Hendri Adriaens & Uwe Kern

Keys and Values

NAJAAR 2004 99

new developments and mechanisms in key

processing

Abstract

This article introduces the xkeyval package as an
extension of the well-known keyval package. The
package provides more flexible commands, syntax
enhancements, and a new option processing
mechanism for class and package options using the
key=value syntax.

Keywords
keyval, xkeyval, package options, pointers, presets,
category codes, PSTricks

Introduction

The keyval package [2] written by David Carlisle is
widely used by package authors to provide the means
for users to easily specify a lot of optional arguments
for macros. The main advantages of using keyval are
that the number of optional arguments is no longer
limited to 9 and that the arguments are named and
hence there is less chance of confusion about the syn-
tax of a macro.

The package provides means to define key macros
which handle the input of the user. These key macros
have the form \KV@family@keyname and take one ar-
gument to handle user input. A key macro can, for
instance, be defined by

\define@key{family}{pil}/
{\setlength{\parindent}{#1}}

The key macros will be called at the use of \setkeys
and this will set the keys. When pi is used, the key
macro will set \parindent. Another typical example
of its use is

\setkeys{family}{pi=10pt,pn=Page~\thepage}

The packages keyval and xkeyval are mainly directed
to class and package authors. The \def ine@key com-
mand usually goes into the preamble or the package
and the main interface for users is given by \setkeys.

Why a new package?

When working on another package, the need arose to
have multiple families in the package. Each family
would provide keys for a particular macro or environ-
ment. This provided the means to block the use of il-
legal keys in a macro argument, which could have a
destructive effect on the rest of the document. How-
ever, it would also be nice to be able to allow the
user to set specific keys of each macro or environ-
ment globally in the preamble. One could, for in-
stance, think of allowing the user to set the markup of
all example and exercise environments in the doc-
ument in the preamble, but disallowing changing the
markup of example environments in exercise envir-
onments and vice versa. In more complicated settings,
specifying keys in macros which are not designed to
handle those keys can easily lead to almost untrace-
able errors. That was the start of the xkeyval package
[1].

However, in the process of generalizing keyval, we
noticed that a lot of packages had already tried ex-
tending the features, all in their own way. Quite some
packages, for instance, include a system to allow the
use of keys and values in \usepackage commands.
Most famous examples are the hyperref, geometry and
beamer packages. All of these approaches differ in de-
tails and are not portable to other packages without
reprogramming. This called for a unified approach.

Another extra feature, found for instance in the
hyperref package, is the availability of boolean keys
which can only be true or false. hyperref actually im-
plements this within the ordinary key system, using
\define®@key. However, since the function that needs
to be executed on the use of the key is known (namely,
set an “if” command to true or false depending on the
input), the system can be simplified.

A final motivation for the new package is based on
the fact that the development of the keyval package
seemed to have paused since 1999 and that funda-
mental changes and improvements to the system could
more easily be made with a new package. Among the
improvements, we find the pointer syntax, the preset



100 MAPS 31

system, the use of multiple families in \setkeys, ro-
bust input parsing and the support for the PSTricks
family of packages. The remaining sections of this art-
icle will discuss these new developments.

Keys and values in package options

First of all, the package supplies macros to declare
class or package options, execute them and process
them. The macros are available under the usual LaTiX
names, but all with a postfix, namely

\DeclareOptionX
\ExecuteOptionsX
\ProcessOptionsX

These commands allow the user to assign a value to an
option just as when using \setkeys. The first macro is
based on \define®@key and the final two are based on
\setkeys. When mypack is using these commands, a
user could for instance do

\usepackage [textcolor=red, font=times] {mypack} ‘

These macros are fully integrated with the LaTgX op-
tion system. This, for instance, allows packages to
copy global options specified in the \documentclass
command, to pass options to other classes or packages
and to update the list of unused global options that will
be displayed by LaTiX in the log file.

However, key values like author=\textit{Me} in
class or package options are not allowed, although
they could easily be processed by \setkeys. This
restriction results from the design of LalgX’s option
processing mechanism which expands the entire op-
tion list (keys and values) completely, causing obvious
trouble.

To avoid these premature expansions, several ker-
nel macros need to be redefined. xkeyval includes the
xkvltxp package which contains these new definitions.
Loading this package before loading the class or pack-
age which uses xkeyval for option processing, will al-
low class and package options to contain expandable
macros. This file will not be included in the LaTgX2¢
kernel since it might introduce compatibility conflicts
for those using an old kernel but new packages which
might depend on this new functionality.

Prefixes, families and pointers

The package provides extended syntax for all of the
commands provided by keyval.2 The syntax for defin-
ing keys has been extended with an optional argument
to set the prefix of the key macro. It is a good custom
for package authors to use a package specific prefix
for all internal macros as to avoid possibly redefining
a macro of another package. Moreover, this optional

Hendri Adriaens & Uwe Kern

argument allows for defining and setting keys in spe-
cialized systems such as implemented in the PSTricks
package. More details about this system will be dis-
cussed in the section about the pst-xkey package.

The syntax for setting keys using \setkeys has
been adjusted accordingly. Also, one can specify a list
of families which should be scanned when setting keys,
as discussed in the introduction. For instance,

‘\setkeys{font,page}{fs=10pt,pn=Page“\thepage} ‘

Part of the new syntax is the possibility to use point-
ers to keys. Pointers allow to assign to keyb the value
that has been assigned to keya, irrespective of what
that value is. For example

\setkeys{family}{\savevalue{keyal}=red,’
keyb=\usevalue{keyal}}

Here, \savevalue will make xkeyval save the value
submitted to keya. \usevalue will use this value
again. Note that one can use the \savekeys command
to avoid typing \savevalue every time. If, in this ex-
ample, red is changed to blue no changes are neces-
sary to the value of keyb to assign it blue as well. This
is an obvious similarity to TgX’s behaviour in the macro
case \def\cmdb{\cmda}.

This pointer system can be used as well in the de-
fault value system. This system submits a default value
to the key macro in case the user has used the partic-
ular key, but didn’t assign a value to it. One could, for
example, define the keys

\define@key{fam}{keya}{keya: #1 }
\define@key{fam}{keyb} [\usevalue{keya}]{keyb: #1 }

Then the following use of \setkeys

‘\setkeys{fam}{\savevalue{keya}=test,keyb} ‘

would result in typesetting

‘keya: test keyb: test

We will discuss some technical details regarding
the pointer syntax. First of all, the control sequences
\savevalue and \usevalue are not defined. Instead,
the package considers these as delimiters. A simple
parsing step will determine if \savevalue has been
used in the key name part. Parsing is also used to sub-
stitute occurrences of \usevalue by the saved value.
When a pointer is replaced, its replacement will also
be scanned again for pointers. This allows for nested
pointers in key values. Moreover, it makes sure that,
once the value is submitted to a key macro, this value
does not contain pointers anymore.3

The replacement process is a little bit more tricky
when the user did not submit a value to the key. In this



Keys and value

case, the default value should be scanned for point-
ers. The default value macro for a key macro looks like
\prefix@fam@key@default and has been defined to
expand to

\prefix@fam@key{the default value}

This system has been introduced by keyval and a lot
of packages use it. However, some packages do not
use it in the way intended by keyval. For instance, the
fancyvrb package defines default value macros to ex-
ecute some code rather than to call the key macro and
submit the default value to that. To retain compatib-
ility with existing packages, it is impossible to change
the setup of the default value system, only save the de-
fault value in the default value macro and submit this
value to the key macro.

This is an important restriction for the pointer sys-
tem since we want to retrieve the default value from
the default value macro and scan it for pointers. The
way the package proceeds is the following. It first
checks whether the default key macro starts as expec-
ted, namely with the key macro name. If that is the
case, it locally redefines the key macro to save the
value to a macro and it executes the key macro. The
macro then contains the default value which can be
scanned for pointers. If the default value macro is not
of the expected form, then the package just executes
it without attempting to retrieve the default value or
replace pointers.

Preset system

The default value system operates when users specify
keys, but no value for the keys. But the keyval package
does not provide a system that assigns values to keys
when keys have actually not been used at all by the
user. In a lot of applications, one would like to imple-
ment default values for keys when they are not used.
For instance, ‘scale this figure with factor 1 unless spe-
cified otherwise by the user’. One could go ahead and
call the key macro with a default value and afterwards,
submit the user input to \setkeys and possibly over-
write the values that you have just set. This is possible
(but quite cumbersome when there are many keys) in
cases where keys do not generate material themselves,
but, for instance, only set a length.

But what happens if we apply this scheme to keys
which are defined as follows?

\define@key{fam}{keya}{Your input was: #1}
\define@key{fam}{keyb}{\edef\list{\1list,#1}}

If we follow the scheme in the first example, both our
default value as well as the user input (if present) will
be typeset. In the second example, both the default

NAJAAR 2004

value and the user input will be added to the list con-
tained in \1ist.

To avoid this, xkeyval introduces the preset system.
First one declares the keys that should always be as-
signed and their values using \presetkeys, for in-
stance

\savekeys{fam}{head}
\presetkeys{fam}{head=red}{tail=\usevalue{head}}

The function of the two arguments of \presetkeys
will become clear in a moment.

Now, when submitting user input for keys in family
fam, the macro \setkeys will determine which keys
will be set by the user and avoid setting them again
with the preset values. Keys that are not set by the user
will be set by the values specified in \presetkeys.

However, there is one thing that we should keep in
mind in this system when pointers are used. If the
pointer points to a key which is assigned a value af-
terwards, the pointer cannot know this value yet and
errors will occur. Hence, it is best (in most situations)
to execute preset pointers at the very end.

On the other hand, if a value for a key has been
saved, let’s say blue, and the user first issues a pointer
to that key and later the preset value sets the key to
red, the outcome of the pointer will of course be blue,
which was actually not the intention when setting the
preset value to red. Hence, for ordinary keys, it is best
to execute them at the very beginning, before setting
user input.

That is why the \presetkeys macro has two argu-
ments: the first one (usually containing ordinary keys
and values) will be inserted before setting user input
keys, the second one (containing pointers to preset val-
ues or user input) afterwards.

This system is especially useful when you can’t rely
on key values remaining local to a macro or environ-
ment since the preset system will, at every use of your
macro or environment, reset key values to the preset
value unless overwritten locally by the user. This needs
some more explanation. \def definitions (for instance
made by key macros) will be destroyed by TX when
leaving a group or environment. Hence the values will
remain local. However, if your keys are not using \def,
but for instance, \gdef, this definition will escape the
group or environment and might distort all following
macros or environments. Hence, you will have to take
care to reinitialize the key values at every use of the
macro or environment.

This is, however, not necessary anymore with the
preset system. Once the preset keys have been defined
for a specific family, each time this family is used in the
\setkeys command, the preset values will be taken
into account together with the user input.

The following example will demonstrate the power

101



102

MAPS 31

of the preset system in combination with pointers. Be-
low the example, you can find its output and the ex-
planation. Let’s assume we want to create a simple
frame/shadow box command with the following de-
fault behaviour:

O a shadow will be drawn if and only if the box is
framed;

O the shadow color should be a 40% tint of the frame
color, thus being clearly discernible;

O the shadow size (or width) should be 4 times the
width of the frame.

Certainly, the user should be able to overrule each of
these default parameter relations when the box com-
mand is actually applied.

\documentclass{article}
\usepackage{xkeyvall}
\usepackage{calc,xcolor}

\makeatletter
\newdimen\shadowsize
\define@boolkey{Fbox}{frame} [true]
\def ine@boolkey{Fbox}{shadow} [true]
\define@key{Fbox}{framecolorl}y
{\def\Fboxframecolor{#1}}
\def ine@key{Fbox}{shadowcolorl}y,
{\def\Fboxshadowcolor{#1}}
\def ine@key{Fbox}{framesizel}’,
{\setlength\fboxrule{#1}}
\define@key{Fbox}{shadowsizel},
{\setlength\shadowsize{#1}}
\savekeys{Fbox}{frame,framecolor,framesize}
\presetkeys{Fbox}/
{frame,framecolor=red,framesize=0.5pt}%
{shadow=\usevalue{frame},
shadowcolor=\usevalue{framecolor}!40,
shadowsize=\usevalue{framesize}*4}
\newcommand*\Fbox [2] [1{%
\setkeys{Fbox}{#1}/,
{\ifKV@Fbox@frame\else\fboxruleOpt\fi
\ifKV@Fbox@shadow\else\shadowsizeOpt\fi
\sbox0{\fcolorbox{\Fboxframecolor}{white}{#2}}%
\hskip\shadowsize
\color{\Fboxshadowcolor}
\rule[-\dp0] {\wd0}{\ht0+\dp0l}’
\1llap{\raisebox{\shadowsizel}/,
{\box0\hskip\shadowsize}}}%

© 0N oA W N

WWwWNNNNNNRNRNNDRNRE B R B BB R R R e
N R O ®© N0 g ®WNR O ®©®SNO®OW K WN R O

}

\makeatother

W oW oW w
[ I N )

\begin{document}

\Fbox{demo1}

\Fbox [framecolor=blue] {demo2}
\Fbox [shadow=false] {demo3}

\Fbox [framesize=1pt]{demo4}
\Fbox [frame=false,shadow] {demo5}
\end{document}

‘ demol | ‘demoZ |

B W W W
= O © © N

IS
1)

demo5

Hendri Adriaens & Uwe Kern

First of all, lines 7 to 16 define the keys to be used
in the example. The \presetkeys command in line
18 defines the presets: the frame will be set to true,
its color to red and the frame size to 0.5pt, unless the
user provides different specifications for these keys.
The requirements listed above are then covered by the
pointer expressions in the next argument.

The first box application now shows the default box
without additional user input. We see a frame and a
shadow, based on the color red. The second box shows
that the user input for the frame color will overwrite
the preset values and turn the box blue. But since the
shadow color equals the frame color by default, the
shadow is blue as well. In the third example, we have
a frame, but no shadow. Notice that the color has re-
turned to red, the default value. The fourth box has an
increased frame size and hence an increased shadow
size as well due to the pointer use when presetting
the keys. The last example shows that it is possible
to overwrite the default behaviour of linking shadows
to frames: it displays a shadow without a frame.

Robust parsing

Just as with the pointer delimiters \savevalue and
\usevalue, keyval and xkeyval treat the comma and
the equality sign as delimiters. In the past, this has
led to problems. A well known incompatibility ex-
ists between the Turkish language version of the ba-
bel package and all packages using keyval. Since Turk-
ish babel changes the catcode of the equality sign for
shorthand notation, the parsing macros of keyval can-
not detect these characters anymore and will generate
errors. 4

xkeyval solves this by sanitizing (i.e. setting
the catcode to 12) all characters necessary to
parse the input properly. This is done using the
\@selective@sanitize macro, which can sanitize
one or more different characters in a single run.
Moreover, the sanitize group depth can be controlled.
xkeyval implements the macro such that only commas
and equality signs appearing in the top level of a key
value will be sanitized, since that is all that’s needed
for input parsing. Characters inside groups are left
untouched and can hence possibly even contain babel
shorthand notation without causing errors:

\usepackage [turkish] {babel}

iéétkeys{fam}{key={some =textl}}

In this example, the first ‘=" will be sanitized for pars-
ing, whereas the second ‘=" will be left untouched and
thus keeps its original meaning.



Keys and value

Redefining macros?

Obviously, redefining existing macros is dangerous in
general. Still the xkeyval package redefines the two
major keyval macros \define@key and \setkeys.
The reason is that this will avoid any confusion of hav-
ing several systems running next to each other, doing
approximately the same things.

Although xkeyval supports all of the originally pos-
sible syntax of the keyval package, we still had to check
the packages using keyval before we could make the
decision to redefine the macros. Three major issues
came up in that process.

First of all, we found that some packages were using
keyval internals directly instead of the user interface
formed by \define@key and \setkeys. To avoid any
errors of undefined control sequences in these pack-
ages, xkeyval loads the keyval internals if keyval hasn’t
been loaded before.

Secondly, certain packages implemented a creative
use of the default value system as has been discussed
in the section about the pointer syntax. The solution
of xkeyval has also been discussed there.

Finally, we found that the pst-key package was re-
defining \define@key and \setkeys itself to provide
the means of setting PSTricks keys. After discussing
this with the PSTricks maintainer Herbert Vo3, we
agreed that xkeyval would develop a unified approach
to keys and values and that the pst-key package would
be abandoned. More information on the development
related to PSTricks is provided in the final section of
this article.

After redefining the necessary macros, xkeyval will
make sure that the keyval package cannot be loaded
anymore in order to avoid again redefining the xkeyval
macros. This was the final step necessary in safely re-
defining the keyval macros and to provide a system
which all package authors can convert their package
to without too much effort.

The pst-xkey package

An important stream of packages will be using xkeyval
already in the near future. These are the PSTricks
packages [3, 4], currently relying for key and value
processing on a combination of private definitions in
pstricks.tex and pst-key, the latter being a modi-
fication of the keyval package.

Due to the popularity and flexibility of the PSTricks
package, several people have contributed extensions to
the original distribution. Unfortunately, all PSTricks
keys have the standard form \psset@somekey, thus
package authors need to check all existing packages to
be sure not to redefine one of the existing keys.

The PSTricks maintainer Herbert Vo has recog-

NAJAAR 2004

nized this problem and soon the work on xkeyval star-
ted to provide a way to define and set PSTricks keys
via this package. The major advantage would be the
possibility for individual package authors to nest their
keys in a well chosen family (for instance, the package
name) and avoid the need to check other packages for
existing keys.

In order to make this possible, \define@key and
\setkeys needed to be adjusted a bit. Further, the
\psset macro needed to be redefined to use the
new \setkeys and let this scan all families available.
When a PSTricks package is loaded, it adds all fam-
ilies used in the package to a list and this list will be
used in \setkeys. Since all separate packages will
use different families, reusing key names is not a prob-
lem anymore. The redefinition of \psset and some
other macros necessary to do the job, is available in
the pst-xkey package which comes with the xkeyval
package.

Due to the vastness of the PSTricks collection of
packages, the conversion of all packages to use pst-
xkey instead of pst-key will take some time, but will
be done in the near future.

Footnotes

1. Note that author=\protect\textit{Me} is no solution
for this problem.

2. Please refer to the documentation of the xkeyval package
to learn about further syntactical details which are not dis-
cussed in this article.

3. Except if the pointer is hidden for xkeyval inside a group.
4. See for more information concerning this problem
of keyval and babel: http://www.latex-project.org/
cgi-bin/ltxbugs2html?pr=babel/3523

References
[1]

Hendri Adriaens. xkeyval package, v1.8c,
2005/01/01. CTAN:/macros/latex/
contrib/xkeyval.

David Carlisle.  keyval package, v1.13,
1999/03/16.  CTAN:/macros/latex/
required/graphics.

Herbert Vof3. PSTricks website.
//www.pstricks.de.

Timothy Van Zandt et al. PSTricks package,
v1.04, 2004/06/22. CTAN:/graphics/
pstricks.

[2]

[31] http:

[4]

Hendri Adriaens
http://stuwww.uvt.nl/"hendri
Uwe Kern

http://www.ukern.de

103



