
14 MAPS 33 Siep Kroonenberg

Font installation the shallow way

Abstract
For one-off projects, you can cut corners with font
installation and end up with a more manageable set of
files and a cleaner TEX installation. This article shows
how and why.

Keywords
Font installation, afm2pl, afm2tfm, TrueType, pdftex,
mapfiles

If you are putting together a flyer or invitation or
book cover, then it would be nice if you could without
too much trouble test a batch of fonts from your
CorelDRAW- or Illustrator cd or your Windows font dir-
ectory, without polluting your TEX installation with a
lot of stuff you are never going to use again.

This article takes you through the steps needed to
use one or more fonts in one particular document. We
won’t really install the fonts; we just generate the files
that TEX needs and leave them where TEX will find
them, i.e. in the working directory. This makes it easy
to take the project to another system, and easy to clean
things up.

We will primarily use afm2pl to generate .tfm (TEX
Font Metric) files. Later on, we show the steps re-
quired for afm2tfm. Both programs are simpler and
much faster to use than the usual choice, fontinst.
They create few intermediate or unnecessary files and
do their job without virtual fonts. Virtual fonts and
fontinst have their place, but sometimes there is no
good reason to put up with the inevitable mess.

afm2tfm is available on all major free TEX imple-
mentations. afm2pl is part of current TeX Live distribu-
tions. Note that these programs are needed only to cre-
ate the necessary font support files for TEX; once these
files have been created, they can be used on any other
system, whether or not it contains afm2pl or afm2tfm.

An example
We use a decorative script font Pepita that Adobe
bundles or used to bundle with some of its software.

pdftex will need the actual font file epscr___.pfb,
its TEX font metrics file epscr7t.tfm and a mapfile
containing an entry relating the two. First, we copy
not only epsrc___.pfb but also epsrc___.afm to the
working directory. We need the latter file to generate

the .tfm file. Next, we enter the following commands
on a command line:
afm2pl -p ot1 epscr___.afm epscr7t.pl
pltotf epscr7t

The extensions .afm and .pl are optional. The
first command converts the .afm file to an (almost)
human-readable text version of the desired .tfm file.
The second command creates the more compact binary
version.

Before we can use this font, we must LaTEX tell
about it. We do this with a font family definition file
ot1myfontfam.fd:
\ProvidesFile{ot1myfontfam.fd}
\DeclareFontFamily{OT1}{myfontfam}{}
\DeclareFontShape{OT1}{myfontfam}{m}{n}{

<-> epscr7t }{}

The prefix ot1 indicates the encoding, which tells
which characters occur at what positions. The next sec-
tion will say more about encodings. The parameters to
\DeclareFontShape are successively encoding, fam-
ily name, weight (e.g. bold), shape, font file (without
extension) and special options. You can normally leave
this last parameter empty. With just one family mem-
ber, we are not fussy about font characteristics and just
pick defaults. We also leave this file in the working dir-
ectory.

This is the code of our first testfile exabasic.tex,
which uses this font:
\documentclass{article}
\pagestyle{empty}
\pdfmapfile{=epscr7t.map}

\newcommand{\fancyfont}%
{\fontfamily{myfontfam}\selectfont}

\begin{document}
\fancyfont
Hello, world!

Accents: \'el\`eve bl\"of \"i;
Kerning: WAV, LTa
\end{document}

The \pdfmapfile command causes pdflatex to read
the file epscr7t.map which tells pdftex how to get the
font into the output file. The prepended ‘=’ tells pdftex



Font installation the shallow way NAJAAR 2005 15

that it should read epscr7t.map in addition to, not
instead of the default mapfile, and that in case of a
conflict epscr7t.map wins.

Now we are ready to compile exabasic.tex:
pdflatex exabasic

This is the result:

Hello, world!
Accents: élève blöf ı̈; Kerning: WAV, LTa

Encodings
We already made brief mention of encodings. Now is
the time to dig a little deeper, because it is a topic that
can easily trip you up.

An encoding defines what character corresponds to
which number. Only numbers between 0 and 255 are
allowed. A .tfm file associates character metrics dir-
ectly with character positions and doesn’t know what
position represents what character. TEX simply makes
assumptions about this correspondence or encoding,
and if you disagree with those assumptions then you
need to load some macro package or other to tell TEX
otherwise.

We hope that mainstream TeX will eventually move
to Unicode, which is a comprehensive encoding of
all conceivable characters, including far-eastern alpha-
bets and mathematical symbols. When that happens,
we can forget about encodings and also do away with
many applications of virtual fonts. There are already
some Unicode-based variants of TeX.1

For a PostScript .pfb- or .pfa font, character met-
rics are stored in a separate .afm file. These metrics
are associated with characters, not with character po-
sitions. Therefore you should specify an encoding to
afm2pl or afm2tfm2. The same encoding must also be
specified in the mapfile entry. A PostScript font usually
has more characters than fit into a single encoding.

A parameter ‘-p texnansi’ or ‘-p texnansi.enc’
means that the encoding should be read from a file
texnansi.enc. This encoding probably has a different
internal name.

OT1 encoding. If you don’t tell TEX otherwise, it as-
sumes that you use OT1 encoding. This encoding uses
only 128 of the 256 available slots. TEX creates miss-
ing accented characters from an unaccented base char-
acter and a separate accent character. Unfortunately,
this interferes with hyphenation. Apart from this, the
OT1 encoding has various other oddities, and is best
avoided. OT1-encoded fonts often have a TEX name
ending in 7t3. Note that ot1.enc comes with afm2pl

and is probably not available if you don’t have afm2pl
on your system.

T1 encoding. T1 is the successor to OT1. It uses all
available slots, and has lots of accented characters, also
for Eastern European languages. Because the T1 en-
coding left no room for typographic symbols such as
‘‰’ or ‘©’ or ‘ƒ’ you will need to get those from a
second encoding of the same font. This second encod-
ing is called TS1 or ‘text companion’.

For most traditional PostScript fonts, some of the ac-
cented characters in the T1 encoding aren’t actually
present and must be created with virtual font tech-
nology from a base character and an accent. Since it
doesn’t have to be done by TEX itself, this is no obstacle
to hyphenation.

Although you can tell afm2pl to use T1 encoding,
it can’t create composite characters, and such compos-
ite characters will be missing unless they are already
present in the original font.

T1-encoded fonts often have a TEX name ending in
8t.

Texnansi encoding. Texnansi has been introduced by
Y&Y, the now-defunct company behind Y&YTEX, dvi-
window and dvipsone. It combines a good selection
of both accented letters and typographic symbols, and
normally contains everything you need in a single
encoding, at least for Western European languages.
Texnansi-encoded fonts often have a name ending in
8y.

The package texnansi selects the texnansi encoding
and contains some additional code to smooth out in-
compatibilities with T1 and OT1.

A texnansi example. For this example, we choose
Augie, a handwriting font from TeX Live. These are the
commands for generating the .tfm and .map files:
afm2pl -p texnansi augie___.afm augie8y.pl
pltotf augie8y

This is ly1augie.fd (notice the ly1 prefix):
\ProvidesFile{ly1augie.fd}
\DeclareFontFamily{LY1}{augie}{}
\DeclareFontShape{LY1}{augie}{m}{n}{

<-> augie8y }{}

This is the LateX code:
\documentclass{article}
\usepackage{texnansi}
\pagestyle{empty}
\pdfmapfile{=augie8y.map}

\newcommand{\fancyfont}%
{\fontfamily{augie}\selectfont}



16 MAPS 33 Siep Kroonenberg

\begin{document}
\fancyfont
Hello, world!

Accents: \'el\`eve bl\"of \"i;
Symbols:
\textparagraph{} \textdaggerdbl{}
\texttrademark{} \textcopyright
\end{document}

and this is the result. Notice the extra symbols. These
are absent from the T1 encoding and would have re-
quired a text companion font.

Hello, world!

Accents: élève blöf ï; Symbols: ¶ ‡ ™ ©

TrueType
Another scalable font format is TrueType, which is sup-
ported by pdftex but currently not by dvips. Font met-
rics are stored in the font file itself. Using TrueType
is somewhat more work; the following commands are
required to import a TrueType font such as Trebuchet:
ttf2afm trebuc.ttf >trebuc.afm
afm2pl -p texnansi trebuc trebuc8y
pltotf trebuc8y
<edit mapfile to replace .pfb with .ttf>

ttf2afm extracts the metric information from the .ttf
file.4

afm2pl has no way of knowing that the .afm de-
scribes a TrueType font, and guesses that the actual
fontfile is trebuc.pfb. Therefore you have to fix the
mapfile manually in an editor.

We leave it as an exercise for the reader to write the
.fd file and LaTeX source for the following example:

Hello, world!
Accents: élève blöf ï; Kerning: WAV, LTa, WAV, LTa.
Symbols: ¶ ‡ ™ ©

Font-based uppercasing and letterspacing
afm2pl comes with an uppercased version texnanuc of
texnansi. Uppercasing, e.g. in headings, works best in
combination with letterspacing. For this, afm2pl has a
parameter ‘-m’.

Warning. afm2pl implements letterspacing with
kerns. Unfortunately, the .tfm format can contain only
a limited number of kerns. If there are too many
in the .pl file then all kerns and ligatures will be
dropped from the generated .tfm file! So use this fea-
ture with care. fontinst implements letterspacing by

adding sidebearings via virtual fonts, and doesn’t suf-
fer from this limitation.

We can create a letterspaced, uppercased version of
Trebuchet with the following commands:
ttf2afm trebuc.ttf >trebuc.afm
afm2pl -p texnanuc -m 100 trebuc trebucupp8y
pltotf trebucupp8y
<edit mapfile to replace .pfb with .ttf>

A fontfamily and fontshape declaration might look as
follows:
\ProvidesFile{ly1trebuc.fd}
\DeclareFontFamily{LY1}{trebuc}{}
\DeclareFontShape{LY1}{trebuc}{m}{upp}{

<-> trebucupp8y }{}

The fontshape upp for uppercasing is not an official
LaTEX shape but that doesn’t seem to matter. You can
use the font as follows:
\documentclass{article}
\usepackage{texnansi}
\pagestyle{empty}
\pdfmapfile{=trebucupp8y.map}

\begin{document}
\fontfamily{trebuc}\fontshape{upp}\selectfont
Letterspaced uppercasing
\end{document}

and this is the result:

LETTERSPACED UPPERCASING

A font family
The next example uses a real font family, consisting of
the usual four family members plus our letterspaced
font. So we will need not only trebuc.ttf, as in the pre-
vious example, but also trebucbd.ttf, trebucit.ttf, and
trebucbi.ttf. For each of these we’ll have to run the
ttf2afm – afm2pl – pltotf sequence, and we’ll have to
edit each of the generated map files, or create a com-
bined mapfile.
This is its code of the .fd file:
\ProvidesFile{ly1trebuc.fd}
\DeclareFontFamily{LY1}{trebuc}{}
\DeclareFontShape{LY1}{trebuc}{bx}{n}{

<-> trebucbd8y }{}
\DeclareFontShape{LY1}{trebuc}{m}{n}{

<-> trebuc8y }{}
\DeclareFontShape{LY1}{trebuc}{bx}{it}{

<-> trebucbi8y }{}
\DeclareFontShape{LY1}{trebuc}{m}{it}{

<-> trebucit8y }{}
\DeclareFontShape{LY1}{trebuc}{m}{upp}{

<-> trebucupp8y }{}



Font installation the shallow way NAJAAR 2005 17

And this is the LaTEX code using it:
\documentclass{article}
\usepackage{texnansi}
\pagestyle{empty}
% better combine these mapfiles!
\pdfmapfile{=trebuc8y.map}
\pdfmapfile{=trebucbd8y.map}
\pdfmapfile{=trebucit8y.map}
\pdfmapfile{=trebucbi8y.map}
\pdfmapfile{=trebucupp8y.map}

\begin{document}
\fontfamily{trebuc}\selectfont
Hello, \textbf{world!}

Accents: \'el\`eve bl\"of \"i;
Kerning: WAV, LTa, \textit{WAV, \textbf{LTa.}}

Symbols:
\textparagraph{} \textdaggerdbl{}
\texttrademark{} \textcopyright

\fontshape{upp}\selectfont
Letterspaced uppercasing
\end{document}

This is the result:

Hello, world!
Accents: élève blöf ï; Kerning: WAV, LTa, WAV, LTa.
Symbols: ¶ ‡ ™ ©
LETTERSPACED UPPERCASING

Using dvips
If you go the dvips route, then you cannot use the
\pdfmapfile macro. Instead, you have to enter ad-
ditional mapfiles on the command line:
dvips -u +mapfile dvifile

The prefix + to the mapfile parameter is analogous to
the = prefix for the \pdfmapfile macro: it tells dvips
to use the named mapfile in addition to the default one.

Using afm2tfm
The intention of afm2tfm is not to create fonts which
are used directly by TEX. Instead, they serve as a basis
for virtual fonts, i.e. recipes to compose fonts from
other fonts. But it is not too difficult to subvert this
intention:
afm2tfm epscr___ -T texnansi \

-v indirect.vpl direct.tfm >direct.map
#rm direct.tfm
vptovf indirect.vpl
rm indirect.vf

<edit direct.map>

Note that the .afm filename comes before the options.
vptovf generates two files from indirect.vpl:

indirect.vf and indirect.tfm.
You should remove indirect.vf, otherwise the dvi

driver or pdftex would think that indirect is a virtual
font.

Normally, you would also remove direct.tfm,
but I keep it to show you the difference with
indirect.tfm.

Mapfile information is written to standard output,
which therefore had to be redirected, as shown above.
It contains the following string:
direct PepitaMT

" TeXnANSIEncoding ReEncodeFont " <texnansi

(everything on one line). This has to be changed into:
indirect PepitaMT

" TeXnANSIEncoding ReEncodeFont "
<texnansi.enc <epscr___.pfb

(one line).
The example below displays differences in spacing

between the two. Note. This is not an example for copy-
ing.

Direct
Accents: élève blöf ï; Kerning: WAV, LTa
Indirect
Accents: élève blöf ï; Kerning: WAV, LTa

Other options of afm2pl and afm2tfm
With both programs you can artificially slant, narrow
and widen a font. afm2tfm can also generate artificial
smallcaps. Such manipulated fonts rarely look good,
though.

afm2pl also has some options for manipulating the
ligkern table and for setting spacing parameters. For
casual use, you don’t bother with these.

OpenType
We are seeing more and more OpenType fonts, which
are Unicode-based. These consist of either PostScript/
Type 1 or TrueType outlines inside a TrueType wrap-
per. OpenType fonts may contain huge charactersets,
sometimes including smallcaps and oldstyle figures.

OpenType fonts with Type 1 outlines, which have
.otf extension, can be converted with otftotfm, part
of Eddie Kohler’s LCDF Typetools and included in TeX
Live.

OpenType fonts with TrueType outlines have an ex-
tension .ttf and can be treated just like TrueType
fonts.



18 MAPS 33 Siep Kroonenberg

Ad hoc or generic solutions?
Various people have written scripts to automate font
installation. ConTeXt users will be familiar with tex-
font, which, by the way, has an option to use afm2pl
instead of afm2tfm.

Each example took several commands on a com-
mand line. So why not a script?

I don’t install fonts all that often. I like to decide case
by case how to do it: what tools to use, what variants to
generate, where to install or not install, how to name
the fonts…

Under these circumstances, the simplest and best
solution is to either do it by hand, or to write little
ad-hoc scripts and keep them with the project.

Notes
1. Omega and its offshoot Aleph are Unicode-based.
Users of Mac OS X may be interested in XeTeX
(http://scripts.sil.org/cms/scripts/page.php?
site_id=nrsi&item_id=xetex), which is built on top of a
regular TEX installation and lets you use Mac OS X unicode
fonts directly with TEX.
2. If you don’t specify an encoding, then you get the encod-
ing from the .afm file, which is almost certainly not what
you want.
3. For afm2pl and afm2tfm, font names have no particular
meaning. This is one more difference with fontinst. I add
encoding postfixes such as 7t and 8y to font names just as
reminders to myself.
4. This will result in an empty encoding, unless you specify
an encoding parameter. But we are going to ignore the en-
coding in the .afm anyhow.

Siep Kroonenberg
siepo@cybercomm.nl


