
Willi Egger VOORJAAR 2007 11

PGF / TikZ
Willi Egger

Abstract
For those who are looking for an alternative for external graphic drawing tools, PGF /
TikZ offers a wealth of possibilities. PGF is a macro-package that, together with its
user interface TikZ, comprises a kind of "graphics language" to build graphics inside the
text as inline graphics or as pictures of larger size. PGF is a macro-package originally
written for LaTEX. In the meantime it is also available for use within ConTEXt. The
package comes with a large set of libraries for different kinds of graphics. There is
extensive documentation and a tutorial. For support a mailing list and web-site are
available. Users of the package with ConTEXt have to install the xkeyval package
version 1.8. PGF and TikZ are distributed under the GNU Public License version 2.

Introduction
The drawing environment is called PGF. PGF is the acronym for “Portable Graphics
Format”. The user interface is called TikZ. TikZ stands for “TikZ ist kein Zeichenpro-
gramm” meaning it is not an interactive drawing/painting program. The package
provides a kind of “graphics language” with which to program a graphic comparable
to programming the text in TEX.

PGF / TikZ is a macropackage that was originally written for LaTEX. In the
meantime ConTEXt users can also profit from this package and use it within ConTEXt.

The package is written and maintained by Till Tantau, professor at the Institut
für Theoretische Informatik, Universität Lübeck.

The macropackage is distributed under the GNU Public License version 2.

Installation
LaTEX
Because the package is basically a LaTEX-package, it is probably already installed
on your system. Otherwise install it as usual in the TEX tree e.g. from CTAN.

ConTEXt
The easiest way to install the package under ConTEXt is to download it and unpack it
in a temporary folder. Move the contents of the generic folder to . . .\tex\generic.
Move the contents of the folder context to . . .\tex\context\third (the third party
module folder). In order to get the package working you need to install the xkeyval
version 1.8 package written by Hendri Adriaens. Download it from CTAN. Install
the files either in . . .\tex\generic or . . .\tex\latex. Move the folder doc to
. . ./doc. Run mktexlsr in order to update the file-database.

Plain TEX
Provided that you use a full installation of TEX, like the TEX-live distribution, the
package might be installed already. Otherwise, install the necessary files contained
in the archive into the respective folders of the TEX-tree. For use of the package
under Plain TEX you need also the xkeyval package version 1.8 or above by Hendri
Adriaens and the xcolor package version 2.0 by Uwe Kern.

12 MAPS 35 Willi Egger

Syntax differences
The graphics language syntax for the different TEX-environments is generally set
up in such a way that the user can use the commands as he is accustomed to do in
his TEX-environment:

In order to use the package, it must first be loaded:
LaTEX ConTEXt Plain TEX

\usepackage{tikz} \usemodule[tikz] \input tikz.tex

Starting a sequence of commands for a graphic:
LaTEX ConTEXt Plain TEX

\begin{tikzpicture}
. . .
\end{tikzpicture}

\starttikzpicture
. . .
\stoptikzpicture

\tikzpicture
. . .
\endtikzpicture

Structure of the package
The package is built in three layers: system, basic and front end. The system-layer
provides the highest abstraction level, i.e. it provides the translations of commands
into \special -commands as required by the different driver environments (dvips,
dvipdfm, pdftex). This layer is not intended for use by the user.

The second layer is called basic-layer. This layer provides a set of commands for
building complex graphics without being obliged to use the syntax of the system
layer.

Lastly, the front end layer provides a set of commands which make the use of the
basic layer more convenient. The most natural front end is TikZ. For illustration,
if you wanted to draw e.g. a triangle with the basic layer you would have to issue
up to 5 commands, whereas with the TikZ-front end it will suffice to say \draw
(0,0)--(1,0)--(1,1)--cycle;.

TikZ
Defining points in a graphic
There are different possibilities to define a point in a graphic. First, a point can
be defined by giving the coordinates in dimensions known to TEX inside a pair
of round brackets e.g. (2cm,10pt). This represents the xy-coordinate system.
Giving three dimensions inside a pair of round brackets (1,1,1) will invoke the
xyz-coordinate system. Omitting the unit of a dimension will cause TikZ to use
the predefined dimension of 1cm. A third way of defining a point is to indicate a
vector in the form of (30:1cm). This will cause TikZ to move 1cm in the direction
of 30 degrees. Finally, points can be specified relative to another point. e.g. (1,0)
++(1,0) ++(0,1) specifies the following movements: (1,0) (2,0) (2,1). One can
also define a relative point by adding a single +: (1,0) +(1,0) +(0,1) - which
defines the following coordinates: (1,0) (2,0) (1,1). The difference is, that the
points defined with a single + will not change the current point which is in the
example (1,0).

Paths
Paths consisting of a series of straight and curved elements are defined similar to
MetaPost. Path elements do not necessarily need to be connected to each other.
Actions on (closed) paths are draw, fill, shade and clip. These actions can be applied
to paths in any combination.

Grouping
Within a TikZ-picture grouping of elements can be achieved by using scopes

LaTEX: \begin{scope}[options] . . .\end{scope} and
ConTEXt: \startscope[options] . . .\stopscope.

PGF / TikZ VOORJAAR 2007 13

The application of styles enables the user to apply options defined outside the
graphic to (part of) the graphic.

Transformations
Shifting an object can be done with \shift{1,2} or \shift{+1,2} i.e. with
relative positioning. There is also xshift=10pt and yshift=1cm. Objects can be
rotated with the command rotate or rotated around a given point with rotated
around. scale=2 will scale the object or picture by the given factor. There is also
xscale and yscale for scaling in a single direction.

For-loops
LaTEX-users can issue the built in loop constructs or the \multido command from
pstricks. ConTEXt-users can use the \dorecurse{}{} looping mechanism. TikZ
offers yet another for-loop, based on series represented by dimensionless real num-
bers, which are given as {1,2,3} or {1,...,10} or even {1,3,...,20}. In case
two figures are given before the ellipsis, the difference between the two figures is
used as step. The basic command is

\foreach \variablename in {...series...}
\draw(\variablename pt, -1pt) -- (\variablename pt,1pt)

Text and Labels
Text can be added to any given point of a path. When TikZ encounters the keyword
node during the construction of a path, the elements of the node will be added as
a TEX-box after the complete path is ready. A node consists of the keyword node
followed by options between square-brackets and followed by the text enclosed in
curly braces.

Node-options are numerous: left/right/below/above =dimension, anchors
are north, south, west, east, north east . . . Furthermore text may be po-
sitioned along the path with the option slope. Texts may be moved towards the
beginning or end of a path by very near or near end. These options can be
combined with above etc. and sloped.

Libraries
TikZ comes with a large set of specialized libraries. Each library needs to be loaded
separately: Libraries are loaded by \usetikzlibrary{library-name} in LaTEX
and \usetikzlibrary[library-name] in ConTEXt.

− Arrow Tip Library, arrows
This library contains a large pallet of different tip-styles like triangular tips,
barbed and bracket-like, circle and diamond like, partial tips and line caps.

− Automata Drawing Library, automata
For the drawing of finite automata and Turing machines.

− Background Library, backgrounds
Various background types are provided.

− Entity-Relationship Drawing Library, er
This library will be loaded for drawing E/R diagrams.

− Mind-map Library, mindmap
For those who need a nice presentation of their mind-maps, this library is use-
ful.

− Pattern Library, patterns
For filling shapes with pattern this library is loaded.

− Petri-Net Library, petri
For the construction of Petri-nets this library is needed.

− Plot Handler Library, plothandlers
The plot handler library is loaded automatically by TikZ.

14 MAPS 35 Willi Egger

− Plot Marks Library, plotmarks
This library defines additional plot marks next to the standard marks, which
are *, x and +.

− Shape Library, shapes
The shapes library contains a number of predefined shapes.

− Snake Library, snakes
This library defines a series of non-straight lines like coils, braces, bumps, ex-
panding waves, saw or yes, snake lines.

− To Path Library, topaths
This library is loaded automatically by TikZ and provides predefined to paths
which are used in the to path operation.

− Tree Library, trees
This library provides different styles to draw trees.

Examples
Below are some examples that demonstrate what TikZ can do. The examples are
taken from the manual, and are formatted for ConTEXt. LaTEX-users can best refer
to the manual, because examples are given there in LaTEX-code.

Using TikZ code inline in the text
For drawing a sloped line within the text row you would type

\tikz \draw(0pt,0pt) -- (20pt,6pt);

and get . Here a big grey dot should be placed . This is coded as

\tikz \fill[black!60] circle (1ex);

.

Trigonometry

x

y

−1 − 1
2

1

−1

− 1
2

1
2

1

α
sinα

cosα

tan α= sinα
cosα

The angle α is 30◦ in the example (π/6
in radians). The sine of α, which is the
height of the red line, is [sinα = 1/2.]
By the Theorem of Pythagoras ...

Figure 1. Trigonometry
\usemodule[tikz]
\starttikzpicture[scale=2,cap=round]

% Local definitions
\def\costhirty{0.8660256}
% Colors
\definecolor[anglecolor][r=.5,g=.5,b=0]
\definecolor[sincolor][r=1,g=0,b=0]
\definecolor[tancolor][r=.7,g=0,b=.7]
\definecolor[coscolor][r=0,g=0,b=.8]
\definecolor[fillcolor][.625black]
% Styles

PGF / TikZ VOORJAAR 2007 15

\tikzstyle{axes}=[]
\tikzstyle{important line}=[very thick]
\tikzstyle{information text}=[rounded corners,inner sep=1ex]
% The graphic
\draw[style=help lines,step=0.5cm] (-1.4,-1.4) grid (1.4,1.4);
\draw (0,0) circle (1cm);
\startscope[style=axes]

\draw[->] (-1.5,0) -- (1.5,0) node[right] {x} coordinate(x axis);
\draw[->] (0,-1.5) -- (0,1.5) node[above] {y} coordinate(y axis);
\foreach \x/\xtext in {-1, -.5/-\frac{1}{2}, 1}
\draw[xshift=\x cm] (0pt,1pt) -- (0pt,-1pt) node[below,fill=white]

{\xtext};
\foreach \y/\ytext in {-1, -.5/-\frac{1}{2}, .5/\frac{1}{2}, 1}
\draw[yshift=\y cm] (1pt,0pt) -- (-1pt,0pt) node[left,fill=white]

{\ytext};
\stopscope
\filldraw[fill=green!20,draw=anglecolor] (0,0) -- (3mm,0pt) arc(0:30:3mm);
\draw (15:2mm) node[anglecolor] {α};
\draw[style=important line,sincolor] (30:1cm) -- node[left=1pt,fill=white]

{$\sin \alpha$} (30:1cm |- x axis);
\draw[style=important line,coscolor]

(30:1cm |- x axis) -- node[below=2pt,fill=white] {$\cos \alpha$} (0,0);
\draw[style=important line,tancolor] (1,0) -- node[right=1pt,fill=white]

{$ \tan \alpha {\color[black]=}
\frac{\color[sincolor]\sin \alpha}{\color[coscolor]\cos \alpha}$}

(intersection of 0,0--30:1cm and 1,0--1,1) coordinate (t);
\draw (0,0) -- (t);
\draw[xshift=2.5cm]
node[right,text width=6cm,style=information text]
{
The {\color[anglecolor] angle α} is $30ˆ\circ$ in the
example ($\pi/6$ in radians). The {\color[sincolor]sine of
α}, which is the height of the red line, is
[{\color[sincolor] \sin \alpha} = 1/2.]

By the Theorem of Pythagoras ...
};

\stoptikzpicture

Simple organigramma / tree

root

left

right

child

child

Figure 2. A tree
\usemodule[tikz]
\usetikzlibrary[arrows,snakes,backgrounds,trees]
\starttikzpicture[parentanchor=east,child anchor=west,grow=east]

\tikzstyle{every node}=[ball color=blue,circle,text=white]
\tikzstyle{edge from parent}=[draw,dashed,thick,blue]

16 MAPS 35 Willi Egger

\node {root}
child {node {left}}
child {node {right}
child {node {child}}
child {node {child}}
};

\stoptikzpicture

TikZ in cooperation with GNUplot
One can use GNUplot to calculate the points needed in a path. TikZ will, after
reading its instructions, prepare a command file containing GNUplot commands
describing the function to be drawn. In a second run GNUplot is envoked with
these commands from which a data file is produced. TikZ imports this data file and
draws the graph.

x(t)

y(t)

−1 2

−1

1

2

3

(
x(t), y(t)

)
= (t sin 1

t
, t cos 1

t
)

(2
π
, 0)

Figure 3. A function calculated by GNUplot
\usemodule[tikz]
\starttikzpicture

\draw[gray,very thin] (-1.9,-1.9) grid (2.9,3.9)
[step=0.25cm] (-1,-1) grid (1,1);

\draw[blue] (1,-2.1) -- (1,4.1);
\draw[->] (-2,0) -- (3,0) node[right] {$x(t)$};
\draw[->] (0,-2) -- (0,4) node[above] {$y(t)$};
\foreach \pos in {-1,2}

\draw[shift={(\pos,0)}] (0pt,2pt) -- (0pt,-2pt) node[below] {\pos};
\foreach \pos in {-1,1,2,3}

\draw[shift={(0,\pos)}] (2pt,0pt) -- (-2pt,0pt) node[left] {\pos};
\fill (0,0) circle (0.064cm);
\draw[thick,parametric,domain=0.4:1.5,samples=200]
% The plot is parameterized such that there are more samples
% near the centre.
plot[id=asymptotic-example]

function{(t*t*t)*sin(1/(t*t*t)), (t*t*t)*cos(1/(t*t*t))}
node[right]
{$\bigl(x(t),y(t)\bigr) = (t\sin \frac{1}{t},t\cos\frac{1}{t})$};

\fill[red] (0.63662,0) circle (2pt)

PGF / TikZ VOORJAAR 2007 17

node [below right,fill=white,yshift=-4pt] {$(\frac{2}{\pi},0)$};
\stoptikzpicture

The contents of the file created by GNUplot looks as follows:

#Curve 0, 200 points
#x y type
0.00530 -0.06378 i
0.04363 -0.05043 i
0.06711 -0.01790 i
0.06896 0.02170 i
0.05014 0.05606 i
0.01712 0.07631 i
-0.02110 0.07849 i
-0.05579 0.06337 i
-0.08032 0.03512 i
-0.09097 -0.00029 i
-0.08696 -0.03664 i
-0.06987 -0.06850 i
-0.04284 -0.09192 i
-0.00982 -0.10460 i
0.02515 -0.10585 i
0.05841 -0.09629 i
...
0.98511 3.18914 i
0.98543 3.22793 i

Internet
More information on PGF and TikZ can easily be found on the Internet. For a stable
release of the package one can visit CTAN or from http://sourceforge.net/
projects/pgf/.

If you want to get the most recent developments you can fetch the latest version
from CVS. The command would be something like

cvs -z3 -d:pserver:anonymous@pgf.cvs.sourceforge.net:/cvsroot/pgf
-co checkout pgf

For extensive examples there is a web-site by Kjell Magne Fauske, Norway:

http://www.fauskes.net/pgftikzexamples

For support one can join the following mailing-list. Visit

https://lists.sourceforge.net/lists/listinfo/pgf-users

for subscription.

Summary
TikZ is a tool for making various kinds of drawings. For TEX-users the style of setting
up such drawings is familiar, because you program a drawing similarly to how you
program a TEX-text. TikZ is the natural front end to lower level PGF functionality.
On top of this, it is possible to draw graphs using points generated by GNUplot.

Acknowledgement
I would like to thank Michael Guravage for looking through the text and turn it
into correct English.

Willi Egger

