
12 MAPS 37 Mojca Miklavec and Arthur Reutenauer

Putting the Cork back in the bottle
Improving Unicode support in TEX
Abstract
Until recently, all of the hyphenation patterns available
for different languages in TeX were using 8-bit font
encodings, and were therefore not directly usable with
UTF-8 TeX engines such as XeTeX and LuaTeX. When
the former was included in TeX Live in 2007, Jonathan
Kew, its author, devised a temporary way to use them
with XeTeX as well as the “old” TeX engines. Last
spring, we undertook to convert them to UTF-8, and
make them usable with both sorts of TeX engines,
thus staying backwardly compatible. The process
uncovered a lot of idiosyncrasies in the pattern-loading
mechanism for different languages, and we had to
invent solutions to work around each of them.

Introduction
Hyphenation is one of the most prominent features
of TEX, and since it is possible to adapt it to many
languages and writing systems, it should come as no
surprise that there were so many patterns created so
quickly for so many languages in the relatively early
days of TEX development. As a result, the files that are
available often use old and dirty tricks, in order to be
usable with very old versions of TEX. In particular, all
of them used either 8-bit encodings or accent macros
(\’e, \v\{z\}, etc.); Unicode did not yet exist when
most of these files were written.

This was a problem when XeTEX was included in
TEX Live in 2007, since it expects UTF-8 input by de-
fault. Jonathan Kew, the XeTEX author, devised a way
of using the historical hyphenation patterns with both
XeTEX and the older extensions of TEX: for each pat-
tern file 〈hyph〉.tex, he wrote a file called xu-〈hyph〉
.tex that detects if it is run with XeTEX or not; in the
latter case, it simply inputs 〈hyph〉.tex directly, and
otherwise, it takes actions to convert all the non-ASCII
characters to UTF-8, and then inputs the pattern file.

To sum up, in TEX Live 2007, XeTEX used the original
patterns as the basis, and converted them to UTF-8 on
the fly.

In the ConTEXt world, on the other hand, the pat-
terns had been converted to UTF-8 for a couple of years,
and were converted back to 8-bit encodings by the
macro package, depending on the font encoding.

In an attempt to go beyond that and to unify those
approaches, we then decided to take over conversions
for all the pattern files present in TEX Live at that time
(May 2008), for inclusion in the 2008 TEX Live release.

The new architecture
The core idea is that after converting the patterns to
UTF-8, the patterns are embedded in a structure that
can make them loadable with both sorts of TEX engines,
the ones with native UTF-8 support (XeTEX, LuaTEX) as
well as the ones that support only 8-bit input.1

The strategy for doing so was the following: for
each language 〈lang〉, the patterns are stored in a file
called hyph-〈lang〉.tex. These files contain only the
raw patterns, hyphenation exceptions, and comments.
They are input by files called loadhyph-〈lang〉.tex.
This is where engine detection happens, such as this
code for Slovenian:

% Test whether we received one or two arguments
\def\testengine#1#2!{\def\secondarg{#2}}
% We are passed Tau (as in Taco or TEX,
% Tau-Epsilon-Chi), a 2-byte UTF-8 character
\testengine T!\relax
% Unicode-aware engines (such as XeTeX or LuaTeX)
% only see a single (2-byte) argument
\ifx\secondarg\empty
\message{UTF-8 Slovenian Hyphenation Patterns}
\else
\message{EC Slovenian Hyphenation Patterns}
\input conv-utf8-ec.tex
\fi
\input hyph-sl.tex

The only trick is to make TEX look at the Unicode
character for the Greek capital Tau, in UTF-8 encod-
ing: it uses two bytes, which are therefore read by 8-bit
TEX engines as two different characters; thus the macro
\testengine sees two arguments. UTF-8 engines, on
the other hand, see a single character (Greek capital
Tau), thus a single argument before the exclamation
mark, and \secondarg is \empty.

If we’re running a UTF-8 TEX engine, there is nothing
to do but to input the file with the UTF-8 patterns; but
if we’re running an 8-bit engine, we have to convert



Putting the Cork back in the bottle NAJAAR 2008 13

the UTF-8 byte sequences to a single byte in the appro-
priate encoding. For Slovenian, as for most European
languages written in the Latin alphabet, it happens to
be T1. This conversion is taken care of by a file named
conv-utf8-ec.tex in our scheme. Let’s show how it
works with these three characters:2

2 ‘č’ (UTF-8 〈0xc4, 0x8d〉, T1 0xa3),
2 ‘š’ (UTF-8 〈0xc5, 0xa1〉, T1 0xb2),
2 ‘ž’ (UTF-8 〈0xc5, 0xbe〉, T1 0xba).

In order to convert the sequence 〈0xc4, 0x8d〉 to
0xa3, we make the byte 0xc4 active, and define it to
output 0xa3 if its argument is 0x8d.3 The other se-
quences work in the same way, and the extracted con-
tent of conv-utf8-ec.tex is thus:4

\catcode"C4=\active
\catcode"C5=\active
%
\defˆˆc4#1{%
\ifx#1ˆˆ8dˆˆa3\else % U+010D
\fi}
%
\defˆˆc5#1{%
\ifx#1ˆˆa1ˆˆb2\else % U+0161
\ifx#1ˆˆbeˆˆba\else % U+017E
\fi\fi}
% ensure all chars above have valid lccode’s:
\lccode"A3="A3 % U+010D
\lccode"B2="B2 % U+0161
\lccode"BA="BA % U+017E

As the last comment says, we also need to set non-
zero \lccodes for the characters appearing in the pat-
tern files, a task formerly carried out in the pattern file
itself.

The information for converting from UTF-8 to the
different font encodings has been retrieved from the
encoding definition files for LaTEX and ConTEXt, and
gathered in files called 〈enc〉.dat. The converter files
are automatically generated with a Ruby script from
that data.

The appendix shows table of the encodings we sup-
port.

Language tags: BCP 47 / RFC 4646
A word needs to be said about the language tags we
used. As a corollary to the completely new naming
scheme for the pattern files and the files surrounding
them, we wanted to adopt a consistent naming pol-
icy for the languages, abandoning the original names
completely, because they were problematic in some
places. Indeed, they used ad hoc names which had
been chosen by very different people over many years,
without any attempt to be systematic; this has led to

awkward situations; for example, the name ukhyphen
.tex for the British English patterns: while “UK” is
easily recognized as the abbreviation for “United King-
dom”, it could also be the abbreviation for “Ukrainian”
language, and unless one knows all the names of the
pattern files by heart, it is not possible to determine
what language is covered by that file from the name
alone.

It was therefore clear that in order to name files
that had to do with different languages, we had to use
language codes, not country codes. But this was not
sufficient either, as can be seen from the example of
British English, since it’s not a different language from
English.

Upon investigation, it turned out that the only stan-
dard able to distinguish all the patterns we had was
the IETF “Best Current Practice” recommendation 47
(BCP 47), which is published as RFC documents; cur-
rently, it’s RFC 4646.5 This addresses all the language
variants we needed to tag:

2 Languages with variants across countries or re-
gions, like English.

2 Languages written in different scripts, like Serbian
(Latin and Cyrillic).

2 Languages with different spelling conventions, like
Modern Greek (which underwent a reform known
as monotonic in 1982), and German (for which a
reform is currently happening, started in 1996).

A list of all the languages with their tags can be
found in appendix.

Dealing with the special cases
There were so many special cases that one might say
that the generic case was the special one!

Pattern files designed for
multiple encodings
The first problem we encountered was with patterns
that tried to accommodate both the OT1 and the T1
encoding in the same file.

The first language for which this had been done was,
historically, German, and the same scheme was subse-
quently adopted for French, Danish, and Latin. The
idea is the following: in each of these languages, there
are characters that are encoded at different positions
in OT1 and in T1; for German, it is the sharp s ‘ß’; for
French, it is the character ‘œ’, etc. In order to deal
with that, each pattern that happened to contain one
of these characters was duplicated in the file, with in-
tricate macros to ignore them selectively, depending
on the font encoding used.



14 MAPS 37 Mojca Miklavec and Arthur Reutenauer

This would have been very awkward to reproduce
in our architecture, if at all possible: it would have
meant that each word such as, say, “cœur” in French
would need to yield two different byte strings in 8-
bit mode, for OT1 and T1 (cˆˆ1bur and cˆˆf7ur, re-
spectively). We therefore decided to put the dupli-
cate patterns in a separate file called spechyph-〈lang〉
-ot1.tex that is input only in legacy mode, after the
main file hyph-〈lang〉.tex.

The patterns packaged in this fashion should there-
fore behave in the same way as the historical files, en-
abling a few breakpoints with non-ASCII characters in
OT1 encoding. We would like to stress, though, that
OT1 is definitely not the way to go for these languages.
We only supported this behaviour for the sake of com-
patibility, but we doubt it is very useful: if one uses OT1
for German or French, one would indeed have a few
patterns with ‘ß’ or ‘œ’, respectively, but many more
patterns, with accented characters, would be missed.
In order to take full advantage of the hyphenation pat-
terns, one needs to use T1 fonts.

It has to be noted that in addition, we ended up
not using the aforementioned approach in the case of
German, because we wanted to account for the ongo-
ing work to improve the German patterns; thus, we
decided to use the new patterns with the UTF-8 en-
gines, but not with the 8-bit engines, for compatibil-
ity reasons. In the latter case, we simply include the
original pattern file in T1 directly, with no conversion
whatsoever. For the three other languages, though
(French, Danish and Latin), we used a spechyph
-〈lang〉-ot1.tex file.

Multiple pattern sets for the same language
Another interesting issue was with Ukrainian and Rus-
sian, where different complications arose.

First, the pattern files were also devised for multi-
ple encodings, but in a different manner: here, the
encoding is selected by setting the control sequence
\Encoding before the pattern file is loaded. Depend-
ing on the value of that macro, the appropriate conver-
sion file is then input, that works in the same way as
our conv-utf8-〈enc〉.tex files. There is of course a
default value for \Encoding, which for both languages
is T2A,6 the most widespread font encoding for Russian
and Ukrainian, and the one used in the pattern files;
thus, no conversion is necessary if \Encoding is kept
to its default value.

Then, both Russian and Ukrainian had several pat-
tern files, with different authors and/or hyphenation
rules (phonetic, etymological, etc.). Those were se-
lected with a control sequence called \Pattern, by
default as for Russian (by Aleksandr Lebedev), and mp
for Ukrainian (by Maksym Polyakov).

Both those choices could, of course, be overridden
only at format-building time, since the patterns are
frozen at that moment.

Finally, they used a special trick, implemented in
file hypht2.tex, to enable hyphenation inside words
containing hyphens, similar to Bernd Raichle’s hypht1
.tex for T1 fonts.

Those three features had to be addressed in very dif-
ferent ways in our structure: while the first one was
irrelevant in UTF-8 mode, it would have implied fun-
damental changes in our loadhyph-〈lang〉.tex files
for 8-bit engines, since the implicit assumption that
any language uses exactly one 8-bit encoding would
no longer be met. The second feature was easier to
handle, but still demanded additional features in our
loadhyph-〈lang〉.tex files. Finally, the third feature,
although certainly very interesting, seemed more frag-
ile than what we felt was acceptable.

Upon deliberation, we then decided to not include
those features in the UTF-8 patterns before TEX Live
2008 was out, but to still enable them in legacy mode,
in order to ensure backward compatibility. And thanks
to subsequent discussions with Vladimir Volovich, who
devised the way the Russian patterns were packaged,
and inspired the Ukrainian ones, we could include a
list of hyphenated compound words which we put in
files called exhyph-ru.tex and exhyph-uk.tex, re-
spectively. The strategy we used is thus:

2 In UTF-8 mode, input the UTF-8 patterns, then the
ex- file.

2 In legacy mode, simply input the original pattern
file directly.

Therefore, the only feature missing, overall, in TEX
Live 2008, is the ability to choose one’s favorite pat-
terns in UTF-8 mode: for each language, we only con-
verted the default set of patterns to UTF-8. Setting
\Pattern will thus have no effect in this case, but it
will behave as before in 8-bit mode. Now that TEX Live
2008 has been released we intend to change that be-
haviour soon, and to enable the full range of features
that the original pattern files had.

It should also be noted that in TEX Live 2007, Bul-
garian used the same pattern-loading mechanism, but
that there was actually only one possible encoding, and
only one pattern file, so there was no real choice, and
it was therefore straightforward to adapt the Bulgarian
patterns to our new architecture.



Putting the Cork back in the bottle NAJAAR 2008 15

TEX Live 2008
The result of our work has been put on CTAN under
the package name hyph-utf8, and is the basis for hy-
phenation support in TEX Live 2008. We don’t con-
sider our work to be finished (see next section), and
we welcome any discussion on our mailing-list (tex-
hyphen@tug.org). We also have a home page at
http://tug.org/tex-hyphen, to which readers are re-
ferred for more information.

The package has been released in the TDS layout,
with the TEX files in tex/generic/hyph-utf8 and
subdirectories. The encoding data and Ruby scripts
are available in source/generic/hyph-utf8. Some
language-specific documentation has been put in doc/
generic/hyph-utf8.

And now …
There still are tasks we would like to carry out: the
hypht1.tex / hypht2.tex behaviour has already been
mentioned, and one of the authors has lots of ideas on
how to improve Unicode support yet more in UTF-8 TEX
engines.

We appeal to pattern authors to make contact with
us in order to improve and enhance our package; many
of them have already communicated with us, to our
greatest pleasure, and we’re confident that our effort
will be understood by all the developers dealing with
language-related problems.7

Among the immediate and practical problems is, in
particular:

… for something completely different
Babel would need to be enhanced in order to enable
different “variants” for at least two languages. One is
Norwegian, for which two written forms exist, known
as “bokmål” and “nynorsk” (ISO 639-1 nb and nn, re-
spectively).8 At the moment, Babel has only one “Nor-
wegian” language. The second is Serbian, which can
be written in both the Latin and the Cyrillic alphabets;
these possible variants which are not yet taken into ac-
count in Babel.

Acknowledgements
First and foremost, we wish to thank wholeheartedly
Karl Berry, who supported the project from the begin-
ning and guided us with advice, as well as Hans Hagen,
Taco Hoekwater and Jonathan Kew, for their technical
help, and, finally, Norbert Preining, who went through
the trouble of integrating the new package into TEX
Live.

Notes
1. A note on vocabulary: in this article, we use the word
“engine” or “TEX engine” for extensions to the program TEX,
in contrast to macro packages. We then refer to (TEX) en-
gines with native UTF-8 support as “UTF-8 engines”, and to
the others as “8-bit engines”, or sometimes “legacy engines”,
borrowing from Unicode lingo.
2. The only non-ASCII characters in Slovenian.
3. The same method would work flawlessly if the sequence
contained three or more bytes — although this case doesn’t
arise in our patterns — since the number of bytes in a UTF-8
sequence depends only on the value of the first byte.
4. Problems would happen if a T1 byte had been made active
in that process, but for reasons inherent to the history of TEX
font encodings, as well as Unicode, this is never the case for
the characters used in the patterns, a fact the authors consider
a small miracle. The proof of this is much too long to be given
in this footnote, and is left to the reader.
5. In the past, it has been RFC 1766, then RFC 3066, and
is currently being rewritten, with the working title RFC
4646bis. RFC 4646 is available at ftp://ftp.rfc-editor.org/in-
notes/rfc4646.txt, and the current working version of
RFC 4646bis (draft 17) at http://www.ietf.org/internet-'
&drafts/draft-ietf-ltru-4646bis-17.txt.
6. Actually t2a, lowercase.
7. The acknowledgement section, had it been as long as the
authors would have wished it to be, would have more than
doubled the size of this article.
8. The ISO standard also includes a code for “Norwegian”,
no, although this name is formally ambiguous.

Mojca Miklavec and Arthur Reutenauer
mojca.miklavec@gmail.com



16 MAPS 37 Mojca Miklavec and Arthur Reutenauer

List of supported languages
ar Arabic
eu Basque
bg Bulgarian

zh-latn Chinese Pinyin
cop Coptic
hr Croatian
cs Czech
da Danish
nl Dutch

en-us English, American
en-gb English, British

eo Esperanto
et Estonian
fa Farsi
fi Finnish
fr French

de-1996 German, “new” spelling
de-1901 German, “old” spelling

grc Greek, Ancient
grc-x-ibycus Greek, Ancient, Ibycus encoding

el-monoton Greek, Monotonic
el-polyton Greek, Polytonic

hu Hungarian
is Icelandic
id Indonesian
ia Interlingua
ga Irish
it Italian
la Latin

mn-cyrl Mongolian
mn-cyrl-x-2a Mongolian (new patterns)

no Norwegian
nb Norwegian Bokmål
nn Norwegian Nynorsk
pl Polish
pt Portuguese
ro Romanian
ru Russian

sr-cyrl Serbian, Cyrillic script
sr-latn Serbian, Latin script
sh-cyrl Serbo-Croatian, Cyrillic script
sh-latn Serbo-Croatian, Latin script

sl Slovene
es Spanish
sv Swedish
tr Turkish
uk Ukrainian

hsb Upper Sorbian
cy Welsh

List of supported encodings
ConTeXt LaTeX Comments
ec T1 “Cork” encoding
il2 latin2 iso 8859-2
il3 latin3 iso 8859-3
lmc lmc montex (Mongolian)
qx qx Polish
t2a t2a Cyrillic


