Hans Hagen

NAJAAR 2006

What tools do ConTgXt users have?

Abstract

This article describes the tools that are available for
running ConTEXt, for testing, finding, analysing files,
installing fonts, and more.

A bit of history
When we started working on ConTgXt, MS Windows
(and before that 4Dos) was our main platform,; it still is
for development (we use Unix on the web and file serv-
ers and the Mac for fun). So, when ConTiXt was integ-
rated into the TgX distributions we faced the problem
of portability. Since one needs auxiliary programs! e.g.
for sorting an index, we had written TgXutil, and the
lack of a command line handler made us come up with
TiXexec. Both were written in Modula but were rewrit-
ten in Perl in order to be usable on platforms other than
MS Windows. It was easier to maintain a Perl version
than to deal with low-level platform issues indefinitely.
As both our own and user demands grew, we wrote
more tools and found out that they could best be writ-
ten in Ruby. In the meantime TgXexec has been rewrit-
ten in Ruby, and relevant parts of TgXutil have been
merged into it.

Launching scripts
Starting a script on an MS Windows box can be done
using a so-called stub, a small program or command
file with the same name that locates a similarly named
script. On Unix some shell magic can be used to do
the same or one can fall back on a magic preamble (a
Bash/Perl mixture) fooling the operating system into
locating and spawning the script using the right inter-
preter. By now, MS Windows has a convenient file as-
sociation mechanism (but one has to activate it first)
while Unix needs a (nowadays less path sensitive) she-
bang line and a suffix-less copy of the script.
Nevertheless we decided to come up with a less
sensitive approach which also gave us the opportun-
ity to accomplish a few more things: TgXMFstart. This
script locates and executes a script (or program) in the
TiX tree and executes it.

texmfstart texexec somefile.tex

When you incorporate TgX in work flows, calling
TiXexec this way is rather future safe. Actually, be-
cause of this method, we could make the transition

from TgXexec being a Perl script to being a Ruby pro-
gram without too much trouble. A side effect of this
way of launching scripts is that nested calls are faster
because some information is passed on to child runs.

The script is also able to sort out a couple of things,
for instance where files reside. Nowadays one will sel-
dom use TgX alone and not all text processing (or re-
lated) programs have a clear concept of resource man-
agement and/or can work well with a TDS conforming
tree.

texmfstart bin:xsltproc --output=new.xml \
kpse:how.xsl old.xml

This? will locate the file how.xs1 in the TiX tree and
expand the file name to the full path. That way one
can keep XSLT scripts organized as well. There are a
few more such prefixes.

Other features are locating and showing document-
ation and launching editors with files located in the
tree. The following call will open the texmf . cnf file
that is currently used.

texmfstart --edit kpse:texmf.cnf

The script can initialize a tree so one can effectively run
multiple trees in parallel. It does so by loading (when
present) a file with variable specifications (more about
that later).

texmfstart --tree=e:/tex-2003 \
texexec somefile.tex

We often use a different tree for each project because
commercial fonts may be project related and this way
we can move a tree around without running into copy-
right problems (read: installing all fonts on each box).

texmfstart --tree=e:/tex-2003 \
texexec somefile.tex

Another handy feature is conditional processing. In
the following case the test file will only be processed
when it has changed.

texmfstart --ifchanged=test.r --direct R \
"-q --save --restore < test.r"

In a similar fashion one can make running dependent
on time stamp comparison. More details can be found
in the manual.

3

4 MAPS 34

Managing ConTgXt runs
The TgXexec script manages a user’s TgX run. There are
many factors that influence such a run:

O Since ConTgXt uses the same format for all back
ends, it depends on loading the relevant back
end driver modules. Although one has complete
control, life can be made easier when this is done
automatically.

O A first pass may generate data needed in a suc-
cessive pass. There may be references, tables of
contents, indexes, etc. so we need a way to manage
multiple runs. We have to make sure that neither
fewer nor more runs than needed take place.

O A run may demand further action between runs,
like graphic manipulations or delayed MetaPost
execution.

O We may want to run different TgX engines, apply
different back ends, use different user interfaces.
Also, the name and way of calling TgX may change
over time, something that we don’t want users to
be bothered with.

O We may want to process a TgX or XML file under
different style regimes or enable style-specific
modes.

O The document may need an additional page
imposition pass, managed in such a way that no
auxiliary data gets messed up.

O We may want to close and open the result in a
viewer after the run is done.

This and a bit more is handled by TgXexec. When deal-
ing with ConTgXt files the script will do a few things
users are normally not aware of, like making sure that
the random seed is frozen for a run, bugs in programs
are caught (as long as needed) and that omissions in
the texmf .cnf settings are compensated for. In ad-
dition TgXexec provides a few features for combining
and manipulating PDF files.

The latest versions of TgXexec also support socalled
ctx files. These are files in XML format that describe
a process, additional pre- and post processing needed,
styles and modules to be used, etc.> This means that
one can easily configure projects without the need to
tweak source files or editor setups or give explicit com-
mands. Think of situations where an XML file (or
bunch of files) has to be converted to another variant
in order to be processed. TgXexec will only do that con-
version when needed. In Figure 1 we show the file that
is used in the MathAdore project.* The source file con-
tains OpenMath and what we call ‘shortcut math’ and
after normalizing this to OpenMath (first conversion)
we convert the math to content MATHML (second con-
version).

Hans Hagen

The source file contains a reference to this ctx file and
when TiXexec is applied to the source file, it will take
the appropriate actions. Such a reference looks like:

<?ctx-dir job ctxfile ../mathadore.ctx 7>
Here “ctx-dir” denotes a ConTpXt directive.

When dealing with a TgX file, TgXexec will scan the
first line for comments that serve a similar purpose.

Handling the utility file

For a long time TgXutil was called from within
TiXexec to handle the utility file that collects the index
entries, tables of contents, references, etc. Nowadays
this functionality is integrated in TgXexec which is
more efficient. We also took the opportunity to en-
hance the sorting features so that one can mix lan-
guage specific sorting rules.

The original TgXutil is also responsible for some
other manipulations, like analyzing graphics. That
kind of functionality has been moved to other scripts
and more modern ways of dealing with such issues.
Because we were in a transition stage to Ruby script-
ing, it was a good moment to say goodbye to TgXutil
and concentrate on building a more extensive set of
tools.

The tools collection
Instead of expanding TgXutil, we decided to spread
functionality over multiple scripts. These can be re-
cognized by their name: they all end with tools. If
you call them using TgXMFstart there is not much op-
portunity for conflicts with existing tools.

Each tool comes with a manual, so we will not dis-
cuss details here.

ctxtools. This tool provides ConTgXt related features,
like generating generic pattern files (so that we are
independent), providing editor syntax checking files
derived from the generic ConTgXt interface definition
(handy for lexers), generating documentation (from
the ConTgXt source code), updating ConTgXt (by down-
loading an archive and regenerating formats), etc.

rixtools. The ‘r’ represents resources, normally graph-
ics, the I’ stands for libraries, and the X’ (indeed) for
XML. This tool can analyze graphic files and manip-
ulate resources using other programs. For instance
it can be used to down sample files at run time, to
handle special color conversion, and to convert graph-
ics to formats acceptable for TgX. By using the run time
converters one can build work flows without the need
to rely on additional scripting. There is a dedicated
manual on this topic so we will not bore you here with
yet another blob of XML.

What tools do ConTEXt users have?

<?xml version=’1.0’ standalone=’yes’?>
<ctx:job>
<ctx:message>mathadore</ctx:message>
<ctx:preprocess suffix=’prep’>
<ctx:processors>

NAJAAR 2006 5

<ctx:processor name=’openmath’ suffix=’om’>texmfstart

--direct xsltproc
--output <ctx:value name=’new’/>

kpse:x-sm2om.xsl <ctx:value name=’0ld’/>

</ctx:processor>

<ctx:processor name=’mathadore’ suffix=’prep’>texmfstart

--direct xsltproc
--output <ctx:value name=’mnew’/>
kpse:x-openmath.xsl
<ctx:value name=’0ld’/>.om
</ctx:processor>
</ctx:processors>
<ctx:files>
<ctx:file
<ctx:file
<ctx:file
</ctx:files>
</ctx:preprocess>
<ctx:process>
<ctx:resources>

processor=’openmath,mathadore’>v*.xml</ctx:file>
processor=’openmath,mathadore’>h*.xml</ctx:file>
processor=’openmath,mathadore’>openmath#*.xml</ctx:file>

<ctx:environment>o-m4all.tex</ctx:environment>

</ctx:resources>
</ctx:process>
<ctx:postprocess>
</ctx:postprocess>
</ctx:job>

Figure 1. A ctx file used in the MathAdore project

xmltools. You can use this tool to do a simple analysis
on an XML file. Another option is to generate a direct-
ory listing in XML format. In both cases, the result can
be fed into ConTgXt and used in the process. A more
obscure option is to generate images from MATHML
snippets. This script will without doubt include more
features in the future.

pdftools. This is work in progress. One can for in-
stance roughly analyze PDF files. It also provides a
way to manipulate colors in PDF images but that fea-
ture is now supported in ConTgXt directly.

textools. Users will seldom need this tool. It can fix
things in a TDS compliant tree (for instance when the
standard has changed), it deals with a few cross plat-
form issues, it can help you to create so-called TPM
archives (and is meant for ConTgXt module writers)
and it can merge updates into your tree.

mpstools. In the future this tool will host the now
standalone MetaPost to PDF wrapper (mptopdf) as
well as the cropper (both are still Perl scripts).

tmftools. This script encapsulates some of the func-
tionality of the Ruby based kpsewhich functionality

that we use. In the future we may completely move
away from the binary because the script is just as fast
or faster when it serializes the database. The script can
act as a kpsewhich server. The script can also analyze
the tree for duplicates.

runtools. Because TgX is multi platform and because
we (need to) run services on multiple platforms, we
use this script to do things normally done at the con-
sole (shell). It just loads the given Ruby scripts with
the appropriate library. We also use this tool to gener-
ate the ConTpXt distribution.

exatools. Thisis a more obscure tool. It provides some
features related to form based style control and web
driven TgX processing that we use in projects.

pstopdf. This last one is not a collection like the pre-
vious tools. It started long ago as a wrapper for Ghost-
script. It still provides this function and over the years
we’ve added quite a bit of filtering to it (we just filter
the things that Ghostscript fails on or gets confused
from). In the meantime we cheat on the name since
it also manages the conversion of bitmap images, es-
pecially cached down sampling, using ImageMagick as

6 MAPS 34

Hans Hagen

file : setuptex.tmf (the less generic version have suffixes like cmd, sh, csh etc)
author : Hans Hagen - PRAGMA ADE - Hasselt NL - www.pragma-ade.com
usage : texmfstart --tree=f:/minimal/tex ...

#

this assumes that calling script sets TEXPATH without a trailing

slash; %VARNAME) expands to the environment variable, $VARNAME

is left untouched; we also assume that TEX0S is set.

TEXMFMAIN = %TEXPATHY/texmf

TEXMFLOCAL = JTEXPATH),/texmf-local

TEXMFFONTS = J,TEXPATH/,/texmf-fonts

TEXMFPROJECT = %TEXPATHJ,/texmf-project

VARTEXMF = %TMP%/texmf-var

HOMETEXMF =

TEXMFOS = %TEXPATHY/’TEX0S%

TEXMFCNF = %TEXPATH//texmf{-local,}/web2c

TEXMF = {$TEXMFOS, $TEXMFPROJECT , $TEXMFFONTS , $TEXMFLOCAL, ! ! $TEXMFMAIN}
TEXMFDBS = $TEXMF

TEXFORMATS = Y%TEXMFO0S%/web2c/{$engine,?}

MPMEMS = J,TEXFORMATSY,

TEXPOOL = \TEXFORMATSY,

MPPOOL = J,TEXPOOLY

PATH > %TEXMF0S%/bin

PATH > %TEXMFLOCALY/scripts/perl/context

PATH > Y TEXMFLOCALY/scripts/ruby/context

TEXINPUTS =

MPINPUTS =

MFINPUTS =

Figure 2. Example texmf .cnf file

well as conversion from SVG to PDF using Inkscape.

texfont. This script has been around for a while now
and is used to install (commercial) fonts. It generates
metric files, map files, and a demo file so that one can
see if things went right. ConTgXt does not depend on
(ever changing) map file methods and loads map files
on demand. You can generate map files for dvipdfmx
with the previously mentioned ctxtools.

More

There are a few more scripts, like concheck (simple
syntax checking) and texsync (synchronizing min-
imal distributions) but we will not discuss them here.

Integration

When setting up multiple TgX trees, the trick is in isol-
ating them as much as possible. Because one can never
be sure how distributions set things up, we revert to
setting environment variables, which will then take
precedence over the settings in a regular texmf . cnf
file. In the TgXMFstart manual you can find more de-

tails on how we take care of this; here we only show
an example of such an file in Figure 2.

When the tree flag is given, TgXMFstart will read
this file and set the environment variables accordingly
before it launches the program it is supposed to start.
In fact, a tree specification can specify a file, but by
default the setyptex one is taken.

texmfstart \
--tree=f:/minimal/tex/setuptex.tmf \
texexec test.tex

Since TgXMFstart can load several such files, we can
also use this method to preset more environment vari-
ables, for instance pointers to resources like graphics.
This is what the -—env or ——environment option is
for, as in:

texmfstart --tree=f:/minimal/tex \
--env=xyz.tmf texexec test.tex

The advantage of this variable setting game is that in-
stead of cooking up scripts with statements like:

What tools do ConTEXt users have?

thread.new do

ENV["something"] = "nothing"

a = "texmfstart --tree=f:/minimal/tex --"
system(a+"env=xyz.tmf texexec test.tex")
end

we can put the variable definition in a file and say:

thread.new do

a = "texmfstart --tree=f:/minimal/tex --"
system(a+"env=xyz.tmf texexec test.tex")
end

This has not only a big advantage in terms of isolation
(and maintenance) but is also more robust since one
can never be sure if another thread is not setting the
same variable too, thereby creating much confusion for
all the other threads that use the same variable. Since
TeXMFstart runs as a separate process, it can set its
variables independently.

Whenever (on the ConTgXt mailing list) you see
mentioning of something named setuptex, you can
be sure that it relates to initializing a TgX tree (prob-
ably a minimal ConTgXt tree) in an isolated way.

NAJAAR 2006 7

Conclusion

In this short article we have tried to give you an im-
pression of what is needed in order to make TgX us-
able in a diversity of today’s environments. It was not
our intention to be complete, because for that purpose
we have manuals. One thing should be made clear:
although TiX itself is pretty stable, the same cannot
be said for the environment that it is used in. Just
telling TgX to process a file is not enough nowadays.
This also means that ConTgXt and its tools, in order to
keep up, need to be adapted to current needs. On the
other hand, by organizing the functionality in tools,
and by using a modern and reliable scripting language
like Ruby, users don’t pay a high price for this. Most
nasty details can be hidden from them.

Notes

1. We will use the terms ‘scripts’ and ‘programs’ interchange-
ably.

2. The backslash at the end of line denotes a continued line.
3. Although one can use the ctx suffix for ConTgXt related
TiX files, this is normally a bad idea.

4. This project will provide highly interactive math to
schools and is conducted in cooperation with the University
of Eindhoven.

Hans Hagen

