families anyway, let’s put them in a stand-alone style file, nfssext.sty,
and load that in sabon.sty ():

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{sabon}[2002/05/12 v1.1 Adobe Sabon]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \RequirePackage{nfssext}
₆ \DeclareOption{oldstyle}{\renewcommand*{\rmdefault}{psbj}}
₇ \DeclareOption{lining}{\renewcommand*{\rmdefault}{psb}}
₈ \ExecuteOptions{oldstyle}
₉ \ProcessOptions

₁₀ \endinput

The style file nfssext.sty might look like this:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{nfssext}[2003/03/14 v1.2 Experimental NFSS Extensions]
₃ \newcommand*{\exfs@tempa}{}
₄ \newcommand*{\exfs@tempb}{}
₅ \newcommand*{\exfs@try@family}[1]{%
₆ \let\exfs@tempa\relax
₇ \begingroup
₈ \fontfamily{#1}\try@load@fontshape
₉ \expandafter\ifx\csname\curr@fontshape\endcsname\relax

₁₀ \PackageWarning{nfssext}{%
₁₁ Font family ’\f@encoding/#1’ not available\MessageBreak
₁₂ Ignoring font switch}%
₁₃ \else
₁₄ \gdef\exfs@tempa{\fontfamily{#1}\selectfont}%
₁₅ \fi
₁₆ \endgroup
₁₇ \exfs@tempa}

fonts supplied with tex 

This is an outline for a command that makes use of a few nfss internals to
switch to a specific family if and only if it is available. Essentially, we try to load
the requested family in the current encoding (). If this succeeds, we set up a
macro () to be expanded later that will actually switch font families; if not,
we print a warning message (–) and do nothing.

₁₈ \def\exfs@get@base#1#2#3#4\@nil{#1#2#3}%
₁₉ \DeclareRobustCommand{\lnstyle}{%
₂₀ \not@math@alphabet\lnstyle\relax
₂₁ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil}}
₂₂ \DeclareRobustCommand{\osstyle}{%
₂₃ \not@math@alphabet\osstyle\relax
₂₄ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil j}}

The macros \lnstyle and \osstyle switch to lining and hanging (‘old style’)
figures respectively. They are like \bfseries or \itshape. Internally, they will
take the first three letters of the current nfss font family name (), append a
letter to it where appropriate (none for lining figures, j for hanging figures),
and call \exfs@try@family. Even though this mechanism is rather simple-
minded, it should work just fine for all fonts set up properly according to the
Fontname scheme.

₂₅ \DeclareTextFontCommand{\textln}{\lnstyle}
₂₆ \DeclareTextFontCommand{\textos}{\osstyle}
₂₇ \endinput

The corresponding text commands, \textln and \textos, take one manda-
tory argument and can be employed like \textbf or \textit.

iii. Fonts supplied with Tex

The standard Postscript fonts supplied with most Tex distributions do not in-
clude optical small caps, nor do they include hanging figures. The default type-
face of both plain Tex and Latex however, Computer Modern Roman, does in-
clude such glyphs. Unfortunately, the design of the small caps is flawed. Their
height corresponds to what you usually end up with when creating mechanical
small caps. Being too tall, these small caps hardly blend in with lowercase text
at all, even though their color matches that of the lowercase alphabet.

Hanging figures are included in Computer Modern as well, but they are hid-
den in some of the math fonts. The only way to use them with the default setup
is rather cumbersome: the command \oldstylenums{} will take the numbers
to be typeset as hanging figures as an argument. There is a set of virtual fonts
for the European Computer Modern fonts which make these hanging figures
the default in Tex’s text mode so that they are readily available. These fonts are
provided in the eco package available from ctan.¹ Please refer to the package
documentation for installation and usage instructions. Since this package es-
sentially consists of a set of virtual fonts, it should also work in conjunction
with the cm-super fonts mentioned in section i..

 http://www.ctan.org/tex-archive/fonts/eco/

tutorial iv

the euro currency
symbol

While the euro symbol has been supported by
Latex for quite some time – it is included in ts1
encoding and the textcomp package provides
the corresponding text command \texteuro –
the real problem is getting fonts that provide
this glyph and setting them up accordingly. You
might want to read this tutorial even if you are
not affected by this particular issue, because it

deals with some generic encoding problems that you may encounter in a differ-
ent context as well. There is a bit more to updating a font than drawing a euro
symbol and putting it in the font. It has to be properly encoded as well. Since the
euro symbol is not defined in Adobe Standard encoding, it can normally only
be included as an uncoded glyph in regular Postscript text fonts. An uncoded
glyph is only accessible after reencoding and assigning it to a valid encoding
position. Some font foundries decided to follow this path in order to conform
to Adobe Standard encoding. Others preferred to drop some supposedly rarely
used glyph and put the euro symbol in its encoding position instead. While
this violates the encoding standard, it can be more convenient under certain
circumstances. In the following, we will explore ways to handle both situations
cleanly. Finally, we will learn how to take the euro symbol from an external font
if none is provided by the text font itself.

iv. Uncoded euro symbol

While Adobe used to be rather inattentive to the problem at first, the foundry
is finally updating their typeface portfolio by gradually adding matching euro
symbols to their fonts – a process that has been promoted by the introduction
of the Opentype font format. Recent releases of Adobe Garamond, for example,
already ship with matching euro symbols. A quick look at the afm file shows that
in this case, the foundry decided to handle the encoding problem in a strict
manner. The new symbol is correctly labeled as “Euro” but it is not encoded
by default as that would violate Adobe Standard encoding. An encoding slot
number of -1 tells us that the glyph was not assigned to any encoding position:

C -1 ; WX 572 ; N Euro ; B -13 -14 542 640 ;

In order to access it, we need to reencode the font and assign the glyph “Euro”
to a valid encoding position. The standard procedure we have been pursuing in
this guide involves reencoding all fonts to Tex Base  encoding anyway precisely



 the euro currency symbol

because of cases like this one. By reencoding all base fonts to Tex Base  encod-
ing, we ensure that all glyphs our virtual fonts rely on are properly encoded
in the raw fonts we use as their basis. But we have to keep in mind that older
versions of Tex Base  encoding did not include the euro symbol either. The pre-
vious release of fontinst, version ., came with an encoding vector that is not
suitable for our situation for this very reason. You can verify that by running
the file 8r.etx through Latex to create a documented listing of the encoding
vector as follows:

latex 8r.etx

Now take a look at the dvi file 8r.dvi: if the version number of this file is .

(dated June , ), it does not include the euro symbol. The best way to solve
this problem is updating fontinst to the latest release which ships with an up-
dated encoding vector.¹ After that, you can install the fonts as usual. Note, how-
ever, that you will need a matching version of 8r.enc as well, so that dvips and
pdftex can use the symbol. This file is distributed separately and not included
in the fontinst release.² In the following, we will create our own updated ver-
sions of 8r.etx and 8r.enc. This is merely intended as an illustrating of how
to deal with a typical encoding problem. If you simply want to get access to
an uncoded euro glyph, upgrade to fontinst ., update 8r.enc, and install the
fonts as usual. You might want to skip the next paragraphs and continue read-
ing with section iv. on page  in this case. If you want to learn more about
fontinst’s encoding vectors, read on.

First, we create a copy of the file 8r.etx as provided by fontinst .. The
updated encoding vector of the new fontinst release puts the euro symbol in
slot . We will do the same to ensure that our vector remains compatible with
the official distribution. Let’s take a look at the relevant part of 8r.etx:

₆₂₄ \setslot{asciitilde}
₆₂₅ \comment{The ASCII tilde ‘\textasciitilde’.
₆₂₆ This is included for compatibility with typewriter fonts used
₆₂₇ for computer listings.}
₆₂₈ \endsetslot
₆₂₉
₆₃₀ \comment{The following 32 slots, 128--159, are based on Windows ANSI.}
₆₃₁
₆₃₂ \nextslot{130}
₆₃₃ \setslot{quotesinglbase}
₆₃₄ \comment{A German single quote mark ‘\quotesinglbase’ similar to a comma,
₆₃₅ but with different sidebearings.}
₆₃₆ \endsetslot

Slot  defines “asciitilde”, slots – are empty, and slot  defines the
lower single quotation mark “quotesinglbase”. The slot number is automatically
incremented by one for each \setslot command, but if some slots are left

 http://www.ctan.org/tex-archive/fonts/utilities/fontinst/
 http://www.ctan.org/tex-archive/info/fontname/8r.enc

uncoded euro symbol 

empty the slot has to be set explicitly with a \nextslot command. This is done
for “quotesinglbase” above. We want to add the euro symbol in slot , so we
add the following:

₆₃₀ \comment{The following 32 slots, 128--159, are based on Windows ANSI.}

\nextslot{128}
\setslot{Euro}

\comment{The euro currency symbol ‘\texteuro’.}
\endsetslot

₆₃₂ \nextslot{130}
₆₃₃ \setslot{quotesinglbase}
₆₃₄ \comment{A German single quote mark ‘\quotesinglbase’ similar to a comma,
₆₃₅ but with different sidebearings.}
₆₃₆ \endsetslot

Since slot  is empty and the last slot defined was  we need to set the slot
explicitly by adding \nextslot before actually defining the encoding position.
When defining the slot, keep in mind that the glyph names are case sensitive;
“euro” is not equivalent to “Euro”. We also add an explanation so that the com-
mented listing of the encoding vector provides a meaningful explanation. This
is all we need. It might be a good idea to update \title and \date at the begin-
ning of the file to avoid any confusion. Finally, we install this file in the branch
tex/fontinst/base/ of the local Tex tree. If our system has been set up as
recommended in the first tutorial, fontinst will now pick up our updated en-
coding vector. Now we need a version of 8r.enc that matches our 8r.etx. This
is what the relevant part of 8r.enc looks like:

₇₁ % 0x70
₇₂ /p /q /r /s /t /u /v /w
₇₃ /x /y /z /braceleft /bar /braceright /asciitilde
₇₄ /.notdef
₇₅ % 0x80
₇₆ /.notdef /.notdef /quotesinglbase /florin
₇₇ /quotedblbase /ellipsis /dagger /daggerdbl
₇₈ /circumflex /perthousand /Scaron /guilsinglleft
₇₉ /OE /.notdef /.notdef /.notdef

Note that in Postscript encoding vectors empty slots are marked “.notdef”. We
can spot the same pattern: “asciitilde” in slot  is followed by three empty
slots (–) and finally “quotesinglbase” in slot . We count the slots and
add “Euro” in slot  (indicated in hexadecimal notation as ‘0x80’ here):

₇₁ % 0x70
₇₂ /p /q /r /s /t /u /v /w
₇₃ /x /y /z /braceleft /bar /braceright /asciitilde
₇₄ /.notdef
₇₅ % 0x80
₇₆ /Euro /.notdef /quotesinglbase /florin
₇₇ /quotedblbase /ellipsis /dagger /daggerdbl
₇₈ /circumflex /perthousand /Scaron /guilsinglleft
₇₉ /OE /.notdef /.notdef /.notdef

 the euro currency symbol

After that, we move our modified 8r.enc to dvips/base/ in the local Tex tree
and update the kpathsea file databases by running texhash. Our system is now
ready for the euro. Since reencoding all text fonts to Tex Base  encoding is part
of our regular installation routine anyway, the fontinst file does not need any
adjustments. The reencoding is performed as usual:

\transformfont{padr8r}{\reencodefont{8r}{\fromafm{padr8a}}}
\transformfont{padri8r}{\reencodefont{8r}{\fromafm{padri8a}}}
\transformfont{padb8r}{\reencodefont{8r}{\fromafm{padb8a}}}
\transformfont{padbi8r}{\reencodefont{8r}{\fromafm{padbi8a}}}

The new 8r encoding vector will ensure that the euro symbol is available in all
Tex Base  encoded raw fonts, so we can simply use them to build ts1 encoded
virtual fonts:

\installfont{padr8c}{padr8r,textcomp}{ts1}{TS1}{pad}{m}{n}{}
\installfont{padri8c}{padri8r,textcomp}{ts1}{TS1}{pad}{m}{it}{}
\installfont{padb8c}{padb8r,textcomp}{ts1}{TS1}{pad}{b}{n}{}
\installfont{padbi8c}{padbi8r,textcomp}{ts1}{TS1}{pad}{b}{it}{}

After installing the fonts and creating a map file as usual, the euro symbol will
be available as \texteuro when loading the textcomp package.

iv. Euro symbol encoded as currency symbol

Bitstream was one of the first type foundries to update their font collection
and add a matching euro symbol to all fonts. When looking at the fonts, the
first thing we notice is that the foundry decided to encode the euro symbol as
the generic currency symbol ¤. The reasoning behind this is that you can ac-
cess the symbol without reencoding the font. Since the generic currency sym-
bol is hardly ever used anyway, it is no surprise that this particular glyph was
dropped. We could install Bitstream fonts as usual and use \textcurrency in-
stead of \texteuro to access the euro symbol, but that would imply keeping
the idiosyncrasies of a given font in mind while writing, and modifying the text
when changing the typeface – not quite what one would expect when working
with a high-level markup language like Latex. When taking a closer look at the
pfb and afm files, we can see that the fonts in fact contain two euro symbols.
One of them is uncoded (slot -1) and labeled as “Euro”:

C -1 ; WX 556 ; N Euro ; B 6 -12 513 697 ;

The other one is found in encoding slot , that is, it is
encoded as the currency symbol and named accordingly.
To verify that, we have to take a look at the pfb files in a
font viewer or a font editor. Since the euro symbol is both
encoded and labeled just like a currency symbol, there is
no way to tell the difference by looking at the afm file only:

C 168 ; WX 556 ; N currency ; B 6 -12 513 697 ;

euro symbol taken from external symbol font 

If we want a readily available euro symbol (and one that is available as such),
we have two options in this case. Either we reencode the font and assign the
uncoded euro symbol to a valid encoding position or we use the already en-
coded euro symbol found in the slot of the currency symbol and move it to the
proper encoding position. The former case was already discussed above, let’s
now investigate the latter.

The best way to move the glyph to a different slot is resetting it when creat-
ing the ts1 encoded virtual font. We use an approach that is functionally equiv-
alent to the way we have reset the hanging figures in the previous tutorial. The
appropriate low-level commands that set the glyph go in a dedicated metric file,
reseteur.mtx, which we have to create ourselves:

₁ \relax
₂ \metrics
₃ \resetglyph{euro}
₄ \glyph{currency}{1000}
₅ \endsetglyph
₆ \setleftrightkerning{euro}{currency}{1000}
₇ \unsetglyph{currency}
₈ \endmetrics

We reset the glyph “euro” based on the glyph “currency” scaled to its full size
(–), adjust the kerning on either side of “euro” to match that of “currency”
() and finally unset the glyph “currency” () because there is no such thing as
a currency symbol in this font. In the fontinst file, we include the metric file
reseteur.mtx in the file list of the respective \installfont command right
after the metrics for this font have been read. This might look as follows:

\installfont{bsbr8c}{bsbr8r,reseteur,textcomp}{ts1}{TS1}{bsb}{m}{n}{}

We only need to do this for the ts1 encoded virtual fonts as t1 does not include
the euro symbol. Apart from that, the fontinst file does not need any adjust-
ments.

iv. Euro symbol taken from external symbol font

Let’s go back to our install of Sabon to see if we can get euro support for Sabon
as well. The font itself does not include a euro symbol at all so all we can do is
take it from an external font. While some other font foundries at least provide
special symbol fonts containing a collection of matching euro glyphs for all
typefaces that have not been updated yet, Adobe merely offers a set of generic
euro fonts containing glyphs that do not really match any typeface at all.¹ From
a typographical perspective, this is a desperate workaround. However, lacking a
matching euro symbol, we do not have a choice. The Adobe Euro fonts come in
three flavors: serif (Euro Serif), sans serif (Euro Sans), and condensed sans serif
(Euro Mono, intended for use with monospaced fonts). Each family consists of
regular, regular italic, bold, and bold italic fonts. Instead of using a serif euro

 http://www.adobe.com/type/eurofont.html

 the euro currency symbol

that does not match our typeface we will use the sans serif design which has
a more generic look that adheres to the shape of the reference design of the
European Commission. Granted, this one does not match our typeface either –
but at least it does not pretend to do so.

Now that we are aware of the most common encoding pitfalls, we inspect
the afm files first before proceeding with the installation. The Euro fonts put
the euro symbol in all encoding positions. When looking at the afm file, we can
see that the fonts use a font specific encoding and that the glyphs are labeled as
“Euro” with a consecutive number appended to the name:

C 33 ; WX 750 ; N Euro.001 ; B 10 -12 709 685 ;
C 34 ; WX 750 ; N Euro.002 ; B 10 -12 709 685 ;
C 35 ; WX 750 ; N Euro.003 ; B 10 -12 709 685 ;
C 36 ; WX 750 ; N Euro.004 ; B 10 -12 709 685 ;
C 37 ; WX 750 ; N Euro.005 ; B 10 -12 709 685 ;
C 38 ; WX 750 ; N Euro.006 ; B 10 -12 709 685 ;
C 39 ; WX 750 ; N Euro.007 ; B 10 -12 709 685 ;
C 40 ; WX 750 ; N Euro.008 ; B 10 -12 709 685 ;
C 41 ; WX 750 ; N Euro.009 ; B 10 -12 709 685 ;

On further inspection, we find two additional glyphs. There is a glyph labeled
as “Euro” in slot  as well as an uncoded glyph labeled “uni20ac”:

C 128 ; WX 750 ; N Euro ; B 10 -12 709 685 ;
C -1 ; WX 750 ; N uni20AC ; B 10 -12 709 685 ;

The number 20ac is  in hexadecimal. This is the encoding position of the
euro symbol in Unicode encoding, hence the string “uni20ac”. If nothing else,
one thing is for sure: someone was trying to make sure that every application
out there would be able to access that euro symbol. Fortunately, this covers our
situation as well. We need a glyph that is both properly encoded and labeled
as “Euro”; the encoding position does not matter since we will include it in
a virtual font using a different encoding anyway. The one in slot  fits our
needs perfectly. In practice, this means that we can simply add the file name
to the input file list of an \installfont command when creating ts1 encoded
virtual fonts with fontinst. This time no reencoding or renaming is required.
The relevant section of our fontinst file for Sabon would look as follows:

\installfont{psbr8c}{psbr8r,zpeurs,textcomp}{ts1}{TS1}{psb}{m}{n}{}
\installfont{psbro8c}{psbro8r,zpeuros,textcomp}{ts1}{TS1}{psb}{m}{sl}{}
\installfont{psbri8c}{psbri8r,zpeuris,textcomp}{ts1}{TS1}{psb}{m}{it}{}
\installfont{psbb8c}{psbb8r,zpeubs,textcomp}{ts1}{TS1}{psb}{b}{n}{}
\installfont{psbbo8c}{psbbo8r,zpeubos,textcomp}{ts1}{TS1}{psb}{b}{sl}{}
\installfont{psbbi8c}{psbbi8r,zpeubis,textcomp}{ts1}{TS1}{psb}{b}{it}{}

Since the Adobe Euro fonts are non-standard, their naming is non-standard as
well. We will discuss that in more detail below. Before running this file, we need
to copy the properly named afm files of the Adobe Euro fonts to the working
directory so that fontinst will find them. For the euro glyph to be available later,
the Euro fonts need to be installed in the usual way so that Tex as well as pdftex,
dvips, and xdvi are able to use them. Because the above fontinst file depends

euro symbol taken from external symbol font 

on this installation, it makes sense to do it first. Since the installation of symbol
fonts differs from that of regular text fonts, we will take a look at the required
steps. The Euro font package¹ will provide us with the following set of files:

_1______.afm _1i_____.afm _1b_____.afm _1bi____.afm
_1______.inf _1i_____.inf _1b_____.inf _1bi____.inf
_1______.pfb _1i_____.pfb _1b_____.pfb _1bi____.pfb
_1______.pfm _1i_____.pfm _1b_____.pfm _1bi____.pfm

_2______.afm _2i_____.afm _2b_____.afm _2bi____.afm
_2______.inf _2i_____.inf _2b_____.inf _2bi____.inf
_2______.pfb _2i_____.pfb _2b_____.pfb _2bi____.pfb
_2______.pfm _2i_____.pfm _2b_____.pfm _2bi____.pfm

_3______.afm _3i_____.afm _3b_____.afm _3bi____.afm
_3______.inf _3i_____.inf _3b_____.inf _3bi____.inf
_3______.pfb _3i_____.pfb _3b_____.pfb _3bi____.pfb
_3______.pfm _3i_____.pfm _3b_____.pfm _3bi____.pfm

The Fontname map file adobe.map defines the following names for these fonts:

zpeur EuroSerif-Regular A 916 _3______
zpeub EuroSerif-Bold A 916 _3b_____
zpeubi EuroSerif-BoldItalic A 916 _3bi____
zpeuri EuroSerif-Italic A 916 _3i_____
zpeurs EuroSans-Regular A 916 _1______
zpeubs EuroSans-Bold A 916 _1b_____
zpeubis EuroSans-BoldItalic A 916 _1bi____
zpeuris EuroSans-Italic A 916 _1i_____
zpeurt EuroMono-Regular A 916 _2______
zpeubt EuroMono-Bold A 916 _2b_____
zpeubit EuroMono-BoldItalic A 916 _2bi____
zpeurit EuroMono-Italic A 916 _2i_____

We select all afm and all pfb files, rename them, and start off with the following
file set:

zpeur.afm zpeuri.afm zpeub.afm zpeubi.afm
zpeur.pfb zpeuri.pfb zpeub.pfb zpeubi.pfb
zpeurs.afm zpeuris.afm zpeubs.afm zpeubis.afm
zpeurs.pfb zpeuris.pfb zpeubs.pfb zpeubis.pfb
zpeurt.afm zpeurit.afm zpeubt.afm zpeubit.afm
zpeurt.pfb zpeurit.pfb zpeubt.pfb zpeubit.pfb

As we do not really need fontinst when dealing with symbol fonts, we simply
run afm2tfm on each afm file to create a corresponding tfm file for Tex:

afm2tfm zpeur.afm zpeur.tfm
afm2tfm zpeuri.afm zpeuri.tfm
afm2tfm zpeub.afm zpeub.tfm
afm2tfm zpeubi.afm zpeubi.tfm
afm2tfm zpeurs.afm zpeurs.tfm
afm2tfm zpeuris.afm zpeuris.tfm
afm2tfm zpeubs.afm zpeubs.tfm
afm2tfm zpeubis.afm zpeubis.tfm
afm2tfm zpeurt.afm zpeurt.tfm
afm2tfm zpeurit.afm zpeurit.tfm

 http://www.adobe.com/type/eurofont.html

 the euro currency symbol

afm2tfm zpeubt.afm zpeubt.tfm
afm2tfm zpeubit.afm zpeubit.tfm

We also need slanted versions of all upright fonts. As slant factor, we use the
generic value .:

afm2tfm zpeur.afm -s 0.167 zpeuro.tfm
afm2tfm zpeub.afm -s 0.167 zpeubo.tfm
afm2tfm zpeurs.afm -s 0.167 zpeuros.tfm
afm2tfm zpeubs.afm -s 0.167 zpeubos.tfm
afm2tfm zpeurt.afm -s 0.167 zpeurot.tfm
afm2tfm zpeubt.afm -s 0.167 zpeubot.tfm

In addition to that, we need a map file for dvips. Map files for symbol fonts are
simpler than those for text fonts because the fonts are not reencoded. Therefore,
there will be no “ReEncodeFont” instruction and no encoding vector. The first
lines of peu.map look like this:

zpeur EuroSerif-Regular <zpeur.pfb
zpeuri EuroSerif-Italic <zpeuri.pfb
zpeub EuroSerif-Bold <zpeub.pfb
zpeubi EuroSerif-BoldItalic <zpeubi.pfb
zpeurs EuroSans-Regular <zpeurs.pfb
zpeuris EuroSans-Italic <zpeuris.pfb
zpeubs EuroSans-Bold <zpeubs.pfb
zpeubis EuroSans-BoldItalic <zpeubis.pfb
zpeurt EuroMono-Regular <zpeurt.pfb
zpeurit EuroMono-Italic <zpeurit.pfb
zpeubt EuroMono-Bold <zpeubt.pfb
zpeubit EuroMono-BoldItalic <zpeubit.pfb

We also need to add “SlantFont” instructions for all slanted shapes:

zpeuro EuroSerif-Regular "0.167 SlantFont" <zpeur.pfb
zpeubo EuroSerif-Bold "0.167 SlantFont" <zpeub.pfb
zpeuros EuroSans-Regular "0.167 SlantFont" <zpeurs.pfb
zpeubos EuroSans-Bold "0.167 SlantFont" <zpeubs.pfb
zpeurot EuroMono-Regular "0.167 SlantFont" <zpeurt.pfb
zpeubot EuroMono-Bold "0.167 SlantFont" <zpeubt.pfb

While we are at it, let’s also write some font definition files for Latex. These are
not required if the fonts are only referenced by other virtual fonts, but they will
allow us the access the Euro fonts directly in any Latex file. The syntax of the
commands used in font definition files is explained in the Latex font selection
guide mentioned in the introduction. Our font definition file for Euro Serif,
upeu.fd, should look like this:

\ProvidesFile{upeu.fd}
\DeclareFontFamily{U}{peu}{}
\DeclareFontShape{U}{peu}{m} {n} {<-> zpeur} {}
\DeclareFontShape{U}{peu}{m} {sc}{<-> ssub * peu/m/n} {}
\DeclareFontShape{U}{peu}{m} {sl}{<-> zpeuro}{}
\DeclareFontShape{U}{peu}{m} {it}{<-> zpeuri}{}
\DeclareFontShape{U}{peu}{b} {n} {<-> zpeub} {}
\DeclareFontShape{U}{peu}{b} {sc}{<-> ssub * peu/b/n} {}
\DeclareFontShape{U}{peu}{b} {sl}{<-> zpeubo}{}
\DeclareFontShape{U}{peu}{b} {it}{<-> zpeubi}{}

euro symbol taken from external symbol font 

\DeclareFontShape{U}{peu}{bx}{n} {<-> ssub * peu/b/n} {}
\DeclareFontShape{U}{peu}{bx}{sc}{<-> ssub * peu/b/n} {}
\DeclareFontShape{U}{peu}{bx}{sl}{<-> ssub * peu/b/sl}{}
\DeclareFontShape{U}{peu}{bx}{it}{<-> ssub * peu/b/it}{}
\endinput

For Euro Sans, upeus.fd:

\ProvidesFile{upeus.fd}
\DeclareFontFamily{U}{peus}{}
\DeclareFontShape{U}{peus}{m} {n} {<-> zpeurs} {}
\DeclareFontShape{U}{peus}{m} {sc}{<-> ssub * peus/m/n} {}
\DeclareFontShape{U}{peus}{m} {sl}{<-> zpeuros}{}
\DeclareFontShape{U}{peus}{m} {it}{<-> zpeuris}{}
\DeclareFontShape{U}{peus}{b} {n} {<-> zpeubs} {}
\DeclareFontShape{U}{peus}{b} {sc}{<-> ssub * peus/b/n} {}
\DeclareFontShape{U}{peus}{b} {sl}{<-> zpeubos}{}
\DeclareFontShape{U}{peus}{b} {it}{<-> zpeubis}{}
\DeclareFontShape{U}{peus}{bx}{n} {<-> ssub * peus/b/n} {}
\DeclareFontShape{U}{peus}{bx}{sc}{<-> ssub * peus/b/n} {}
\DeclareFontShape{U}{peus}{bx}{sl}{<-> ssub * peus/b/sl}{}
\DeclareFontShape{U}{peus}{bx}{it}{<-> ssub * peus/b/it}{}
\endinput

And for Euro Mono, upeut.fd:

\ProvidesFile{upeut.fd}
\DeclareFontFamily{U}{peut}{}
\DeclareFontShape{U}{peut}{m} {n} {<-> zpeurt} {}
\DeclareFontShape{U}{peut}{m} {sc}{<-> ssub * peut/m/n} {}
\DeclareFontShape{U}{peut}{m} {sl}{<-> zpeurot}{}
\DeclareFontShape{U}{peut}{m} {it}{<-> zpeurit}{}
\DeclareFontShape{U}{peut}{b} {n} {<-> zpeubt} {}
\DeclareFontShape{U}{peut}{b} {sc}{<-> ssub * peut/b/n} {}
\DeclareFontShape{U}{peut}{b} {sl}{<-> zpeubot}{}
\DeclareFontShape{U}{peut}{b} {it}{<-> zpeubit}{}
\DeclareFontShape{U}{peut}{bx}{n} {<-> ssub * peut/b/n} {}
\DeclareFontShape{U}{peut}{bx}{sc}{<-> ssub * peut/b/n} {}
\DeclareFontShape{U}{peut}{bx}{sl}{<-> ssub * peut/b/sl}{}
\DeclareFontShape{U}{peut}{bx}{it}{<-> ssub * peut/b/it}{}
\endinput

We install the map file peu.map as well as all afm, tfm, pfb, and fd files in the
local Tex tree as explained in the first tutorial and add peu.map to the con-
figuration files for pdftex, dvips, and xdvi. Finally, we run texhash. The euro
symbol can now be used in virtual fonts. Since we have font definition files for
Latex as well, we could also access it in any Latex file with a construct like this
one:

{\fontencoding{U}\fontfamily{peu}\selectfont\char 128}

So let’s make that a generic euro package, peufonts.sty, for use with all fonts
that do not provide a native euro symbol:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{peufonts}[2002/10/25 v1.0 Adobe Euro Fonts]
₃ \RequirePackage{textcomp}
₄ \DeclareRobustCommand{\eurrm}{{%

 the euro currency symbol

₅ \fontencoding{U}\fontfamily{peu}\selectfont\char 128}}
₆ \DeclareRobustCommand{\eursf}{{%
₇ \fontencoding{U}\fontfamily{peus}\selectfont\char 128}}
₈ \DeclareRobustCommand{\eurtt}{{%
₉ \fontencoding{U}\fontfamily{peut}\selectfont\char 128}}

We define three commands, \eurrm, \eursf, and \eurtt, which typeset a
serif, sans serif, and monospaced euro symbol respectively. Note the additional
braces to keep the font change local.

₁₀ \DeclareOption{sans}{\def\eur\eursf}
₁₁ \DeclareOption{serif}{\def\eur\eurrm}
₁₂ \DeclareOption{mono}{\def\eur\eurtt}
₁₃ \DeclareOption{textcomp}{%
₁₄ \PackageInfo{peufonts}{Hijacking ’\string\texteuro’}%
₁₅ \def\texteuro{\eur}}
₁₆ \ExecuteOptions{sans}
₁₇ \ProcessOptions
₁₈ \endinput

We also provide \eur along with three options controlling whether it uses the
serif, sans serif, or monospaced euro symbol; sans is set up as the default in line
. The option textcomp will hijack the text command \texteuro as provided
by the textcomp package. This is very handy when using the inputenc pack-
age with Latin  (iso8859-15) as input encoding and entering the euro symbol
directly, as inputenc uses \texteuro internally. With this option, we may also
type \texteuro or simply € in the input file to typeset a euro symbol. For this
to work, inputenc has to be loaded before this package. Please keep in mind
that this is a global redefinition affecting all text fonts. We do not activate it by
default as some fonts may provide a native euro symbol. We also write a mes-
sage to the log when redefining \texteuro and request textcomp in line  so
that it is loaded before peufonts.

iv. Euro symbol taken from external text font

There is yet another way to get the euro symbol for a font that does not provide
one by default. Suppose we have an external text font including a euro symbol
that would go reasonably well with our copy of Sabon. If this euro symbol is
uncoded but labeled correctly, we could simply add the text font to the input
file list of the respective \installfont commands as shown in section iv. and
then proceed as outlined in section iv.. What if it is encoded as the currency
symbol in the external text font? In this case, we take an approach that is based
on section iv. with some minor adjustments. Let’s assume we have a copy of
Bitstream Classical Garamond. Since Classical Garamond is Bitstream’s take on
Sabon, the euro symbol of this typeface will obviously go quite well with our
install of Sabon. The syntax of the \installfont commands will look like this:

\installfont{psbr8c}{psbr8r,unsetcur,bsbr8r,reseteur,psbr8r,textcomp}{ts1}{TS1}{bsb}{m}{n}{}

euro symbol taken from external text font 

psb is Adobe Sabon, bsb is Bitstream Classical Garamond, and reseteur.mtx
has been discussed in section iv.. In this case, we need an additional metric
file, called unsetcur.mtx here, that clears the currency slot before bsbr8r.afm
is read. Without this additional step, the euro symbol found in the currency
slot of bsbr8r.afm would be discarded as psbr8r.afm has already provided
this symbol. reseteur.mtx would then move the currency symbol found in
psbr8r.afm to the euro slot, which is obviously not what we want. We need to
clear the currency slot using unsetcur.mtx, which is quite simple:

\relax
\metrics
\unsetglyph{currency}
\endmetrics

With this additional resource, what happens is this: psbr8r.afm is read and
processed, the currency slot is cleared by unsetcur.mtx, then bsbr8r.afm is
read, filling the currency slot with its euro glyph (which is encoded as the cur-
rency symbol in bsbr8r.afm). Our metric file reseteur.mtx will then move
the euro symbol found in bsbr8r.afm to the euro slot and clear the currency
slot. After that, we read psbr8r.afm again to get the original Adobe Sabon cur-
rency symbol of back. Our virtual font will now contain all glyphs found in
Adobe Sabon plus the euro symbol of Bitstream Classical Garamond, all prop-
erly encoded. Note that, for this to work, we need a complete install of Bitstream
Classical Garamond, including map files for dvips and pdftex, in addition to the
steps outlined above.

tutorial v

expert font sets,
regular setup

Expert fonts are complements to be used in conjunction with regular text fonts.
They usually contain optical small caps, additional sets of figures – hanging,
inferior, superior –, the f-ligatures ff, fi, fl, ffi, and ffl, plus a few text fractions
and some other symbols. Since they are companion fonts only, which do not
contain the regular uppercase and lowercase alphabet, they are not useful on
their own. To employ them in a sensible way we need the basic text fonts as
well. In this tutorial, we will install the complete Monotype Janson font set as
provided by the base and the expert package offered by Agfa Monotype. The
base package contains four text fonts (regular, regular italic, bold, bold italic):

jan_____.afm jani____.afm janb____.afm janbi___.afm
jan_____.inf jani____.inf janb____.inf janbi___.inf
jan_____.pfb jani____.pfb janb____.pfb janbi___.pfb
jan_____.pfm jani____.pfm janb____.pfm janbi___.pfm

The expert package adds the corresponding expert fonts:

jny_____.afm jnyi____.afm jnyb____.afm jnybi___.afm
jny_____.inf jnyi____.inf jnyb____.inf jnybi___.inf
jny_____.pfb jnyi____.pfb jnyb____.pfb jnybi___.pfb
jny_____.pfm jnyi____.pfm jnyb____.pfm jnybi___.pfm

When talking about “expert font sets” in this tutorial, we are referring to all
of the above (base plus expert package). The proper file names for Monotype
Janson are given in monotype.map. Expert fonts have essentially the same file
name as the corresponding text fonts, but their encoding code is 8x instead of
8a for Adobe Standard encoding. After renaming the files, we start off with the
following file set:

mjnr8a.afm mjnri8a.afm mjnb8a.afm mjnbi8a.afm
mjnr8a.pfb mjnri8a.pfb mjnb8a.pfb mjnbi8a.pfb

mjnr8x.afm mjnri8x.afm mjnb8x.afm mjnbi8x.afm
mjnr8x.pfb mjnri8x.pfb mjnb8x.pfb mjnbi8x.pfb

There are two ways to install an expert font set. Apart from writing a verbose
fontinst file using low-level commands we may also use the \latinfamily
macro. We will take a look at the latter case first and proceed with a verbose
fontinst file afterwards.

v. Basic fontinst file

As usual, our file begins with a typical header setting up some common font
substitutions (–). While the Janson expert package provides optical small
caps for the regular weight, the bold expert fonts do not contain optical small



 expert font sets, regular setup

caps. For the bold series, we have to make do with mechanical small caps. The
\latinfamily macro will take care of that automatically. All we need to do is
define a scale factor of . ():

₁ \input fontinst.sty
₂ \substitutesilent{bx}{b}
₃ \substitutesilent{sc}{n}
₄ \setint{smallcapsscale}{720}

In the third tutorial, we have incorporated lining and hanging figures by creat-
ing two font families: a family with the basic, three-character font family name
(lining figures) and a second family featuring hanging figures, with the letter
j appended to the font family name. The character j is the Fontname code
for hanging figures. In this tutorial, we need an additional code: the letter x,
indicating a font featuring expert glyphs. When installing expert sets with the
\latinfamily macro we use these family names to instruct fontinst that we
have an expert set at hand and that we want it to create a font family featur-
ing expert glyphs with lining figures () plus a second family featuring expert
glyphs with hanging figures ():

₅ \latinfamily{mjnx}{}
₆ \latinfamily{mjnj}{}
₇ \bye

Please note that appending x and j to the font family name works for expert
font sets only. The \latinfamily macro is not capable of dealing with sc & osf
font sets in the same way. These sets always require a fontinst file using low-level
commands such as the one discussed in tutorial iii.

v. Verbose fontinst file

While the \latinfamily macro incorporates the most fundamental features
of expert sets, such as optical small caps and additional f-ligatures, it does not
exploit all the glyphs found in expert fonts. To use them, you will need to use
low-level fontinst commands, at least for parts of the fontinst file. But before
we start with our verbose fontinst file, let’s first take a look at some encoding
issues specific to expert fonts. When dealing with sc & osf fonts in the third tu-
torial, we had to rename some glyphs or move them around because in sc & osf
fonts, hanging figures and small caps are found in the standard slots for figures
and the lowercase alphabet. With small caps and hanging figures provided by
expert fonts the installation is in fact simpler since all glyph names are unique.
To understand the difference, we will take a brief look at the glyph names in
the respective afm files. Compare the names of lowercase glyphs as found in
mjnr8a.afm to the small caps glyph names in mjnr8x.afm:

C 97 ; WX 427 ; N a ; B 59 -13 409 426 ;
C 98 ; WX 479 ; N b ; B 18 -13 442 692 ;
C 99 ; WX 427 ; N c ; B 44 -13 403 426 ;

verbose fontinst file 

C 97 ; WX 479 ; N Asmall ; B 19 -4 460 451 ;
C 98 ; WX 438 ; N Bsmall ; B 31 -4 395 434 ;
C 99 ; WX 500 ; N Csmall ; B 37 -12 459 443 ;

The situation is similar for lining and hanging (‘old style’) figures. The follow-
ing lines are taken from mjnr8a.afm and mjnr8x.afm respectively:

C 48 ; WX 469 ; N zero ; B 37 -12 432 627 ;
C 49 ; WX 469 ; N one ; B 109 -5 356 625 ;
C 50 ; WX 469 ; N two ; B 44 0 397 627 ;

C 48 ; WX 469 ; N zerooldstyle ; B 39 0 431 387 ;
C 49 ; WX 271 ; N oneoldstyle ; B 44 -5 229 405 ;
C 50 ; WX 396 ; N twooldstyle ; B 37 0 356 415 ;

In practice, this means that adding expert fonts to the basic font set amounts
to little more than adding them to the input file list of \installfont in most
cases. Still, some additional steps are required. Fortunately, all we need to do in
order to make optical small caps and hanging figures readily available is using
dedicated encoding vectors provided by fontinst. These encoding vectors refer-
ence the glyphs by names corresponding to those found in expert fonts, thus
allowing us to pick optical small caps and hanging figures at will. With that
in mind, we can get down to business. Our fontinst file begins with a typical
header (–):

₁ \input fontinst.sty
₂ \substitutesilent{bx}{b}
₃ \substitutesilent{sc}{n}
₄ \setint{smallcapsscale}{720}
₅ \setint{slant}{167}

Unfortunately, Monotype Janson provides small caps for the regular weight
only. Hence we have to make do with mechanical small caps for the bold se-
ries. We set a scale factor of . for that ().

₆ \transformfont{mjnr8r}{\reencodefont{8r}{\fromafm{mjnr8a}}}
₇ \transformfont{mjnri8r}{\reencodefont{8r}{\fromafm{mjnri8a}}}
₈ \transformfont{mjnb8r}{\reencodefont{8r}{\fromafm{mjnb8a}}}
₉ \transformfont{mjnbi8r}{\reencodefont{8r}{\fromafm{mjnbi8a}}}

₁₀ \transformfont{mjnro8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{mjnr8a}}}
₁₁ \transformfont{mjnbo8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{mjnb8a}}}

We reencode (–) and slant (–) the basic fonts as usual. Expert fonts do
not require any reencoding, but we do need slanted variants of them as well:

₁₂ \transformfont{mjnro8x}{\slantfont{\int{slant}}{\fromafm{mjnr8x}}}
₁₃ \transformfont{mjnbo8x}{\slantfont{\int{slant}}{\fromafm{mjnb8x}}}

We will create two font families: mjnx, featuring expert glyphs, optical small
caps, and lining figures, plus mjnj incorporating hanging instead of lining fig-
ures. ts1 encoded virtual fonts will be generated for the mjnx family only.

₁₄ \installfonts
₁₅ \installfamily{T1}{mjnx}{}
₁₆ \installfamily{TS1}{mjnx}{}
₁₇ \installfont{mjnr9e}{mjnr8r,mjnr8x,latin}{t1}{T1}{mjnx}{m}{n}{}

 expert font sets, regular setup

As mentioned above, incorporating expert glyphs boils down to adding an ad-
ditional file to the arguments of the \installfont command, in this case the
file mjnr8x.afm. Note that we use the encoding suffix 9e instead of 8t for all
t1 encoded virtual fonts of the mjnx family to indicate that they feature expert
glyphs. While the code 8t, as defined by the Fontname scheme, is for t1 (Cork)
encoding, 9e indicates t1 plus expert glyphs. Please refer to section . of the
Fontname scheme for a comprehensive list of these codes and the code tables
on page  of this guide for additional hints.

₁₈ \installfont{mjnrc9e}{mjnr8r,mjnr8x,latinsc}{t1c}{T1}{mjnx}{m}{sc}{}

For the small caps font we use the encoding vector t1c.etx which will map the
small caps in mjnr8x.afm to the encoding positions of the lowercase alphabet
in our t1 encoded virtual font. Instead of latin.mtx we use the special metric
file latinsc.mtx in this case. The remaining virtual fonts of the mjnx family
are built as expected:

₁₉ \installfont{mjnro9e}{mjnro8r,mjnro8x,latin}{t1}{T1}{mjnx}{m}{sl}{}
₂₀ \installfont{mjnri9e}{mjnri8r,mjnri8x,latin}{t1}{T1}{mjnx}{m}{it}{}
₂₁ \installfont{mjnb9e}{mjnb8r,mjnb8x,latin}{t1}{T1}{mjnx}{b}{n}{}
₂₂ \installfont{mjnbc9e}{mjnb8r,mjnb8x,latin}{t1c}{T1}{mjnx}{b}{sc}{}

Since the bold expert font does not provide small caps, we create mechanical
ones. The t1c.etx encoding vector will deal with that transparently, but we
have to make sure that the regular latin.mtx metric file is read here since
there are no optical small caps in the raw font.

₂₃ \installfont{mjnbo9e}{mjnbo8r,mjnbo8x,latin}{t1}{T1}{mjnx}{b}{sl}{}
₂₄ \installfont{mjnbi9e}{mjnbi8r,mjnbi8x,latin}{t1}{T1}{mjnx}{b}{it}{}

That’s it for t1 encoding. Creating ts1 encoded virtual fonts featuring expert
glyphs is pretty straightforward. We simply add the expert fonts to the input
file list. Note the encoding suffix of the virtual fonts. We use 9c instead of 8c to
indicate that the virtual fonts feature expert glyphs:

₂₅ \installfont{mjnr9c}{mjnr8r,mjnr8x,textcomp}{ts1}{TS1}{mjnx}{m}{n}{}
₂₆ \installfont{mjnro9c}{mjnro8r,mjnro8x,textcomp}{ts1}{TS1}{mjnx}{m}{sl}{}
₂₇ \installfont{mjnri9c}{mjnri8r,mjnri8x,textcomp}{ts1}{TS1}{mjnx}{m}{it}{}
₂₈ \installfont{mjnb9c}{mjnb8r,mjnb8x,textcomp}{ts1}{TS1}{mjnx}{b}{n}{}
₂₉ \installfont{mjnbo9c}{mjnbo8r,mjnbo8x,textcomp}{ts1}{TS1}{mjnx}{b}{sl}{}
₃₀ \installfont{mjnbi9c}{mjnbi8r,mjnbi8x,textcomp}{ts1}{TS1}{mjnx}{b}{it}{}
₃₁ \endinstallfonts

The mjnx family including t1 and ts1 encoded fonts is now complete. We con-
tinue with the mjnj family which we want to feature hanging figures by default:

₃₂ \installfonts
₃₃ \installfamily{T1}{mjnj}{}
₃₄ \installfont{mjnr9d}{mjnr8r,mjnr8x,latin}{t1j}{T1}{mjnj}{m}{n}{}

The encoding code 9d indicates a t1 encoded font with expert glyphs and hang-
ing figures. We will use this code for all t1 encoded virtual fonts of the mjnj
family. This family is supposed to feature hanging figures in the standard en-

inferior and superior figures 

coding positions for figures. We have to keep in mind that the regular encoding
vector for t1 encoding (t1.etx) references the figures as “zero,” “one,” “two”
while the hanging (‘old style’) figures in the expert font (which we want to be
available by default) are labeled “zerooldstyle,” “oneoldstyle” and so on. In or-
der to arrange the glyphs according to our wishes, we could read the regular
font, clear the figures, read the expert font and rename the ‘old style’ figures.
In this case, however, there is a simpler way: we use the special encoding vector
t1j.etx which is essentially equivalent to t1.etx but automatically appends
the suffix “oldstyle” to all figures.

₃₅ \installfont{mjnrc9d}{mjnr8r,mjnr8x,latinsc}{t1cj}{T1}{mjnj}{m}{sc}{}

We have regular optical small caps, so we use the metric file latinsc.mtx here.
Instead of t1c.etx we use the encoding file t1cj.etx to make hanging figures
the default. The remaining virtual fonts are built like the upright shape ():

₃₆ \installfont{mjnro9d}{mjnro8r,mjnro8x,latin}{t1j}{T1}{mjnj}{m}{sl}{}
₃₇ \installfont{mjnri9d}{mjnri8r,mjnri8x,latin}{t1j}{T1}{mjnj}{m}{it}{}
₃₈ \installfont{mjnb9d}{mjnb8r,mjnb8x,latin}{t1j}{T1}{mjnj}{b}{n}{}
₃₉ \installfont{mjnbc9d}{mjnb8r,mjnb8x,latin}{t1cj}{T1}{mjnj}{b}{sc}{}

There are no optical small caps in the bold-weight expert fonts. Thus, when
generating the bold small caps font, we use the metric file latin.mtx and the
encoding file t1cj.etx to create mechanical small caps.

₄₀ \installfont{mjnbo9d}{mjnbo8r,mjnbo8x,latin}{t1j}{T1}{mjnj}{b}{sl}{}
₄₁ \installfont{mjnbi9d}{mjnbi8r,mjnbi8x,latin}{t1j}{T1}{mjnj}{b}{it}{}
₄₂ \endinstallfonts

At this point, we have a comprehensive text setup featuring expert f-ligatures,
optical small caps as well as a choice of readily available lining and hanging
figures. However, there are some glyphs in expert fonts that we have not con-
sidered yet.

v. Inferior and superior figures

Expert fonts usually provide superior and inferior figures which can be com-
bined with a dedicated fraction slash called ‘solidus’ to typeset arbitrary text
fractions like ¹⁄₂ or even ³¹⁄₁₂₇. Please note that these figures are not suitable for
Tex’s math mode but they can be useful in text mode even if there is no need
to typeset text fractions. For example, in this guide the footnote marks in the
body text are typeset using superior figures and inferior figures are used for the
line numbers of the code listings. Like hanging figures, we want inferior and
superior figures to be readily available. Therefore, we will create two additional
font families, mjn0 and mjn1, which put inferior and superior figures in the
standard encoding positions for figures just like our mjnj family does for hang-
ing figures. We have been using the encoding vector t1j.etx to make hanging
figures the default in this tutorial so let’s find out what t1j.etx does in detail
and try to modify this approach according to our needs. This is t1j.etx:

 expert font sets, regular setup

\relax
\encoding
\setcommand\lc#1#2{#2}
\setcommand\uc#1#2{#1}
\setcommand\lctop#1#2{#2}
\setcommand\uctop#1#2{#1}
\setcommand\lclig#1#2{#2}
\setcommand\uclig#1#2{#1}
\setcommand\digit#1{#1oldstyle}
\inputetx{T1}
\endencoding

As you can see, t1j.etx is short. It does not define any encoding slots. All it
does is predefine a few macros and use \inputetx to load t1.etx afterwards.
The relevant part (and the only point at which it differs from what t1.etx
does in this respect) is the line defining the \digit macro. To understand this
mechanism, we need to take a look at how t1.etx defines the encoding slots
for all figures:

\setslot{\digit{one}}\endsetslot
\setslot{\digit{two}}\endsetslot
\setslot{\digit{three}}\endsetslot

The glyph names of figures are not given verbatim, they are used as an argu-
ment to the \digit macro. The default definition of this macro as given in
t1.etx looks like this:

\setcommand\digit#1{#1}

This means that the glyph labeled “one” in the afm file will end up in the en-
coding position for the numeral one in the virtual font – and so on. t1j.etx
predefines the \digit macro as follows:

\setcommand\digit#1{#1oldstyle}

In this case the glyph labeled “oneoldstyle” in the afm file will end up in the
encoding position for the numeral one in the t1 encoded virtual font. When
taking a look at the glyph names of hanging, inferior, and superior figures in
the afm files of our expert fonts now, the approach we need to take in order to
access them should be obvious:

C 48 ; WX 469 ; N zerooldstyle ; B 39 0 431 387 ;
C 49 ; WX 271 ; N oneoldstyle ; B 44 -5 229 405 ;
C 50 ; WX 396 ; N twooldstyle ; B 37 0 356 415 ;

C 210 ; WX 323 ; N zeroinferior ; B 27 -13 296 355 ;
C 211 ; WX 323 ; N oneinferior ; B 84 -5 240 357 ;
C 212 ; WX 323 ; N twoinferior ; B 27 0 288 358 ;

C 200 ; WX 323 ; N zerosuperior ; B 27 293 296 661 ;
C 201 ; WX 323 ; N onesuperior ; B 84 298 240 661 ;
C 202 ; WX 323 ; N twosuperior ; B 27 303 288 661 ;

Just like ‘old style’ figures, inferior and superior figures use suffixes to the re-
spective glyph names in (properly encoded) expert fonts. This means that we

inferior and superior figures 

can modify t1j.etx accordingly to create encoding vectors incorporating in-
ferior and superior figures. Hence our encoding vector for t1 encoded fonts
featuring inferior figures (t10.etx, read: t-one-zero since 0 is the Fontname
code for inferior figures) should look like this:

\relax
\encoding
\setcommand\lc#1#2{#2}
\setcommand\uc#1#2{#1}
\setcommand\lctop#1#2{#2}
\setcommand\uctop#1#2{#1}
\setcommand\lclig#1#2{#2}
\setcommand\uclig#1#2{#1}
\setcommand\digit#1{#1inferior}
\inputetx{t1}
\endencoding

All we need to do in t10.etx is use \setcommand to predefine the \digit
macro as follows:

\setcommand\digit#1{#1inferior}

This will add the suffix “inferior” to all digits. For superior figures, the approach
is similar. We create an encoding vector called t11.etx (read: t-one-one since
1 is the Fontname code for superior figures):

\relax
\encoding
\setcommand\lc#1#2{#2}
\setcommand\uc#1#2{#1}
\setcommand\lctop#1#2{#2}
\setcommand\uctop#1#2{#1}
\setcommand\lclig#1#2{#2}
\setcommand\uclig#1#2{#1}
\setcommand\digit#1{#1superior}
\inputetx{t1}
\endencoding

With t10.etx and t11.etx at hand, we may now create the font families mjn0
and mjn1 pretty much like we have generated mjnj. Let’s put the new encoding
vectors in our working directory and go back to the fontinst file:

₄₃ \installfonts
₄₄ \installfamily{T1}{mjn0}{}
₄₅ \installfont{mjnr09e}{mjnr8r,mjnr8x,latin}{t10}{T1}{mjn0}{m}{n}{}

We add the code 0 to the name of the virtual font (mjnr09e here), use the
encoding vector t10.etx, and adapt the nfss font declaration (in this case
T1/mjn0/m/n) accordingly. Other than that, the virtual fonts of the mjn0 family
are generated in the usual way:

₄₆ \installfont{mjnro09e}{mjnro8r,mjnro8x,latin}{t10}{T1}{mjn0}{m}{sl}{}
₄₇ \installfont{mjnri09e}{mjnri8r,mjnri8x,latin}{t10}{T1}{mjn0}{m}{it}{}
₄₈ \installfont{mjnb09e}{mjnb8r,mjnb8x,latin}{t10}{T1}{mjn0}{b}{n}{}
₄₉ \installfont{mjnbo09e}{mjnbo8r,mjnbo8x,latin}{t10}{T1}{mjn0}{b}{sl}{}
₅₀ \installfont{mjnbi09e}{mjnbi8r,mjnbi8x,latin}{t10}{T1}{mjn0}{b}{it}{}

 expert font sets, regular setup

₅₁ \endinstallfonts

Our fontinst file will omit the small caps shape to save some disk space. We have
included a global shape substitution for the sc shape in the header, so mjn0/sc
will be substituted by mjn0/n via a silent substitution in the font definition
file. Since the figures of upright and small caps shapes do not differ at all and
since we need the mjn0 family for figures only, we can safely omit the small caps
shape. For the mjn1 family, we adapt the names of the virtual fonts (adding the
Fontname code  to indicate superior figures), the encoding vector (t11.etx),
and the nfss declaration in a similar way:

₅₂ \installfonts
₅₃ \installfamily{T1}{mjn1}{}
₅₄ \installfont{mjnr19e}{mjnr8r,mjnr8x,latin}{t11}{T1}{mjn1}{m}{n}{}
₅₅ \installfont{mjnro19e}{mjnro8r,mjnro8x,latin}{t11}{T1}{mjn1}{m}{sl}{}
₅₆ \installfont{mjnri19e}{mjnri8r,mjnri8x,latin}{t11}{T1}{mjn1}{m}{it}{}
₅₇ \installfont{mjnb19e}{mjnb8r,mjnb8x,latin}{t11}{T1}{mjn1}{b}{n}{}
₅₈ \installfont{mjnbo19e}{mjnbo8r,mjnbo8x,latin}{t11}{T1}{mjn1}{b}{sl}{}
₅₉ \installfont{mjnbi19e}{mjnbi8r,mjnbi8x,latin}{t11}{T1}{mjn1}{b}{it}{}
₆₀ \endinstallfonts
₆₁ \bye

This is our complete fontinst file which will provide us with four font families:
mjnx, mjnj, mjn0, and mjn1. Virtual fonts in t1 encoding are provided for all
families, but ts1 encoded ones for mjnx only since they would be identical for all
of our four font families anyway. Thus, we can simply use substitutions instead
of creating duplicate virtual fonts. As mentioned in the third tutorial, however,
fontinst does not provide family substitutions. We have to write font definition
files manually to ensure that the lacking ts1 encoded fonts are substituted by
their counterparts of the mjnx family so that the textcomp package will work
with all of them. For the mjnj family, our font definition file for ts1 encoding
(ts1mjnj.fd) looks like this:

\ProvidesFile{ts1mjnj.fd}
\DeclareFontFamily{TS1}{mjnj}{}
\DeclareFontShape{TS1}{mjnj}{m} {n} {<-> ssub * mjnx/m/n} {}
\DeclareFontShape{TS1}{mjnj}{m} {sc}{<-> ssub * mjnx/m/n} {}
\DeclareFontShape{TS1}{mjnj}{m} {sl}{<-> ssub * mjnx/m/sl}{}
\DeclareFontShape{TS1}{mjnj}{m} {it}{<-> ssub * mjnx/m/it}{}
\DeclareFontShape{TS1}{mjnj}{b} {n} {<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjnj}{b} {sc}{<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjnj}{b} {sl}{<-> ssub * mjnx/b/sl}{}
\DeclareFontShape{TS1}{mjnj}{b} {it}{<-> ssub * mjnx/b/it}{}
\DeclareFontShape{TS1}{mjnj}{bx}{n} {<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjnj}{bx}{sc}{<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjnj}{bx}{sl}{<-> ssub * mjnx/b/sl}{}
\DeclareFontShape{TS1}{mjnj}{bx}{it}{<-> ssub * mjnx/b/it}{}
\endinput

This is the equivalent for mjn0, the file ts1mjn0.fd:

\ProvidesFile{ts1mjn0.fd}
\DeclareFontFamily{TS1}{mjn0}{}
\DeclareFontShape{TS1}{mjn0}{m} {n} {<-> ssub * mjnx/m/n} {}

the map file 

\DeclareFontShape{TS1}{mjn0}{m} {sc}{<-> ssub * mjnx/m/n} {}
\DeclareFontShape{TS1}{mjn0}{m} {sl}{<-> ssub * mjnx/m/sl}{}
\DeclareFontShape{TS1}{mjn0}{m} {it}{<-> ssub * mjnx/m/it}{}
\DeclareFontShape{TS1}{mjn0}{b} {n} {<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn0}{b} {sc}{<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn0}{b} {sl}{<-> ssub * mjnx/b/sl}{}
\DeclareFontShape{TS1}{mjn0}{b} {it}{<-> ssub * mjnx/b/it}{}
\DeclareFontShape{TS1}{mjn0}{bx}{n} {<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn0}{bx}{sc}{<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn0}{bx}{sl}{<-> ssub * mjnx/b/sl}{}
\DeclareFontShape{TS1}{mjn0}{bx}{it}{<-> ssub * mjnx/b/it}{}
\endinput

And finally, ts1mjn1.fd for the mjn1 family:

\ProvidesFile{ts1mjn1.fd}
\DeclareFontFamily{TS1}{mjn1}{}
\DeclareFontShape{TS1}{mjn1}{m} {n} {<-> ssub * mjnx/m/n} {}
\DeclareFontShape{TS1}{mjn1}{m} {sc}{<-> ssub * mjnx/m/n} {}
\DeclareFontShape{TS1}{mjn1}{m} {sl}{<-> ssub * mjnx/m/sl}{}
\DeclareFontShape{TS1}{mjn1}{m} {it}{<-> ssub * mjnx/m/it}{}
\DeclareFontShape{TS1}{mjn1}{b} {n} {<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn1}{b} {sc}{<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn1}{b} {sl}{<-> ssub * mjnx/b/sl}{}
\DeclareFontShape{TS1}{mjn1}{b} {it}{<-> ssub * mjnx/b/it}{}
\DeclareFontShape{TS1}{mjn1}{bx}{n} {<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn1}{bx}{sc}{<-> ssub * mjnx/b/n} {}
\DeclareFontShape{TS1}{mjn1}{bx}{sl}{<-> ssub * mjnx/b/sl}{}
\DeclareFontShape{TS1}{mjn1}{bx}{it}{<-> ssub * mjnx/b/it}{}
\endinput

As far as Latex is concerned, our setup is complete now. We still need a map
file, though.

v. The map file

The syntax of map files has been discussed in detail before. The lines for the
basic font set should therefore be obvious:

mjnr8r JansonMT "TeXBase1Encoding ReEncodeFont" <8r.enc <mjnr8a.pfb
mjnri8r JansonMT-Italic "TeXBase1Encoding ReEncodeFont" <8r.enc <mjnri8a.pfb
mjnb8r JansonMT-Bold "TeXBase1Encoding ReEncodeFont" <8r.enc <mjnb8a.pfb
mjnbi8r JansonMT-BoldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <mjnbi8a.pfb
mjnro8r JansonMT "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <mjnr8a.pfb
mjnbo8r JansonMT-Bold "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <mjnb8a.pfb

Mapping lines for expert fonts are simpler because there is no need for reen-
coding and no encoding vector will be included:

mjnr8x JansonExpertMT <mjnr8x.pfb
mjnri8x JansonExpertMT-Italic <mjnri8x.pfb
mjnb8x JansonExpertMT-Bold <mjnb8x.pfb
mjnbi8x JansonExpertMT-BoldItalic <mjnbi8x.pfb

We do need slanted expert fonts as well, though:

mjnro8x JansonExpertMT "0.167 SlantFont" <mjnr8x.pfb
mjnbo8x JansonExpertMT-Bold "0.167 SlantFont" <mjnb8x.pfb

This is our complete map file for Monotype Janson, mjn.map.

 expert font sets, regular setup

v. The style file

Our style file for Janson, janson.sty, is based on the one suggested in section
iii.. We simply adjust the package name and the names of the font families:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{janson}[2002/12/30 v1.0 Monotype Janson]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \RequirePackage{nfssext}
₆ \DeclareOption{oldstyle}{\renewcommand*{\rmdefault}{mjnj}}
₇ \DeclareOption{lining}{\renewcommand*{\rmdefault}{mjnx}}
₈ \ExecuteOptions{oldstyle}
₉ \ProcessOptions

₁₀ \endinput

With an expert font set at hand, however, we have to extend nfssext.sty to
support expert families:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{nfssext}[2003/03/14 v1.2 Experimental NFSS Extensions]
₃ \newcommand*{\exfs@tempa}{}
₄ \newcommand*{\exfs@tempb}{}
₅ \newcommand*{\exfs@try@family}[2][]{%
₆ \let\exfs@tempa\relax
₇ \begingroup
₈ \fontfamily{#2}\try@load@fontshape%
₉ \expandafter\ifx\csname\curr@fontshape\endcsname\relax

₁₀ \edef\exfs@tempa{#1}%
₁₁ \ifx\exfs@tempa\@empty
₁₂ \PackageWarning{nfssext}{%
₁₃ Font family ’\f@encoding/#2’ not available\MessageBreak
₁₄ Ignoring font switch}%
₁₅ \else
₁₆ \PackageInfo{nfssext}{%
₁₇ Font family ’\f@encoding/#2’ not available\MessageBreak
₁₈ Font family ’\f@encoding/#1’ tried instead}%
₁₉ \exfs@try@family{#1}%
₂₀ \fi
₂₁ \else
₂₂ \gdef\exfs@tempa{\fontfamily{#2}\selectfont}%
₂₃ \fi
₂₄ \endgroup
₂₅ \exfs@tempa}

As soon as expert fonts come into play, the \lnstyle macro has to cater for
two font families which, depending on the font, may contain lining figures: a
basic font family with a three-character code or an expert family with a four-
character code ending with the letter x. To make sure that nfssext.sty will
work for fonts like Janson as well as fonts without an expert set, the first thing
we need to do is extend our main font switching macro, enabling it to cope with
both cases. To do so, we will introduce an optional argument. Essentially, we try
to load the font family given by the mandatory argument first (). If this family
is not available, we do not quit with a warning but add a note to the log file
(–) and try the family given by the optional argument next (). If loading

using the fonts 

the alternative family fails as well, we finally print a warning message (–). If
the optional argument is not used, the second step will be omitted.

₂₆ \def\exfs@get@base#1#2#3#4\@nil{#1#2#3}
₂₇ \DeclareRobustCommand{\lnstyle}{%
₂₈ \not@math@alphabet\lnstyle\relax
₂₉ \exfs@try@family[\expandafter\exfs@get@base\f@family\@nil]%
₃₀ {\expandafter\exfs@get@base\f@family\@nil x}}

After that, the \lnstyle macro needs to be adjusted in order to exploit the op-
tional argument. It will try the expert family with a four-character code first
() and make \exfs@try@family fall back to the basic font family with a
three-character code () if the former is not available.

₃₁ \DeclareRobustCommand{\osstyle}{%
₃₂ \not@math@alphabet\osstyle\relax
₃₃ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil j}}

The availability of hanging figures is expressed by appending the letter j to the
font family code for both basic and expert font sets, so \osstyle does not need
any modification.

₃₄ \DeclareRobustCommand{\instyle}{%
₃₅ \not@math@alphabet\instyle\relax
₃₆ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil 0}}
₃₇ \DeclareRobustCommand{\sustyle}{%
₃₈ \not@math@alphabet\sustyle\relax
₃₉ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil 1}}

With inferior and superior figures implemented as two additional font families,
mjn0 and mjn1, we add two macros activating these families by adding 0 and 1
to the family name respectively.

₄₀ \DeclareTextFontCommand{\textln}{\lnstyle}
₄₁ \DeclareTextFontCommand{\textos}{\osstyle}
₄₂ \DeclareTextFontCommand{\textin}{\instyle}
₄₃ \DeclareTextFontCommand{\textsu}{\sustyle}
₄₄ \endinput

We also add two text commands, \textin and \textsu, which activate these
figures locally, similar to \textit or \textbf.

v. Using the fonts

Most features of expert font sets such as additional f-ligatures and optical small
caps will be available automatically when selecting the new font families. Using
them does not require any additional macros. Lining and hanging figures can be
conveniently selected by activating the respective font family, in this case mjnx
and mjnj, or by using the style file janson.sty suggested above. Since inferior
and superior figures are not used as regular figures, they are treated differently.
We will take a look at some possible applications. The inferior and superior fig-
ures found in expert fonts were originally intended for typesetting text fractions
so let’s write a simple macro for that. To typeset a fraction, we combine inferior

 expert font sets, regular setup

and superior figures with the \textfractionsolidus macro provided by the
textcomp package. Accessing the figures implies switching font families locally.
Note the additional set of braces which will keep the font change local:

\newcommand*{\textfrac}[2]{%
{\fontfamily{mjn1}\selectfont #1}%
\textfractionsolidus
{\fontfamily{mjn0}\selectfont #2}}

Writing \textfrac{1}{2} in the input file will typeset the fraction ¹⁄₂. When
looking at an expert font in a font editor, you will see that expert fonts contain a
fixed number of text fractions. Some of them are included in ts1 encoding and
supported by the textcomp package, but typing rather long commands such
as \textthreequarters is not exactly convenient. Since there are only nine
of them they are not very useful anyway. With a complete set of inferior and
superior figures at our disposal, our macro will work for arbitrary fractions like
³⁄₇ or ¹³⁄₁₇. Instead of using ‘hard-wired’ fonts as shown above, it is even better
to use the font switching macros provided by nfssext.sty instead since they
will dynamically adjust to the active text font:

\newcommand*{\textfrac}[2]{%
\textsu{#1}%
\textfractionsolidus
\textin{#2}}

What about using superior figures as footnote numbers? To do so, we need to
redefine \@makefnmark. This is the default definition:

\def\@makefnmark{\hbox{\@textsuperscript{\normalfont\@thefnmark}}}

In order to use optical superior figures instead of mechanical ones, we drop
\@textsuperscript and switch font families instead:

\def\@makefnmark{\hbox{\fontfamily{mjn1}\selectfont\@thefnmark}}

We do not need to add additional braces in this case since \hbox will keep
the font change local. Using our new font switching macros, this may also be
accomplished like this:

\def\@makefnmark{\hbox{\sustyle\@thefnmark}}

Note that, if you want to put a definition of \@makefnmark in the preamble of a
regular Latex input file (as opposed to a class or a style file), it has to be enclosed
in \makeatletter and \makeatother:

\makeatletter
\def\@makefnmark{\hbox{\sustyle\@thefnmark}}
\makeatother

tutorial vi

expert font sets,
extended setup

In this tutorial we will combine what we have learned in tutorials iii and v to
install a very complete font set featuring expert fonts, small caps, and hang-
ing figures. This tutorial will also add multiple weights, italic small caps, italic
swashes and text ornaments to that. Our example is Adobe Minion, base plus
expert packages:

pmnr8a Minion-Regular A 143 morg____
pmnri8a Minion-Italic A 143 moi_____
pmns8a Minion-Semibold A 143 mosb____
pmnsi8a Minion-SemiboldItalic A 143 mosbi___
pmnb8a Minion-Bold A 143 mob_____
pmnbi8a Minion-BoldItalic A 143 mobi____
pmnc8a Minion-Black A 143 mobl____
pmnrc8a Minion-RegularSC A 144 mosc____
pmnric8a Minion-ItalicSC A 144 moisc___
pmnriw7a Minion-SwashItalic A 144 moswi___
pmnsc8a Minion-SemiboldSC A 144 mosbs___
pmnsic8a Minion-SemiboldItalicSC A 144 mosic___
pmnsiw7a Minion-SwashSemiboldItalic A 144 mossb___
pmnbj8a Minion-BoldOsF A 144 mobos___
pmnbij8a Minion-BoldItalicOsF A 144 mobio___
pmncj8a Minion-BlackOsF A 144 mozof___
pmnr8x MinionExp-Regular A 144 mjrg____
pmnri8x MinionExp-Italic A 144 mji_____
pmns8x MinionExp-Semibold A 144 mjsb____
pmnsi8x MinionExp-SemiboldItalic A 144 mjsbi___
pmnb8x MinionExp-Bold A 144 mjb_____
pmnbi8x MinionExp-BoldItalic A 144 mjbi____
pmnc8x MinionExp-Black A 144 mjbl____
pmnrp Minion-Ornaments A 144 moor____

In addition to these fonts, the expert package includes a set of regular-weight
display fonts intended for titling and display work at very large sizes. Generated
from the same master sources by interpolation, the display fonts share the let-
tershapes of the text fonts while being based on a design size of  pt. Since they
form a complete set including small caps and expert fonts, they are handled just
like the Minion text set and we will not explicitly consider them here.

vi. The fontinst file

With a very comprehensive set of fonts at our disposal, we will be fastidious.
There will be no computed glyph shapes – no mechanical small caps and no
slanted fonts – thus making this setup suitable for professional typesetting.
Note that the bold and black weights do not feature optical small caps. Even
though there are expert fonts for these weights, they do not contain any small
caps glyphs. The bold weight is merely intended for applications requiring a



 expert font sets, extended setup

very strong contrast, for example to highlight the keywords in a dictionary,
while the black weight of a typeface like Minion is only relevant for certain
types of display work. Without further ado, we start off as usual:

₁ \nonstopmode
₂ \input fontinst.sty
₃ \substitutesilent{bx}{sb}
₄ \substitutenoisy{sc}{n}
₅ \substitutenoisy{si}{it}

When looking at our font set it is obvious that semibold should be used as the
main bold weight, hence we make it the default by substituting sb for bx. Since
the bold and black weights do not feature optical small caps, we add appropriate
substitutions for the sc and si (italic small caps) shapes.

₆ \transformfont{pmnr8r}{\reencodefont{8r}{\fromafm{pmnr8a}}}
₇ \transformfont{pmnrc8r}{\reencodefont{8r}{\fromafm{pmnrc8a}}}
₈ \transformfont{pmnri8r}{\reencodefont{8r}{\fromafm{pmnri8a}}}
₉ \transformfont{pmnric8r}{\reencodefont{8r}{\fromafm{pmnric8a}}}

₁₀ \transformfont{pmns8r}{\reencodefont{8r}{\fromafm{pmns8a}}}
₁₁ \transformfont{pmnsc8r}{\reencodefont{8r}{\fromafm{pmnsc8a}}}
₁₂ \transformfont{pmnsi8r}{\reencodefont{8r}{\fromafm{pmnsi8a}}}
₁₃ \transformfont{pmnsic8r}{\reencodefont{8r}{\fromafm{pmnsic8a}}}
₁₄ \transformfont{pmnb8r}{\reencodefont{8r}{\fromafm{pmnb8a}}}
₁₅ \transformfont{pmnbi8r}{\reencodefont{8r}{\fromafm{pmnbi8a}}}
₁₆ \transformfont{pmnc8r}{\reencodefont{8r}{\fromafm{pmnc8a}}}

Reencoding: you know the drill. We reencode all base fonts using Adobe Stan-
dard as their native encoding. While the swash fonts are based on Adobe Stan-
dard as well, they contain a special set of glyphs and are handled like expert
fonts.

₁₇ \installfonts
₁₈ \installfamily{T1}{pmnx}{}
₁₉ \installfamily{TS1}{pmnx}{}
₂₀ \installfont{pmnr9e}{pmnr8r,pmnr8x,latin}{t1}{T1}{pmnx}{m}{n}{}
₂₁ \installfont{pmnri9e}{pmnri8r,pmnri8x,latin}{t1}{T1}{pmnx}{m}{it}{}

The setup of the upright and italic shapes does not differ from tutorial v.

₂₂ \installfont{pmnrc9e}%
₂₃ {kernoff,pmnr8r,pmnr8x,kernon,glyphoff,pmnrc8r,glyphon,resetsc,latinsc}%
₂₄ {t1c}{T1}{pmnx}{m}{sc}{}
₂₅ \installfont{pmnric9e}%
₂₆ {kernoff,pmnri8r,pmnri8x,kernon,glyphoff,pmnric8r,glyphon,resetsc,latinsc}%
₂₇ {t1c}{T1}{pmnx}{m}{si}{}

There is one problem with taking optical small caps from an expert font as
demonstrated in tutorial v: there are no kerning pairs between the uppercase
alphabet and the small caps replacing the lowercase letters. Without dedicated
small caps fonts there is nothing we can do about that. Now that we have both
expert and small caps fonts, however, we could take an approach similar to the
one outlined in tutorial iii, adding the expert font on top of them to get the
additional ligatures. We will use a different technique though, which extracts
the more comprehensive kerning data from the small caps fonts while taking

the fontinst file 

the glyphs from the base and the expert fonts only. Apart from being conceptu-
ally cleaner, this approach has the additional benefit of not requiring the small
caps fonts after the metrics and the virtual fonts have been generated, result-
ing in slightly smaller pdf and Postscript files if fonts are embedded. The input
file list should be more or less self-explanatory: we use kernoff.mtx to ignore
the kerning data while reading the respective base and expert fonts. Then we
add kernon.mtx to re-activate the kerning commands and a special metric file
called glyphoff.mtx to ignore the glyph data. After that, we read the corre-
sponding small caps font and re-activate the glyph commands. Finally, we add
resetsc.mtx as well as latinsc.mtx. Our encoding file is t1c.etx.

₂₈ \installfont{pmns9e}{pmns8r,pmns8x,latin}{t1}{T1}{pmnx}{sb}{n}{}
₂₉ \installfont{pmnsi9e}{pmnsi8r,pmnsi8x,latin}{t1}{T1}{pmnx}{sb}{it}{}
₃₀ \installfont{pmnsc9e}%
₃₁ {kernoff,pmns8r,pmns8x,kernon,glyphoff,pmnsc8r,glyphon,resetsc,latinsc}%
₃₂ {t1c}{T1}{pmnx}{sb}{sc}{}
₃₃ \installfont{pmnsic9e}%
₃₄ {kernoff,pmnsi8r,pmnsi8x,kernon,glyphoff,pmnsic8r,glyphon,resetsc,latinsc}%
₃₅ {t1c}{T1}{pmnx}{sb}{si}{}

We repeat these steps for the semibold weight.

₃₆ \installfont{pmnb9e}{pmnb8r,pmnb8x,latin}{t1}{T1}{pmnx}{b}{n}{}
₃₇ \installfont{pmnbi9e}{pmnbi8r,pmnbi8x,latin}{t1}{T1}{pmnx}{b}{it}{}
₃₈ \installfont{pmnc9e}{pmnc8r,pmnc8x,latin}{t1}{T1}{pmnx}{eb}{n}{}

The bold and black weights are handled differently because there are no optical
small caps. We will simply omit the respective shapes. The black weight will be
mapped to the eb series of the nfss. After finishing t1 encoding we continue
with ts1. Our setup for ts1 encoding does not differ from tutorial v either:

₃₉ \installfont{pmnr9c}{pmnr8r,pmnr8x,textcomp}{ts1}{TS1}{pmnx}{m}{n}{}
₄₀ \installfont{pmnri9c}{pmnri8r,pmnri8x,textcomp}{ts1}{TS1}{pmnx}{m}{it}{}
₄₁ \installfont{pmns9c}{pmns8r,pmns8x,textcomp}{ts1}{TS1}{pmnx}{sb}{n}{}
₄₂ \installfont{pmnsi9c}{pmnsi8r,pmnsi8x,textcomp}{ts1}{TS1}{pmnx}{sb}{it}{}
₄₃ \installfont{pmnb9c}{pmnb8r,pmnb8x,textcomp}{ts1}{TS1}{pmnx}{b}{n}{}
₄₄ \installfont{pmnbi9c}{pmnbi8r,pmnbi8x,textcomp}{ts1}{TS1}{pmnx}{b}{it}{}
₄₅ \installfont{pmnc9c}{pmnc8r,pmnc8x,textcomp}{ts1}{TS1}{pmnx}{eb}{n}{}
₄₆ \endinstallfonts

The pmnx family is now complete. We continue with pmnj which will feature
hanging figures by default:

₄₇ \installfonts
₄₈ \installfamily{T1}{pmnj}{}
₄₉ \installfont{pmnr9d}{pmnr8r,pmnr8x,latin}{t1j}{T1}{pmnj}{m}{n}{}
₅₀ \installfont{pmnri9d}{pmnri8r,pmnri8x,latin}{t1j}{T1}{pmnj}{m}{it}{}

To make hanging figures the default throughout the pmnj family we employ
the encoding file t1j.etx. Other than that, the setup of the upright and italic
shapes does not differ from pmnx.

₅₁ \installfont{pmnrc9d}
₅₂ {kernoff,pmnr8r,pmnr8x,kernon,glyphoff,pmnrc8r,glyphon,resetosf,resetsc,latinsc}%
₅₃ {t1cj}{T1}{pmnj}{m}{sc}{}

 expert font sets, extended setup

₅₄ \installfont{pmnric9d}
₅₅ {kernoff,pmnri8r,pmnri8x,kernon,glyphoff,pmnric8r,glyphon,resetosf,resetsc,latinsc}%
₅₆ {t1cj}{T1}{pmnj}{m}{si}{}

For the small caps shape of the pmnj family we essentially use the technique
introduced above. Since this font family will feature hanging figures we use the
encoding file t1cj.etx and add the metric file resetosf.mtx.

₅₇ \installfont{pmns9d}{pmns8r,pmns8x,latin}{t1j}{T1}{pmnj}{sb}{n}{}
₅₈ \installfont{pmnsi9d}{pmnsi8r,pmnsi8x,latin}{t1j}{T1}{pmnj}{sb}{it}{}
₅₉ \installfont{pmnsc9d}
₆₀ {kernoff,pmns8r,pmns8x,kernon,glyphoff,pmnsc8r,glyphon,resetosf,resetsc,latinsc}%
₆₁ {t1cj}{T1}{pmnj}{sb}{sc}{}
₆₂ \installfont{pmnsic9d}
₆₃ {kernoff,pmnsi8r,pmnsi8x,kernon,glyphoff,pmnsic8r,glyphon,resetosf,resetsc,latinsc}%
₆₄ {t1cj}{T1}{pmnj}{sb}{si}{}

Again, we repeat these steps for the semibold weight.

₆₅ \installfont{pmnb9d}{pmnb8r,pmnb8x,latin}{t1j}{T1}{pmnj}{b}{n}{}
₆₆ \installfont{pmnbi9d}{pmnbi8r,pmnbi8x,latin}{t1j}{T1}{pmnj}{b}{it}{}
₆₇ \installfont{pmnc9d}{pmnc8r,pmnc8x,latin}{t1j}{T1}{pmnj}{eb}{n}{}
₆₈ \endinstallfonts

The bold and black weights are essentially handled like those of the pmnx family,
only differing in the choice of the encoding file.

₆₉ \installfonts
₇₀ \installfamily{T1}{pmn0}{}
₇₁ \installfont{pmnr09e}{pmnr8r,pmnr8x,latin}{t10}{T1}{pmn0}{m}{n}{}
₇₂ \installfont{pmnri09e}{pmnri8r,pmnri8x,latin}{t10}{T1}{pmn0}{m}{it}{}
₇₃ \installfont{pmns09e}{pmns8r,pmns8x,latin}{t10}{T1}{pmn0}{sb}{n}{}
₇₄ \installfont{pmnsi09e}{pmnsi8r,pmnsi8x,latin}{t10}{T1}{pmn0}{sb}{it}{}
₇₅ \installfont{pmnb09e}{pmnb8r,pmnb8x,latin}{t10}{T1}{pmn0}{b}{n}{}
₇₆ \installfont{pmnbi09e}{pmnbi8r,pmnbi8x,latin}{t10}{T1}{pmn0}{b}{it}{}
₇₇ \installfont{pmnc09e}{pmnc8r,pmnc8x,latin}{t10}{T1}{pmn0}{eb}{n}{}
₇₈ \endinstallfonts

In addition to pmnx and pmnj, we also add dedicated font families incorporating
inferior and superior figures. Since inferior figures are found in the expert fonts,
our approach here does not differ from the one introduced in section v..

₇₉ \installfonts
₈₀ \installfamily{T1}{pmn1}{}
₈₁ \installfont{pmnr19e}{pmnr8r,pmnr8x,latin}{t11}{T1}{pmn1}{m}{n}{}
₈₂ \installfont{pmnri19e}{pmnri8r,pmnri8x,latin}{t11}{T1}{pmn1}{m}{it}{}
₈₃ \installfont{pmns19e}{pmns8r,pmns8x,latin}{t11}{T1}{pmn1}{sb}{n}{}
₈₄ \installfont{pmnsi19e}{pmnsi8r,pmnsi8x,latin}{t11}{T1}{pmn1}{sb}{it}{}
₈₅ \installfont{pmnb19e}{pmnb8r,pmnb8x,latin}{t11}{T1}{pmn1}{b}{n}{}
₈₆ \installfont{pmnbi19e}{pmnbi8r,pmnbi8x,latin}{t11}{T1}{pmn1}{b}{it}{}
₈₇ \installfont{pmnc19e}{pmnc8r,pmnc8x,latin}{t11}{T1}{pmn1}{eb}{n}{}
₈₈ \endinstallfonts

The same holds true for superior figures.

₈₉ \installfonts
₉₀ \installfamily{T1}{pmnw}{}
₉₁ \installfont{pmnriw9d}{pmnri8r,unsetcaps,pmnriw7a,pmnri8x,latin}{t1j}{T1}{pmnw}{m}{it}{}
₉₂ \installfont{pmnsiw9d}{pmnsi8r,unsetcaps,pmnsiw7a,pmnsi8x,latin}{t1j}{T1}{pmnw}{sb}{it}{}

the fontinst file 

₉₃ \endinstallfonts
₉₄ \bye

In order to incorporate the italic swashes we create an additional font family
called pmnw. We read the respective base font and clear the slots of the capi-
tal letters using the metric file unsetcaps.mtx. After that we add the respec-
tive swash font and finally the expert font as usual. We employ t1j.etx to get
hanging figures by default. Our self-made metric file unsetcaps.mtx uses the
\unsetglyph command as follows:

\relax
\metrics
\unsetglyph{A}
\unsetglyph{B}
\unsetglyph{C}
...
\unsetglyph{X}
\unsetglyph{Y}
\unsetglyph{Z}
\endmetrics

We are merely clearing the slots of captial letters found in the English here.
Capital letters with an accent are not removed because the Minion swash set
does not provide accented swash capitals anyway. This means that all accented
capital letters will be taken from the ordinary italic font. In this particular case
ot1 encoding could be used as a workaround since this encoding constructs
accented letters from the English alphabet as discussed in tutorial i. So here is
the respective part of the file for ot1 encoding:

\installfonts
\installfamily{OT1}{pmnw}{}
\installfont{pmnriw9o}{pmnri8r,unsetcaps,pmnriw7a,pmnri8x,latin}{ot1j}{OT1}{pmnw}{m}{it}{}
\installfont{pmnsiw9o}{pmnsi8r,unsetcaps,pmnsiw7a,pmnsi8x,latin}{ot1j}{OT1}{pmnw}{sb}{it}{}
\endinstallfonts

Note that using a setup including ot1 encoding for one font family only will
require switching the encoding explicitly when selecting the swash fonts:

\fontencoding{OT1}\fontfamily{pmnw}\selectfont

The pmnw family as generated by fontinst will only cover two shapes in either
case. Since fontinst does not support family substitutions we cannot take the
missing shapes from pmnj in the fontinst file. We have to edit the respective font
definition file, t1pmnw.fd, after running fontinst. For t1 encoding it should
look as follows:

\ProvidesFile{t1pmnw.fd}
\DeclareFontFamily{T1}{pmnw}{}
\DeclareFontShape{T1}{pmnw}{m} {n} {<-> ssub * pmnj/m/n} {}
\DeclareFontShape{T1}{pmnw}{m} {sc}{<-> ssub * pmnj/m/sc} {}
\DeclareFontShape{T1}{pmnw}{m} {sl}{<-> ssub * pmnj/m/it} {}
\DeclareFontShape{T1}{pmnw}{m} {it}{<-> pmnriw9d} {}
\DeclareFontShape{T1}{pmnw}{m} {si}{<-> ssub * pmnj/m/si} {}
\DeclareFontShape{T1}{pmnw}{sb}{n} {<-> ssub * pmnj/sb/n} {}

 expert font sets, extended setup

\DeclareFontShape{T1}{pmnw}{sb}{sc}{<-> ssub * pmnj/sb/sc}{}
\DeclareFontShape{T1}{pmnw}{sb}{sl}{<-> ssub * pmnj/sb/it}{}
\DeclareFontShape{T1}{pmnw}{sb}{it}{<-> pmnsiw9d} {}
\DeclareFontShape{T1}{pmnw}{sb}{si}{<-> ssub * pmnj/sb/si}{}
\DeclareFontShape{T1}{pmnw}{b} {n} {<-> ssub * pmnj/b/n} {}
\DeclareFontShape{T1}{pmnw}{b} {sc}{<-> ssub * pmnj/b/sc} {}
\DeclareFontShape{T1}{pmnw}{b} {sl}{<-> ssub * pmnj/b/it} {}
\DeclareFontShape{T1}{pmnw}{b} {it}{<-> ssub * pmnj/b/it} {}
\DeclareFontShape{T1}{pmnw}{b} {si}{<-> ssub * pmnj/b/si} {}
\DeclareFontShape{T1}{pmnw}{eb}{n} {<-> ssub * pmnj/eb/n} {}
\DeclareFontShape{T1}{pmnw}{eb}{sc}{<-> ssub * pmnj/eb/sc}{}
\DeclareFontShape{T1}{pmnw}{eb}{sl}{<-> ssub * pmnj/eb/it}{}
\DeclareFontShape{T1}{pmnw}{eb}{it}{<-> ssub * pmnj/eb/it}{}
\DeclareFontShape{T1}{pmnw}{eb}{si}{<-> ssub * pmnj/eb/si}{}
\DeclareFontShape{T1}{pmnw}{bx}{n} {<-> ssub * pmnw/sb/n} {}
\DeclareFontShape{T1}{pmnw}{bx}{sc}{<-> ssub * pmnw/sb/sc}{}
\DeclareFontShape{T1}{pmnw}{bx}{sl}{<-> ssub * pmnw/sb/it}{}
\DeclareFontShape{T1}{pmnw}{bx}{it}{<-> ssub * pmnw/sb/it}{}
\DeclareFontShape{T1}{pmnw}{bx}{si}{<-> ssub * pmnw/sb/si}{}
\endinput

Only the pmnx family offers ts1 encoded fonts as the glyphs found in this en-
coding are identical across all font families. To make sure that all font families
work as expected, however, we need font definition files containing family sub-
stitutions which cannot be defined in a fontinst file. For the pmnj family:

\ProvidesFile{ts1pmnj.fd}
\DeclareFontFamily{TS1}{pmnj}{}
\DeclareFontShape{TS1}{pmnj}{m} {n} {<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmnj}{m} {sc}{<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmnj}{m} {sl}{<-> ssub * pmnx/m/sl} {}
\DeclareFontShape{TS1}{pmnj}{m} {it}{<-> ssub * pmnx/m/it} {}
\DeclareFontShape{TS1}{pmnj}{sb}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnj}{sb}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnj}{sb}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmnj}{sb}{it}{<-> ssub * pmnx/sb/it}{}
\DeclareFontShape{TS1}{pmnj}{b} {n} {<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmnj}{b} {sc}{<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmnj}{b} {sl}{<-> ssub * pmnx/b/sl} {}
\DeclareFontShape{TS1}{pmnj}{b} {it}{<-> ssub * pmnx/b/it} {}
\DeclareFontShape{TS1}{pmnj}{eb}{n} {<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmnj}{eb}{sc}{<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmnj}{eb}{sl}{<-> ssub * pmnx/eb/sl}{}
\DeclareFontShape{TS1}{pmnj}{eb}{it}{<-> ssub * pmnx/eb/it}{}
\DeclareFontShape{TS1}{pmnj}{bx}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnj}{bx}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnj}{bx}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmnj}{bx}{it}{<-> ssub * pmnx/sb/it}{}
\endinput

For the pmnw family:

\ProvidesFile{ts1pmnw.fd}
\DeclareFontFamily{TS1}{pmnw}{}
\DeclareFontShape{TS1}{pmnw}{m} {n} {<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmnw}{m} {sc}{<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmnw}{m} {sl}{<-> ssub * pmnx/m/sl} {}
\DeclareFontShape{TS1}{pmnw}{m} {it}{<-> ssub * pmnx/m/it} {}

the fontinst file 

\DeclareFontShape{TS1}{pmnw}{sb}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnw}{sb}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnw}{sb}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmnw}{sb}{it}{<-> ssub * pmnx/sb/it}{}
\DeclareFontShape{TS1}{pmnw}{b} {n} {<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmnw}{b} {sc}{<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmnw}{b} {sl}{<-> ssub * pmnx/b/sl} {}
\DeclareFontShape{TS1}{pmnw}{b} {it}{<-> ssub * pmnx/b/it} {}
\DeclareFontShape{TS1}{pmnw}{eb}{n} {<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmnw}{eb}{sc}{<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmnw}{eb}{sl}{<-> ssub * pmnx/eb/sl}{}
\DeclareFontShape{TS1}{pmnw}{eb}{it}{<-> ssub * pmnx/eb/it}{}
\DeclareFontShape{TS1}{pmnw}{bx}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnw}{bx}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmnw}{bx}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmnw}{bx}{it}{<-> ssub * pmnx/sb/it}{}
\endinput

For the pmn0 family:

\ProvidesFile{ts1pmn0.fd}
\DeclareFontFamily{TS1}{pmn0}{}
\DeclareFontShape{TS1}{pmn0}{m} {n} {<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmn0}{m} {sc}{<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmn0}{m} {sl}{<-> ssub * pmnx/m/sl} {}
\DeclareFontShape{TS1}{pmn0}{m} {it}{<-> ssub * pmnx/m/it} {}
\DeclareFontShape{TS1}{pmn0}{sb}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn0}{sb}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn0}{sb}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmn0}{sb}{it}{<-> ssub * pmnx/sb/it}{}
\DeclareFontShape{TS1}{pmn0}{b} {n} {<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmn0}{b} {sc}{<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmn0}{b} {sl}{<-> ssub * pmnx/b/sl} {}
\DeclareFontShape{TS1}{pmn0}{b} {it}{<-> ssub * pmnx/b/it} {}
\DeclareFontShape{TS1}{pmn0}{eb}{n} {<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmn0}{eb}{sc}{<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmn0}{eb}{sl}{<-> ssub * pmnx/eb/sl}{}
\DeclareFontShape{TS1}{pmn0}{eb}{it}{<-> ssub * pmnx/eb/it}{}
\DeclareFontShape{TS1}{pmn0}{bx}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn0}{bx}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn0}{bx}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmn0}{bx}{it}{<-> ssub * pmnx/sb/it}{}
\endinput

For the pmn1 family:

\ProvidesFile{ts1pmn1.fd}
\DeclareFontFamily{TS1}{pmn1}{}
\DeclareFontShape{TS1}{pmn1}{m} {n} {<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmn1}{m} {sc}{<-> ssub * pmnx/m/n} {}
\DeclareFontShape{TS1}{pmn1}{m} {sl}{<-> ssub * pmnx/m/sl} {}
\DeclareFontShape{TS1}{pmn1}{m} {it}{<-> ssub * pmnx/m/it} {}
\DeclareFontShape{TS1}{pmn1}{sb}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn1}{sb}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn1}{sb}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmn1}{sb}{it}{<-> ssub * pmnx/sb/it}{}
\DeclareFontShape{TS1}{pmn1}{b} {n} {<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmn1}{b} {sc}{<-> ssub * pmnx/b/n} {}
\DeclareFontShape{TS1}{pmn1}{b} {sl}{<-> ssub * pmnx/b/sl} {}

 expert font sets, extended setup

\DeclareFontShape{TS1}{pmn1}{b} {it}{<-> ssub * pmnx/b/it} {}
\DeclareFontShape{TS1}{pmn1}{eb}{n} {<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmn1}{eb}{sc}{<-> ssub * pmnx/eb/n} {}
\DeclareFontShape{TS1}{pmn1}{eb}{sl}{<-> ssub * pmnx/eb/sl}{}
\DeclareFontShape{TS1}{pmn1}{eb}{it}{<-> ssub * pmnx/eb/it}{}
\DeclareFontShape{TS1}{pmn1}{bx}{n} {<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn1}{bx}{sc}{<-> ssub * pmnx/sb/n} {}
\DeclareFontShape{TS1}{pmn1}{bx}{sl}{<-> ssub * pmnx/sb/sl}{}
\DeclareFontShape{TS1}{pmn1}{bx}{it}{<-> ssub * pmnx/sb/it}{}
\endinput

vi. Text ornaments

The Minion expert package includes a dedicated ornament font, pmnrp.pfb. As
discussed before in section iv., we do not really need fontinst when installing
symbol fonts. Since no reencoding is required and there are no virtual fonts,
afm2tfm is sufficient for the job:

afm2tfm pmnrp.afm pmnrp.tfm

Using the fonts with Latex requires a font definition file, though. Symbol fonts
are not based on any particular encoding, so we use the encoding code U (un-
coded, unknown) in this case. This is upmnp.fd:

\ProvidesFile{upmnp.fd}
\DeclareFontFamily{U}{pmnp}{}
\DeclareFontShape{U}{pmnp}{m}{n}{<-> pmnrp}{}
\endinput

vi. The map file

The map file for Minion is longer than the one in the last tutorial, but concep-
tually similar. Note that the sc & osf fonts are not required. They are included
here for reference only. The swash and ornament fonts were not reencoded,
hence their mapping is similar to that of expert fonts:

pmnr8r Minion-Regular "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnr8a.pfb
pmnri8r Minion-Italic "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnri8a.pfb
pmns8r Minion-Semibold "TeXBase1Encoding ReEncodeFont" <8r.enc <pmns8a.pfb
pmnsi8r Minion-SemiboldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnsi8a.pfb
pmnb8r Minion-Bold "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnb8a.pfb
pmnbi8r Minion-BoldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnbi8a.pfb
pmnc8r Minion-Black "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnc8a.pfb
pmnrc8r Minion-RegularSC "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnrc8a.pfb
pmnric8r Minion-ItalicSC "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnric8a.pfb
pmnsc8r Minion-SemiboldSC "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnsc8a.pfb
pmnsic8r Minion-SemiboldItalicSC "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnsic8a.pfb
pmnbj8r Minion-BoldOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnbj8a.pfb
pmnbij8r Minion-BoldItalicOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <pmnbij8a.pfb
pmncj8r Minion-BlackOsF "TeXBase1Encoding ReEncodeFont" <8r.enc <pmncj8a.pfb
pmnr8x MinionExp-Regular <pmnr8x.pfb
pmnri8x MinionExp-Italic <pmnri8x.pfb
pmns8x MinionExp-Semibold <pmns8x.pfb
pmnsi8x MinionExp-SemiboldItalic <pmnsi8x.pfb
pmnb8x MinionExp-Bold <pmnb8x.pfb

extending the user interface 

pmnbi8x MinionExp-BoldItalic <pmnbi8x.pfb
pmnc8x MinionExp-Black <pmnc8x.pfb
pmnriw7a Minion-SwashItalic <pmnriw7a.pfb
pmnsiw7a Minion-SwashSemiboldItalic <pmnsiw7a.pfb
pmnrp Minion-Ornaments <pmnrp.pfb

vi. Extending the user interface

Before creating a style file for Minion, we will update nfssext.sty one more
time to support its additional features. Support for swashes is easily added since
the framework is already in place. Therefore, the first part of the file does not
require any changes, we simply add support for swashes by defining \swstyle
in a similar vein (–):

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{nfssext}[2003/03/14 v1.2 Experimental NFSS Extensions]
₃ \newcommand*{\exfs@tempa}{}
₄ \newcommand*{\exfs@tempb}{}
₅ \newcommand*{\exfs@try@family}[2][]{%
₆ \let\exfs@tempa\relax
₇ \begingroup
₈ \fontfamily{#2}\try@load@fontshape
₉ \expandafter\ifx\csname\curr@fontshape\endcsname\relax

₁₀ \edef\exfs@tempa{#1}%
₁₁ \ifx\exfs@tempa\@empty
₁₂ \PackageWarning{nfssext}{%
₁₃ Font family ’\f@encoding/#2’ not available\MessageBreak
₁₄ Ignoring font switch}%
₁₅ \else
₁₆ \PackageInfo{nfssext}{%
₁₇ Font family ’\f@encoding/#2’ not available\MessageBreak
₁₈ Font family ’\f@encoding/#1’ tried instead}%
₁₉ \exfs@try@family{#1}%
₂₀ \fi
₂₁ \else
₂₂ \gdef\exfs@tempa{\fontfamily{#2}\selectfont}%
₂₃ \fi
₂₄ \endgroup
₂₅ \exfs@tempa}
₂₆ \def\exfs@get@base#1#2#3#4\@nil{#1#2#3}
₂₇ \DeclareRobustCommand{\lnstyle}{%
₂₈ \not@math@alphabet\lnstyle\relax
₂₉ \exfs@try@family[\expandafter\exfs@get@base\f@family\@nil]%
₃₀ {\expandafter\exfs@get@base\f@family\@nil x}}
₃₁ \DeclareRobustCommand{\osstyle}{%
₃₂ \not@math@alphabet\osstyle\relax
₃₃ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil j}}
₃₄ \DeclareRobustCommand{\instyle}{%
₃₅ \not@math@alphabet\instyle\relax
₃₆ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil 0}}
₃₇ \DeclareRobustCommand{\sustyle}{%
₃₈ \not@math@alphabet\sustyle\relax
₃₉ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil 1}}
₄₀ \DeclareRobustCommand{\swstyle}{%
₄₁ \not@math@alphabet\swstyle\relax
₄₂ \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil w}}

 expert font sets, extended setup

Adding thorough support for italic small caps is not quite as easy. The problem
is that the creators of the nfss apparently did not think of italic small caps
when putting italics and small caps in the same category. Since both variants
are on the shape axis of the nfss they are mutually exclusive. While this will
not keep us from using \fontshape to select italic small caps explicitly, nesting
\scshape and \itshape does not have the desired effect. When nested, these
macros simply override each other instead of switching to italic small caps. This
problem is not as exotic as it may seem because italic small caps are hardly
ever used explicitly. Typically, they come into play when small caps and italics
are mixed on the same line. For example, think of a page header which is set
in small caps, containing a highlighted word set in italics; or an italic section
heading with an acronym set in small caps. To work around this problem, we
will have to redefine a few nfss macros. But first of all, we will add a macro for
explicit switching to italic small caps.

₄₃ \newcommand*{\sidefault}{si}

Note that the nfss does not use fixed shape codes like it and sc for the italic
and the small caps shape, but rather macros like \itdefault and \scdefault.
We will handle italic small caps in a similar way by defining \sidefault, which
defaults to si. Now let’s define \sishape for explicit switching to italic small
caps:

₄₄ \DeclareRobustCommand{\sishape}{%
₄₅ \not@math@alphabet\sishape\relax
₄₆ \fontshape\sidefault\selectfont}

While we are able to typeset italic small caps by selecting them explicitly, macros
like \itshape and \scshape will simply ignore the new shape. Let’s redefine
these macros to make them take advantage of italic small caps transparently. In
order to do so, we need a macro that will merge properties of the shape axis,
thereby allowing us to treat italics and small caps as if they were not on the same
axis:

₄₇ \newcommand*{\exfs@merge@shape}[3]{%
₄₈ \edef\exfs@tempa{#1}%
₄₉ \edef\exfs@tempb{#2}%
₅₀ \ifx\f@shape\exfs@tempb
₅₁ \expandafter\ifx\csname\f@encoding/\f@family/\f@series/#3\endcsname\relax
₅₂ \else
₅₃ \edef\exfs@tempa{#3}%
₅₄ \fi
₅₅ \fi
₅₆ \fontshape{\exfs@tempa}\selectfont}

This macro will switch to the font shape given as the first argument unless the
current shape is identical to the one indicated by the second argument. In this
case it will switch to the shape designated by the third argument instead, pro-
vided that it is available for the current font family. With this macro at hand we
redefine \itshape:

extending the user interface 

₅₇ \DeclareRobustCommand{\itshape}{%
₅₈ \not@math@alphabet\itshape\mathit
₅₉ \exfs@merge@shape{\itdefault}{\scdefault}{\sidefault}}

Essentially, \itshape will switch to the font shape it unless the current shape
is sc, in which case it will switch to si instead, provided that si is available.
\scshape does it the other way around:

₆₀ \DeclareRobustCommand{\scshape}{%
₆₁ \not@math@alphabet\scshape\relax
₆₂ \exfs@merge@shape{\scdefault}{\itdefault}{\sidefault}}

We also redefine \upshape to make it switch to sc instead of n if the current
shape is si:

₆₃ \DeclareRobustCommand{\upshape}{%
₆₄ \not@math@alphabet\upshape\relax
₆₅ \exfs@merge@shape{\updefault}{\sidefault}{\scdefault}}

If no italic small caps are available, all of these macros will behave like they did
before, making them suitable for global use. While we are at it, we also define a
new macro, \dfshape, that will reset the current shape to the default (n unless
\shapedefault has been redefined) regardless of the current shape:

₆₆ \DeclareRobustCommand{\dfshape}{%
₆₇ \not@math@alphabet\dfshape\relax
₆₈ \fontshape\shapedefault\selectfont}

Before we add text commands for our new font switches, there is still one thing
left to do. The macro \swstyle, which we have defined above (–), will
switch to the the font family providing italic swashes (for example, pmnw). How-
ever, it will not activate the italic shape. It would be convenient to have a macro
which takes care of all of that. We first create an auxiliary macro holding the
shape which provides the actual swashes:

₆₉ \newcommand*{\swshapedefault}{\itdefault}

Then we create a macro which will call \swstyle and select the shape providing
the italic swashes in one shot:

₇₀ \DeclareRobustCommand{\swshape}{%
₇₁ \not@math@alphabet\swshape\relax
₇₂ \swstyle\fontshape\swshapedefault\selectfont}

Finally, we add text commands for our new font switches:

₇₃ \DeclareTextFontCommand{\textln}{\lnstyle}
₇₄ \DeclareTextFontCommand{\textos}{\osstyle}
₇₅ \DeclareTextFontCommand{\textin}{\instyle}
₇₆ \DeclareTextFontCommand{\textsu}{\sustyle}
₇₇ \DeclareTextFontCommand{\textsi}{\sishape}
₇₈ \DeclareTextFontCommand{\textdf}{\dfshape}
₇₉ \DeclareTextFontCommand{\textsw}{\swshape}

As far as text is concerned, all features of Minion are readily available at this
point. Using the ornaments would still require low-level commands, though.

 expert font sets, extended setup

vi. A high-level interface for ornaments

Technically, ornament fonts are comparable to the euro fonts discussed in sec-
tion iv.. To typeset the first ornament of Minion, for example, we could use
the following construct:

{\usefont{U}{pmnp}{m}{n}\char 97}

As this is rather awkward and requires looking at the afm file to find out the
encoding slot of each ornament, we will implement a higher-level solution. The
problem is that ornament fonts do not conform to any encoding, so there is
no standard we could rely on as far as the order of the glyphs in the font is
concerned. We have to provide this information explicity in minion.sty. To
facilitate this, we define the following macro:

₈₀ \newcommand*{\DeclareTextOrnament}[7]{%
₈₁ \expandafter\def\csname#1@orn\@roman#2\endcsname{#3/#4/#5/#6/#7}}

To declare the first ornament of Minion, this macro would be employed as fol-
lows:

\DeclareTextOrnament{pmn}{1}{U}{pmnp}{m}{n}{97}

We use the first three letters of the font family name as an identifier (pmn) and
assign a number ( in this case) to the ornament defined by the remaining argu-
ments. These arguments form a complete font declaration with a syntax similar
to that of the nfss macro \DeclareFontShape. The last argument is the encod-
ing slot of the ornament ( here) as given in the afm file. You might wonder
why we use a complete font declaration here. Since all ornaments are located
in the same font, using the same encoding, series, and shape, this seems to be
redundant. In this case, this is actually true. The problem is that ornaments are
not neccessarily provided in dedicated fonts. Adobe Garamond, for example,
comes with ornaments which are included in some of the alternate text fonts
so we use a complete declaration for maximum flexibility. Internally, the or-
naments are saved in a format modeled after the way the nfss handles font
shapes. When typesetting an ornament later, we need a macro to parse this font
declaration:

₈₂ \begingroup
₈₃ \catcode‘\/=12
₈₄ \gdef\exfs@split@orndef#1/#2/#3/#4/#5\@nil{%
₈₅ \def\f@encoding{#1}%
₈₆ \def\f@family{#2}%
₈₇ \def\f@series{#3}%
₈₈ \def\f@shape{#4}%
₈₉ \def\exfs@tempa{#5}}
₉₀ \endgroup

Since we use the base of the font family name as an identifier, we also need a
macro that expands to the first three letters of the current font family:

₉₁ \def\exfs@base@family{\expandafter\exfs@get@base\f@family\@nil}

the style file 

Now we can finally implement a user macro that actually typesets the orna-
ment. We will simply call it \ornament:

₉₂ \DeclareRobustCommand{\ornament}[1]{%
₉₃ \expandafter\ifx\csname\exfs@base@family @orn\@roman#1\endcsname\relax
₉₄ \PackageWarning{nfssext}{%
₉₅ Ornament #1 undefined for font family ’\exfs@base@family’\MessageBreak
₉₆ Setting debug mark}%
₉₇ \rule{1ex}{1ex}%
₉₈ \else
₉₉ \begingroup

₁₀₀ \edef\exfs@tempb{\csname\exfs@base@family @orn\@roman#1\endcsname}%
₁₀₁ \expandafter\expandafter\expandafter\exfs@split@orndef
₁₀₂ \expandafter\string\exfs@tempb\@nil
₁₀₃ \selectfont\char\exfs@tempa
₁₀₄ \endgroup
₁₀₅ \fi}
₁₀₆ \endinput

First of all, we check if the desired ornament has been declared () and issue
a warning if not (–). We also typeset a mark () to facilitate debugging in
this case. If it has been declared, we expand and parse the declaration (–),
switch fonts, and typeset the ornament (). We use a group to keep the font
change local.

vi. The style file

The style file for Minion is similar to the ones suggested in section iii. and v..
The only difference is the declaration of the text ornaments. This is the first part
of minion.sty:

₁ \NeedsTeXFormat{LaTeX2e}
₂ \ProvidesPackage{minion}[2003/03/25 v1.0 Adobe Minion]
₃ \RequirePackage[T1]{fontenc}
₄ \RequirePackage{textcomp}
₅ \RequirePackage{nfssext}
₆ \DeclareOption{oldstyle}{\renewcommand*{\rmdefault}{pmnj}}
₇ \DeclareOption{lining}{\renewcommand*{\rmdefault}{pmnx}}
₈ \ExecuteOptions{oldstyle}
₉ \ProcessOptions

When declaring the text ornaments, we take the encoding slot numbers from
the respective afm file:

C 97 ; WX 885 ; N ornament1 ; B 50 -65 835 744 ;
C 98 ; WX 1036 ; N ornament2 ; B 50 4 986 672 ;
C 99 ; WX 1066 ; N ornament3 ; B 50 -106 1016 745 ;
C 100 ; WX 866 ; N ornament4 ; B 50 98 816 534 ;
C 101 ; WX 390 ; N ornament5 ; B 50 86 341 550 ;

We add a declaration for each ornament:

₁₀ \DeclareTextOrnament{pmn}{1}{U}{pmnp}{m}{n}{97}
₁₁ \DeclareTextOrnament{pmn}{2}{U}{pmnp}{m}{n}{98}
₁₂ \DeclareTextOrnament{pmn}{3}{U}{pmnp}{m}{n}{99}
₁₃ \DeclareTextOrnament{pmn}{4}{U}{pmnp}{m}{n}{100}
₁₄ \DeclareTextOrnament{pmn}{5}{U}{pmnp}{m}{n}{101}

 expert font sets, extended setup

₁₅ \DeclareTextOrnament{pmn}{6}{U}{pmnp}{m}{n}{102}
₁₆ \DeclareTextOrnament{pmn}{7}{U}{pmnp}{m}{n}{103}
₁₇ \DeclareTextOrnament{pmn}{8}{U}{pmnp}{m}{n}{104}
₁₈ \DeclareTextOrnament{pmn}{9}{U}{pmnp}{m}{n}{105}
₁₉ \DeclareTextOrnament{pmn}{10}{U}{pmnp}{m}{n}{106}
₂₀ \DeclareTextOrnament{pmn}{11}{U}{pmnp}{m}{n}{107}
₂₁ \DeclareTextOrnament{pmn}{12}{U}{pmnp}{m}{n}{108}
₂₂ \DeclareTextOrnament{pmn}{13}{U}{pmnp}{m}{n}{109}
₂₃ \DeclareTextOrnament{pmn}{14}{U}{pmnp}{m}{n}{110}
₂₄ \DeclareTextOrnament{pmn}{15}{U}{pmnp}{m}{n}{111}
₂₅ \DeclareTextOrnament{pmn}{16}{U}{pmnp}{m}{n}{112}
₂₆ \DeclareTextOrnament{pmn}{17}{U}{pmnp}{m}{n}{113}
₂₇ \DeclareTextOrnament{pmn}{18}{U}{pmnp}{m}{n}{114}
₂₈ \DeclareTextOrnament{pmn}{19}{U}{pmnp}{m}{n}{115}
₂₉ \DeclareTextOrnament{pmn}{20}{U}{pmnp}{m}{n}{116}
₃₀ \DeclareTextOrnament{pmn}{21}{U}{pmnp}{m}{n}{117}
₃₁ \DeclareTextOrnament{pmn}{22}{U}{pmnp}{m}{n}{118}
₃₂ \DeclareTextOrnament{pmn}{23}{U}{pmnp}{m}{n}{119}
₃₃ \endinput

As mentioned before, Adobe Garamond features ornaments in the alternate
text fonts, requiring a complete font declaration. In this case, the definitions
would look as follows:

\DeclareTextOrnament{pad}{1}{U}{pada}{m}{n}{49}
\DeclareTextOrnament{pad}{2}{U}{pada}{m}{n}{50}
\DeclareTextOrnament{pad}{3}{U}{pada}{m}{it}{49}

Note that the ornament macro is deliberately designed to be sensitive to the
active font family. When using Minion as text font, \ornament{1} will typeset
the symbol a. When using Adobe Garamond, the same command sequence
will typeset 1 instead. If you would like to use these text ornaments in a font
independent manner, simply switch font families explicitly, adding extra braces
to keep the font change local:

{\fontfamily{pmnx}\selectfont\ornament{1}}

Which Minion font family you select (for example, pmnx or pmnj) does not
matter, but it has to be a known one, that is, there has to be a font definition
file corresponding to the active text encoding in addition to the one for the
ornament font. Note that, since the ornament declarations are given in the style
file, you also need to load the respective package in the document preamble.
For example, if you would like to typeset a document in Sabon and make use
of some Minion text ornaments, you might do the following:

\documentclass...
\usepackage{minion}
\usepackage{sabon}
...
\begin{document}
...
Text in Sabon
...
{\fontfamily{pmnx}\selectfont\ornament{1}}

the style file 

Apart from that, you can always go back to lower-level commands which merely
depend on a font definition file (upmnp.fd and upada.fd here) for the respec-
tive ornament font:

{\usefont{U}{pmnp}{m}{n}\char 97}
{\usefont{U}{pada}{m}{n}\char 49}

code tables

The tables on the following pages are intended to give an idea of how the codes
of the Fontname scheme relate to those used by Latex’s font selection scheme
(nfss). The Fontname codes are what we use when renaming the font files
during the installation while the nfss codes are what we need when select-
ing a certain font under Latex later. Sticking to the nfss codes listed below
is not a technical requirement for a functional font installation. When using
the \latinfamily macro, fontinst will indeed use these nfss codes. When
employing low-level fontinst commands, however, the nfss font declaration
is controlled by the last five arguments of the \installfont command. In the-
ory, we could use an arbitrary code and the nfss would handle that just fine.
It is still highly recommended to stick to these codes to avoid confusion and
incompatibility. Two dashes in one of the table cells indicate that there is no
customary code for this font property in the respective scheme whereas a blank
cell means that the code is omitted. Properties which are not catered for by the
\latinfamily macro are marked with an asterisk in the last column.

Please note that Fontname codes and nfss codes cannot be mapped on
a one-to-one basis in all cases since the two schemes are rather different in
concept. Weights and widths, which are treated separately by the Fontname
scheme, need to be concatenated and handled as a ‘series’ when using the nfss
since the latter does not have independent categories (‘axes’) for weight and
width. The ‘variant’ category of the Fontname scheme on the other hand, which
embraces several different properties including shapes like italics as well as spe-
cial glyph sets such as small caps or alternative figures, does not correspond
to a single nfss axis. Some variants, like italics and small caps for example,
are mapped to the ‘shape’ axis of the nfss. Others, such as alternative figures,
are handled in completely different ways. Table  lists variants corresponding to
the most common nfss shapes only. When looking at the documentation of the
Fontname scheme, you will find a lot more variant codes not mentioned here.
Although they are used for file naming, they do not, or, at least do not neces-
sarily correspond to a customary nfss shape. Hanging, inferior, and superior
numbers (Fontname codes j, 0, and 1), for example, are treated as ‘variants’ by
the Fontname scheme but they are usually implemented as independent font
families on the level of the nfss. For the encodings listed in table  the situation
is similar. For example, a virtual font in t1 encoding featuring expert glyphs is
indicated by adding 9e to the file name. However, on the level of the nfss the
encoding code is T1 for all t1 encoded fonts and the fact that the font provides
expert glyphs is expressed by adding the letter x to the font family name.



 code tables

weight fontname code nfss series

ultra light, thin, hairline a ul*
extra light j el*
light l l
book k m
regular r m
medium m mb
demibold d db
semibold s sb
bold b b
heavy h eb
black c eb
extra bold, extra black x eb
ultra bold, ultra black u ub
poster p --*

Table 3: Codes for font weights

width fontname code nfss series

ultra compressed u uc*
ultra condensed o uc*
extra compressed, extra condensed q ec*
compressed p c*
condensed c c*
narrow n c
regular
extended x x*
expanded e x*
extra expanded v ex*
ultra expanded -- ux*
wide w --*

Table 4: Codes for font widths

variant fontname code nfss shape

normal, upright, roman n
italic i it
oblique, slanted o sl
small caps c sc
italic small caps ic si*
upright italic -- ui*
outline l ol*

Table 5: Codes for font variants

code tables 

encoding fontname code nfss encoding

Adobe Standard 8a 8a
Expert 8x 8x
Tex Base  8r 8r
Tex Text 7t OT1
Tex Tex with expert set 9t OT1
Tex Text with expert set and osf 9o OT1
Cork 8t T1
Cork with expert set 9e T1
Cork with expert set and osf 9d T1
Text Companion 8c TS1
Text Companion with expert set 9c TS1

Table 6: Codes for font encodings

the gnu free
documentation license

Version ., November 

Copyright © , ,  Free Software Foundation, Inc.
 Temple Place, Suite , Boston, ma - usa

. Preamble

The purpose of this license is to make a manual, textbook, or other functional
and useful document ‘free’ in the sense of freedom: to assure everyone the ef-
fective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this license preserves for the
author and publisher a way to get credit for their work, while not being consid-
ered responsible for modifications made by others.

This license is a kind of ‘copyleft’, which means that derivative works of the
document must themselves be free in the same sense. It complements the gnu
General Public License, which is a copyleft license designed for free software.

We have designed this license in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
license is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this license principally for works whose purpose is instruction or
reference.

. Applicability and definitions

This license applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the
terms of this license. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The
document, below, refers to any such manual or work. Any member of the public
is a licensee, and is addressed as you. You accept the license if you copy, modify
or distribute the work in a way requiring permission under copyright law.

A modified version of the document means any work containing the docu-
ment or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A secondary section is a named appendix or a front-matter section of the
document that deals exclusively with the relationship of the publishers or au-
thors of the document to the document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus,
if the document is in part a textbook of mathematics, a secondary section may



 the gnu free documentation license

not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The invariant sections are certain secondary sections whose titles are des-
ignated, as being those of invariant sections, in the notice that says that the
document is released under this license. If a section does not fit the above def-
inition of secondary then it is not allowed to be designated as invariant. The
document may contain zero invariant sections. If the document does not iden-
tify any invariant sections then there are none.

The cover texts are certain short passages of text that are listed, as front-cover
texts or back-cover texts, in the notice that says that the document is released
under this license. A front-cover text may be at most five words, and a back-
cover text may be at most  words.

A transparent copy of the document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text for-
matters. A copy made in an otherwise transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not transparent. An image format is not transparent
if used for any substantial amount of text. A copy that is not ‘transparent’ is
called ‘opaque’.

Examples of suitable formats for transparent copies include plain Ascii
without markup, Texinfo input format, Latex input format, sgml or xml us-
ing a publicly available dtd, and standard-conforming simple html, Postscript
or pdf designed for human modification. Examples of transparent image for-
mats include png, xcf and jpg. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, sgml or xml
for which the dtd and/or processing tools are not generally available, and the
machine-generated html, Postscript or pdf produced by some word processors
for output purposes only.

The title page means, for a printed book, the title page itself, plus such fol-
lowing pages as are needed to hold, legibly, the material this license requires to
appear in the title page. For works in formats which do not have any title page
as such, ‘title page’ means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section entitled xyz means a named subunit of the document whose title
either is precisely xyz or contains xyz in parentheses following text that trans-
lates xyz in another language. (Here xyz stands for a specific section name
mentioned below, such as ‘Acknowledgements’, ‘Dedications’, ‘Endorsements’,
or ‘History’.) To ‘preserve the title’ of such a section when you modify the docu-

the gnu free documentation license 

ment means that it remains a section ‘entitled xyz’ according to this definition.
The document may include warranty disclaimers next to the notice which

states that this license applies to the document. These warranty disclaimers are
considered to be included by reference in this license, but only as regards dis-
claiming warranties: any other implication that these warranty disclaimers may
have is void and has no effect on the meaning of this license.

. Verbatim copying

You may copy and distribute the document in any medium, either commer-
cially or noncommercially, provided that this license, the copyright notices, and
the license notice saying this license applies to the document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this li-
cense. You may not use technical measures to obstruct or control the reading or
further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section .

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

. Copying in quantity

If you publish printed copies (or copies in media that commonly have printed
covers) of the document, numbering more than , and the document’s li-
cense notice requires cover texts, you must enclose the copies in covers that
carry, clearly and legibly, all these cover texts: front-cover texts on the front
cover, and back-cover texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute opaque copies of the document numbering
more than , you must either include a machine-readable transparent copy
along with each opaque copy, or state in or with each opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete transparent
copy of the document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of opaque
copies in quantity, to ensure that this transparent copy will remain thus acces-
sible at the stated location until at least one year after the last time you distribute
an opaque copy (directly or through your agents or retailers) of that edition to

 the gnu free documentation license

the public.
It is requested, but not required, that you contact the authors of the doc-

ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the document.

. Modifications

You may copy and distribute a modified version of the document under the
conditions of sections  and  above, provided that you release the modified
version under precisely this license, with the modified version filling the role
of the document, thus licensing distribution and modification of the modified
version to whoever possesses a copy of it. In addition, you must do these things
in the modified version:

a. Use in the title page (and on the covers, if any) a title distinct from that of
the document, and from those of previous versions (which should, if there
were any, be listed in the history section of the document). You may use the
same title as a previous version if the original publisher of that version gives
permission.

b. List on the title page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the modified version, together
with at least five of the principal authors of the document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

c. State on the title page the name of the publisher of the modified version, as
the publisher.

d. Preserve all the copyright notices of the document.
e. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.
f. Include, immediately after the copyright notices, a license notice giving the

public permission to use the modified version under the terms of this li-
cense.

g. Preserve in that license notice the full lists of invariant sections and required
cover texts given in the document’s license notice.

h. Include an unaltered copy of this license.
i. Preserve the section entitled ‘History’, preserve its title, and add to it an item

stating at least the title, year, new authors, and publisher of the modified
version as given on the title page. If there is no section entitled ‘History’
in the document, create one stating the title, year, authors, and publisher
of the document as given on its title page, then add an item describing the
modified version as stated in the previous sentence.

j. Preserve the network location, if any, given in the document for public ac-
cess to a transparent copy of the document, and likewise the network lo-
cations given in the document for previous versions it was based on. These

the gnu free documentation license 

may be placed in the ‘History’ section. You may omit a network location for
a work that was published at least four years before the document itself, or
if the original publisher of the version it refers to gives permission.

k. For any section entitled ‘Acknowledgements’ or ‘Dedications’, preserve the
title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given there-
in.

l. Preserve all the invariant sections of the document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

m. Delete any section entitled ‘Endorsements’. Such a section may not be in-
cluded in the modified version.

n. Do not retitle any existing section to be entitled ‘Endorsements’ or to con-
flict in title with any invariant section.

o. Preserve any warranty disclaimers.

If the modified version includes new front-matter sections or appendices
that qualify as secondary sections and contain no material copied from the
document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of invariant sections in the mod-
ified version’s license notice. These titles must be distinct from any other section
titles.

You may add a section entitled ‘Endorsements’, provided it contains nothing
but endorsements of your modified version by various parties – for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a front-cover text, and a pas-
sage of up to  words as a back-cover text, to the end of the list of cover texts
in the modified version. Only one passage of front-cover text and one of back-
cover text may be added by (or through arrangements made by) any one entity.
If the document already includes a cover text for the same cover, previously
added by you or by arrangement made by the same entity you are acting on be-
half of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the document do not by this license give
permission to use their names for publicity for or to assert or imply endorse-
ment of any modified version.

. Combining documents

You may combine the document with other documents released under this li-
cense, under the terms defined in section  above for modified versions, pro-
vided that you include in the combination all of the invariant sections of all of
the original documents, unmodified, and list them all as invariant sections of

 the gnu free documentation license

your combined work in its license notice, and that you preserve all their war-
ranty disclaimers.

The combined work need only contain one copy of this license, and multi-
ple identical invariant sections may be replaced with a single copy. If there are
multiple invariant sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of
invariant sections in the license notice of the combined work.

In the combination, you must combine any sections entitled ‘History’ in
the various original documents, forming one section entitled ‘History’; likewise
combine any sections entitled ‘Acknowledgements’, and any sections entitled
‘Dedications’. You must delete all sections entitled ‘Endorsements.’

. Collections of documents

You may make a collection consisting of the document and other documents
released under this license, and replace the individual copies of this license in
the various documents with a single copy that is included in the collection,
provided that you follow the rules of this license for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this license, provided you insert a copy of this license into
the extracted document, and follow this license in all other respects regarding
verbatim copying of that document.

. Aggregation with independent works

A compilation of the document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, is called an ‘aggregate’ if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the document is included in an aggregate,
this license does not apply to the other works in the aggregate which are not
themselves derivative works of the document.

If the cover text requirement of section  is applicable to these copies of the
document, then if the document is less than one half of the entire aggregate,
the document’s cover texts may be placed on covers that bracket the document
within the aggregate, or the electronic equivalent of covers if the document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate.

. Translation

Translation is considered a kind of modification, so you may distribute transla-
tions of the document under the terms of section . Replacing invariant sections

the gnu free documentation license 

with translations requires special permission from their copyright holders, but
you may include translations of some or all invariant sections in addition to
the original versions of these invariant sections. You may include a translation
of this license, and all the license notices in the document, and any warranty
disclaimers, provided that you also include the original English version of this
license and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this license or
a notice or disclaimer, the original version will prevail.

If a section in the document is entitled ‘Acknowledgements’, ‘Dedications’,
or ‘History’, the requirement (section ) to preserve its title (section ) will typ-
ically require changing the actual title.

. Termination

You may not copy, modify, sublicense, or distribute the document except as
expressly provided for under this license. Any other attempt to copy, modify,
sublicense or distribute the document is void, and will automatically terminate
your rights under this license. However, parties who have received copies, or
rights, from you under this license will not have their licenses terminated so
long as such parties remain in full compliance.

. Future revisions of this license

The Free Software Foundation may publish new, revised versions of the gnu
Free Documentation License from time to time. Such new versions will be sim-
ilar in spirit to the present version, but may differ in detail to address new prob-
lems or concerns.¹

Each version of the license is given a distinguishing version number. If the
document specifies that a particular numbered version of this license “or any
later version” applies to it, you have the option of following the terms and con-
ditions either of that specified version or of any later version that has been pub-
lished (not as a draft) by the Free Software Foundation. If the document does
not specify a version number of this license, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

 http://www.gnu.org/copyleft/

revision history

1.23 2003-08-31 Added tables  and  to section i.
Revised section i., adding note about Latin Modern
Revised section i.

1.20 2003-07-17 Added preliminary hints concerning fontinst . to section iv.
Fixed problem with nfssext.sty (sections iii., v., and vi.)
Improved support for swashes in nfssext.sty (section vi.)
Revised discussion of ornaments in section vi.
Revised discussion of swashes in section vi.
Added spelling corrections by William Adams
Added spelling corrections by Adrian Burd

1.10 2003-03-27 Added gnu Free Documentation License to the appendix
Added explicit licensing clause

1.00 2003-03-25 Final release for fontinst .
Added tutorial vi
Updated notes on contributions

0.80 2003-03-23 Added spelling corrections and suggestions by Timothy Eyre
Revised section i., splitting off section i.
Added section iii.
Updated notes on contributions

0.68 2003-02-09 Revised section iv.
Updated notes on contributions

0.66 2003-01-26 Added highlighting to code listings
0.65 2003-01-19 Added spelling corrections by Adrian Heathcote

Added spelling corrections by William Adams
Added section ii.
Revised section ii.
Revised introduction

0.60 2003-01-11 Revised tutorial iii
Added discussion of kerning issues to section iii.

0.54 2003-01-04 Revised discussion of ot1 encoding in tutorial i
Added minor changes to code tables

0.52 2003-01-02 Added code table  to appendix
Revised note on code tables in appendix

0.50 2002-12-30 Added tutorial v
Added code tables , , and  to appendix
Added revision history

0.43 2002-10-25 First public pre-release featuring tutorials i–iv
Added installation instructions to section iv.
Added section iv.

0.40 2002-08-11 Added tutorial iv
0.30 2002-05-12 Added tutorial iii
0.20 2002-04-17 Unreleased draft including tutorials i and ii



