
30 MAPS 35 Richard Hirsch

Folding Sheets for a
Modular Origami Dodecalendar

Richard Hirsch
richard.hirsch at gmx dot net

Abstract
Twelve square sheets of paper can be folded in such a
way that they can be assembled to a pentagon
dodecahedron (origami). The single units are called
modules, hence the name modular. If the sheets bear
calendrical information at the right places, the
dodecahedron shows the calendar for each month on
its faces: the dodecalendar.
In this article we let MetaPost calculate piece by piece
the information that needs to be printed on the
module paper to enable us to fold the modules and
assemble the dodecahedron.

Keywords
MetaPost, tutorial

Introduction

MetaPost
MetaPost is a programming language and an inter-
preter that produces PostScript output. It is well suited
to produce technical drawings and – being derived
from Metafont with basically the same capabilities and
just a few extensions – suggests itself to illustrate TEX
documents. As we will see, MetaPost provides a very
natural way of describing relations of points in the
plane (3D extensions do exist also).

However, the richness of features and concepts
makes it hard for the beginner to start. The user’s
manual from John Hobby [1] and the Metafontbook
from Donald Knuth [2] want to be read and for the fine
touch even a glimpse into the source code (plain.mp)
may be necessary.

Examples, however, are a good way to start with.
There are excellent sources in the Internet (c.f.
http://www.tug.org/metapost.html for an exten-
sive list), and I hope, the origami dodecalendar will be
another one that might attract you to MetaPost.

Dodecalendar
At http://www.origami-cdo.it/modelli/ instruc-
tions for folding a 12-piece modular origami dodecal-
endar can be found. Twelve square paper sheets are
folded into twelve modules that can be assembled to
a pentagon dodecahedron. If the paper is properly
printed, each face shows a calendar for one month,
see figure 1.

MDMDFSS

April2007

1
2345678
9101112131415
16171819202122
23242526272829
3031

M
D

M
D

F
S

S
November2007

1
2

3
4

5
6

7
8

9
1011

12131415161718
19202122232425

262728293031

M
D

M
D

F
S

S

Ju
ni

2
0
0
7 1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

M D M D F S S

Januar 2007

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

M
D

M
D

F
S

S
M

ä
r
z

2007

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

M
D

M
D

F
S

S
Febr

uar
20

07 1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
262

728
293

031

Figure 1: the modular origami dodecalendar

Aim of this Article
We want to print those sheets on our own and use
MetaPost for this purpose. Traditional origami doesn’t
allow preprinted guides that show where the creases
must go, but since we have to print the calendars any-
way, we can as well print those marks – not for cheat-
ing, of course, but to avoid ugly creases on the faces of
our dodecalendar.

Folding Sheets for aModular Origami Dodecalendar VOORJAAR 2007 31

M D M D F S S

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

20
07

Juni

Juni

M
ärz

Feb
ru

ar

Figure 2: folding sheet with creases shown for January
2007 (sic!, see figure 1)

Folding Sheets
Figure 2 shows how the preprinted sheets of paper
should look like. We number the relevant points as
shown in figure 3.

A good start for calculating all those points seems
to be the base of the regular pentagon highlighted in
figure 3. But first of all we have to perform some setup.

Setup
We are going to calculate the positions of the points
shown in figure 3. Usually this is done in Metafont or
MetaPost by collecting the x- and y-parts of the coor-
dinate pairs in the arrays x and y and adress them as
points z. We will use coordinate pairs P1 through P20
instead and won’t bother with their components at all.
This may be mainly a matter of taste, but there is at
least one rationale too: For the dodecalendar we need
twelve paper sheets for the modules, and for each of
them the positions of the points in figure 3 must be
known. Now MetaPost clears the contents of the coor-
dinate pairs z for every new figure; thus all the calcula-
tions would have to be done over and over again. The
positions in container P however, are valid through the
whole MetaPost run. Therefore, first thing for us to do
is to declare the container P for the coordinate pairs:

pair P[]; % positions of the points

(As you already may have guessed or known, just like
in TEX everything after a %-sign in the MetaPost source
is ignored by the interpreter.)

Furthermore we have to give MetaPost some infor-
mation about the size of our figure. Therefore we de-

1

2 3

4

5 6

7

8 9

10
11

12 13

16 17

18

19

20

21 22

23 24

Figure 3: numbering of important points

00

4
R

(a) turning P0 by 72◦

00

4

0

4

5

0

4

5 6

0

4

5 6

7

(b) all vertices of the pentagon

Figure 4: central pentagon

fine a basic unit of measurement for our drawing: the
radius R of the escribed circle of the central pentagon
(see figure 4) is set to be 2 cm:

R:= 2cm; % scaling factor

The real MetaPost way to deal with the absolute size
of the figure would be to tell MetaPost only something
like P2 + 11cm*right = P3 and let it figure out the
actual value of R itself. Unfortunately MetaPost can
not perform transformations unless all components of
the transformation matrix are known. Since we want
to make heavy use of transformations, it is better for
us to fix the scale of the figure at this time.

32 MAPS 35 Richard Hirsch

4

5 6

7

8 9

Figure 5: points P8 and P9

Regular Pentagon
First of all, we introduce point P0 at the top of the pen-
tagon to complete it. We set the origin of our coordi-
nate system to the center of the pentagon and then we
can define the position of P0 simply as

P0 = R*up;

The vector up is predefined in MetaPost as
“up=-down=(0,1)”.

Now, by means of MetaPost’s rotation command, the
position of the other vertices can be calculated as easily
as

for i:= 1 upto 4:
P[i+3]:= P0 rotated (i*360/5);

endfor

Mirroring of the Pentagon’s Base
Now that MetaPost knows the positions of P4 to P7,
we can define points P8 and P9: We get P8 if we reflect
P5 about line P4P7 and P9 by doing the same with P6.
MetaPost understands this immediately:

for i:= 8,9:
P[i]:= P[i-3] reflectedabout (P4, P7);

endfor

The Top Corner
The points P8 and P9 are of special interest since they
lie on the edges of our folding sheet; until now all our
drawing was completely independent of the actual size
of the paper. But now we are going to deal with the
boundaries of our sheet of paper; we start with the top
(P1).

We observe that the triangle4P8P9P1 is the top half
of a square (see figure 2. We know the length of its

1

8 9
b

b

(a) Calculation by vector addition

1

8 9
b

b

(b) Calculation by means of the law of Pythagoras

Figure 6: P1, the top corner of the paper sheet

base since we have already P8 and P9;we call it a and
let b = a/2 (see figure 6a).

a:= length(P9-P8);
b:= .5a;

Now MetaPost can find P1 simply by vector addition

P1:= P8 + b*(right + up);

(Alternatively we could have made use of the
Pythagorean theorem (and introduce MetaPost’s dir
command and its ++-operator): We know that the
angle 6 P1P8P9 is half of a right angle (i.e. 45◦).
The length of the hypotenuse c is

√
b2 + b2 (see fig-

ure 6b) and this root is just what the ++-operator cal-
culates. So shifting P8 by b++b in northeast direction
yields P1 – or in MetaPost’s terms: P1:= P8 shifted
((b++b)*dir 45).)

Left Edge
Next we want to deal with the points on the left edge,
P2, P10 and P12. Point P2 lies somewhere on the line
through points P5 and P6 (see figure 7) and also some-
where on the line going through P1 and P8. If we

Folding Sheets for aModular Origami Dodecalendar VOORJAAR 2007 33

1

2

4

5 6

7

8

10

12

2

(a) Point P2 as intersection point

Figure 7: points on the left and right edge

want to tell MetaPost about these facts we can use the
volatile numeric variable whatever for “somewhere”
and the expression [p,q] for “on the line pq”. So we
write:

P2 = whatever[P1,P8] = whatever[P5,P6];

This is all information MetaPost needs in order to know
where point P2 lies.

Please note, that we didn’t use the := assignment,
but instead add two equations to MetaPost’s internal
system of linear equations with =. This system is solved
if we use P2 in a drawing (or an immediate assignment
with :=).

Points P10 and P12 are computed likewise:

P10 = whatever[P1,P8] = whatever[P7,P4];
P12 = whatever[P1,P8] = whatever[P5,P4];

Right edge
The positions of points P3, P11 and P13 could be found
the same way, but we don’t want the MAPS to become
dull.

1

2

4

5 6

7

8

10

12

3

11

13

Figure 8: The points on the right edge

Instead we use another important feature of Meta-
Post: transformations. In figure 8 we note that point
P3 is just P2 reflected about line P0P1. In MetaPost

we can express that as P3 = P2 reflectedabout
(P0,P1) but since we need to transform more than
one variable the same way, we’d rather have an own
transformation for this purpose. We can have that in
MetaPost by defining

transform flipright;
flipright:= identity reflectedabout(P0,P1);

Now we could say P3 = P2 transformed
flipright, but we go one step further and de-
fine the new macro flippedright:

def flippedright=transformed flipright enddef;

That enables us to write simply:

P3 = P2 flippedright;
P11 = P10 flippedright;
P13 = P12 flippedright;

Angle Marks

2 3

4

5

12 13

14

2 3

4

5

12 13

1414 15

Figure 9: Points P14 and P15

In the process of building a module, the corners P2
and P3 must be folded along P5P12 and P6P13 respec-
tively. We must get the creases by having the angle
marks at P14 and P15 preprinted on the sheets (see fig-
ure 9); this way P2 can be folded to P15 and P3 to P14
and the creases come up. Since we know already about
transformations, defining P14 and P15 is too easy:

P14 = P3 reflectedabout (P6, P13);
P15 = P14 flippedright;

34 MAPS 35 Richard Hirsch

2 3

4

5

12 13

14

(a) the command unitvector

2 3

4

5

12 13

(b) the guides for the corners

2 3

4

5

12 13

(c) the guides on the lower half of the paper

Figure 10: Angles as guides for the corners

We don’t want just points, however, but nice lit-
tle angles of a certain length (ticklength say), into
which the corners fit smugly (see figure 10). For
this purpose we use MetaPost’s unitvector command
which reduces a given vector to length 1, but main-
tains its direction. With this tool we can build vectors
with arbitrary length in a given direction, just by mul-
tiplying it with the proper dimension (see figure 10a).
For the calculation of the endpoints of the angle’s rays
we define a vardef macro, which returns its last ex-
pression (like a function in certain other programming
languages):

ticklength:= 0.1a;
vardef tkend(expr p, q) =

p + ticklength*unitvector(q-p)
enddef;

The two rays of each angle are obtained by con-
necting P14 and the endpoints with the ---operator.
It produces a path where the points are connected by
straight lines. We can store these paths in suitable vari-
ables (of type path) and collect them in a container
(Line[]). For the angle at point P15 we make use of
the fact that transformations work on paths as well as
on points:

path Line[];
Line14:= tkend(P14,P6)--P14--tkend(P14,P13);
Line15:= Line14 flippedright;

Finally we want the guidelines in the lower half of
the paper. So we apply a final transformation. (Here
the := operator is mandatory, because the equation
with = would be inconsistent.)

transform flipdown;
flipdown:= identity reflectedabout (P2,P3);
def flippeddown = transformed flipdown enddef;

for p:= 14,15:
Line[p]:= Line[p] flippeddown;

endfor

Boundaries for Calendrical Information
In order to print the calendar, the month and year in-
formation at the correct places, we need to calculate
the positions of points P16 to P19 (see figure 3).

Since we obtained P8 by reflecting P5 about P4P7
(see ‘Mirroring of the Pentagon’s Base’), we know from
the interception theorems that the vector P8 −P4 is the
same as P4 − P16 (see figure 12a). The position of P17
is again found by reflection (figure 11b).

P16:= 2[P8,P4];
P17:= P16 flippedright;

Folding Sheets for aModular Origami Dodecalendar VOORJAAR 2007 35

16

4

8 9

7

17

0

4

16
(a) position of P17

16

4

8 9

7

171616 17
(b) position of P16

Figure 11: boundaries for calendrical information

In order to determine the position of P19 we look at
P18 first: The triangle M is isosceles, so |P0 − P4| =
|P18 − P4| and we can obtain the position of P18 by
rotating P0 around P4:

w:= angle(P0-P4) - angle(P7-P4);
P18 = P0 rotatedaround (P4, -w);

(Yes, the expression angle(P7-P4) is indeed 0 and
could have been left out, and yes, the use of
unitvector may have been appropriate here too; in-
deed, we are going to return to using unitvector
soon when calculating P19.)

Now, that we know the position of P18 we can fo-
cus again on P19. The line P0P18 divides the trian-
gle 4P4P7P0 into two smaller triangles M and Y that
contain the information about the month and the year
respectively (see figure 12a). We observe that the
triangles Y and Y ′ are identical, only that the latter

16

4

8 9

7

1716 17

18

M

M ′

Y

Y ′

(a) position of P18

16

4

8 9

7

1716 17

18

516 17

18

19

(b) position of P19

Figure 12: boundary of the year-field

falls onto another face of the dodecahedron. Thus
|P7 −P18| = |P7 −P19| and we get the position of P19 by
applying the universal example of constructing a vec-
tor by multiplying its length with the unitvector of its
direction:

P19 = P7 + unitvector(P17-P7)*length(P7-P18);

Guideline for aligning two modules
When all the modules have been folded, every two of
them at a time are to be combined to a double module.
To get the correct angle between the faces of the dodec-
ahedron, the two modules must be aligned along line
P6P20. (As it happens, this is just the bisector of an-
gle 6 P6P3P7, but we pretend not to know about that.)
Since we know already about the position of P19, we
can apply the same technique as in ‘Left Edge’ and have

P20 = whatever[P1,P3] = whatever[P6,P19];

36 MAPS 35 Richard Hirsch

1

3
6

19

20

Figure 13: The guideline for aligning two modules

On the final sheets we don’t want the whole line
to show up; some part (20 % say) at the beginning
and the end should be left out (see figure 2). We find
the new starting point 20 % from P6 on the line P6P20.
Sounds familiar? Yes, see section ‘Mirroring of the Pen-
tagon’s Base’ – we can apply the [p,q]-expression again
and store the resulting path in our Line[] container.

Line[20]:= .2[P6,P20]--.8[P5,P20];

Drawing the folding sheets
Now MetaPost knows about all the relevant points and
we can let it draw the folding sheets. The result, to-
gether with some labels, is presented in figure 14. Alas,
the calendar is still missing (see below).

beginfig(1);
draw P1--P2--P1 flippeddown--P3--cycle;
draw P8--P9;
draw Line[20];
for l:= 14, 15: draw Line[l]; endfor

endfig;
end.

Summary and Outlook
For now we have learned how to make use of some
important features of MetaPost, among them

2 addition of vectors,
2 affine transformations like shifting, rotation, and

reflection,
2 solving linear equations (the whatever-statement),
2 and last but not least how to draw straight lines.

4

5 6

7

8 9

16

19

20

14 15

Figure 14: the printed information (with labels)

In the next issue of the MAPS we will have a look on
MetaPost’s algebraic capabilities and the possibilities
to add labels and TEX content to the picture when we
are going to make MetaPost calculate and draw the
calendrical information for the dodecalendar too.

In the meantime you can prepare a set of twelve
folding sheets and assemble a dodecahedron as shown
at the above mentioned web page. (If you don’t
know how to run MetaPost on your system, you can
try the MetaPost Previewer at http://www.tlhiv.
org/MetaPostPreviewer, just put the code without
“beginfig(1);”, “endfig;” and “end.” into the
textfield and press the preview button.)

Have fun!

References
[1] John D. Hobby. A User’s Manual for

MetaPost. Technical Report 162, AT&T
Bell Laboratories, Murray Hill, New Jer-
sey, April 1992. Also available at
http://www.tug.org/docs/metapost/
mpman.pdf.

[2] D. E. Knuth. Computers and Typesetting,
volume C. Addison Wesley, Reading, Massachu-
setts, 1986.

Richard Hirsch
richard.hirsch at gmx dot net

