
54 MAPS 33 Hendri Adriaens & Chris Ellison

powerdot
making presentations with LaTEX

Abstract
This article describes some technical details of the
powerdot class [3] which was developed during the
summer holidays of 2005.

Keywords
LaTEX presentations, powerdot, prosper, pstricks,
xkeyval

Introduction

powerdot is a presentation class for LaTEX that al-
lows for the quick and easy development of profes-
sional presentations. It comes with many tools that en-
hance presentations and aid the presenter. Examples
are automatic overlays, personal notes and a handout
mode. To view a presentation, DVI, PS or PDF output
can be used. A powerful template system is available
to easily develop new styles. Also, a LYX layout file is
provided. powerdot is a new package in the line of
prosper [5] and HA-prosper [1].

It has been well known, for quite some time, that the
prosper class has severe problems. Examples include
damaged constructions from a redefined \item, spa-
cing problems on overlays while in math mode, failing
counter protection, useless DVI and PS output, and a
lack of support for screen-optimized paper dimensions.
The HA-prosper package tried to correct some of these
problems, but as LaTEX programming experience grew,
it was found that some of the problems of the prosper
class (such as the paper job) could not be corrected
anymore.

However, the idea of using pstricks [6, 7] and
minipage environments for content was appealing in
that it allowed for a vast variety of presentation styles.

Halfway through 2004, Hendri decided to make a
successor to the prosper and HA-prosper combination.
The class would be built from the ground up, and it
would be called powerdot.1 As it would be a major
undertaking to develop a new class, new styles, and
documentation, Hendri looked for a helping hand on
the HA-proper mailing list. He was very lucky to find
that Chris Ellison was prepared to help. After some
initial tests, the production of the class finally started

in July 2005, and it was mostly completed during the
summer holidays of 2005. This article will describe the
build process and the choices made along the way.

Paper size and orientation

Before putting anything on the paper, we needed to
be sure we were using the correct paper size and ori-
entation. However, as the idea was to place all con-
tent in minipage environments and then use pstricks’
\rput to position the environments on the paper, we
really didn’t need to worry about page dimensions and
margins for the user. So, we removed all margins
and placed the origin (0,0) in the lower-left corner
of the paper and (\slidewidth,\slideheight) in
the upper-right corner. This provided an easy way for
designers to create scalable styles for use with multiple
paper types such as letter paper, a4 paper and screen
ratio paper (4/3).

But what are these lengths \slidewidth and
\slideheight? They will be determined from the pa-
per type and orientation specified by the user and will
be set to .5\paperwidth and .5\paperheight. We
then magnify the DVI by a factor of two to have easy
access to large fonts with the regular files size10.clo
etcetera. This creates a useable DVI file,2 a useable PS
file (after processing with dvips), and a useable PDF
file (after processing with ps2pdf).

To help the user when compiling to PDF, powerdot
uses the papersize special to tell dvips which paper
should be used. This way, the user does not need to
specify the paper type with the -t command line op-
tion. However, there is a problem with this special.
Most dvips configurations used today have a special
A4size paper which, when a4 paper dimension are
found in the papersize special, does not write the
PostScript a4 command to the PostScript file. When
processing this PostScript file using ps2pdf without
command line parameters, the program will not find
a particular paper type and will default to letter paper.
To avoid this problem, powerdot explicitly writes the
a4 command to the PostScript file when a4 paper is
requested.3,4

powerdot NAJAAR 2005 55

Designer interface

So far, we have set up the paper dimensions and made
sure that the user can get a proper DVI, PS or PDF file
without much trouble or knowing about command line
parameters. Now we have to make sure that new slide
styles can easily be developed. This will be a huge
improvement over prosper’s complicated and basically
absent designer interface.

Remember, we started with the idea of putting con-
tent on the paper in minipage environments using
\rput. This gives rise to a very simple but power-
ful designer interface where all properties of the main
components (slide title, text box, etcetera) can be con-
trolled by keys which are defined using xkeyval [2].
These keys can be used in the \pddefinetemplate
command, which has another argument that cre-
ates the background of the slide (using, for instance,
pstricks). A special key, called ifsetup, can be used to
specify to which setups all following keys should apply.
For instance,

ifsetup={landscape,a4paper}

tells powerdot that all following keys should be used
in case the user requested landscape a4 paper. The
following, however,

ifsetup=landscape

makes all following keys used in landscape orientation,
but with any paper type. There is also a ‘stand-alone’
version of this key called \pdifsetup.

Finally, the \pddefinetemplate command allows
us to use an existing template as basis for a new
template, which further simplifies style development.
Here is a simple example of the designer interface.

\documentclass[
% orient=portrait

]{powerdot}
\pddefinetemplate{basic}{

titlepos={.05\slidewidth,.91\slideheight},
titlewidth=.9\slidewidth,
textpos={.05\slidewidth,.85\slideheight},
textwidth=.9\slidewidth,
textfont=\raggedright\color{black}

}{%
\psframe*[linecolor=yellow!20]%
(0,0)(\slidewidth,\slideheight)%

}
\pddefinetemplate[basic]{slide}{%

ifsetup=landscape,
titlefont=\Large\raggedright\color{black},
ifsetup=portrait,
titlefont=\Large\centering\color{black}

}{}
\begin{document}

\begin{slide}{Title}
Some text.

\end{slide}
\end{document}

The \pddefinetemplate command defines the
slide template which will be based on the basic
template. This template initializes the position of the
main text box and the title and the text font to be
used. In addition to the declarations coming from
the basic template, the slide template specifies
the title font. Note the use of the ifsetup key
to choose different formatting for the slide title in
landscape mode or portrait mode. In practice, this
might considered to be inconsistent design, but here it
just serves as an example. This example is very simple
and the templates could easily be merged into one,
but it clearly demonstrates the possibilities to reuse
existing templates.

If we typeset the example above in both landscape
and portrait orientation, we get the following output.

When a designer wants to do more fancy things which
cannot be controlled by keys, powerdot supplies ac-
cess to a variety of macros that do specific jobs and
can be redefined to achieve these goals. Examples
are \pd@title, which controls the typesetting of the
presentation title, and \pd@slidetitle, which con-
trols the typesetting of slide titles. By default, these
macros just pass on their argument, but can be re-
defined to do arbitrary things.

As an example of the various possibilities of the
design interface of powerdot, you can find samples of
some of the currently available presentation styles in
figures 1 to 4.

User interface

Most importantly, a new user interface needed to be
developed which was both powerful and simple to use.
Setting up the main characteristics of a presentation,
like paper type, font size and style, is done via the
\documentclass command. Other settings, like the
footers, transition effects and layout of lists, is done
via the \pdsetup command.

The user interface for making slides is kept very
simple and is mainly formed by the slide environ-
ment.5 This environment first stores the literal text of
the body in a token register. This allows us to reuse the

56 MAPS 33 Hendri Adriaens & Chris Ellison

Example slide

left footer right footer – 2 / 2

Here is the binomium formula.

(a + b)n =
n
∑

k=0

(

n

k

)

a
n−k

b
k (1)

We will prove formula (1) on the blackboard.

■ Here

◆ is

■ a

◆ list

■ with

◆ seven

■ items.

Figure 1. elcolors style

Example slide

left footer right footer – 2 / 2

Here is the binomium formula.

(a + b)n =
n

∑

k=0

(

n

k

)

a
n−k

b
k (1)

We will prove formula (1) on the blackboard.

� Here

� is

� a

� list

� with

� seven

� items.

Figure 2. sailor style

Example slide

left footer right footer – 2 / 2

Here is the binomium formula.

(a + b)n =
n
∑

k=0

(

n

k

)

a
n−k

b
k (1)

We will prove formula (1) on the blackboard.

■ Here

◆ is

■ a

◆ list

■ with

◆ seven

■ items.

Figure 3. bframe style

Example slide

left footer right footer

Here is the binomium formula.

(a + b)n =
n
∑

k=0

(

n

k

)

a
n−k

b
k (1)

We will prove formula (1) on the blackboard.

• Here

• is

• a

• list

• with

• seven

• items.

Figure 4. paintings style

body later on. We do this by searching the input stream
for the next occurrence of the \end command. If this
command has the proper argument, namely slide,
then we have found the end of the slide and we can
start processing the content. If not, we add the text
found so far to the token register and continue the
search.

Now that we have the body ‘in our hands’, we
can typeset it once and see what happens. The user
could actually have specified an overlay command like
\onslide or \pause in the slide. During the first
run, these commands are executed and these are used
to determine the remaining number of times that we
need to typeset the body. This process creates several
overlays using just one slide environment. Here is a
simple example.6

\begin{slide}{My first slide}
Hello \pause world!

\end{slide}
\begin{slide}{My second slide}

\onslide{1-}{Hello} \onslide{2}{world!}
\end{slide}

This example creates two overlays for each slide.
Hello will appear on both overlays for each slide,
while world! appears only on every second overlay.

There is a drawback to using the technique de-
scribed above to get the body of the environment and
that is that category codes will be fixed in the text once
we start typesetting it for the first time. Hence, con-
structions that rely on changing catcodes internally,
like the verbatim environment, do not work inside
the slide environment. This problem is easily worked
around by storing the verbatim text outside the slide
environment in a box and using that box inside the
slide.

Supporting LaTEX commands

Of course, making a presentation is rather different
from writing the article itself and by introducing new
features, such as overlays, we might bring standard
LaTEX constructions in trouble. Take for instance LaTEX
counters. When repeatedly typesetting the same text,
counter increases in that text (for instance by the equa-
tion environment) also get executed several times by
the same text. This could lead to the same equation
having different numbers on different overlays. This is
easily overcome, however. We just record the value of
some counters before typesetting the first overlay and
reset it at the start of the next overlay. powerdot does
this automatically for the counters equation, figure,
and table. The user can easily add more counters to
the list by using the counters key in the \pdsetup
command.

powerdot NAJAAR 2005 57

Another example is the \label command. If
the standard \label command would be executed
on overlays, the user would always get Multiply
defined labels errors.

prosper tried to solve this issue by executing
\labels only on the first overlay. The error is obvi-
ous. Another idea would be to tell the user to always
use \label inside an appropriate \onslide command
with a single overlay specification. That, however, re-
quires extra work from the user.

powerdot executes the \label only on the first over-
lay where it is actually used. This could, in fact, be
overlay 37. The way it does this is by adding all labels
defined on a slide to a list. If the list already includes
the current label, this label is not executed again. The
list is emptied at the start of every slide. The side ef-
fect of this system is that multiply-defined labels on
the same slide cannot be detected anymore. However,
multiply-defined labels on different slides still result in
a warning in the log file of the user. This side effect is
not considered very serious as the source of a slide is
often rather short.

LYX support

To support the use of LYX [4] for creating powerdot
presentations, the user interface should be able to deal
with the restrictions set by LYX. One of the difficulties
with LYX’s interface is that it doesn’t allow environ-
ments to have arguments. Instead, we have to use
commands to indicate the beginning and end of a slide.
When a powerdot LYX presentation is exported to LaTEX
it looks like

\documentclass{powerdot}
\begin{document}
\lyxend\lyxslide{My first slide}

Hello \pause world!
\lyxend\lyxslide{My second slide}

\onslide{1-}{Hello} \onslide{2}{World}
\lyxend
\end{document}

Here, \lyxend is a harmless macro that is only used
by \lyxslide as a delimiter. This interface can eas-
ily be extended by using the \pddefinelyxtemplate
command in case a style defines custom templates.
This command defines a control sequence that uses the
underlying templates, like \lyxslide uses the slide
template.

Hiding material

How do \onslide and \pause actually work when
hiding material?7 This is done using overlays offered
by pstricks. We can use this system in the following
way. On every slide, we initialize PostScript overlay 0.

On that overlay, text will be visible. PostScript overlay
1 is used to make material invisible. This means that it
will be typeset as usual by LaTEX, but that the material
will not be visual in the output. Hence, the cursor will
still be moved by the material. By switching to overlay
1 and back at the right times, we can hide any mater-
ial we want. By switching to overlay 1 and not back
anymore, we can hide all following material.

If we consider the example again and ignore all
second (powerdot) overlays (as all material will be vis-
ible there), it comes basically down to executing the
following.

\documentclass{powerdot}
\begin{document}
\makeatletter
\begin{slide}{My first slide}

Hello \pst@Verb{(1) BOL} world!
\end{slide}
\begin{slide}{My second slide}

Hello \pst@Verb{(1) BOL}world!\pst@Verb{(0) BOL}
\end{slide}
\makeatother
\end{document}

The \pst@Verb commands enter the switches to Post-
Script overlay 0 and 1 into the PostScript document
via \special’s. We see that \pause will not return
to overlay 0 afterwards, whereas \onslide does so.
Hence, any following material would be invisible on
powerdot overlay 2 on the first slide and not on the
second.

Final details

The final task for the user interface was to fill in the
details. An interface was necessary to create sections,
table of contents entries, prevent figure and table
environments from floating, create personal notes and
handouts, and much more. Please have a look at the
user documentation if you are interested in learning
more about the powerdot class. The result of this
holiday effort is a class that can create good-looking
slides with a minimal amount of input from the
designer and user, both when typing the source and
when compiling it.

The future

The development of powerdot will of course continue
and we have the plan to add new and innovative fea-
tures to the class that will be very useful. When writ-
ing this, we are also working hard on, amongst many
other things, multiple palettes per style (meaning the
same design but different colors), a digital clock on
slides and random elements (like dots and rings) to
make presentations a little livelier. When you read this,

58 MAPS 33 Hendri Adriaens & Chris Ellison

powerdot might already have had an update in which
all these features, and more, are present.

References

[1] Hendri Adriaens. HA-prosper package. CTAN:
/macros/latex/contrib/HA-prosper.

[2] Hendri Adriaens. xkeyval package. CTAN:
/macros/latex/contrib/xkeyval.

[3] Hendri Adriaens and Christopher Ellison.
powerdot class. CTAN:/macros/latex/
contrib/powerdot.

[4] LYX crew. LYX website. http://www.lyx.org.
[5] Frédéric Goualard and Peter Møller Neer-

gaard. prosper class. CTAN:/macros/latex/
contrib/prosper.

[6] Herbert Voß. PSTricks website. http:
//pstricks.tug.org.

[7] Timothy Van Zandt et al. PSTricks package,
v1.07, 2005/05/06. CTAN:/graphics/
pstricks.

Notes
1. At first, the name TEXciting was chosen, but that was
abandoned due to associations with ‘citations’.
2. For DVI viewers that understand PostScript \specials.
3. And the letter command for letter paper.
4. There is the nopsheader option which avoids writing the
papersize special and the a4 command. This should be
used when the user can’t use dvips without command line
parameters, for instance, because the editor always inserts
either -tletter or -ta4.
5. Most styles supply more templates, like the wideslide
environment, but these work internally the same as the
slide environment.
6. Please refer to the documentation for syntax details.
7. There are also versions of these macros that eat material
or color it with another color than the text color.
Hendri Adriaens
hendri[at]uvt.nl

Chris Ellison
chris.ellison[at]gmail.com

