
32 MAPS 31 Brooks Moses

MetaPlot, MetaContour, and Other
Collaborations with MetaPost

Abstract
Most methods of creating plots in MetaPost work by
doing all of their calculations in MetaPost, or by doing
all of their calculations in a preprocessing program.
There are advantages to dividing the work more
equitably by doing the mathematical and
data-visualization calculations in a preprocessing
program and doing the graphical and layout
calculations in MetaPost. The MetaPlot package
provides a standard, flexible, interface for
accomplishing such a collaboration between programs,
and includes a general-purpose set of formatting
macros that are applicable to a wide range of plot
types. Examples are shown of linear plots with
idiosyncratic annotation and two-dimensional contour
plots with lines and filled contours on a non-cartesian
mesh.

Introduction

One of the challenges of scientific writing in TEX (or
in LaTEX) is producing figures that are of comparable
quality to the typesetting. These figures often in-
clude plots and graphs that represent mathematically-
intense visualization of large data files, implying that
some form of specialized program must be used to cre-
ate them. They also typically contain labels, notes,
and other text that should be typeset in a manner con-
sistent the rest of the document, which requires using
TEX’s typesetting engine.

Traditionally, programs that meet these goals have
taken one of two approaches. The first approach, used
by programs such as ePiX[1] and Gnuplot[2], is to
implement the program in a “traditional” program-
ming language such as C++ or FORTRAN, and produce
the complete figure as output in TEX/eepic or Meta-
Post code, which is then postprocessed. The other
approach, taken by MetaPost’s graph package and
m3D[3], is to implement the program directly in Meta-
Post’s macro language.

There are advantages and tradeoffs related to both
of these approaches. Programming in MetaPost allows
one to work directly with the language features such as
declarative equations and ability to measure the size of
typeset text, and thus allow the user to specify the fig-

ure layout in an intuitive, simple, and flexible manner.
However, programming in a traditional language al-
lows one to write mathematically-intensive programs
that use floating-point numbers and can be compiled
rather than run slowly through an interpreter; in ad-
dition, it may allow one to take advantage of existing
visualization libraries, or to provide an interactive user
interface.

This paper describes an intermediate approach,
which combines benefits from MetaPost programs and
programs in more traditional languages. The initial
data processing is done with a program written in a
traditional language, which produces a MetaPost out-
put file containing the processed data in an encapsu-
lated form. This processed data is then fed into a set of
MetaPost formatting macros, and the scaling, drawing,
and annotation of the plots is all done by user-written
commands within MetaPost.

Creating plots in two steps in this manner has sev-
eral advantages: The initial data visualization can be
done in a special-purpose program that uses a pro-
gramming language and code libraries intended for
substantial computations, without the need to imple-
ment more than a very simple output routine; the
MetaPost macros for formatting plots and arranging
them within a figure are largely independent of the
details of the plots they are working with, and can be
written in a generic manner suitable for widespread
distribution; and the layout of any given figure can be
done using the same processes as for a native-MetaPost
drawing.

A Simple Example

Consider, by way of example, a plot of the shape of a
meniscus formed by a liquid surface meeting a solid
wall as shown in Figure 1. The surface curve is given
by a somewhat complicated expression involving in-
verse hyperbolic cosines,1 and is representative of cal-
culations that would be easier to do with a traditional
programming language.

The C++ program to produce this curve in a Meta-
Post format is straightforward. The most complicated
part is the function to generate a string containing a

MetaPlot, MetaContour, and Other Collaborations with MetaPost NAJAAR 2004 33

MetaPost representation of a point, which we accom-
plish using the <sstream> standard library.

string mpoint(double x, double y) {
ostringstream pointstring;
pointstring.setf(ios_base::fixed,

ios_base::floatfield);
pointstring.precision(5);
pointstring << ’(’ << x << ’,’ << y << ’)’;
return pointstring.str();

}

The setf and precision commands set the numeric
format for the stream (fixed-precision, five decimal
places), and then the coordinates are fed into the
stringstream with the appropriate punctuation, produ-
cing a result like (0.01556,0.75006).

Given this and a capillary() function that computes
the equation for the surface, creating the MetaPost
command for the curve is simply a matter of looping
through the points and dumping them to the standard
output, with appropriate text before and after the loop
to define the picture variable and close the curve into
a cyclic path.

int main() {
double theta = pi/4.0;
double d = 1.0;
double h = sqrt(2.0 ∗ d∗d ∗ (1.0 − sin(theta)));
double y, z;

cout << "picture capillary;\n";
cout << "capillary := nullpicture;\n";
cout << "addto capillary contour "

<< mpoint(0.0, h);
for(int i = 99; i > 2; i--) {

z = (i/100.0) ∗ h;
y = capillary(z,h,d);
cout << " .. " << mpoint(y, z);

}
cout << " -- " << mpoint(y, −0.5);
cout << " -- " << mpoint(0.0, −0.5);
cout << " -- cycle;\n";

}

This produces the following MetaPost code as output:

picture capillary; capillary := nullpicture;
addto capillary contour (0.00000,0.76537)
.. (0.00772,0.75771) .. (0.01556,0.75006)

% [...and so forth...]
.. (3.39322,0.02296) -- (3.39322,-0.50000)
-- (0.00000,-0.50000) -- cycle;

We can then follow this with additional MetaPost
commands, which scale it to an appropriate size for
printing on the page and draw axes and labels on it,
in order to produce the plot shown in Figure 1.

z

y
θ

Figure 1. A capillary surface on a liquid touching a solid
wall, after Batchelor [4].

beginfig(1)
draw (capillary scaled 0.5in) withcolor

0.85white;
linecap := butt;
pickup pencircle scaled 1pt;
drawarrow (0,−0.25in) -- (0, 0.5in);
label.top(btex z etex,(0, 0.5in));
x1 := (xpart(lrcorner capillary) ∗ 0.5in, 0)

+ (0.1in, 0);
drawarrow (0,0) -- x1;
label.rt(btex y etex, x1);
pickup pencircle scaled 0.25pt;
x2 := ulcorner capillary scaled 0.5in;
draw ((0,0) -- (0.24in, −0.24in)) shifted x2;
label(btex θ etex,

x2 + (0.07in, −0.18in)));
endfig;
end

Although this example produces a perfectly serviceable
result, it has some noteworthy drawbacks. The scale
factor of 0.5in does not have a clear relationship to the
size of the plot, and producing a plot of a particular
size would require measurement of the capillary pic-
ture and explicit computation of the scale factor. The
locations of the annotations are likewise determined
by explicit measurement, or by being typed in directly.
If we were to change one of the parameters in the C++

program and re-run it, many of the values in the Meta-
Post code would need to be changed as well.

A more general example: the MetaPlot package

The MetaPlot package is designed to address many of
the shortcomings of the example given in Section 2. It
provides a consistent way of transferring the plot com-
mands and associated metadata from the generating
program into MetaPost, and direct handles for manipu-
lating the plots within MetaPost using its normal idiom
of declarative equations rather than procedural assign-
ments.

To accomplish this in a general manner, we define
two types of MetaPost data structures: plot objects and
plot instances. A plot object is a plot “in the abstract”,
containing paths, filled contours, and metadata that
make up the plot (or a set of related plots), represen-

34 MAPS 31 Brooks Moses

ted in a manner that is independent of the details of
how the plot is positioned. By contrast, a plot instance
is a plot “on the page,” containing parameters for the
scaling and positioning of a given plot, and a reference
to a parent plot object that gives the actual pictures to
be drawn.

A typical preamble for a figure using MetaPlot will
consist of an input metaplot command to load the
MetaPlot macros, an input command to load the Meta-
Post file that contains the plot objects (typically an out-
put file from the preprocessing program), and calls to
the MetaPlot macros to generate plot instances from
the plot objects.

The concept of a “plot-object”
Suffix arguments and multi-token variable names in
MetaPost allow us to define data structures that ap-
proximate structures or objects in more traditional pro-
gramming. The correspondence is not exact; in partic-
ular, there is no data type associated with the overall
object. MetaPost is simply passing around a fragment
of a variable name and constructing complete variable
names from it, so any arbitrary element can be added
to the class without changing its type. Thus, the Meta-
Plot macros can deal with arbitrary types of plots in a
generic manner, so long as they meet a few minimal
requirements that allow them to be scaled and posi-
tioned.

The paths and contours that make up a plot object
are not defined in terms of the native data coordinates,
but are rescaled to fit within a unit box (that is, extend-
ing from 0 to 1 in both coordinate directions), which is
treated as the bounding box of the plot for purposes of
scaling and positioning. As a result, the possibility of
coordinates too small or too large for MetaPost’s fixed-
point number representation is avoided; in addition,
positioning the plot on the page is a simple matter of
scaling by the final width and height and shifting by
the final position of the lower-left corner. The original
data scales are stored in four numeric components that
record the values corresponding to the extents of the
bounding box.2

The remaining details of the format can be shown by
rearranging the example from Section 2 into a plot ob-
ject, as follows. For purposes of later examples, we will
presume that this has been saved as capillary.mp.

% Definition of capillary plot−object
% Picture components
picture capillary.fplot;

capillary.fplot := nullpicture;
addto capillary.fplot contour (0.00000,1.00000)
.. (0.00227,0.99395) .. (0.00459,0.98790)

% [...and so forth...]
.. (1.00000,0.41329) -- (1.00000, 0.00000)

-- (0.00000, 0.00000) -- cycle;
picture capillary.lplot;

capillary.lplot := nullpicture;
addto capillary.lplot doublepath
(0.00000,1.00000) .. (0.00227,0.99395)

% [...and so forth...]
.. (1.00000,0.41329);

% Required metadata
numeric capillary.xleft; capillary.xleft = 0.0;
numeric capillary.xright;

capillary.xright = 3.39322;
numeric capillary.ybot; capillary.ybot = −0.5;
numeric capillary.ytop; capillary.ytop = 0.76537;

% Other metadata
pair capillary.contactpoint;

capillary.contactpoint = (0.0, 1.0);
numeric capillary.contactangle;

capillary.contactangle = 45.0;

In this case, I have also added an additional compon-
ent: this version of capillary contains a path for the
liquid surface line (capillary.lplot), as well as the ori-
ginal filled contour (now capillary.fplot); the decision
about which of them to draw can be made later. A plot
object can contain any number of these pictures (even
zero), with arbitrary names.

The four required scale variables are capillary. xleft,
.xright, .ybot, and .ytop; these, for purposes of the
MetaPlot macros, must be named thus.

Finally, there are two metadata variables, capil-
lary.contactpoint and capillary.contactangle, which will
be useful in drawing the annotations on this particular
plot. These, again can be present in any number, and
have arbitrary names. Of note is that .contactpoint is
given in the same unit-box coordinate system that the
paths and contours are in, allowing it to be positioned
by the same macros that scale and position the picture
components.

Creation of a plot instance
The next step after creating plot objects is manipulat-
ing them on the page by means of plot instances. A plot
instance thus needs to contain three sets of compon-
ents: coordinates and dimensions of the plot as shown
on the page, a representation of the plot’s internal
scale for use in alignment and producing axes, and a
means of accessing picture components from its parent
plot object. These are created by the plot_instantiate()
macro, which is part of MetaPlot; the version below is
simplified somewhat.

% Args: inst is the new plot instance.
% plot_object is the parent plot object.
def plot_instantiate(suffix inst)

(suffix plot_object) =

MetaPlot, MetaContour, and Other Collaborations with MetaPost NAJAAR 2004 35

% Define (unknown) parameters for plot−instance
% location on page

numeric inst.pagewidth, inst.pageheight;
numeric inst.pageleft, inst.pageright,

inst.pagetop, inst.pagebottom;
inst.pageleft + inst.pagewidth = inst.pageright;
inst.pagebottom + inst.pageheight = inst.pagetop;

% Define (known) parameters for plot’s scaling
numeric inst.scaleleft, inst.scaleright,

inst.scaletop, inst.scalebottom;
inst.scaleleft := plot_object.xleft;
inst.scaleright := plot_object.xright;
inst.scalebottom := plot_object.ybottom;
inst.scaletop := plot_object.ytop;

% Pointer−function to plot_object’s plots, scaled
% and positioned.

vardef inst.plot(suffix name) =
plot_object.name xscaled inst.pagewidth

yscaled inst.pageheight
shifted (inst.pageleft, inst.pagebottom)

enddef;
enddef;

Note that, immediately after a plot instance is created,
the page information is unknown and the scale inform-
ation is known.

We can now start putting plot objects on the page in
a limited fashion, by assigning known values to the un-
known page information, and then drawing the scaled
picture elements.

input metaplot % MetaPlot macros
input capillary % capillary plot object

plot_instantiate(plotA, capillary)
plotA.pageleft = 0.0;
plotA.pagebottom = 0.0;
plotA.pagewidth = 2.0in;
plotA.pageheight = 0.75in;
beginfig(2)

draw plotA.plot(fplot) withcolor 0.85white;
draw plotA.plot(lplot)

withpen pencircle scaled 1pt;
endfig;
end

The result of this is shown in Figure 2. Note that the
color of the filled plot and the line size for the line plot
are specified in the draw command, rather than in the
plot object.

Manipulation of plot-objects
The bare plot instances are of little use without a set of
macros for manipulating them. We start with a macro
to set the x-axis and y-axis scales to equal values:

def plot_setequalaxes(suffix inst) =

Figure 2. The capillary surface, in its unadorned form as
plot object elements scaled to 2.0in by 0.75in.

inst.pagewidth = inst.pageheight
∗ ((inst.scaleright − inst.scaleleft)

/ (inst.scaletop − inst.scalebottom));
enddef;

This is written so that the page-related variables do
not appear in the denominator of fractions, because
either one (or both) of them may be unknown when
the macro is called, and MetaPost can only solve linear
equations.

There are also a set of macros for converting
between locations expressed in the plot’s coordinates
and locations on the page. For example,

def plot_xpageloc(suffix inst)(expr scalex) =
inst.pageleft + (scalex − inst.scaleleft)
∗ (inst.pagewidth

/ (inst.scaleright − inst.scaleleft));
enddef;

The additional macros in this series are ypageloc,
zpageloc (which takes an x and a y coordinate as in-
put, and returns a point), and xscaleloc and yscaleloc
for the reverse direction of converting from a page loc-
ation to a plot coordinate.

With these, we have most of what we need to manip-
ulate plots in an intuitive way. For instance, consider
the figure from Section 2, which can now (with some
small changes) be written in a much more general way
as

input metaplot % MetaPlot macros
input capillary % capillary plot object

plot_instantiate(plotB, capillary)
plot_setequalaxes(plotB);
plotB.pageleft = 0.0;
plotB.pagebottom = 0.0;
plotB.pageheight = 0.75in;
beginfig(3)

draw plotB.plot(fplot) withcolor 0.85white;
linecap := butt;
pickup pencircle scaled 1pt;
% z−axis (vertical)
z1 = (plotB.pageleft, plotB.pagebottom);
z2 = (plotB.pageleft, plotB.pagetop + 0.1in);
% y−axis (horizontal)
z3 = (plotB.pageleft, plot_ ypageloc(plotB,0.0));
z4 = (plotB.pageright + 0.1in,

plot_ ypageloc(plotB,0.0));

36 MAPS 31 Brooks Moses

drawarrow z1 -- z2;
label.top(btex z etex, z2);
drawarrow z3 -- z4;
label.rt(btex y etex, z4);
pickup pencircle scaled 0.25pt;
% Label for contact angle
z5 = plotB.plot(contactpoint);
z6 = z5 + 0.24in

∗ dir(−90 + capillary.contactangle);
z7 = z5 + 0.18in

∗ dir(−90 + 0.5∗capillary.contactangle);
draw z5 -- z6;
label(btex θ etex, z7);

endfig;
end

The result of this is shown in Figure 3. We can demon-
strate that this is flexible by adjusting the value of θ to
π/6 rather than π/4, and recreating the figure using
exactly the same files; the result is shown in Figure 4.
Note that changing the contact angle raises the contact
point, making the plot taller in scale coordinates; thus,
it is drawn at a smaller scale to maintain the 0.75-inch
page height.

Having two figures in this way is not the clearest
way to compare the two plots, particularly with the
differences in scale. A better approach is to overlay
them at the same scale, making use of the existence of
the filled plot from one plot object and the line plot
from the other to provide a visually clear result. A
simple way of placing both plots on the same coordin-
ate axes is to require that their (0,0) and (1,1) points
coincide on the page, which we do by means of the
plot_zpageloc command; the remainder of the file is as
much in the previous plots, although there is a little
additional code in making certain that the axis-arrows
cover both plots.

input metaplot % MetaPlot macros
input capillary % capillary plot object
input capillary2 % capillaryb plot object

plot_instantiate(plotB, capillary)
plot_setequalaxes(plotB);
plotB.pageleft = 0.0;
plotB.pagebottom = 0.0;
plotB.pageheight = 0.75in;

plot_instantiate(plotC, capillaryb)
plot_zpageloc(plotB, 0.0, 0.0)
= plot_zpageloc(plotC, 0.0, 0.0);

plot_zpageloc(plotB, 1.0, 1.0)
= plot_zpageloc(plotC, 1.0, 1.0);

beginfig(5)
linecap := butt;
pickup pencircle scaled 1pt;
draw plotB.plot(fplot) withcolor 0.85white;

z

y

θ

Figure 3. The capillary surface, with equal y and z
scales, a page height of 0.75in, and appropriate
annotations.

z

y

θ

Figure 4. The capillary surface with parameters and page
height as in Figure 3, but with θ = π/6.

z

y

Figure 5. Two capillary surfaces, as in Figure 3 and
Figure 4, showing the difference in the curves as a result
of varying θ.

draw plotC.plot(lplot) dashed evenly
withpen pencircle scaled 0.5pt;

% z−axis (vertical)
z1 = (plotB.pageleft, plotB.pagebottom);
x2 = plotB.pageleft;
y2 = max(plotB.pagetop, plotC.pagetop) + 0.1in;
% y−axis (horizontal)
z3 = (plotB.pageleft, plot_ ypageloc(plotB,0.0));
x4 = max(plotB.pageright, plotC.pageright) + 0.1in;
y4 = plot_ ypageloc(plotB,0.0);
drawarrow z1 -- z2;
label.top(btex z etex, z2);
drawarrow z3 -- z4;
label.rt(btex y etex, z4);

endfig;
end

The result of this is shown in Figure 5.

Creation of axes
Any quantitative graph is meaningless without grid-
labels for the coordinate axes, and so MetaPlot in-
cludes macros to create them. Unlike MetaPost’s
graph.mp package, MetaPlot’s axis-drawing function-

MetaPlot, MetaContour, and Other Collaborations with MetaPost NAJAAR 2004 37

ality requires that the user specify most of the details
of the formatting, with the benefit of having a much
more flexible implementation.3

The core of the axis-drawing functionality is a set
of macros for creating generic tickmarks, labeled tick-
marks, rows of tickmarks, and so forth, which are in-
cluded with MetaPlot in a axes.mp file (and thus, for
consistency, are prefaced with axes_ rather than plot_).
These are interfaced to the plot object coordinates by
the plot_xtickscale and plot_ ytickscale macros.
def plot_xtickscale (suffix inst)

(expr startpoint , endpoint , ticklength , tickspace ,
tickdir , tickzero , tickstep , ticklabelformat) =

axes_tickscale (
startpoint , % First endpoint of the tickrow
endpoint , % Second endpoint of the tickrow
ticklength , % Length of tickmarks
tickspace , % Space between tickmark and label
tickdir , % Tickmark direction
plot_xscaleloc (inst)(xpart (startpoint)),

% Coordinate value at first endpoint
plot_xscaleloc (inst)(xpart (endpoint)),

% Coordinate value at second endpoint
tickzero , % Coordinate value for a known

% tick location
tickstep , % Coordinate space between ticks
ticklabelformat

% Format for tick labels
% (syntax from format. mp package)
% (use "" for no tick labels)

)
enddef;

The plot_ ytickscale definition is nearly identical. Note
that these macros do not actually draw the tickmarks;
they return a picture object, which can then be expli-
citly drawn or otherwise manipulated.

A simple way of adding grid labels to the previous
example would be the following:
beginfig(6)

% [...repeat of definitions of fig(4)...]
x5 = plotB.pageleft;
x6 = x4;
y5 = y6 = plotB.pagebottom;
draw plot_xtickscale(plotB)(z5, z6,

0.08in, 0.06in, down, 0.0, 1.0, "%3f")
withpen pencircle scaled 0.5pt;

y7 = plotB.pagebottom;
y8 = y2;
x7 = x8 = plotB.pageleft;
draw plot_ ytickscale(plotB)(z7, z8,

0.08in, 0.06in, left, 0.0, 0.5, "%3f")
withpen pencircle scaled 0.5pt;

endfig;

The results of this are shown in Figure 6. As can be
seen with the x-axis, the tickscale macros do not in-

z

y

0 1 2 3
−0.5

0

0.5

1

Figure 6. Fig. 5 repeated, with simple grid labels added.

z

y

0.5 1.5 2.5

0

0.5

1

Figure 7. Fig. 5 again, with more advanced grid labels.

clude the axis-lines themselves, thus allowing the user
to draw them with a different line style than that used
for the ticks, or to leave them off entirely.

For a more polished look, we can move the grid ticks
a small distance away from the plot, limit the y-axis
range to the region that has meaningful significance,
and add intermediate ticks without labels. In addition,
this example illustrates the use of the tickzero para-
meter to start the labeled x-axis ticks at .5 rather than 0.

beginfig(7)
% [...repeat of definitions of fig(4)...]
x5 = plotB.pageleft;
x6 = x4 − 0.1in;
y5 = y6 = plotB.pagebottom − 0.06in;
draw plot_xtickscale(plotB)(z5, z6,

0.08in, 0.06in, down, 0.5, 1.0, "%3f")
withpen pencircle scaled 0.5pt;

draw plot_xtickscale(plotB)(z5, z6,
0.08in, 0.06in, down, 0.0, 1.0, "")
withpen pencircle scaled 0.5pt;

draw plot_xtickscale(plotB)(z5, z6,
0.04in, 0.06in, down, 0.0, 0.1, "")

withpen pencircle scaled 0.5pt;
y7 = y4;
y8 = y2 − 0.1in;
x7 = x8 = plotB.pageleft − 0.06in;
draw plot_ ytickscale(plotB)(z7, z8,

0.08in, 0.06in, left, 0.0, 0.5, "%3f")
withpen pencircle scaled 0.5pt;

draw plot_ ytickscale(plotB)(z7, z8,
0.04in, 0.06in, left, 0.0, 0.1, "")
withpen pencircle scaled 0.5pt;

endfig;

38 MAPS 31 Brooks Moses

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 8. Sample graph created by MetaContour and
MetaPlot, showing potential lines for a combination of a
linear gradient and a point source, plotted on a polar grid.

MetaContour: a C++ program for contour plots

Now that the MetaPost side of the collaboration has
been described in some detail, we return to the matter
of programs that generate plot objects as output. One
of the particular reasons for developing MetaPlot was
to have a way of producing contour plots, and so the
MetaPlot package comes with a C++ program, Meta-
Contour, for creating them.

The internals of MetaContour are beyond the scope
of this paper, but it does make use of one additional
capability of plot objects that is worth noting—the abil-
ity to include color information. The plot object is
defined with commands like the following, with color
directives.

picture contplotA.LinePlot;
contplotA.LinePlot := nullpicture;
addto contplotA.LinePlot doublepath

(0.48075,0.50000)-- (0.48163,0.50597)
withcolor contourcolor27;

addto contplotA.LinePlot doublepath
(0.48420,0.50000)-- (0.48492,0.50490)
withcolor contourcolor28;

addto contplotA.LinePlot doublepath
(0.45994,0.50000)-- (0.46169,0.51245)
withcolor contourcolor23;

% [...and so forth...]

Then, before the plot object file is read into the main
MetaPost file, the contourcolor array is defined as de-
sired.

% Contour colors for grayscale scheme
color contourcolor[];
contourcolor0 = 1white;

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 9. Another sample graph created by MetaContour
and MetaPlot, illustrating a filled contour-plot style
rather than using contour lines.

contourcolor1 = 0.98white;
% [...and so forth...]

contourcolor30 = 0.4white;

Thus, each line of the contour plot is associated with
a color, and it will be drawn in that color unless it is
overridden by another color directive; for instance, if
we wanted to plot the contour lines all in black, we
could do so simply by specifying:
draw continstA.plot(LinePlot) withcolor black;

Aside from the color contour-line plot just described,
the MetaContour output contains a filled contour plot,
and an image of the mesh of data points. Some ex-
amples of the these are shown in Figure 8 and Fig-
ure 9; although these are much more complex than the
examples from preceding sections, the MetaPlot com-
mands used to generate them are nearly identical.

Conclusion

The examples that have been shown illustrate only a
small sampling of the capabilities of MetaPlot. In using
MetaPost to generate the figures, it provides an easily
extensible layout capability that is not limited by the
imagination of the package author. The standardized
plot-object interface simplifies the process of writing
plot-generation programs, as they can leave the de-
tails of layout and annotation to the MetaPlot postpro-
cessing.

At the time if this publication, MetaPlot and
MetaContour should be available from CTAN in the
/graphics/metaplot directory. They are still very
much works in progress; I look forward to suggestions

MetaPlot, MetaContour, and Other Collaborations with MetaPost NAJAAR 2004 39

and improvements, and hope that others will find them
to be useful tools.

Notes
1. For those who are curious, the equation (from [4]) is

y

d
= cosh−1 2d

z
− cosh−1 2d

h
+

(
4 −

h2

d2

) 1
2

−

(
4 −

z2

d2

) 1
2

,

where h2 = 2d2(1 − sin θ) is the height of the meniscus, θ
is the contact angle, and d is a scaling parameter related to
the surface tension and liquid density.
2. Although these variables are represented here as nu-
merics and thus are still vulnerable to under- or overflow,
it would be a simple matter to replace them with string-
represented numbers from the sarith package.
3. There is, of course, no need for flexible implementations
and simple interfaces to be mutually exclusive, and functions
for more automated axes may be included in MetaPlot as it
continues to be developed.

References

[1] Hwang, A., ePiX, http://mathcs.
holycross.edu/^ahwang/current/ePiX.
html.

[2] Gnuplot, http://www.gnuplot.info.
[3] Phan, A., m3D, http://www-math.

univ-poitiers.fr/^phan/m3Dplain.html.
[4] Batchelor, G. K., An Introduction to Fluid

Dynamics, Cambridge University Press, 1967.

Brooks Moses
Mechanical Engineering,
Stanford University,
Building 520,
Stanford, CA 94305
U.S.A.
bmoses@stanford.edu

