
NUMMER 37 • NAJAAR 2008

R E D A C T I E
Taco Hoekwater, hoofdredacteur
Wybo Dekker
Frans Goddijn

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

Voorzitter
Taco Hoekwater

ntg-president@ntg.nl

Secretaris
Willi Egger

ntg-secretary@ntg.nl

Penningmeester
Wybo Dekker

ntg-treasurer@ntg.nl

Bestuurslid
Karel Wesseling

k.h.wesseling@planet.nl

Postadres
Nederlandstalige TEX

Gebruikersgroep
Maasstraat 2

5836 BB Sambeek
Postgiro
1306238

t.n.v. NTG, Deil
BIC-code: PSTBNL21

IBAN-code: NL05PSTB0001306238
E-mail bestuur

ntg@ntg.nl

E-mail MAPS redactie
maps@ntg.nl

WWW
www.ntg.nl

Copyright © 2008 NTG

De Nederlandstalige TEX Gebruikersgroep (NTG) is een vereniging die tot doel
heeft de kennis en het gebruik van TEX te bevorderen. De NTG fungeert als een fo-
rum voor nieuwe ontwikkelingen met betrekking tot computergebaseerde document-
opmaak in het algemeen en de ontwikkeling van ‘TEX and friends’ in het bijzonder.
De doelstellingen probeert de NTG te realiseren door onder meer het uitwisselen van
informatie, het organiseren van conferenties en symposia met betrekking tot TEX en
daarmee verwante programmatuur.
De NTG biedt haar leden ondermeer:

2 Tweemaal per jaar een NTG-bijeenkomst.
2 Het NTG-tijdschrift MAPS.
2 De ‘TEX Live’-distributie op DVD/CDROM inclusief de complete CTAN software-

archieven.
2 Verschillende discussielijsten (mailing lists) over TEX-gerelateerde onderwerpen,

zowel voor beginners als gevorderden, algemeen en specialistisch.
2 De FTP server ftp.ntg.nl waarop vele honderden megabytes aan algemeen

te gebruiken ‘TEX-producten’ staan.
2 De WWW server www.ntg.nl waarop algemene informatie staat over de NTG,

bijeenkomsten, publicaties en links naar andere TEX sites.
2 Korting op (buitenlandse) TEX-conferenties en -cursussen en op het lidmaatschap

van andere TEX-gebruikersgroepen.

Lid worden kan door overmaking van de verschuldigde contributie naar de NTG-giro
(zie links); vermeld IBAN- zowel als SWIFT/BIC-code en selecteer shared cost. Daar-
naast dient via www.ntg.nl een informatieformulier te worden ingevuld. Zonodig
kan ook een papieren formulier bij het secretariaat worden opgevraagd.
De contributie bedraagt ¤ 40; voor studenten geldt een tarief van ¤ 20. Dit geeft
alle lidmaatschapsvoordelen maar geen stemrecht. Een bewijs van inschrijving is ver-
eist. Een gecombineerd NTG/TUG-lidmaatschap levert een korting van 10% op beide
contributies op. De prijs in euro’s wordt bepaald door de dollarkoers aan het begin
van het jaar. De ongekorte TUG-contributie is momenteel $65.

MAPS bijdragen kunt u opsturen naar maps@ntg.nl, bij voorkeur in LaTEX- of
ConTEXt formaat. Bijdragen op alle niveaus van expertise zijn welkom.

Productie. De Maps wordt gezet met behulp van een LaTEX class file en een ConTEXt
module. Het pdf bestand voor de drukker wordt aangemaakt met behulp van pdf-
tex 1.40.9 en luatex 0.30.2 draaiend onder Linux 2.6. De gebruikte fonts zijn Bit-
stream Charter, schreefloze en niet-proportionele fonts uit de Latin Modern collectie,
en de Euler wiskunde fonts, alle vrij beschikbaar.

TEX is een door professor Donald E. Knuth ontwikkelde ‘opmaaktaal’ voor het let-
terzetten van documenten, een documentopmaaksysteem. Met TEX is het mogelijk
om kwalitatief hoogstaand drukwerk te vervaardigen. Het is eveneens zeer geschikt
voor formules in mathematische teksten.
Er is een aantal op TEX gebaseerde producten, waarmee ook de logische struc-
tuur van een document beschreven kan worden, met behoud van de letterzet-
mogelijkheden van TEX. Voorbeelden zijn LaTEX van Leslie Lamport, AMS-TEX van
Michael Spivak, en ConTEXt van Hans Hagen.

Inhoudsopgave

Redactioneel, Taco Hoekwater 1

Announcement: TUG conference 2009, Taco Hoekwater 2

The TEX-Lua mix, Hans Hagen 3

Putting the Cork back in the bottle, Mojca Miklavec & Arthur Reutenauer 12

PDF genereren voor e-readers, Taco Hoekwater 17

Dealing with xml in ConTEXt MkIV, Hans Hagen 25

Printing labels with ConTEXt , Willi Egger 40

Printing envelopes with ConTEXt, Willi Egger 45

CD and DVD Covers in ConTEXt, Hans van der Meer 48

Punk from Metafont to MetaPost, Taco Hoekwater & Hans Hagen 55

How to Convince Don and Hermann to use LuaTEX, Hans Hagen & Taco Hoekwater 59

The Punk Module, Hans Hagen 67

TEXworks: lowering the barrier to entry, Jonathan Kew 70

TEX Live 2008 and the TEX Live Manager, Norbert Preining 73

Announcement: EuroTEX conference 2009, Taco Hoekwater 90

Taco Hoekwater NAJAAR 2008 1

Redactioneel

Soms ligt er meer dan genoeg kopij, maar vaker is
het kantje boord of er genoeg is om zelfs maar een
vloeipapier--dunne Maps mee te vullen. Dat laatste was
deze keer het geval.

Als hoofdredakteur moet ik toegeven dat dat gro-
tendeels mijn eigen schuld was. Artikelen komen niet
uit zichzelf de redaktie mailbox binnen waaien, en ik
had het porren van auteurs de afgelopen tijd wat laten
versloffen. Dat er toch een redelijk gevulde Maps voor
u ligt mag dan ook wel een klein wondertje heten.

Op 1 oktober, toen de productiefase ofcieel begon,
was er welgeteld één artikel aangeleverd, en het leek
er niet naar dat er meer zou komen. Dat artikel was
‘CD and DVD Covers in ConTEXt’ door Hans van der
Meer. Een heel leuk artikel, maar met zeven pagina's
vul je geen tijdschrift. En dat moest toch echt, want het
was de bedoeling om Maps en TEX Live 2008 samen te
verzenden.

Op zo'n moment slaat de paniek snel toe, en het is
dan logisch om te kijken naar de enige oplossing die
zowel snel als veilig is: het herdrukken van artikelen
uit andere tijdschriften. Op die manier kwamen we aan
twee artikelen die tevens aansloten bij presentaties op
de afgelopen TUG bijeenkomst in Cork.

De eerste, ‘Putting the Cork back in the bottle’ door
Mojca Miklavec & Arthur Reutenauer gaat over wat
er zoal gedaan moet worden worden om de Unicode
ondersteuning in programma's zoals X ETEX en luaTEX
te verbeteren.

Het tweede artikel uit de Cork proceedings is
‘TEXworks: lowering the barrier to entry’ door Jonat-
han Kew. Ten tijde van de conferentie was TEXworks
nog grotendeels vapourware. Het artikel is daarom
nogal kort en erg voorzichtig; sindsdien is de ontwik-
keling van TEXworks al een heel eind verder.

Met die twee artikelen was die bron van artikelen
opgedroogd. Een poging om wat van de sprekers van
de afgelopen ConTEXt bijeenkomst in Bohinj te strikken
voor een artikel leidde tot niets. De redder in de nood
was natuurlijk Hans Hagen (die altijd wel iets heeft
liggen dat afdrukbaar is). ‘Dealing with xml in ConTEXt
MkIV’ is een voorlopige versie van een ConTEXt manu-
al, maar interessant en kort genoeg voor plaatsing in
de Maps.

Maar uiteindelijk was het de NTG najaarsbijeen-
komst op 18 oktober jongstleden die de redding

bracht: elke lezing op de bijeenkomst was goed voor
een minstens één artikel. Ikzelf presenteerde en de-
monstreerde TEXworks, daarbij hoort uiteraard het
artikel van Jonathan Kew dat ik hierboven al meldde.

Verder is daar een artikel dat aansluit bij Hans
Hagen's mini-workshop over het gebruik van Lua in
TEX documenten: ‘The TEX-Lua mix’, een artikel vol met
praktische voorbeelden.

Van de hand van Willi Egger zijn er zelfs twee
artikelen: ‘Printing labels with ConTEXt’ en ‘Printing
envelopes with ConTEXt.’

Mijn tweede praatje was wel een ‘eigen’ productie,
goed voor ‘PDF genereren voor e-readers.’

Siep's presentatie is dan de enige die nog ontbreekt.
En hoewel Siep geen tijd had om een origineel artikel
te schrijven, wees ze mij wel op Norbert Preining's
‘TEX Live 2008 and the TEX Live Manager.’

Daarmee schoot het al aardig op met deze Maps,
maar het werd nog wat meer. Ondertussen bleek Hans
Hagen's presentatie op de conferentie in Cork namelijk
te scherp op de snede te zijn voor het productieproces
van de TUGboat. Karl Berry vroeg ons of dat artikel in
de Maps zou verschijnen, en hoewel we dat oorspron-
kelijk niet van plan waren, was dat een uitstekende
hint.

Het leverde zelfs nog twee extra artikelen op. Het
hoofd--artikel dat overeenkomt met de presentatie op
de TUG conferentie is ‘How to Convince Don and
Hermann to use LuaTEX.’ Maar de vormgeving van die
presentatie was zelf ook interessant genoeg voor een
eigen, kleurrijk, artikeltje: ‘The Punk Module.’ En over
de conversie van het font van Metafont naar MetaPost
bleek ook wel wat te vertellen: ‘Punk from Metafont to
MetaPost.’

En daarmee zijn er nog maar drie pagina's over
die ik nog niet genoemd heb, alle drie door onder-
getekende en alledrie aangemaakt op het allerlaatste
moment. Deze ‘Redactioneel’ natuurlijk, en dan nog de
aankondigingen voor de TUG en EuroTEX conferenties
van volgend jaar.

EuroTEX volgend jaar wordt georganiseerd door de
NTG, dus ik hoop velen van jullie te zien in Den Haag.

Veel leesplezier toegewenst,

Taco Hoekwater

TUG 2009

TUG 2009 will be held July 28-31, 2009, at the University of Notre Dame, in Notre
Dame, Indiana, USA. The nearest airport is South Bend, Indiana (SBN). The loca-
tion is about 90 miles northeast of Chicago.

The principal local organizer is Martha Kummerer, of the Notre Dame Journal of
Formal Logic, which is sponsoring the conference. Email contact: tug2009@tug.org.

Hans Hagen NAJAAR 2008 3

The TEX–Lua mix

Abstract
An introduction to the combination of TEX and the
scripting language Lua.

Introduction
The idea of embedding Lua into TEX originates in some
experiments with Lua embedded in the SciTE editor.
You can add functionality to this editor by loading Lua
scripts. This is accomplished by a library that gives
access to the internals of the editing component.

The rst integration of Lua in pdfTEX was relatively
simple: from TEX one could call out to Lua and from
Lua one could print to TEX. My rst application was
converting math written in a calculator syntax to TEX.
Subsequent experiments dealt with MetaPost. At this
point integrationmeant as little as: having some script-
ing language as an addition to the macro language.
But, even in this early stage further possibilities were
explored, for instance in manipulating the nal output
(i.e. the pdf code). The rst versions of what by then
was already called LuaTEX provided access to some
internals, like counter and dimension registers and the
dimensions of boxes.

Boosted by the Oriental TEX project, the team start-
ed exploring more fundamental possibilities: hooks in
the input/output, tokenization, fonts and node lists.
This was followed by opening up hyphenation, break-
ing lines into paragraphs and building ligatures. At
that point we not only had access to some internals
but also could inuence the way TEX operates.

After that, an excursion was made to mplib, which
fullled a long standing wish for a more natural inte-
gration of MetaPost into TEX. At that point we ended
up with mixtures of TEX, Lua and MetaPost code.

As of mid-2008 we still need to open up more of
TEX, like page building, math, alignments and the
backend. Eventually LuaTEX will be nicely split up in
components, rewritten in c, and we may even end up
with Lua gluing together the components that make
up the TEX engine. At that point the interoperation
between TEX and Luamay be even richer than it is now.

In the next sections I will discuss some of the ideas
behind LuaTEX and the relationship between Lua and
TEX and how it presents itself to users. I will not discuss
the interface itself, which consists of quite a number
of functions (organized in pseudo-libraries) and the

mechanisms used to access and replace internals (we
call them callbacks).

TEX vs. Lua
TEX is a macro language. Everything boils down to
either allowing stepwise expansion or explicitly pre-
venting it. There are no real control features, like
loops; tail recursion is a key concept. There are only
a few accessible data structures, such as numbers,
dimensions, glue, token lists and boxes. What happens
inside TEX is controlled by variables, mostly hidden
from view, and optimized within the constraints of 30
years ago.

The original idea behind TEX was that an author
would write a specic collection of macros for each
publication, but increasing popularity among non-pro-
grammers quickly resulted in distributed collections of
macros, called macro packages. They started small but
grew and grew and by now have become pretty large.
In these packages there are macros dealing with fonts,
structure, page layout, graphic inclusion, etc. There is
also code dealing with user interfaces, process control,
conversion and much of that code looks out of place:
the lack of control features and string manipulation
is solved by mimicking other languages, the unavail-
ability of a oat datatype is compensated by misusing
dimension registers, and you can nd provisions to
force or inhibit expansion all over the place.

TEX is a powerful typographical programming lan-
guage but lacks some of the handy features of scripting
languages. Handy in the sense that you will need them
when you want to go beyond the original purpose
of the system. Lua is a powerful scripting language,
but knows nothing of typesetting. To some extent it
resembles the language that TEXwas written in: Pascal.
And, since Lua is meant for embedding and extending
existing systems, it makes sense to bring Lua into TEX.
How do they compare? Let's give some examples.

About the simplest example of using Lua in TEX is
the following:

\directlua { tex.print(math.sqrt(10)) }

This kind of application is probably what most users
will want and use, if they use Lua at all. However, we
can go further than that.

4 MAPS 37 Hans Hagen

Loops

In TEX a loop can be implemented as in the plain format
(editorial line breaks, but with original comment):

\def\loop#1\repeat{\def\body{#1}\iterate}
\def\iterate{\body\let\next\iterate

\else\let\next\relax\fi\next}
\let\repeat=\fi % this makes \loop..\if..\repeat

% skippable

This is then used as:

\newcount \mycounter \mycounter=1
\loop

...
\advance\mycounter 1
\ifnum\mycounter < 11

\repeat

The denition shows a bit how TEX programming
works. Of course such denitions can be wrapped in
macros, like:

\forloop{1}{10}{1}{some action}

and this is what often happens in more complex macro
packages. In order to use such control loops without
side effects, the macro writer needs to take measures
to permit, for instance, nested usage and avoid clash-
es between local variables (counters or macros) and
user-dened ones. Above we used a counter in the
condition, but in practice expressions will be more
complex and this is not that trivial to implement.

The original denition of the iterator can be written
a bit more efciently:

\def\iterate
{\body \expandafter\iterate \fi}

And indeed, in macro packages you will nd many
such expansion control primitives being used, which
does not make reading macros easier.

Now, get me right, this does not make TEX less
powerful, it's just that the language is focused on
typesetting and not on general purpose programming,
and in principle users can do without that: documents
can be preprocessed using another language, and doc-
ument specic styles can be used.

We have to keep in mind that TEX was written in
a time when resources in terms of memory and cpu
cycles were far less abundant than they are now. The
255 registers per class and (about) 3000 hash slots in

original TEX were more than enough for typesetting a
book, but in huge collections of macros they are not
all that much. For that reason many macro packages
use obscure names to hide their private registers from
users and instead of allocating new ones with mean-
ingful names, existing ones are shared. It is therefore
not completely fair to compare TEX code with Lua
code: in Lua we have plenty of memory and the only
limitations are those imposed by modern computers.

In Lua, a loop looks like this:

for i=1,10 do
...

end

But while in the TEX example, the content directly ends
up in the input stream, in Lua we need to do that
explicitly, so in fact we will have:

for i=1,10 do
tex.print("...")

end

And, in order to execute this code snippet, in LuaTEX
we will do:

\directlua 0 {
for i=1,10 do

tex.print("...")
end

}

So, eventually we will end up with more code than just
Lua code, but still the loop itself looks quite readable
and more complex loops are possible:

\directlua 0 {
local t, n = { }, 0
while true do

local r = math.random(1,10)
if not t[r] then

t[r], n = true, n+1
tex.print(r)
if n == 10 then break end

end
end

}

This will typeset the numbers 1 to 10 in randomized
order. Implementing a random number generator in
pure TEX takes a fair amount of code and keeping track
of already dened numbers inmacros can be donewith
macros, but neither of these is very efcient.

The TEX–Lua mix NAJAAR 2008 5

Basic typesetting
I already stressed that TEX is a typographical program-
ming language and as such some things in TEX are
easier than in Lua, given some access to internals:

\setbox0=\hbox{x}\the\wd0

In Lua we can do this as follows:

\directlua 0 {
local n = node.new('glyph')
n.font = font.current()
n.char = string.byte('x')
tex.box[0] = node.hpack(n)
tex.print(tex.wd[0]/65536 .. "pt")

}

One pitfall here is that TEX rounds off numbers differ-
ently than Lua. Both implementations can be wrapped
in a macro resp. function:

\def\measured#1%
{\setbox0=\hbox{#1}\the\wd0\relax}

Now we get:

\measured{x}

The same macro using Lua looks as follows:

\directlua 0 {
function measure(chr)

local n = node.new('glyph')
n.font = font.current()
n.char = string.byte(chr)
tex.box[0] = node.hpack(n)
tex.print(tex.wd[0]/65536 .. "pt")

end
}
\def\measured#1{\directlua0{measure("#1")}}

In both cases, special tricks are needed if you want to
pass for instance a # character to the TEX implementa-
tion, or a " to Lua; namely, using \# in the rst case,
and Lua's ``long strings'' marked with double square
brackets in the second.

This example is somewhat misleading. Imagine that
we want to pass more than one character. The TEX
variant is already suited for that, but the Lua function
will now look like:

\directlua 0 {
function measure(str)

if str == "" then

tex.print("0pt")
else

local head, tail = nil, nil
for chr in str:gmatch(".") do

local n = node.new('glyph')
n.font = font.current()
n.char = string.byte(chr)
if not head then

head = n
else

tail.next = n
end
tail = n

end
tex.box[0] = node.hpack(head)
tex.print(tex.wd[0]/65536 .. "pt")

end
end

}

And still it's not okay, since TEX inserts kerns between
characters (depending on the font) and glue between
words, and doing all of this in Lua takes more code.
So, it will be clear that although we will use Lua to
implement advanced features, TEX itself still has quite
a lot of work to do.

Typesetting stylistic variations
In the following examples we show code, but it is not
of production quality. It just demonstrates a new way
of dealing with text in TEX.

Occasionally a design demands that at some place
the rst character of each word should be uppercase,
or that the rst word of a paragraph should be in
small caps, or that each rst line of a paragraph has
to be in dark blue. When using traditional TEX the user
then has to fall back on parsing the data stream, and
preferably you should then start such a sentence with
a command that can pick up the text. For accentless
languages like English this is quite doable but as soon
as commands (for instance dealing with accents) enter
the stream this process becomes quite hairy.

The next code shows how ConTEXt MkII denes
the \Word and \Words macros that capitalize the rst
characters of a word or words. The spaces are really
important here because they signal the end of a word.

\def\doWord#1%
{\bgroup\the\everyuppercase\uppercase{#1}%
\egroup}

\def\Word#1%
{\doWord#1}

6 MAPS 37 Hans Hagen

\def\doprocesswords#1 #2\od
{\doifsomething{#1}{\processword{#1} % space!
\doprocesswords#2 \od}}

\def\processwords#1%
{\doprocesswords#1 \od\unskip}

\let\processword\relax

\def\Words
{\let\processword\Word \processwords}

The code here is not that complex. We split off each
word and feed it to a macro that picks up the rst
token (hopefully a character) which is then fed into
the \uppercase primitive. This assumes that for each
character a corresponding uppercase variant is dened
using the \uccode primitive. Exceptions can be dealt
with by assigning relevant code to the token register
\everyuppercase. However, such macros are far
from robust. What happens if the text is generated and
not input as is? What happens with commands in the
stream that do something with the following tokens?

A Lua-based solution could look as follows:

\def\Words#1{\directlua 0
for s in unicode.utf8.gmatch("#1", "([^])") do

tex.sprint(string.upper(
s:sub(1,1)) .. s:sub(2))

end
}

But there is no real advantage here, apart from the fact
that less code is needed. We still operate on the input
and therefore we need to look to a different kind of
solution: operating on the node list.

function CapitalizeWords(head)
local done = false
local glyph = node.id("glyph")
for start in node.traverse_id(glyph,head) do

local prev, next = start.prev, start.next
if prev and prev.id == kern

and prev.subtype == 0 then
prev = prev.prev

end
if next and next.id == kern

and next.subtype == 0 then
next = next.next

end
if (not prev or prev.id ~= glyph)

and next and next.id == glyph then
done = upper(start)

end
end

return head, done
end

A node list is a forward-linked list. With a helper
function in the node library we can loop over such lists.
Instead of traversing we can use a regular while loop,
but it is probably less efcient in this case. But how to
apply this function to the relevant part of the input?
In LuaTEX there are several callbacks that operate on
the horizontal lists and we can use one of them to plug
in this function. However, in that case the function is
applied to probably more text than we want.

The solution for this is to assign attributes to the
range of text which a function is intended to take care
of. These attributes (there can bemany) travel with the
nodes. This is also a reason why such code normally
is not written by end users, but by macro package
writers: they need to provide the frameworks where
you can plug in code. In ConTEXt we have several such
mechanisms and therefore in MkIV this function looks
(slightly simplied) as follows:

function cases.process(namespace,attribute,head)
local done, actions = false, cases.actions
for start in node.traverse_id(glyph,head) do

local attr = has_attribute(start,attribute)
if attr and attr > 0 then

unset_attribute(start,attribute)
local action = actions[attr]
if action then

local _, ok = action(start)
done = done and ok

end
end

end
return head, done

end

Here we check attributes (these are set on the TEX side)
and we have all kind of actions that can be applied,
depending on the value of the attribute. Here the
function that does the actual uppercasing is dened
somewhere else. The cases table provides us a name-
space; such namespaces need to be coordinated by
macro package writers.

This approach means that the macro code looks
completely different; in pseudo code:

\def\Words#1{{<setattribute><cases>
<somevalue>#1}}

Or alternatively:

\def\StartWords {\begingroup
<setattribute><cases><somevalue>}

The TEX–Lua mix NAJAAR 2008 7

\def\StopWords {\endgroup}

Because starting a paragraph with a group can have
unwanted side effects (such as \everypar being ex-
panded inside a group) a variant is:

\def\StartWords
{<setattribute><cases><somevalue>}

\def\StopWords {<resetattribute><cases>}

So, what happens here is that the user sets an attribute
using some high level command, and at some point
during the transformation of the input into node lists,
some action takes place. At that point commands,
expansion and the like can no longer interfere.

In addition to some infrastructure, macro pack-
ages need to carry some knowledge, just as with the
\uccode used in \uppercase. The upper function in
the rst example looks as follows:

local function upper(start)
local data, char = characters.data, start.char
if data[char] then

local uc = data[char].uccode
if uc and

fonts.tfm.id[start.font].characters[uc]
then

start.char = uc
return true

end
end
return false

end

Such code is really macro package dependent: LuaTEX
provides only the means, not the solutions. In ConTEXt
we have collected information about characters in a
data table in the characters namespace. There we
have stored the uppercase codes (uccode). The fonts
table, again ConTEXt specic, keeps track of all dened
fonts and before we change the case, we make sure
that this character is present in the font. Here id is the
number by which LuaTEX keeps track of the used fonts.
Each glyph node carries such a reference.

In this example, eventually we end up with more
code than in TEX, but the solution is muchmore robust.
Just imagine what would happen when in the TEX
solution we would have:

\Words{\framed[offset=3pt]{hello world}}

It simply does not work. On the other hand, the Lua
code never sees TEX commands, it only sees the two
words represented by glyph nodes and separated by
glue.

Of course, there is a danger when we start opening
TEX's core features. Currently macro packages know
what to expect, they know what TEX can and cannot
do, and macro writers have exploited every corner of
TEX, even the darkest ones. while the dirty tricks in The
TEX-book had an educational purpose, those of users
sometimes have obscene traits. If we just stick to the
trickery introduced for parsing input, converting this
into that, doing some calculations, and the like, it will
be clear that Lua is more than welcome. It may hurt to
throw away thousands of lines of impressive code and
replace it by a few lines of Lua but that's the price the
user pays for abusing TEX. Eventually ConTEXt MkIV
will be a decent mix of Lua and TEX code, and hopefully
the solutions programmed in those languages are as
clean as possible.

Of course we can discuss until eternity whether Lua
is the best choice. Taco, Hartmut and I are pretty
condent that it is, and in the couple of years that we
have been working on LuaTEX nothing has proved us
wrong yet. One can fantasize about concepts, only to
nd out that they are impossible to implement or hard
to agree on; we just go ahead using trial and error.
We can talk over and over how opening up should be
done, which is what the team does in a nicely closed
and efcient loop, but at some points decisions have
to be made. Nothing is perfect, neither is LuaTEX, but
most users won't notice it as long as it extends TEX's
life and makes usage more convenient.

Groups
Users of TEX and MetaPost will have noticed that both
languages have their own grouping (scope) model.
In TEX grouping is focused on content: by grouping
the macro writer (or author) can limit the scope to
a specic part of the text or have certain macros live
within their own world.

.1. \bgroup .2. \egroup .1.

Everything done at 2 is local unless explicitly told
otherwise. This means that users can write (and share)
macros with a small chance of clashes. In MetaPost
grouping is available too, but variables explicitly need
to be saved.

.1. begingroup; save p; path p; .2. endgroup .1.

After using MetaPost for a while this feels quite natural
because an enforced local scope demands multiple
return values which is not part of the macro lan-
guage. Actually, this is another fundamental difference
between the languages: MetaPost has (a kind of)
functions, which TEX lacks. In MetaPost you can write

8 MAPS 37 Hans Hagen

draw origin
for i=1 upto 10: ..(i,sin(i)) endfor;

but also:

draw some(0) for i=1 upto 10: ..some(i) endfor;

with

vardef some (expr i) =
if i > 4 : i = i - 4 fi ;
(i,sin(i))

enddef ;

The condition and assignment in no way interfere with
the loop where this function is called, as long as some
value is returned (a pair in this case).

In TEX things work differently. Take this:

\count0=1
\message{\advance\count0 by 1 \the\count0}
\the\count0

The terminal will show:

\advance \count 0 by 1 1

At the end the counter still has the value 1. There are
quite a few situations like this, for instance when data
such as a table of contents has to be written to a le.
You cannot write macros where such calculations are
done, hidden away, and only the result is seen.

The nice thing about the way Lua is presented to the
user is that it permits the following:

\count0=1
\message{\directlua0{%

tex.count[0] = tex.count[0] + 1}%
\the\count0}

\the\count0

This will report 2 to the terminal and typeset a 2 in the
document. Of course this does not solve everything,
but it is a step forward. Also, compared to TEX and
MetaPost, grouping is done differently: there is a
local prex that makes variables (and functions are
variables too) local in modules, functions, conditions,
loops, etc. The Lua code in this article contains such
locals.

An example: XML
In practice most users will use a macro package and so,
if a user sees TEX, he or she sees a user interface, not the
code behind it. As such, they will also not encounter

the code written in Lua that handles, for instance, fonts
or node list manipulations. If a user sees Lua, it will
most probably be in processing actual data. Therefore,
in this section I will give an example of two ways to
deal with xml: one more suitable for traditional TEX,
and one inspired by Lua. It demonstrates how the
availability of Lua can result in different solutions for
the same problem.

MkII: stream-based processing
In ConTEXt MkII, the version that deals with pdfTEX
and X ETEX, we use a stream-based xml parser, written
in TEX. Each < and & triggers a macro that then parses
the tag and/or entity. This method is quite efcient in
terms of memory but the associated code is not simple
because it has to deal with attributes, namespaces and
nesting.

The user interface is not that complex, but involves
quite a few commands. Take for instance the following
xml snippet:

<document>
<section>

<title>Whatever</title>
<p>some text</p>
<p>some more</p>

</section>
</document>

When using ConTEXt commands, we can imagine the
following denitions:

\defineXMLenvironment[document]
{\starttext} {\stoptext}

\defineXMLargument [title]
{\section}

\defineXMLenvironment[p]
{\ignorespaces}{\par}

When attributes have to be dealt with, for instance a
reference to this section, things quickly start looking
more complex. Also, users need to know what deni-
tions to use in situations like this:

<table>
<tr><td>first</td> ... <td>last</td></tr>
<tr><td>left</td> ... <td>right</td></tr>

</table>

Here we cannot be sure that a cell does not contain
a nested table, which is why we need to dene the
mapping as follows:

\defineXMLnested[table]{\bTABLE} {\eTABLE}
\defineXMLnested[tr] {\bTR} {\eTR}

The TEX–Lua mix NAJAAR 2008 9

\defineXMLnested[td] {\bTD} {\eTD}

The \defineXMLnested macro is rather messy be-
cause it has to collect snippets and keep track of the
nesting level, but users don't see that code, they just
need to know when to use what macro. Once it works,
it keeps working.

Unfortunately mappings from source to style are
never that simple in real life. We usually need to
collect, lter and relocate data. Of course this can
be done before feeding the source to TEX, but MkII
provides a few mechanisms for that too. For instance,
to reverse the order you can do this:

<article>
<title>Whatever</title>
<author>Someone</author>
<p>some text</p>

</article>

\defineXMLenvironment[article]
{\defineXMLsave[author]}
{\blank author: \XMLflush{author}}

This will save the content of the author element and
ush it when the end tag article is seen. So, given
previous denitions, we will get the title, some text
and then the author. You may argue that instead we
should use for instance xslt but even then a mapping
is needed from the xml to TEX, and it's a matter of taste
where the burden is put.

Because ConTEXt also wants to support standards
like MathML, there are some more mechanisms but
these are hidden from the user. And although these
do a good job in most cases, the code associated with
the solutions has never been satisfying.

Supporting xml this way is doable, and ConTEXt
has used this method for many years in fairly complex
situations. However, now that we have Lua available,
it is possible to see if some things can be done more
simply (or differently).

MkIV: tree-based processing
After some experimenting I decided to write a
full blown xml parser in Lua, but contrary to the
stream-based approach, this time the whole tree is
loaded in memory. Although this uses more memory
than a streaming solution, in practice the difference is
not signicant because often in MkII we also needed
to store whole chunks.

Loading xml les in memory is very fast and once it
is done we can have access to the elements in a way
similar to xpath. We can selectively pipe data to TEX
and manipulate content using TEX or Lua. In most
cases this is faster than the stream-based method. An

interesting fact is that we can do this without linking
to existing xml libraries, and as a result we are pretty
independent.

So how does this look from the perspective of the
user? Say that we have the simple article denition
stored in demo.xml.

<?xml version ='1.0'?>
<article>

<title>Whatever</title>
<author>Someone</author>
<p>some text</p>

</article>

This time we associate so-called setups with the ele-
ments. Each element can have its own setup, and we
can use expressions to assign them. Here we have just
one such setup:

\startxmlsetups xml:document
\xmlsetsetup{main}{article}{xml:article}

\stopxmlsetups

When loading the document it will automatically be
associated with the tag main. The previous rule as-
sociates the setup xml:article with the article
element in tree main. We register this setup so that
it will be applied to the document after loading:

\xmlregistersetup{xml:document}

and the document itself is processed with (the empty
braces are an optional setup argument):

\xmlprocessfile{main}{demo.xml}{}

The setup xml:article can look as follows:

\startxmlsetups xml:article
\section{\xmltext{#1}{/title}}
\xmlall{#1}{!(title|author)}
\blank author: \xmltext{#1}{/author}

\stopxmlsetups

Here #1 refers to the current node in the xml tree,
in this case the root element, article. The second
argument of \xmltext and \xmlall is a path ex-
pression, comparable to xpath: /title means: the
title element anchored to the current root (#1), and
!(title|author) is the negation of (complement
to) title or author. Such expressions can be more
complex than the one above, for instance:

\xmlfirst{#1}{/one/(alpha|beta)/two/text()}

10 MAPS 37 Hans Hagen

which returns the content of the rst element that
satises one of the paths (nested tree):

/one/alpha/two
/one/beta/two

There is a whole bunch of commands like \xmltext
that lter content and pipe it into TEX. These are calling
Lua functions. This article is no manual, so we will not
discuss them here. However, it is important to realize
that we have to associate setups (consider them free
formatted macros) with at least one element in order
to get started. Also, xml inclusions have to be dealt
with before assigning the setups. These are simple
one-line commands. You can also assign defaults to
elements, which saves some work.

Because we can use Lua to access the tree and
manipulate content, we can now implement parts of
xml handling in Lua. An example of this is dealing with
so-called Cals tables. This is done in approximately
150 lines of Lua code, loaded at runtime in a module.
This time the association uses functions instead of
setups and those functions will pipe data back to TEX.
In the module you will nd:

\startxmlsetups xml:cals:process
\xmlsetfunction {\xmldocument} {cals:table}

{lxml.cals.table}
\stopxmlsetups

\xmlregistersetup{xml:cals:process}
\xmlregisterns{cals}{cals}

These commands tell MkIV that elements with a
namespace specication that contains cals will be
remapped to the internal namespace cals and the se-
tup associates a function with this internal namespace.

By now it will be clear that from the perspective
of the user Lua is hardly visible. Sure, he or she can
deduce that deep down some magic takes place, espe-
cially when you run into more complex expressions
like this (the @ denotes an attribute):

\xmlsetsetup
{main}
{item[@type='mpctext' or @type='mrtext']}
{questions:multiple:text}

Such expressions resemble xpath, but can go much
further, just by adding more functions to the library.

item[position() > 2 and position() < 5
and text() == 'ok']

item[position() > 2 and position() < 5
and text() == upper('ok')]

item[@n=='03' or @n=='08']
item[number(@n)>2 and number(@n)<6]
item[find(text(),'ALSO')]

Just to give you an idea, in themodule that implements
the parser you will nd denitions that match the
function calls in the above expressions.

xml.functions.find = string.find
xml.functions.upper = string.upper
xml.functions.number = tonumber

So much for the different approaches. It's up to
the user what method to use: stream-based MkII,
tree-based MkIV, or a mixture.

TEX–Lua in conversation
The main reason for taking xml as an example of
mixing TEX and Lua is in that it can be a bit mind-bog-
gling if you start thinking of what happens behind the
scenes. Say that we have

<?xml version ='1.0'?>
<article>

<title>Whatever</title>
<author>Someone</author>
<p>some bold text</p>

</article>

and we use the setup shown before with article.
At some point, we are done with dening setups

and load the document. The rst thing that happens is
that the list of manipulations is applied: le inclusions
are processed rst, setups and functions are assigned
next, maybe some elements are deleted or added, etc.
When that is done we serialize the tree to TEX, starting
with the root element. When piping data to TEX we use
the current catcode regime; linebreaks and spaces are
honored as usual.

Each element can have a function (command) as-
sociated and when this is the case, control is given to
that function. In our case the root element has such
a command, one that will trigger a setup. And so,
instead of piping content to TEX, a function is called
that lets TEX expand the macro that deals with this
setup.

However, that setup itself calls Lua code that lters
the title and feeds it into the \section command, next
it ushes everything except the title and author, which
again involves calling Lua. Last it ushes the author.
The nested sequence of events is as follows:

lua: Load the document and apply setups and the
like.

The TEX–Lua mix NAJAAR 2008 11

lua: Serialize the article element, but since there is
an associated setup, tell TEX to expand that one
instead.
tex: Execute the setup, rst expand the

\section macro, but its argument is a call
to Lua.
lua: Filter title from the subtree under

article, print the content to TEX and
return control to TEX.

tex: Tell Lua to lter the paragraphs i.e. skip
title and author; since the b element has
no associated setup (or whatever) it is just
serialized.
lua: Filter the requested elements and re-

turn control to TEX.
tex: Ask Lua to lter author.

lua: Pipe author's content to TEX.
tex: We're done.

lua: We're done.

This is a very simple case. In my daily work I am
dealing with rather extensive and complex educational
documents where in one source there is text, math,
graphics, all kind of fancy stuff, questions and answers
in several categories and of different kinds, to be
reshufed or not, omitted or combined. So there we
are talking about many more levels of TEX calling Lua
and Lua piping to TEX, etc. To stay in TEX speak:
we're dealing with one big ongoing nested expansion
(because Lua calls expand), and you can imagine that
this somewhat stresses TEX's input stack, but so far I
have not encountered any problems.

Final remarks
Here I discuss several possible applications of Lua in
TEX. I didn't mention yet that because LuaTEX contains
a scripting engine plus some extra libraries, it can
also be used purely for that. This means that support
programs can now be written in Lua and that we need
no longer depend on other scripting engines being
present on the system. Consider this a bonus.

Usage in TEX can be categorized in four ways:

1. Users can use Lua for generating data, do all kind
of data manipulations, maybe read data from le,
etc. The only link with TEX is the print function.

2. Users can use information provided by TEX and use
this when making decisions. An example is collect-

ing data in boxes and use Lua to do calculations
with the dimensions. Another example is a con-
verter from MetaPost output to pdf literals. No real
knowledge of TEX's internals is needed. The MkIV
xml functionality discussed before demonstrates
this: it's mostly data processing and piping to TEX.
Other examples are dealing with buffers, dening
character mappings, and handling error messages,
verbatim . . . the list is long.

3. Users can extend TEX's core functionality. An ex-
ample is support for OpenType fonts: LuaTEX itself
does not support this format directly, but provides
ways to feed TEX with the relevant information.
Support for OpenType features demands manip-
ulating node lists. Knowledge of internals is a re-
quirement. Advanced spacing and language speci-
c features are made possible by node list manip-
ulations and attributes. The alternative \Words
macro is an example of this.

4. Users can replace existing TEX functionality. In
MkIV there are numerous examples of this, for in-
stance all le io is written in Lua, including reading
from zip les and remote locations. Loading and
dening fonts is also under Lua control. At some
point MkIV will provide dedicated splitters for mul-
ticolumn typesetting and probably also better dis-
play spacing and display math splitting.

The boundaries between these categories are not set
in stone. For instance, support for image inclusion
and mplib in ConTEXt MkIV sits between categories 3
and 4. Categories 3 and 4, and probably also 2, are
normally the domain of macro package writers and
more advanced users who contribute to macro pack-
ages. Because a macro package has to provide some
stability it is not a good idea to let users mess around
with all those internals, due to potential interference.
On the other hand, normally users operate on top of a
kernel using some kind of api, and history has proved
that macro packages are stable enough for this.

Sometime around 2010 the team expects LuaTEX to
be feature complete and stable. By that time I can
probably provide a more detailed categorization.

Hans Hagen
Pragma ADE
http://pragma-ade.com

12 MAPS 37 Mojca Miklavec and Arthur Reutenauer

Putting the Cork back in the bottle
Improving Unicode support in TEX
Abstract
Until recently, all of the hyphenation patterns available
for different languages in TeX were using 8-bit font
encodings, and were therefore not directly usable with
UTF-8 TeX engines such as XeTeX and LuaTeX. When
the former was included in TeX Live in 2007, Jonathan
Kew, its author, devised a temporary way to use them
with XeTeX as well as the “old” TeX engines. Last
spring, we undertook to convert them to UTF-8, and
make them usable with both sorts of TeX engines,
thus staying backwardly compatible. The process
uncovered a lot of idiosyncrasies in the pattern-loading
mechanism for different languages, and we had to
invent solutions to work around each of them.

Introduction
Hyphenation is one of the most prominent features
of TEX, and since it is possible to adapt it to many
languages and writing systems, it should come as no
surprise that there were so many patterns created so
quickly for so many languages in the relatively early
days of TEX development. As a result, the files that are
available often use old and dirty tricks, in order to be
usable with very old versions of TEX. In particular, all
of them used either 8-bit encodings or accent macros
(\’e, \v\{z\}, etc.); Unicode did not yet exist when
most of these files were written.

This was a problem when XeTEX was included in
TEX Live in 2007, since it expects UTF-8 input by de-
fault. Jonathan Kew, the XeTEX author, devised a way
of using the historical hyphenation patterns with both
XeTEX and the older extensions of TEX: for each pat-
tern file 〈hyph〉.tex, he wrote a file called xu-〈hyph〉
.tex that detects if it is run with XeTEX or not; in the
latter case, it simply inputs 〈hyph〉.tex directly, and
otherwise, it takes actions to convert all the non-ASCII
characters to UTF-8, and then inputs the pattern file.

To sum up, in TEX Live 2007, XeTEX used the original
patterns as the basis, and converted them to UTF-8 on
the fly.

In the ConTEXt world, on the other hand, the pat-
terns had been converted to UTF-8 for a couple of years,
and were converted back to 8-bit encodings by the
macro package, depending on the font encoding.

In an attempt to go beyond that and to unify those
approaches, we then decided to take over conversions
for all the pattern files present in TEX Live at that time
(May 2008), for inclusion in the 2008 TEX Live release.

The new architecture
The core idea is that after converting the patterns to
UTF-8, the patterns are embedded in a structure that
can make them loadable with both sorts of TEX engines,
the ones with native UTF-8 support (XeTEX, LuaTEX) as
well as the ones that support only 8-bit input.1

The strategy for doing so was the following: for
each language 〈lang〉, the patterns are stored in a file
called hyph-〈lang〉.tex. These files contain only the
raw patterns, hyphenation exceptions, and comments.
They are input by files called loadhyph-〈lang〉.tex.
This is where engine detection happens, such as this
code for Slovenian:

% Test whether we received one or two arguments
\def\testengine#1#2!{\def\secondarg{#2}}
% We are passed Tau (as in Taco or TEX,
% Tau-Epsilon-Chi), a 2-byte UTF-8 character
\testengine T!\relax
% Unicode-aware engines (such as XeTeX or LuaTeX)
% only see a single (2-byte) argument
\ifx\secondarg\empty
\message{UTF-8 Slovenian Hyphenation Patterns}
\else
\message{EC Slovenian Hyphenation Patterns}
\input conv-utf8-ec.tex
\fi
\input hyph-sl.tex

The only trick is to make TEX look at the Unicode
character for the Greek capital Tau, in UTF-8 encod-
ing: it uses two bytes, which are therefore read by 8-bit
TEX engines as two different characters; thus the macro
\testengine sees two arguments. UTF-8 engines, on
the other hand, see a single character (Greek capital
Tau), thus a single argument before the exclamation
mark, and \secondarg is \empty.

If we’re running a UTF-8 TEX engine, there is nothing
to do but to input the file with the UTF-8 patterns; but
if we’re running an 8-bit engine, we have to convert

Putting the Cork back in the bottle NAJAAR 2008 13

the UTF-8 byte sequences to a single byte in the appro-
priate encoding. For Slovenian, as for most European
languages written in the Latin alphabet, it happens to
be T1. This conversion is taken care of by a file named
conv-utf8-ec.tex in our scheme. Let’s show how it
works with these three characters:2

2 ‘č’ (UTF-8 〈0xc4, 0x8d〉, T1 0xa3),
2 ‘š’ (UTF-8 〈0xc5, 0xa1〉, T1 0xb2),
2 ‘ž’ (UTF-8 〈0xc5, 0xbe〉, T1 0xba).

In order to convert the sequence 〈0xc4, 0x8d〉 to
0xa3, we make the byte 0xc4 active, and define it to
output 0xa3 if its argument is 0x8d.3 The other se-
quences work in the same way, and the extracted con-
tent of conv-utf8-ec.tex is thus:4

\catcode"C4=\active
\catcode"C5=\active
%
\defˆˆc4#1{%
\ifx#1ˆˆ8dˆˆa3\else % U+010D
\fi}
%
\defˆˆc5#1{%
\ifx#1ˆˆa1ˆˆb2\else % U+0161
\ifx#1ˆˆbeˆˆba\else % U+017E
\fi\fi}
% ensure all chars above have valid lccode’s:
\lccode"A3="A3 % U+010D
\lccode"B2="B2 % U+0161
\lccode"BA="BA % U+017E

As the last comment says, we also need to set non-
zero \lccodes for the characters appearing in the pat-
tern files, a task formerly carried out in the pattern file
itself.

The information for converting from UTF-8 to the
different font encodings has been retrieved from the
encoding definition files for LaTEX and ConTEXt, and
gathered in files called 〈enc〉.dat. The converter files
are automatically generated with a Ruby script from
that data.

The appendix shows table of the encodings we sup-
port.

Language tags: BCP 47 / RFC 4646
A word needs to be said about the language tags we
used. As a corollary to the completely new naming
scheme for the pattern files and the files surrounding
them, we wanted to adopt a consistent naming pol-
icy for the languages, abandoning the original names
completely, because they were problematic in some
places. Indeed, they used ad hoc names which had
been chosen by very different people over many years,
without any attempt to be systematic; this has led to

awkward situations; for example, the name ukhyphen
.tex for the British English patterns: while “UK” is
easily recognized as the abbreviation for “United King-
dom”, it could also be the abbreviation for “Ukrainian”
language, and unless one knows all the names of the
pattern files by heart, it is not possible to determine
what language is covered by that file from the name
alone.

It was therefore clear that in order to name files
that had to do with different languages, we had to use
language codes, not country codes. But this was not
sufficient either, as can be seen from the example of
British English, since it’s not a different language from
English.

Upon investigation, it turned out that the only stan-
dard able to distinguish all the patterns we had was
the IETF “Best Current Practice” recommendation 47
(BCP 47), which is published as RFC documents; cur-
rently, it’s RFC 4646.5 This addresses all the language
variants we needed to tag:

2 Languages with variants across countries or re-
gions, like English.

2 Languages written in different scripts, like Serbian
(Latin and Cyrillic).

2 Languages with different spelling conventions, like
Modern Greek (which underwent a reform known
as monotonic in 1982), and German (for which a
reform is currently happening, started in 1996).

A list of all the languages with their tags can be
found in appendix.

Dealing with the special cases
There were so many special cases that one might say
that the generic case was the special one!

Pattern files designed for
multiple encodings
The first problem we encountered was with patterns
that tried to accommodate both the OT1 and the T1
encoding in the same file.

The first language for which this had been done was,
historically, German, and the same scheme was subse-
quently adopted for French, Danish, and Latin. The
idea is the following: in each of these languages, there
are characters that are encoded at different positions
in OT1 and in T1; for German, it is the sharp s ‘ß’; for
French, it is the character ‘œ’, etc. In order to deal
with that, each pattern that happened to contain one
of these characters was duplicated in the file, with in-
tricate macros to ignore them selectively, depending
on the font encoding used.

14 MAPS 37 Mojca Miklavec and Arthur Reutenauer

This would have been very awkward to reproduce
in our architecture, if at all possible: it would have
meant that each word such as, say, “cœur” in French
would need to yield two different byte strings in 8-
bit mode, for OT1 and T1 (cˆˆ1bur and cˆˆf7ur, re-
spectively). We therefore decided to put the dupli-
cate patterns in a separate file called spechyph-〈lang〉
-ot1.tex that is input only in legacy mode, after the
main file hyph-〈lang〉.tex.

The patterns packaged in this fashion should there-
fore behave in the same way as the historical files, en-
abling a few breakpoints with non-ASCII characters in
OT1 encoding. We would like to stress, though, that
OT1 is definitely not the way to go for these languages.
We only supported this behaviour for the sake of com-
patibility, but we doubt it is very useful: if one uses OT1
for German or French, one would indeed have a few
patterns with ‘ß’ or ‘œ’, respectively, but many more
patterns, with accented characters, would be missed.
In order to take full advantage of the hyphenation pat-
terns, one needs to use T1 fonts.

It has to be noted that in addition, we ended up
not using the aforementioned approach in the case of
German, because we wanted to account for the ongo-
ing work to improve the German patterns; thus, we
decided to use the new patterns with the UTF-8 en-
gines, but not with the 8-bit engines, for compatibil-
ity reasons. In the latter case, we simply include the
original pattern file in T1 directly, with no conversion
whatsoever. For the three other languages, though
(French, Danish and Latin), we used a spechyph
-〈lang〉-ot1.tex file.

Multiple pattern sets for the same language
Another interesting issue was with Ukrainian and Rus-
sian, where different complications arose.

First, the pattern files were also devised for multi-
ple encodings, but in a different manner: here, the
encoding is selected by setting the control sequence
\Encoding before the pattern file is loaded. Depend-
ing on the value of that macro, the appropriate conver-
sion file is then input, that works in the same way as
our conv-utf8-〈enc〉.tex files. There is of course a
default value for \Encoding, which for both languages
is T2A,6 the most widespread font encoding for Russian
and Ukrainian, and the one used in the pattern files;
thus, no conversion is necessary if \Encoding is kept
to its default value.

Then, both Russian and Ukrainian had several pat-
tern files, with different authors and/or hyphenation
rules (phonetic, etymological, etc.). Those were se-
lected with a control sequence called \Pattern, by
default as for Russian (by Aleksandr Lebedev), and mp
for Ukrainian (by Maksym Polyakov).

Both those choices could, of course, be overridden
only at format-building time, since the patterns are
frozen at that moment.

Finally, they used a special trick, implemented in
file hypht2.tex, to enable hyphenation inside words
containing hyphens, similar to Bernd Raichle’s hypht1
.tex for T1 fonts.

Those three features had to be addressed in very dif-
ferent ways in our structure: while the first one was
irrelevant in UTF-8 mode, it would have implied fun-
damental changes in our loadhyph-〈lang〉.tex files
for 8-bit engines, since the implicit assumption that
any language uses exactly one 8-bit encoding would
no longer be met. The second feature was easier to
handle, but still demanded additional features in our
loadhyph-〈lang〉.tex files. Finally, the third feature,
although certainly very interesting, seemed more frag-
ile than what we felt was acceptable.

Upon deliberation, we then decided to not include
those features in the UTF-8 patterns before TEX Live
2008 was out, but to still enable them in legacy mode,
in order to ensure backward compatibility. And thanks
to subsequent discussions with Vladimir Volovich, who
devised the way the Russian patterns were packaged,
and inspired the Ukrainian ones, we could include a
list of hyphenated compound words which we put in
files called exhyph-ru.tex and exhyph-uk.tex, re-
spectively. The strategy we used is thus:

2 In UTF-8 mode, input the UTF-8 patterns, then the
ex- file.

2 In legacy mode, simply input the original pattern
file directly.

Therefore, the only feature missing, overall, in TEX
Live 2008, is the ability to choose one’s favorite pat-
terns in UTF-8 mode: for each language, we only con-
verted the default set of patterns to UTF-8. Setting
\Pattern will thus have no effect in this case, but it
will behave as before in 8-bit mode. Now that TEX Live
2008 has been released we intend to change that be-
haviour soon, and to enable the full range of features
that the original pattern files had.

It should also be noted that in TEX Live 2007, Bul-
garian used the same pattern-loading mechanism, but
that there was actually only one possible encoding, and
only one pattern file, so there was no real choice, and
it was therefore straightforward to adapt the Bulgarian
patterns to our new architecture.

Putting the Cork back in the bottle NAJAAR 2008 15

TEX Live 2008
The result of our work has been put on CTAN under
the package name hyph-utf8, and is the basis for hy-
phenation support in TEX Live 2008. We don’t con-
sider our work to be finished (see next section), and
we welcome any discussion on our mailing-list (tex-
hyphen@tug.org). We also have a home page at
http://tug.org/tex-hyphen, to which readers are re-
ferred for more information.

The package has been released in the TDS layout,
with the TEX files in tex/generic/hyph-utf8 and
subdirectories. The encoding data and Ruby scripts
are available in source/generic/hyph-utf8. Some
language-specific documentation has been put in doc/
generic/hyph-utf8.

And now …
There still are tasks we would like to carry out: the
hypht1.tex / hypht2.tex behaviour has already been
mentioned, and one of the authors has lots of ideas on
how to improve Unicode support yet more in UTF-8 TEX
engines.

We appeal to pattern authors to make contact with
us in order to improve and enhance our package; many
of them have already communicated with us, to our
greatest pleasure, and we’re confident that our effort
will be understood by all the developers dealing with
language-related problems.7

Among the immediate and practical problems is, in
particular:

… for something completely different
Babel would need to be enhanced in order to enable
different “variants” for at least two languages. One is
Norwegian, for which two written forms exist, known
as “bokmål” and “nynorsk” (ISO 639-1 nb and nn, re-
spectively).8 At the moment, Babel has only one “Nor-
wegian” language. The second is Serbian, which can
be written in both the Latin and the Cyrillic alphabets;
these possible variants which are not yet taken into ac-
count in Babel.

Acknowledgements
First and foremost, we wish to thank wholeheartedly
Karl Berry, who supported the project from the begin-
ning and guided us with advice, as well as Hans Hagen,
Taco Hoekwater and Jonathan Kew, for their technical
help, and, finally, Norbert Preining, who went through
the trouble of integrating the new package into TEX
Live.

Notes
1. A note on vocabulary: in this article, we use the word
“engine” or “TEX engine” for extensions to the program TEX,
in contrast to macro packages. We then refer to (TEX) en-
gines with native UTF-8 support as “UTF-8 engines”, and to
the others as “8-bit engines”, or sometimes “legacy engines”,
borrowing from Unicode lingo.
2. The only non-ASCII characters in Slovenian.
3. The same method would work flawlessly if the sequence
contained three or more bytes — although this case doesn’t
arise in our patterns — since the number of bytes in a UTF-8
sequence depends only on the value of the first byte.
4. Problems would happen if a T1 byte had been made active
in that process, but for reasons inherent to the history of TEX
font encodings, as well as Unicode, this is never the case for
the characters used in the patterns, a fact the authors consider
a small miracle. The proof of this is much too long to be given
in this footnote, and is left to the reader.
5. In the past, it has been RFC 1766, then RFC 3066, and
is currently being rewritten, with the working title RFC
4646bis. RFC 4646 is available at ftp://ftp.rfc-editor.org/in-
notes/rfc4646.txt, and the current working version of
RFC 4646bis (draft 17) at http://www.ietf.org/internet-'
&drafts/draft-ietf-ltru-4646bis-17.txt.
6. Actually t2a, lowercase.
7. The acknowledgement section, had it been as long as the
authors would have wished it to be, would have more than
doubled the size of this article.
8. The ISO standard also includes a code for “Norwegian”,
no, although this name is formally ambiguous.

Mojca Miklavec and Arthur Reutenauer
mojca.miklavec@gmail.com

16 MAPS 37 Mojca Miklavec and Arthur Reutenauer

List of supported languages
ar Arabic
eu Basque
bg Bulgarian

zh-latn Chinese Pinyin
cop Coptic
hr Croatian
cs Czech
da Danish
nl Dutch

en-us English, American
en-gb English, British

eo Esperanto
et Estonian
fa Farsi
fi Finnish
fr French

de-1996 German, “new” spelling
de-1901 German, “old” spelling

grc Greek, Ancient
grc-x-ibycus Greek, Ancient, Ibycus encoding

el-monoton Greek, Monotonic
el-polyton Greek, Polytonic

hu Hungarian
is Icelandic
id Indonesian
ia Interlingua
ga Irish
it Italian
la Latin

mn-cyrl Mongolian
mn-cyrl-x-2a Mongolian (new patterns)

no Norwegian
nb Norwegian Bokmål
nn Norwegian Nynorsk
pl Polish
pt Portuguese
ro Romanian
ru Russian

sr-cyrl Serbian, Cyrillic script
sr-latn Serbian, Latin script
sh-cyrl Serbo-Croatian, Cyrillic script
sh-latn Serbo-Croatian, Latin script

sl Slovene
es Spanish
sv Swedish
tr Turkish
uk Ukrainian

hsb Upper Sorbian
cy Welsh

List of supported encodings
ConTeXt LaTeX Comments
ec T1 “Cork” encoding
il2 latin2 iso 8859-2
il3 latin3 iso 8859-3
lmc lmc montex (Mongolian)
qx qx Polish
t2a t2a Cyrillic

Taco Hoekwater NAJAAR 2008 17

PDF genereren voor e-readers

Abstract
NotuDoc is een commerciële internet applicatie die ConTEXt gebruikt voor het
on-the-fly genereren van pdf documenten, onder andere voor de e-readers van iRex
technologies. Dit artikel geeft een blik achter de schermen.

Inleiding
Dit artikel gaat over het genereren van PDF bestanden voor e-readers. Voordat we
daarop dieper ingaan, eerst wat uitleg over de applicatie (NotuDoc) waar dit proces
een onderdeel van is, en een korte introductie van de gebruikte e-readers.

Het genereren van een PDF document vanuit NotuDoc is slechts een relatief klein
onderdeel van de applicatie, maar toch komt daar al wel het een en ander bij kijken.

NotuDoc
Het bedrijf NotuBiz (http://notubiz.nl) houdt zich bezig met alles wat er komt kij-
ken bij het vastleggen en publiceren van (raads)vergaderingen via de moderne me-
dia. NotuBiz verzorgt bijvoorbeeld live streaming en ook digitale verslagen kunnen
via NotuBiz op het internet beschikbaar gesteld worden. De klantenkring bestaat
uit de lokale overheden, uiteraard met name in Nederland.

In de praktijk bleek dat de informatiestroom voorafgaand aan de vergaderingen
vaak ook aanzienlijk verbeterd kon worden. NotuDoc is uit dit idee ontstaan: het is
een internet applicatie die (al dan niet voorlopige) vergaderagenda's koppelt aan de
bijbehorende vergaderstukken zoals commissierapporten, presentaties en offertes.
Na deze koppeling wordt het resultaat beschikbaar gesteld aan de relevante partijen
via het netwerk en/of via PDF bestandsexport.

Door alle benodigde vergaderstukken te combineren op één plaats wordt het
makkelijker voor de deelnemers aan de vergadering om zich voor te bereiden. Bo-
vendien staat na aoop van de vergadering nu alles al klaar voor ofciële publicatie,
wellicht na een koppeling met het verslag van de vergadering.

NotuDoc is een kant-en-klaar commercieel product, en heeft vrij uitgebreide con-
guratiemogelijkheden. Dat is met name van belang omdat de interface moet aan-
sluiten bij de vormgeving van de website van de klant, maar ook een het gaat nog
iets verder: niet alle klanten hebben dezelfde vergader-structuur en zeker niet al-
len hebben dezelfde opzet voor intern databeheer. Verschillende variaties daarvan
worden standaard aangeboden als onderdeel van NotuDoc, ingrijpendere verande-
ringen (denk aan koppelingen met document management systemen) zijn mogelijk
op offertebasis. NotuDoc is geschreven en wordt onderhouden door Elvenkind BV
in samenwerking met NotuBiz, en maakt gebruik van Elvenkind's development fra-
mework dat geschreven is in perl 5.

E-readers
Op dit moment is NotuDoc voorbereid op het genereren van PDF documenten
voor twee verschillende e-readers, beide ontwikkeld door iRex Technologies (http:/
/www.irextechnologies.com), een spin--off van Philips. Naast deze twee apparaten
(iLiad en DR1000) is het uiteraard ook mogelijk om PDFs te genereren voor printing
of voor interactief gebruik op een computer.

18 MAPS 37 Taco Hoekwater

Figure 1. Hoofdscherm van de internet applicatie

Zowel de iLiad als de nieuwere DR1000 zijn gebaseerd op dezelfde basis-tech-
nologie. De iLiad bestaat nu al enkele jaren, en wordt onder andere gebruikt voor
de digitale versie van het NRC Handelsblad. De DR1000 is een maand geleden
gelanceerd. Zoals te verwachten is, is de DR1000 wat groter en sneller dan zijn
voorganger, maar verder zijn er op de vormgeving na weinig technologische ver-
schillen.

Beide apparaten zijn gebaseerd op zogenaamd `elektronisch papier', een tech-
nologie waarbij het getoonde zichtbaar blijft ook als het scherm niet vele malen per
seconde ververst wordt.

Een belangrijk voordeel van deze technologie is dat er hierdoor veel minder
stroom nodig is, waardoor de levensduur van de batterijen veel langer is dan bij
de gewone TFT of LCD schermen. Een bijkomend voordeel is dat het scherm niet
constant verlicht hoeft te worden, wat veel rustiger is voor het oog van de lezer.

Anderzijds zijn er natuurlijk nadelen aan elektronisch papier. De twee grootste
daarvan zijn dat de reactiesnelheid van het scherm veel lager is dan bij gewone
computerschermen en (het meest in het oog springend) dat de huidige versies al-
leen in staat zijn om grijstonen te tonen, geen kleur.

Beide apparaten gebruiken tevens de Wacom Penabled technologie (http://www
.wacom.com/tabletpc/what_is_penabled.cfm) die het mogelijk maakt om recht-
streeks op het scherm aantekeningen en schetsen te maken, zodat je bijvoorbeeld
correctie-aantekeningen in een PDF kunt maken. De bijgeleverde (windows) soft-
ware is in staat zulke aantekeningen te combineren met de originele PDF, bijvoor-
beeld voor verzending per email.

Beide apparaten bieden ondersteuning voor PDF, HTML, mobipocket, en enkele
bitmap formaten. Alle door iRex gebruikte en ontwikkelde software is open source
die werkt op een linux versie die speciaal bedoeld is voor consumentenapparaten.
Verbinding maken met de PC voor het uploaden van bestanden gebeurt via USB of
via een optioneel tcp/ip (wireless) netwerk. Het opslagmedium is een verwisselbaar
SD (DR1000) of CF/MMC (iLiad) kaartje.

PDF genereren voor e-readers NAJAAR 2008 19

Figure 2. De iLiad (links) en DR1000 (rechts).

PDF generatie
De PDF generatie in NotuDoc wordt gedaan door een perl script dat volledig tem-
plate-gestuurd is. Het gebruikt vrijwel identieke code voor het genereren van TEX
als voor de generatie van de HTML pagina's, alleen de character escape functies
en de bestandsnamen zijn speciek voor TEX aangepast. Net als de website worden
de PDF documenten ook runtime gegenereerd via een aanroep van texexec. De
gebruikte distributie is ConTEXt minimals (http://minimals.contextgarden.net/).

ConTEXt templates
De applicatie heeft per klant een instelling opgeslagen voor de gewenste PDF uit-
voer layout. Als voorbeeld neem ik de `iLiad', maar het kan ook iets anders zijn
zoals `DR1000' of gewoon `A4'. Los van deze globale voorkeur is het mogelijk om
per klant de opmaak te congureren zodat die aansluit bij de huisstijl.

De opmaak instellingen worden gedaan via ConTEXt macros en zijn gescheiden
van de afhandeling vanuit de web applicatie. De applicatie draagt alleen zorg voor
het omwerken van de database gegevens van de agenda naar een ConTEXt invoerbe-
stand en het exporteren van de bijbehorende vergaderstukken naar PDF bestanden.
Al het andere wordt gedaan door de ConTEXt macro les die door het perl script
alleen maar gekopieerd worden.

20 MAPS 37 Taco Hoekwater

agenda-iliad.tex
Dit is het hoofd bestand, en hierin vinden twee verschillende soorten vervan-
gingen plaats.

In de listing hieronder zie je twee regels staan die lijken op de HTML syntax
voor zogenaamde `server side includes'. Dat is geen toeval: zoals hierboven al
vermeld werd gebruikt het systeem voor de generatie van de TEX bestanden
dezelfde code als voor het aanmaken van de HTML pagina's.

De twee #include bestandjes worden ingelezen door het perl script en op
die plek in de TEX uitvoer tussengevoegd. De exacte inhoud van deze bestanden
wordt in de volgende paragraaf uitgelegd.

De tweede soort vervanging gebruikt de trefwoorden in hoofdletters en tus-
sen # tekens. Die trefwoorden worden vervangen door de feitelijke inhoud (en
metadata) van de agenda. Het trefwoord #LIST# is daarbij het belangrijkst
omdat daarin zich effectief de hele inhoud van de agenda bevindt, die wordt
namelijk recursief wordt opgebouwd.

Een agenda bestaat uit meta-informatie zoals plaats en tijd, en een aan-
tal agendapunten. Agendapunten kunnen eventueel gerangschikt zijn in
categoriën, en optioneel kan er per agendapunt een aantal agendastukken zijn
in verschillende bestandsformaten. Dit alles wordt aangestuurd door kleine
template bestandjes die op diverse niveaus worden aangeroepen.

\unprotect
<!--#include src='agenda-macros-00.tex' -->
<!--#include src='agenda-macros-iliad.tex' -->
\protect

\starttext
\startagenda[Gremium={#GREMIUM#},

Datum={#DATUM#},
Datumkort={#DATUMKORT#},
Categorie={#CATEGORIE#},
Aanvang={#AANVANG#},
Locatie={#LOCATIE#},
Aanhef={#AANHEF#},
Koptitel={#TITLE2#},
Titel={#TITLE#}]

\startpunten
#LIST#
\stoppunten

\stopagenda
\stoptext

header_line.tinc
Dit template wordt gebruikt voor de tussenkopjes die behoren bij eventuele
categoriën van vergaderpunten.

\startheaderline
[Titel={#TEXT#},Pagina=#PAGE#,Aard={#AARD#}]

\startheaderbody
#BODY#
\stopheaderbody
\stopheaderline

PDF genereren voor e-readers NAJAAR 2008 21

Hierbij wordt u uitgenodigd voor de openbare vergadering van de
Gemeenteraad

Datum: donderdag 18 september 2008
Aanvang: 20:00 uur
Locatie: Raadzaal, Stadhuis, ingang Markt 11

1. Vaststellen agenda
Agenda - Agenda (pdf)

2. Onderzoek geloofsbrieven nieuw te benoemen raadslid J. Silos

3. Afleggen van de eed cq. verklaring en belofte door het nieuwbe-
noemde raadslid J. Silos

4. Verslag van de raadsvergadering van 2/3 juli 2008
Notulen - Verslag 2/3 juli 2008 (pdf)

5. Spreekrecht burgers
Burgers kunnen zelf het woord voeren tijdens het Sprekersplein,
voorafgaand aan de commissievergaderingen, en tijdens raads-
vergaderingen. Neemt u hiervoor uiterlijk 8 uur vóór de verga-
dering contact op met de griffier. Meer informatie kunt u hier
vinden

6. Mondelinge vragenronde raadsleden

7. Lijst Ingekomen Stukken
Lijst ingekomen stukken - Lijst IS (pdf)

8. Benoemen nieuw lid van de jury van de Vlaardingse horecaprijs
De Vlaardingse UITblinker

9. Herbenoeming bestuurslid Stichting Wijzer
Raadsvoorstel - Bijlage (pdf) RAAD 18-09-2008

Figure 3. De eerste en één van de vervolgpagina's van een voor de iliad gegenereerde PDF

puntnr_line.tinc
Dit is het template voor elk van de aparte agendapunten. #BODY# bevat de ver-
klarende tekst bij dit punt, #DOCS# bevat de lijst van bijbehorende stukken.
Deze laatste is zelf weer een programmatisch opgebouwde lijst omdat er meer
dan één vergaderstuk per agendapunt kan zijn.

\startpunt[Nummer={#NR#},Titel={#PUNT#},Aard={#AARD#}]
\startpuntbody
#BODY#
\stoppuntbody
\startpuntdocs
#DOCS#
\stoppuntdocs
\stoppunt

puntdoc_line.tinc
Dit is het eerste van drie mogelijke templates voor een vergaderstuk. Deze is
voor vergaderstukken (d.w.z. geëxporteerde PDF bestanden) die zullen worden
meegenomen als appendices in de te genereren PDF.

\agendadocument[#ICON#]{#LINK#}{#LABEL#}

puntnodoc_line.tinc
Deze template wordt gebruikt voor vergaderstukken die eigenlijk zouden moe-
ten worden meegenomen als appendices (omdat het PDFs zijn), maar die op
grond van conguratie parameters te groot zijn bevonden voor daadwerkelijk
gebruik. Er wordt daarom een aparte macro gebruikt die een gepaste meldings-
tekst kan tonen.

\agendanodocument[#ICON#]{#LABEL#}

22 MAPS 37 Taco Hoekwater

puntdoc_line_noembed.tinc
Dit is de derde mogelijkheid, deze is bedoeld voor non-PDF vergaderstukken
zoals Microsoft Ofce bestanden en powerpoint presentaties. Omdat bestanden
in die formaten niet kunnen worden getoond is er geen hyperlink mogelijk, en
daarom is het trefwoord #LINK# in dit geval niet aanwezig.

\agendadocument[#ICON#]{}{#LABEL#}

ConTEXt macros
Zoals hierboven al werd vermeld zijn de gebruikte ConTEXt macros opgesplitst in
twee verschillende bestanden.

Het eerste bestand heeft de naam agenda-macros-00.tex, en dit bestand wordt
ongewijzigd gebruikt door alle klanten en alle PDF layouts. Het bevat een generieke
implementatie van de macros die we eerder zagen in de template bestanden. Deze
macros zorgen alleen voor de infrastructuur en doen zelf geen vormgeving. Voor
de vormgeving zijn er aanroepen van \directsetup.

Typerend voor de inhoud van dit bestand zijn macro denities zoals deze:

\def\dostartagenda[#1]%
{\getparameters

[Agenda]
[Gremium=,Datum=,Datumkort=,
Categorie=,Aanvang=,locatie=,
Aanhef=,Titel=,Koptitel=,
Voorzitter=,
#1]%

\pagereference[firstpage]
\directsetup{agenda:start}}

\def\stopagenda
{\directsetup{agenda:stop}}

en deze:

\def\agendadocument[#1]#2#3%
{\doifnotempty

{#2}
{\doglobal \appendtoks \addimage{#2}{#3}\to \everyendagenda }%

\def\DocumentType{#1}%
\def\DocumentFile{#2}%
\def\DocumentBody{#3}%
\pagereference[#2-referer]
\directsetup{agenda:document}}

De macro \addimage is de interessantste macro in dit bestand. Hij krijgt als argu-
ment de naam van een geëxporteerd PDF bestand door, en zorgt ervoor dat zo'n
PDF pagina voor pagina wordt ingelezen via \externalfigure. In een wat ver-
simpelde vorm ziet die er als volgt uit:

\unexpanded\def\addimage#1#2{%
\pagereference[#1]
\xdef\previouspdf{\currentpdf}%
\gdef\currentpdf{#1}%i
\getfiguredimensions[#1.pdf]%
\imgcount=\noffigurepages
\dorecurse

PDF genereren voor e-readers NAJAAR 2008 23

{\the\imgcount}
{\externalfigure

[#1.pdf]
[page=\recurselevel,
factor=max,
size=cropbox]%

\page}%
\pagereference[#1-last]

}

In de appendices van de gegenereerde PDF (zie de guur) is er een extra interac-
tie--regel onderaan de pagina met daarop drie buttons die springen naar de eerste
pagina van de huidige appendix, de eerste pagina van de volgende appendix, en
naar de referentie naar deze appendix in de agenda zelf. Deze hyperlinks gebruiken
de waarden van \currentpdf en \previouspdf.

De gevraagde setups en de algemene layout denities staan in agenda-macros-
iliad.tex. Dit bestand kan speciek gedenieerd zijn voor een bepaalde klant, of
er kan een generieke vorm gebruikt worden: er is een default bestand voor één voor
elk van de voorgedenieerde PDF layouts.

De PDF layouts voor de e-reader zijn verschillend van de layouts voor een PC
scherm of printer, maar de meeste verschillen zijn voor de hand liggend. Uiteraard
is er een eigen (kleiner) papierformaat. De ruimte op een e-reader is schaars, dus
die moet zo goed mogelijk gebruikt worden, dus er worden heel kleine marges
gedenieerd. PDF object compressie wordt uitgeschakeld, omdat de hardware van
de e-readers erg licht is in vergelijking met een PC. Het Kleuren--subsysteem van
ConTEXt wordt aangezet, maar in grijswaarden. Et cetera.

Het meest ingrijpende verschil is dat de vergaderstukken die bij `normaal' ge-
bruik aparte bestanden zouden blijven hier worden ingebed in het hoofdbestand.
Dit maakt het overzetten van de bestanden naar de e-reader eenvoudiger, maar
belangrijker is dat dit de gebruikersvriendelijkheid van het resultaat verbetert: Ex-
terne PDF hyperlinks worden danwel niet ondersteund (iLiad) of zijn erg langzaam
(DR1000).

Een greep uit de inhoud van agenda-macros-iliad.tex:

\definepapersize [iliad] [width=124mm,height=152mm]

\setuppapersize [iliad] [iliad]

\enableregime[utf8]

\pdfminorversion = 4

\setuplayout[height=14.5cm,
footer=12pt,
footerdistance=6pt,
width=11cm,
topspace=12pt,
header=0pt,
backspace=24pt,
leftmargin=12pt,
rightmargin=12pt]

\setupcolors[state=start,conversion=yes,
reduction=yes,rgb=no,cmyk=no]

\definecolor[papercolor][r=1,b=1,g=1]

24 MAPS 37 Taco Hoekwater

...

\setupbackgrounds[page][state=repeat,
background=color,
backgroundcolor=papercolor]

...

\startsetups agenda:start
\blank
\setupfootertexts[\dofooteragenda]
\setupfooter[state=high]
\AgendaGremium
\blank
\starttabulate[|l|p|]
\NC Datum: \NC \ss\AgendaDatum\NC \NR
\NC Aanvang: \NC \ss\AgendaAanvang\NC\NR
\NC Locatie: \NC \ss\AgendaLocatie \NC\NR
\stoptabulate
\blank

\stopsetups

\startsetups agenda:stop
\page
\the\everyendagenda
\everyendagenda={}

\stopsetups

\startsetups punten:start
\startitemize[width=24pt]

\stopsetups

\startsetups punten:stop
\stopitemize

\stopsetups

....

\startsetups agenda:nodocument
{\DocumentBody {\tfx bestand te groot voor inclusie}\par }%

\stopsetups

Tenslotte
De generatie van PDF bestanden is een klein maar belangrijk onderdeel van No-
tuDoc. We hebben gekozen voor gebruik van TEX vanwege de hoge kwaliteit van
de uitvoer en speciek voor ConTEXt vanwege het gemak waarmee de vormgeving
gescheiden kan worden van de gegevens.

Taco Hoekwater
Elvenkind BV
taco@elvenkind.com

Hans Hagen NAJAAR 2008 25

Dealing with xml in ConTEXt MkIV

Introduction
This manual presents the MkIV way of dealing with xml. Although the traditional
MkII streaming parser has a charming simplicity in its control, for complex doc-
uments the tree based MkIV method is more convenient. We expect that the old
method will be used less and less and eventually it might become a module in
MkIV.

The user interface is sort of experimental but most commands discussed here are
in use already in styles that we make and therefore these commands will stay. Over
time we will add more examples to this document.

If you are familiar with xml processing in MkII, then you will have noticed that
the MkII commands have XML in their name. The MkIV commands have a lowercase
xml in their names. That way there is no danger for a mixup.

You may wonder why we do these manipulations in TEX and not use xslt instead.
The advantage of an integrated approach is that it simplies usage. Think of not
only processing the a document, but also using xml for managing resources in the
same run. Also, an xslt approach is just as verbose (after all, you still need to
produce TEX code) and probably less readable. In the case of MkIV the integrated
approach is also faster and gives us the option to manipulate content at runtime
using Lua.

This manual is dedicated to Taco Hoekwater, one of the rst ConTEXt users, and
also the rst to use it for processing xml. Who could have thought at that time that
we would have a more convenient way of dealing with those angle brackets.

Hans Hagen, Pragma ADE, August 2008

This is the rst version of this manual. Some details of the implementation might
change and this manual may contain errors.

Setting up a converter
from structure to setup
We use a very simple document structure for demonstrating how a converter is
dened. In practice a mapping will be more complex, especially when we have a
style with non standard titles and formatting.

<?xml version='1.0' standalone='yes?>

<document>
<section>

<title>Some title</title>
<content>

<p>a paragraph of text</p>
<p>another paragraph of text</p>

</content>
</section>

</document>

26 MAPS 37 Hans Hagen

Suppose this document is stored in the le demo.xml, then the following code can
be used as starting point:

\startxmlsetups xml:demo:base
\xmlsetsetup{demo}{*}{-}
\xmlsetsetup{demo}{document|section|p}{xml:demo:*}

\stopxmlsetups

\xmlregisterdocumentsetup{demo}{xml:demo:base}

\startxmlsetups xml:demo:document
\title{Contents}
\placelist[chapter]
\page
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:demo:section
\section{\xmlfirst{#1}{/title}}
\xmlfirst{#1}{/content}

\stopxmlsetups

\startxmlsetups xml:demo:p
\xmlflush{#1}\endgraf

\stopxmlsetups

\xmlprocessfile{demo}{demo.xml}{}

Watch out! These are not just setups, but specic xml setups which get an argument
passed (the #1). If for some reason your xml processing fails, it might be that you
mistakenly have used a normal setup denition.

For the moment stop wondering what some (empty) arguments are doing here.
Contrary to the style denitions this interface looks rather low level (with no op-
tional arguments) and the main reason for this is that we want processing to be
fast. So, the basic framework is:

\startxmlsetups xml:demo:base
% associate setups with elements

\stopxmlsetups

\xmlregisterdocumentsetup{demo}{xml:demo:base}

% define setups for matches

\xmlprocessfile{demo}{demo.xml}{}

In this example we mostly just ush the content of an element and in the case of a
section we ush explicit child elements. The #1 in the example code represents the
current element.

The line:

\xmlsetsetup{demo}{*}{-}

sets the default for each element to ‘just ignore it’. A + would make the default to
always ush the content. This means that at this point we only handle:

<section>
<title>Some title</title>

Dealing with xml in ConTEXt MkIV NAJAAR 2008 27

<content>
<p>a paragraph of text</p>

</content>
</section>

In the next section we will deal with the slightly more complex itemize and gure
placement.

alternative solutions
Dealing with an itemize is rather simple (as long as we forget about attributes that
control the behaviour):

<itemize>
<item>first</item>
<item>second</item>

</itemize>

First we need to add itemize to the setup assignment:

\xmlsetsetup{demo}{document|section|p|itemize}{xml:demo:*}

The setup can look like:

\startxmlsetups xml:demo:itemize
\startitemize

\xmlfilter{#1}{/item/command(xml:demo:itemize:item)}
\stopitemize

\stopxmlsetups

\startxmlsetups xml:demo:itemize:item
\startitem

\xmlflush{#1}
\stopitem

\stopxmlsetups

An alternative is to map item directly:

\xmlsetsetup{demo}{document|section|p|itemize|item}{xml:demo:*}

and use:

\startxmlsetups xml:demo:itemize
\startitemize

\xmlflush{#1}
\stopitemize

\stopxmlsetups

\startxmlsetups xml:demo:item
\startitem

\xmlflush{#1}
\stopitem

\stopxmlsetups

Sometimes a more local solution makes sense, especially when the item tag is used
for other purposes as well.

This leaves us with dealing with the resources, like gures.

<resource type='figure'>
<caption>A picture of a cow.</caption>
<content><external file="cow.pdf"/></content>

</resource>

28 MAPS 37 Hans Hagen

Here we can use a more restricted match:

\xmlsetsetup{demo}{resource[@type='figure']}{xml:demo:figure}
\xmlsetsetup{demo}{external}{xml:demo:*}

and the denitions:

\startxmlsetups xml:demo:figure
\placefigure

{\xmlfirst{#1}{/caption}}
{\xmlfirst{#1}{/content}}

\stopxmlsetups

\startxmlsetups xml:demo:external
\externalfigure[\xmlatt{#1}{file}]

\stopxmlsetups

At this point it is good to notice that \xmlatt{#1}{file} is passed as it is, a macro
call. This means that when a macro like \externalfigure uses the rst argument
frequently without rst storing its value, the lookup is done several times. A solution
for this is:

\startxmlsetups xml:demo:external
\expanded{\externalfigure[\xmlatt{#1}{file}]}

\stopxmlsetups

Because the lookup is rather fast, normally there is no need to bother about this
too much.

An alternative denition for placement is the following:

\xmlsetsetup{demo}{resource}{xml:demo:resource}

with:

\startxmlsetups xml:demo:resource
\placefloat

[\xmlatt{#1}{type}]
{\xmlfirst{#1}{/caption}}
{\xmlfirst{#1}{/content}}

\stopxmlsetups

This way you can specify table as type too. Because you can dene your own
oat types, more complex variants are also possible. In that case it makes sense to
provide some default behaviour too:

\definefloat[figure-here][figures-here][figure]
\definefloat[figure-left][figures-left][figure]
\definefloat[table-here] [tables-here] [table]
\definefloat[table-left] [tables-left] [table]

\setupfloat[figure-here][default=here]
\setupfloat[figure-left][default=left]
\setupfloat[table-here] [default=here]
\setupfloat[table-left] [default=left]

\startxmlsetups xml:demo:resource
\placefloat

[\xmlattdef{#1}{type}{figure}-\xmlattdef{#1}{location}{here}]
{\xmlfirst{#1}{/caption}}

Dealing with xml in ConTEXt MkIV NAJAAR 2008 29

{\xmlfirst{#1}{/content}}
\stopxmlsetups

In this example we support two types and two locations. We default to a gure
placed (when possible) at the current location.

Filtering content
TEX versus LUA
It will not come as a surprise that we can access xml les from TEX as well as from
Lua. In fact there are two methods to deal with xml in Lua. First there are the low
level xml functions in the xml namespace. On top of those functions there is a set
of functions in the lxml namespace that deals with xml in a more TEXie way. Most
of these have similar commands at the TEX end.

\startxmlsetups first:demo:one
\xmlsetsetup{demo}{*}{-}
\xmlfilter{demo}{artist/name[text()='Randy Newman']/../albums%

/album[position()=3]/../command(first:demo:two)}
\stopxmlsetups

\startxmlsetups first:demo:two
\blank \start \tt

\xmldisplayverbatim{#1}
\stop \blank

\stopxmlsetups

\xmlregistersetup{first:demo:one}

\xmlprocessfile{demo}{music-collection.xml}{}

This gives the following snippet of verbatim xml code. The indentation is conform
the indentation in the whole xml le.1

<name>Land Of Dreams</name>
<tracks>
<track length="248">Dixie Flyer</track>
<track length="212">New Orleans Wins The War</track>
<track length="218">Four Eyes</track>
<track length="181">Falling In Love</track>
<track length="187">Something Special</track>
<track length="168">Bad News From Home</track>
<track length="207">Roll With The Punches</track>
<track length="209">Masterman And Baby J</track>
<track length="134">Follow The Flag</track>
<track length="246">I Want You To Hurt Like I Do</track>
<track length="248">It's Money That Matters</track>
<track length="156">Red Bandana</track>

</tracks>

An alternative written in Lua looks as follows:

\blank \start \tt \startluacode
local m = lxml.load("mine","music-collection.xml") -- m == lxml.id("mine")
local p = "artist/name[text()='Randy Newman']/../albums/album[position()=4]/.."
local r, d, k = xml.filter(m,p)

1. The xml le contains the collection stored on my slimserver instance.

30 MAPS 37 Hans Hagen

lxml.displayverbatim(d)
\stopluacode \stop \blank

This produces:

<name>Bad Love</name>
<tracks>
<track length="340">My Country</track>
<track length="295">Shame</track>
<track length="205">I'm Dead (But I Don't Know It)</track>
<track length="213">Every Time It Rains</track>
<track length="206">The Great Nations of Europe</track>
<track length="220">The One You Love</track>
<track length="164">The World Isn't Fair</track>
<track length="264">Big Hat, No Cattle</track>
<track length="243">Better Off Dead</track>
<track length="236">I Miss You</track>
<track length="126">Going Home</track>
<track length="180">I Want Everyone To Like Me</track>

</tracks>

You can use both methods mixed but in practice we will use the TEX commands
in regular styles and the mixture in modules, for instance in those dealing with
MathML and cals tables.

a few details
In ConTEXt ‘setups’ are a rather common variant on macros. An example of a se-
tup is:

\startsetup doc:print
\setuppapersize[A4][A4]

\stopsetup

\startsetup doc:screen
\setuppapersize[S6][S4]

\stopsetup

Later on we can say something like:

\doifmodeelse {paper} {
\setup[doc:print]

} {
\setup[doc:screen]

}

Another example is:

\startsetup[doc:header]
\marking[chapter]
\space
--
\space
\pagenumber

\stopsetup

in combination with:

\setupheadertexts[\setup{doc:header}]

Dealing with xml in ConTEXt MkIV NAJAAR 2008 31

Here the advantage is that instead of ending up with an unreadable header den-
ition, we use a nicely formatted setup. The advantage of a setup is that spaces are
ignored.

The only difference between setups and xml setups is that the latter ones get an
argument (#1) that reects the current node in the xml tree.

Commands
nodes and lpaths
The amount of commands available for manipulating the xml le is rather large.
Many of the commands cooperate with so called setups, a fancy name for a collec-
tion of macro calls either or not mixed with text.

Most of the commands are just shortcuts to Lua calls, which means that the real
work is done by Lua. In fact, what happens is that we have a continuous transfer of
control from TEX to Lua, where Lua prints back either data (like element content or
attribute values) or just invokes a setup whereby it passes a reference to the node
resolved conform the path expression. The invoked setup itself might return control
to Lua again, etc.

This sounds complicated but examples will show what we mean here. First we
present the whole repertoire of commands. Because users can read the source code,
they might uncover more commands, but only the ones discussed here are ofcial.
The commands are grouped in categories.

In the following sections node means a reference to a node: a document id
(string) or an argument to a setup (result from a lookup). An lpath is a fancy
name for a path expression (as with xslt) but resolved by Lua. A filter is an
action that is applied to the result of a lookup.

loading
\xmlload {id} {filename} loads the le filename and registers it under id

\xmlloadbuffer {id} {buffer} loads the buffer buffer and registers it under
id

\xmlloaddata {id} {string} loads string and registers it under id

\xmlinclude {node} {lpath} {attribute} includes the le specied by
attribute of the element located by lpath at node node

\xmlprocessfile {id} {filename} {initial-xml-setup} registers le
filename as id and process the tree starting with initial-xml-setup

\xmlprocessbuffer {id} {buffer} {initial-xml-setup} registers buffer
buffer as id and process the tree starting with initial-xml-setup

\xmlprocessdata {id} {string} {initial-xml-setup} registers string
as id and process the tree starting with initial-xml-setup

The initial setup defaults to xml:process that is dened as follows:

\startsetups xml:process
\xmlregistereddocumentsetups\xmldocument
\xmlmain\xmldocument

\stopsetups

First we apply the setups associated with the document (including common setups)
and then we ush the whole document. The macro \xmldocument expands to the
current document id. There is also \xmlself which expands to the current node
number (#1 in setups).

\xmlmain {id} returns the whole documents

32 MAPS 37 Hans Hagen

Normally such a ush will trigger a chain reaction of setups associated with the
child elements.

flushing data
When we ush an element, the associated xml setups are expanded. The most
straightforward way to ush an element is the following. Keep in mind that the
returned values itself can trigger setups and therefore ushes.

\xmlflush {node} returns all nodes under node
You can restrict ushing by using commands that accept a specication.

\xmltext {node} {lpath} returns the text of the matching lpath under node

\xmlall {node} {lpath} returns all nodes under node that matches lpath

\xmlfirst {node} {lpath} returns the rst node under node that matches
lpath

\xmllast {node} {lpath} returns the last node under node that matches
lpath

\xmlfilter {node} {lpath/filter} at a match of lpath a lter filter is
applied and the result is returned

\xmlsnippet {node} {n} returns the nth element under node

\xmlindex {node} {lpath} {n} returns the nth match of lpath at node node;
a negative number starts at the end

\xmlconcat {node} {lpath} {text} returns the sequence of nodes that
match lpath at node whereby text is put between each match

\xmlconcatrange {node} {lpath} {text} {n} {m} returns the nth upto mth

of nodes that match lpath at node whereby text is put between each match

\xmlcommand {node} {lpath} {xml-setup-id} apply the given setup to each
match of lpath at node node

\xmlstrip {node} {lpath} remove leading and trailing spaces from nodes
under node that match lpath

\xmlstripped {node} {lpath} remove leading and trailing spaces from nodes
under node that match lpath and return the content afterwards

\xmlstripnolines {node} {lpath} remove leading and trailing spaces as
well as collapse embedded spaces from nodes under node that match lpath

\xmlstrippednolines {node} {lpath} remove leading and trailing spaces as
well as collapse embedded spaces from nodes under node that match lpath and
return the content afterwards

\xmlinlineverbatim {node} {lpath} return the content of the lpath match
as inline verbatim code, that is no further interpretation (expansion) takes place
and spaces are honoured

\xmldisplayverbatim {node} {lpath} return the content of the lpathmatch
as display verbatim code, that is no further interpretation (expansion) takes place
and leading and trailing spaces and newlines are treated special

information
The following commands return strings. Normally these are used in tests.

\xmlname {node} returns the complete name (including namespace prex) of
the given node

Dealing with xml in ConTEXt MkIV NAJAAR 2008 33

\xmlnamespace {node} returns the namespace of the given node

\xmltag {node} returns the tag of the element, without namespace prex

\xmltags {node} {lpath} returns a comma-separated list of tags of elements
that match the lpath

\xmlcount {node} {lpath} returns the number of matches of lpath at node
node

\xmlnofelements {node} returns the number of elements at node node

\xmlatt {node} {name} returns the value of attribute name or empty if no such
attribute exists

\xmlattdef {node} {name} {default} returns the value of attribute name or
default if no such attribute exists

\xmlattribute {node} {lpath} {name} nds a rst match for lpath at node
and returns the value of attribute name or empty if no such attribute exists

\xmlattributedef {node} {lpath} {name} {default} nds a rst match
for lpath at node and returns the value of attribute name or default if no such
attribute exists

manipulation
You can use Lua code to manipulate the tree and it makes no sense to duplicate this
in TEX. So, we only provide an interface to the most useful manipulators.

\xmldelete {node} {lpath} deletes all children of node that match lpath

integration
If you write a module that deals with xml, for instance processing cals tables, then
you need ways to control specic behaviour. For instance, you might want to add a
background to the table. Such directives are collected in xml les and can be loaded
on demand.

\xmlloaddirectives {filename} loads ConTEXt directives from filename
that will get interpreted when processing documents

A directives denition le looks as follows:

<?xml version="1.0" standalone="yes"?>

<directives>
<directive attribute='id' value="100"

setup="cdx:100"/>
<directive attribute='id' value="101"

setup="cdx:101"/>
<directive attribute='cdx' value="colors" element="cals:table"

setup="cdx:cals:table:colors"/>
<directive attribute='cdx' value="vertical" element="cals:table"

setup="cdx:cals:table:vertical"/>
<directive attribute='cdx' value="noframe" element="cals:table"

setup="cdx:cals:table:noframe"/>
<directive attribute='cdx' value="*" element="cals:table"

setup="cdx:cals:table:*"/>
</directives>

Examples of usage can be found in x-cals.mkiv. The directive is triggered by an
attribute. Instead of setup you can specify before and after.

34 MAPS 37 Hans Hagen

\xmldirectives {node} {lpath} apply the setups directive associated with
the found nodes

\xmldirectivesbefore {node} {lpath} apply the before directives associat-
ed with the found nodes

\xmldirectivesafter {node} {lpath} apply the after directives associated
with the found nodes

Normally a directive will be put in the xml le, for instance as:

<?context-mathml-directive minus reduction yes ?>

Here the mathml is the general class of directives and minus a subclass, in our case
a specic element. You can also invoke such directives directly:

\xmlcontextdirective {kind} {class} {key} {value} execute the direc-
tive associated with kind and pass three arguments to it
This assumes that there is a command xmlkinddirective or in the MathML

example xmlmathmldirective that does something useful.

setups
The basic building blocks of xml processing are setups. These are just collections of
macros that are expanded. These setups get one argument passed (#1):

\startxmlsetups somedoc:somesetup
\xmlflush{#1}

\stopxmlsetups

This argument is normally a number that internally refers to a specic node in the
xml tree. The user should see it as an abstract entity and not depend on it being a
number. Just think of it as ‘the current node’. You can (and probably will) call such
setups directly:

\xmlsetup {name} {node} expands setup name and pass node as argument

However, in most cases the setups are associated to specic elements, something
that users of xslt might recognize as templates.

\xmlsetfunction {name} {lpath} {function} associates function Lua
function to the elements in namespace name that match lpath

\xmlsetsetup {name} {lpath} {setup} associates setups (TEX code) setup
to the elements in namespace name that match lpath

\xmlprependsetup {setup} pushes setup to the front of global list of setups
to be applied

\xmlappendsetup {setup} pushes setup to the end of global list of setups to
be applied

\xmlbeforesetup {setup} {position} inserts setup before setup position
in the global list of setups to be applied

\xmlaftersetup {setup} {position} inserts setup after setup position in
the global list of setups to be applied

\xmlremovesetup {setup} removes setup from the global list of setups to be
applied

\xmlprependdocumentsetup {id} {setup} pushes setup to the front of id
specic list of setups to be applied

\xmlappenddocumentsetup {id} {setup} pushes setup to the end of id
specic list of setups to be applied

Dealing with xml in ConTEXt MkIV NAJAAR 2008 35

\xmlbeforedocumentsetup {id} {setup} {position} inserts setup before
setup position in the id specic list of setups to be applied

\xmlafterdocumentsetup {id} {setup} {position} inserts setup after
setup position in the id specic list of setups to be applied

\xmlremovedocumentsetup {setup} removes setup from the id specic list
of setups to be applied

\xmlresetdocumentsetups {id} removes all setups from the id specic list of
setups to be applied

\xmlflushdocumentsetups {id} applies all setups in tagged with id

\xmlregisteredsetups applies all global setups to the current document

\xmlregistereddocumentsetups applies all document specic setups to the
current document

testing
The following test macros all take a node as rst argument and an lpath as second:

\xmldoif {node} {lpath} {yes} expands to yes when lpath matches at
node node

\xmldoifnot {node} {lpath} {no} expands to no when lpath does not
match at node node

\xmldoifelse {node} {lpath} {yes} {no} expands to yes when lpath
matches at node node and to no otherwise

\xmldoiftext {node} {lpath} {yes} expands to yes when the node match-
ing lpath at node node has some content

\xmldoifnottext {node} {lpath} {no} expands to do-if-fase when the
node matching lpath at node node has no content

\xmldoifelsetext {node} {lpath} {yes} {no} expands to yes when the
node matching lpath at node node has content and to no otherwise

\xmldoifelseempty {node} {lpath} {yes} {no} expands to yes when the
node matching lpath at node node is empty and to no otherwise

\xmldoifelseselfempty {node} {lpath} {yes} {no} expands to yeswhen
the node matching lpath at node node is empty and to no otherwise

initialization
The general setup command (not to be confused with setups) that deals with the
MkIV tree handler is \setupxml. There are currently only a few options.

When you set method to mkiv, the traditional handler will not kick in when xml
code ends up in TEX. When we have replaced all usage of the MkII method in the
core of ConTEXt, we might make this default.

When you set default to text elements with no setup assigned will end up
as text. When set to none such elements will be hidden. When no value is set
the outcome depends on the method: interpreted as xml in for mkii and text for
method mkiv.

You can set compress to yes in which case comment is stripped from the tree
when the le is read. When entities is set to yes (this is the default) entities are
replaced.

\xmlregisterns {internal} {public} associates an internal namespace
(like mml) with one given in the document as url (like mathml)

36 MAPS 37 Hans Hagen

\xmlremapname {node} {lpath} {new-namespace} {new-tag} changes the
namespace and tag of the matching elements

\xmlremapnamespace {node} {lpath} {from} {to} replaces all references
to the given namespace to a new one

\xmlchecknamespace {id} {lpath} {new} sets the namespace of the match-
ing elements unless a namespace is already set

\xmldefaulttotext {id} makes all elements that don't have a setup associated
resolve to text

\xmldefaulttonone {id} hides all elements that don't have a setup associated

\xmlutfize {id} convert all entities to utf if possible

helpers
Often an attribute will determine the rendering and this may result in many tests.
Especially when we have multiple attributes that control the output such tests can
become rather extensive and redundant because one gets n×m or more such tests.

Therefore we have a convenient way to map attributes, for instance onto strings
or commands.

\xmlmapvalue {category} {name} {value} associate a value with a name
and category

\xmlvalue {category} {name} {default} expand the value value associated
with a category and name and if not resolved, expand default

This is used as follows. We dene a couple of mappings in the same category:

\xmlmapvalue{emph}{bold} {\bf}
\xmlmapvalue{emph}{italic}{\it}

Assuming that we have associated the following setup with the emph element, we
can say (with #1 being the current element):

\startxmlsetups demo:emph
\begingroup

\xmlvalue{emph}{\xmlatt{#1}{type}}{}
\endgroup

\stopxmlsetups

In this case we have no default. The type attribute triggers the actions, as in:

normal <emph type='bold'>bold</emph> normal

This mechanism is not really bound to elements and attributes so you can use this
mechanism for other purposes as well.

synonyms
A few of the discussed commands have synonyms

\xmlmapval \xmlmapvalue
\xmlval \xmlvalue
\xmlregistersetup \xmlappendsetup
\xmlregisterdocumentsetup \xmlappenddocumentsetup

Dealing with xml in ConTEXt MkIV NAJAAR 2008 37

Expressions and filters
path expressions
In the previous sections we used lpath expressions, which are a variant on xpath
expressions as in xslt but in this case more geared towards usage in TEX. These
mechanisms will be extended when needed.

A path is a sequence of matches. A simple path expression is:

a/b/c/d

Here each / goes one level deeper. We can go backwards in a lookup with ..:

a/b/../d

We can also combine lookups, as in:

a/(b|c)/d

A negated lookup is preceded by a !:

a/(b|c)/!d

A wildcard is specied with a *:

a/(b|c)/!d/e/*/f

In addition to these tag based lookups we can use attributes:

a/(b|c)/!d/e/*/f[@type=whatever]

An @ as rst character means that we are dealing with an attribute. Within the
square brackets there can be boolean expressions:

a/(b|c)/!d/e/*/f[@type=whatever and @id>100]

You can use functions as in:

a/(b|c)/!d/e/*/f[something(text()) == "oeps"]

There are a couple of predened functions:

position number the current index of the matched element
index number the current index upto the matched element
text string the textual representation of the matched element
name string the full name of the matched element: namespace and tag
ns string the namespace of the matched element
tag string the tag of the matched element
attribute string the value of the attribute with the given name of the

matched element
You can pass your own functions too. Such functions are dened in the xml.
expressions namespace. We have dened a few shortcuts:

xml.expressions.contains = string.find
xml.expressions.find = string.find
xml.expressions.upper = string.upper
xml.expressions.lower = string.lower
xml.expressions.number = tonumber
xml.expressions.boolean = toboolean -- mkiv specific

You can also use normal Lua functions as long as you make sure that you pass
the right arguments. There are a few predened variables available inside such
functions.

38 MAPS 37 Hans Hagen

r table the root of the element
d table the roots data table
k number the current index into the roots data table
e table the element (d[k])
ns string the namespace (e.rn or e.ns)
tg string the tag (e.tg)
dt table the content (e.dt)
at table a hash containing the attributes (e.at)
id number the current elements index (not counting text)
ps number the current elements position (differs from id if mixed elements)
tx string the (first) text (dt[1])
The given expression between [] is converted to a Lua expression so you can use
the usual ingredients:

== ~= <= >= < > not and or ()

In addition, = equals == and != is the same as ~=. If you mess up the expression,
you quite likely get a Lua error message.

functions as filters
At the Lua end a whole lpath expression results in a (set of) node(s) with its
environment, but that is hardly usable in TEX. Think of code like:

for r, d, k in xml.elements(xml.load('text.xml'),"title") do
-- r = root of the title element
-- d = data table
-- k = index in data table

end

Here d[k] points to the title element and in this case all titles in the tree pass by.
In practice this kind of code is encapsulated in function calls, like those returning
elements one by one, or returning the rst or last match. The result is then fed
back into TEX, possibly after being altered by an associated setup. We've seen the
wrappers to such functions already in a previous section.

In addition to the previously discussed expressions, one can add so called lters to
the expression, for instance:

a/(b|c)/!d/e/text()

In a lter, the last part of the lpath expression is a function call. The previous ex-
ample returns the text of each element e that results from matching the expression.
Examples of functions are:

text string returns the content
name string returns the (either or not remapped) namespace
ns string returns gives the original namespace
tag string returns the elements name
count number returns the elements name
Not all such functions make sense in TEX, for instance because they return a data
structure that is useless for TEX itself. Instead of using functions like first(), you
can as well use \xmlfirst which might be more efcient.

attribute(name) returns the attribute with the given name
command(name) expands the setup with the given name for each found ele-

ment
position(n) processes the nth instance of the found element
first() processes the first instance of the found element
last() processes the last instance of the found element

Dealing with xml in ConTEXt MkIV NAJAAR 2008 39

These lters are in fact Lua functions which means that if needed more of them
can be added. Indeed this happens in some of the xml related MkIV modules, for
instance in the MathML processor.

tables
If you want to know how the internal xml tables look you can print such a table:

print(table.serialize(e))

This produces for instance:

t={
["at"]={
["label"]="whatever",

},
["dt"]={ "some text" },
["ns"]="",
["rn"]="",
["tg"]="demo",
}

The rn entry is the renamed namespace (when renaming is applied). If you see tags
like @pi@ this means that we don't have an element, but (in this case) a processing
instruction.

@rt@ the root element
@dd@ document definition
@cm@ comment, like <!-- whatever -->
@cd@ so called CDATA
@pi@ processing instruction, like <?whatever we want ?>

There are many ways to deal with the content, but in the perspective of TEX only a
few matter.

xml.sprint(e) print the content to TEX and apply setups if needed
xml.tprint(e) print the content to TEX (serialize elements verbose)
xml.cprint(e) print the content to TEX (used for special content)
Keep in mind that anything low level that you uncover is not part of the ofcial
interface unless mentioned in this manual.

Hans Hagen
Pragma ADE, Hasselt

40 MAPS 37 Willi Egger

Printing labels with ConTEXt

Abstract
Sometimes one needs to print a single label which will
be glued onto a package, a large envelope or for the
identification of a box. In certain situations one wants
to produce a series of identical labels or one needs to
typeset whole databases of addresses. ConTEXt offers
the possibility of using the XY-arranging procedure to
print on each of the labels being present on a sheet.
Here a possible approach is presented for labels of the
size 105 × 42.3mm i.e. (14 labels on a A4). It is shown
how to print a single label but also how to get multiple
copies of the same content and how to prepare sheets of
labels containing the addresses of a database.

Keywords
Maps, Context, layer, label, XY-arrangement

Introduction
Like the address-printing on an envelope, as described
in an other article in this MAPS, printing labels from
a multi-label sheet is not easy in the beginning. The
issue often is, that only a single label is needed. The
goal is to be able to use all of the labels on a given
sheet one after the other.

When creating a tool to use all the labels, the sheet
must be sent through the (laser-)printer as many times
as there are labels on the sheet. Due to the fact that the
carrier-sheet of the labels is quite thin, it is necessary
to use the labels from bottom up.

In the following article a possible setup is given. The
solution makes use of the XY-arrangement and layers.

Those who want to prepare bulk mailings in The
Netherlands should also think of using the KIX-code
(klantenindexcode, customer index code). The Dutch
mail service TNT provides a barcode-font. With this
font it is possible to print this code directly on the label.

Guidelines as provided by TNT
The Dutch Mail Service TNT provides guidelines for
making a label. This information is also applicable to
the printing of addresses on envelopes (See the other
article in this MAPS).

In general one uses three to a maximum of six lines
per address. The last line consists of the ZIP-code
and the place, which is always printed in uppercase

characters. The before last line contains either the
street name + house number and possibly an exten-
sion to the house number or the P.O. box + number.
Before these two lines a ‘to the attention of’ line can be
added. The other lines will contain other information
concerning the address of the receiver.

In The Netherlands, one has the opportunity to add
a so called customer index code KIX (klantenindex-
code) in the form of a barcode. This code is unique for
each address. The barcode is composed of the ZIP-code
+ house number (or P.O. box + number) + separator
character ‘X’ + house number extension. The KIX-code
must be printed at 10pt.

Print the KIX-code at the top of the address or
as an additional line beneath the address. Always
keep a minimal distance of 2mm but no more than
15mm from the last line of the address. KIX-codes
should not be printed with matrix-printers due to the
printout quality of these printers.

For sending mail to foreign countries the name of
the receiver's country is marked down in uppercase
characters as the last line of the address. Do not use
KIX-codes for mail to a foreign country.

The guidelines advise you to use sans-serif fonts
in the address whenever possible. Italic, script fonts,
gothic fonts, matrix-characters, condensed and ex-
panded fonts are advised against because they nega-
tively inuence the automatic read results. The char-
acter size should be no less than 7pt, nor should it
exceed 17pt. It is advised to use uppercase characters
throughout the address if the character size is less than
10pt.

There are even more guidelines on how to setup the
alignment, the interline space and the use of spaces
between words and underlining. If one lets TEX typeset
the text, those aspects should be within the given rules.

Return address
In The Netherlands one can place the return-address
on top of the receiver's address. It is important that
this is a single line only and it must be separated from
the receiver's address by a thick rule of at least 1.2mm.
The white space between the rule and the rst line of
the receiver's address should be 5mm.

Printing labels with ConTEXt NAJAAR 2008 41

Installing the KIX-font for MKIV
Download the KIX-font (ttf format). Unpack the zip-le
and copy the font into a font-directory, where you pre-
pare a new foundry map e.g. “TNT” in the ttf-directory.

There are different options to make the new font
known to ConTEXt. Along the method for other fonts
one can write a type-script-le containing the follow-
ing lines:

\starttypescript [sans] [kix]
\definefontsynonym

[KIX-Roman]
[file:kixbrg][features=default]

\stoptypescript

\starttypescript [sans] [kix] [name]
\definefontsynonym

[Sans][KIX-Roman][features=default]
\stoptypescript

\starttypescript [KIX]
\definetypeface

[KIX][ss][sans][kix][default]
\stoptypescript

Save the type-script-le in the user directory of
ConTEXt as type-TNT-KIX.tex. Run luatools
--generate.

Now one can add the KIX-font in the preamble of the
working le:

\usetypescriptfile[type-TNT-KIX]
\usetypescript[KIX]

For typing the actual KIX-code a small macro is dened
as follows:

\def\KIX#1%
{\switchtobodyfont[KIX,ss,10pt]#1}

Because the KIX-font does not have any different styles
and one uses it invariably in a single way, there is also
a shorter way to tell ConTEXt how to use this font.

First a font synonym is created, where a symbolic
name is linked to the font-le-name.

\definefontsynonym
[KIX][file:kixbrg][features=default]

Again we dene a macro for typesetting the KIX-code

\def\KIX
{\groupedcommand

{\definedfont[KIX at 10pt]}{}}

The contents of the label
The contents will consist of two elements. First, at the
top of the label, the return-address is typeset with a
thick black rule underneath. For this purpose one can
use a buffer.

\startbuffer[Returnaddress]
\framedtext

[frame=off,bottomframe=on,
rulethickness=2pt,
offset=5pt]%
{Willi Egger,
Maasstraat 2,
5836 BB~~{\sc Sambeek}}

\stopbuffer

The receiver's address is also placed in a buffer.

\startbuffer[Receiver]
\framedtext{%

\startlines
NTG-secretary
Maasstraat 2
5836 BB~~{\sc Sambeek}

\stoplines}
\stopbuffer

\startbuffer[ReceiverKIX]
\framedtext{%

\startlines
NTG-secretary
Maasstraat 2
5836 BB~~{\sc Sambeek}
\KIX{5836BB2}

\stoplines}
\stopbuffer

\startbuffer[ReceiverAbroad]
\framedtext{%

\startlines
NTG-secretary
Maasstraat 2
5836 BB~~{\sc Sambeek}
THE NETHERLANDS

\stoplines}
\stopbuffer

Setting up the tool
The rst thing one has to do is to get the precise
dimensions of the labels. For this example a stan-
dard A4-label-sheet carrying 14 labels arranged in two
columns is used. The sheet has no print-margins, so the
labels ll the whole sheet. The labels are 105mm wide
and 42.3mm high.

42 MAPS 37 Willi Egger

Next we dene a paper-size with the measured
dimensions of the label.

\definepapersize
[Label]
[height=42.3mm,width=105mm]

Now we tell ConTEXt that we will place this new
paper-size on A4:

\setuppapersize[Label][A4,portrait]

Because we will place multiple labels i.e. pages on the
A4 we set up the paper/sheet as follows.

\setuppaper
[topspace=0mm,
backspace=0mm,
dx=2mm,
dy=0mm,
nx=2,
ny=7,
margin=0,
width=210mm,
height=297mm]

Now we need to instruct ConTEXt how the label/page
should be set up.

\setuplayout
[topspace=4mm,
backspace=5mm,
margin=0mm,
width=95mm,
height=34mm,
header=0mm,
footer=0mm]

Finally we instruct ConTEXt to use XY-arranging ac-
cording to the parameters set in the \setuppa-
per-block. We will get 2 columns with 7 labels each
(14 labels in total).

\setuparranging[XY]

Because the content of the buffers is in \framedtext
we setup the behaviour of \framedtext with

\setupframedtexts
[width=\textwidth,frame=off,offset=5pt]

In the following steps we set up the content of the
label. One way to do this is to dene a layer with the
dimensions of the label.

\definelayer
[Label]
[width=\paperwidth,height=\paperheight]

We dene two variables. The rst one indicates which
of the labels on the sheet will be used. The second
denes the total number of labels on the sheet.

\def\Uselabel{8} % label(s) to be typeset
\def\Totallabels{14} % No. of labels per sheet

In order to get the address typeset on the correct label,
we loop over the number of labels on the sheet. If
the counter equals the number dened in \Uselabel,
ConTEXt typesets the label, otherwise it typesets noth-
ing and moves on to the next label.

\dostepwiserecurse
{1}
{\Totallabels}
{1}%
{\ifnum\recurselevel=\Uselabel

{\setlayer
[Label]
[preset=lefttop,
location={right,bottom},
y=-5mm,x=-3.5mm]

{\switchtobodyfont[8pt]%
\getbuffer[Retunraddress]}

\setlayer
[Etiket]
[preset=leftbottom,
location={right,top},
y=.9cm,x=-3mm]

{\switchtobodyfont[10pt]%
\getbuffer[Receiver]}}

\else
{\setlayer

[Label]
[preset=lefttop,
location={right,bottom}]

{\strut}}
\fi
\placelayer[Label]
\page }

In the future, there may be a need to dene other
label-sizes. Once you have more label-sizes dened,
it is easier to put static information into an environ-
ment-le. All different denitions are written into a
mode-paragraph. – The le we actually work with will
contain the list of modes that can be enabled, the call
for the environment le and denitions of the label to
be used as well as the total number of labels on a sheet.
The receiver's address is put in a buffer. By means

Printing labels with ConTEXt NAJAAR 2008 43

Willi Egger, Maasstraat 2, 5836 BB Sambeek

NTG-secretary
Maasstraat 2
5836 BB Sambeek

Willi Egger, Maasstraat 2, 5836 BB Sambeek

NTG-secretary
Maasstraat 2
5836 BB Sambeek
5836BB2

Willi Egger, Maasstraat 2, 5836 BB Sambeek

NTG-secretary
Maasstraat 2
5836 BB Sambeek
THE NETHERLANDS

Figure 1. Results of the Examples of Different
setups for Single Labels

of testing the active mode the respective loop-block is
executed. So this le could look like this:

\enablemode[xxx]
\environment layout

\def\Uselabel{2}
\def\Totallabels{...}

\startbuffer[Receiver]
...
\stopbuffer

\doifmode{xxx}{%
\dostepwiserecurse

{1}{\Totallabels}{1}{ ... }}

Typesetting multiple labels with the
same content
Sometimes one would like to typeset a series of labels
with the same content. What one can do, is to dene
the labels, which should be skipped. Dene the quan-
tity of the labels needed. By means of looping over the
number of labels one can get the desired result.

\def\Keepempty{4}
% Skip over the first 4 labels
\def\Quantity{10}

\dorecurse{\Keepempty}{%
\setlayer

[Label]
[preset=righttop,
location={left,bottom}]

{\strut}
\startstandardmakeup

\placelayer[Label]
\stopstandardmakeup}

\dorecurse{\Quantity}{%
\setlayer

[Label]
[preset=righttop,
location={left,bottom},
x=8mm]

{\switchtobodyfont[10pt]%
\getbuffer[Labelcontent]}

\startstandardmakeup
\placelayer[Label]

\stopstandardmakeup}

Typesetting series of labels with
different content
If you have to deal with mailings, then one needs to
be able to process e.g. a database with address-data.
Provided that the database has the desired structure
one can typeset the labels. For the labels used for the
NTG-mailings, the following setup is used.

There is a layout le containing the static informa-
tion. It holds a mode-paragraph dening the label-size,
paper-setup, layout-setup and arranging-setup as de-
scribed above.

For each member a buffer is prepared based on the
members database. At the beginning of that le there is
a denition of the total number of addresses contained
in the database.

\def\Addresses{200}

...
\startbuffer[Adr52]

\framedtext{%
\startlines

Dhr. W. Egger
Maasstraat 2
5836 BB~~{\sc Sambeek}

\stoplines}
\stopbuffer
...

44 MAPS 37 Willi Egger

In the actual le, which is typeset the mode is enabled
and the environment le is loaded. Then the database
le is read in. Hereafter a loop over the total number
of addresses is started.

\enablemode[ntg-Labels]
\environment layout
\input MAPS36

\dorecurse
{\Addresses}
{\setlayer

[Label]
[preset=leftbottom,
location={right,top},
y=-3mm,x=-3mm]

{\switchtobodyfont[10pt]%
\getbuffer[Adr\recurselevel]}

\setlayer
[Label]
[preset=lefttop,
location={right,bottom},

y=.9cm,x=-3.5mm]
{\switchtobodyfont[5pt]%
\getbuffer[Retouraddress]}

\startstandardmakeup
\placelayer[Label]

\stopstandardmakeup }

Conclusion
Label printing on a sheet containing several labels is
a tricky job, due to the fact that the information must
be placed very accurately. In many environments one
can print labels, however it is often not possible to
indicate which of the labels should be used. – With
the described approach in ConTEXt it is possible to use
all the labels on a sheet. The use of loops makes it
possible to typeset either multiple copies of the same
information or to typeset an address-database. The
tool can easily be adapted to the purpose required.

Willi Egger
w.egger@boede.nl

Willi Egger NAJAAR 2008 45

Printing envelopes with ConTEXt

(example for using layers)

Abstract
Once in a while one has to prepare an envelope with
printed address based on the guidelines provided by the
Dutch mail service TNT. This short communication
shows a way to achieve this with ConTEXt. The article
shows the solution for the DL-type of envelope. From
there, it is a small step to define other envelopes with
different dimensions.

Keywords
Maps, Context, layer, envelope

Introduction
Sometimes one needs envelopes, which carry a printed
address and also the address of the sender. In Europe
there are a series of well-known sizes of envelopes. In
order to be able to print on these envelopes one needs
to make preparations. Furthermore the mail services
want to process the envelopes automatically. Hence
they give guidelines, where to put the information. In
the following I would like to present you my solution
to printing envelopes.

Envelope Sizes
There are different series of envelopes derived from
the DIN paper sizes. Commonly one uses the C-series,
however there is also a B-series which is slightly bigger
than the C-series.

C-series B-series

C6 114×162 B6 125×176

C5 162×229 B5 176×250

C4 229×324 B4 250×353

Another envelope is called DL which is very often used
in business-environments. The width is 220mm and
its height is 112mm. The information contained in
this section comes from http://en.wikipedia.org/wiki
/Envelope_size.

Mail Service Requirements
The mail service provides you with guidelines in order
to set up envelopes, which can be machine-read and
automatically sorted for distribution. The Dutch mail
service TNT provides the following instruction for
automatically processed mail. The data is based on
a brochure downloadable from http://www.tntpost
.nl/zakelijk/aanvragen-bestellen/index.aspx. The di-
mensions are valid for mail with dimensions less than
265 × 380 × 32mm and less than 3kg of weight. The
main areas are indicated on the following gure. It is
advised to place the receiver's address centered in the
receiver's address area.

Return address area

Receiver's address area

Stamp area
74×40 mm

Index area
140×20 mm

15 mm 15 mm

Figure 1. envelope C5 landscape

In the case of a portrait sized envelope the dimensions
of the different areas remain the same, however the
index area is rotated and adjusted to the lower left
corner of the envelope.

C4-envelopes and larger envelopes have a different
size and placement of the index area. The size is 100×
30mm. In case of a landscape oriented envelope, this
area is placed vertically (rotated) and down in the left
corner. Otherwise the area is placed horizontally at the
lower right corner.

For the postcard there is a different set of guidelines,
though the basic dimensions of the areas do not differ
from normal envelopes.

46 MAPS 37 Willi Egger

Return address area

Receivers' address area

Stamp area
74×40 mm

Index area
140×20 mm

15 mm

15 mm

Figure 2. envelope C5 portrait

Remarkable is the size of the index area on a small
postcard of 150× 105mm. The receiver's address area
must be at least 74mm wide, which is the width of the
stamp area. The receiver's address area is separated
from the text area by a vertical bar. The thickness of
the this bar should be no less than 1.2mm.

Setting up the Envelope
First we need to dene the size of the envelope. The
most commonly used sizes are predened in ConTEXt.
– For this example we dene a new size.

\definepapersize[DL][height=112mm,width=220mm]
\setuppapersize[DL][DL]

Later on we want to place blocks of information on this
paper-size. In order to have the freedom to move these
blocks to a specied position we dene a layer, which
covers the whole paper-size.

\definelayer
[Envelope]
[width=\paperwidth,height=\paperheight]

Basically we need to place two information-blocks, one
containing the address of the recipient and the other
containing the address of the sender. In the sender's
information one will probably want to place a logo e.g.
if the envelope is sent by the secretary of an association
or a company. We put both information-blocks into
buffers.

Return address area

Receiver's address area

Stamp area
74×40 mm

Index area
140×20 mm

5 mm 5 mm5 mm

Figure 3. Postcard

\startbuffer[Sender]
\startlines

W. Egger
Maassstraat 2
5836 BB~~{\sc Sambeek}

\stoplines
\stopbuffer

\startbuffer[Receiver]
\startlines

NTG-secretary
Maasstraat 2
5836 BB~~{\sc Sambeek}

\stoplines
\stopbuffer

Now we can place the buffers on the already dened
layer. The sender's address is placed near the upper
left corner.

It is advised to put the receiver's address centered
in the receiver's address area. Anyhow, it is always
placed in such a way, that a minimum of 20mm or
30mm respectively white space remains for the index
area at the bottom and that the address-block honors
at least 15mm or 20mm respectively of white space
as the right margin. For postcards the right margin is
5mm.

\setlayer
[Envelope]
[preset=rightbottom,
location={left,top},y=2.7cm]

{\framedtext[frame=off]
{\getbuffer[Receiver]}}

\setlayer
[Envelope]
[preset=lefttop,
location={right,bottom},x=1cm]

{\framedtext[frame=off]
{\getbuffer[Sender]}}

Printing envelopes with ConTEXt NAJAAR 2008 47

Now that the information has got its place, the only
thing to do yet is typesetting the layer on the paper.

\starttext
\placelayer[Envelope]

\stoptext

NTG-secretary
Maasstraat 2
5836 BB S

Willi Egger
Maasstraat 2
5836 BB S

Figure 4. DL envelope

Handling other Envelope Sizes
For handling different envelope sizes in the same le,
modes come in handy.

For each envelope size we prepare the setup in a
mode-paragraph.

\startmode[DL-envelope]
\definepapersize

[DL][height=112mm,width=220mm]
\setuppapersize
[DL][DL]

\definelayer
[Envelope]
[width=\paperwidth,height=\paperheight]

\stopmode

Another envelope denition might look as follows:

\startmode[C5-envelope]
\setuppapersize
[C5,landscape][C5,landscape]

\definelayer
[Envelope]
[width=\paperwidth,height=\paperheight]

\stopmode

In the preamble you can enable the desired mode with

\enablemode[DL-envelope]

Of course the information placed on the layer will have
different distances from the edges in each case. To
solve this problem we set up the above mentioned
\setlayer-block for each of the dened envelopes. In
order to let ConTEXt know which of the denitions to
use, we test on the enabled mode.

\doifmode[DL-envelope]{...\setlayer-block...}

In case of multiple denitions for different envelope
sizes and different setups for the sender's address, it
is worthwhile to put the static part of the information
into a separate le. This le I usually call “layout.tex”.
– In the le, where the actual typeset-information is
stored, I have a list of all the modes which can be
enabled. All but one of those rows are commented out.

\enablemode[DL-envelope]
% \enablemode[C5-envelope]
\environment layout

Schützensektion der Neuen Helvetischen Gesellschaft
Section de tir de la Nouvelle Société Helvétique en Hollande
Secziun da tir da la Nova Societad Helvetica Ollanda
Sezione de tiro della Nuova Società Elvetica Olanda

Voorzitter Schützensektion NHG, Maasstraat 2, 5836 BB S

Rob v.d. Wel
Frekeweg 160
2263 KB L

Figure 5. C5 envelope

Conclusion
Printing an envelope is not an easy task. Thanks to
the exible possibilities in ConTEXt with layers, this
becomes an easy game. Dening the different sizes and
layouts is always worth the invested time, because you
will have perfect prints and most important always a
consistent layout. Last but not least the mail service
will appreciate a layout complying with their guideli-
nes.

Willi Egger
w.egger@boede.nl

48 MAPS 37 Hans van der Meer

CD and DVD Covers in ConTEXt

Abstract
Production of CD and DVD covers in several variations
using ConTEXt.

Keywords
CD, DVD, jewelcase

Introduction
In the fall of 2005 there appeared in the NTG MAPS
an article by Dennis van Dok about his code for
typesetting a jewelcase cover1. This article has inspired
me to both adapt it to ConTEXt and elaborate on it,
for which he kindly gave his permission. The result
is the hvdm-cas module that can typeset covers for
CDs, DVDs and jewelcase boxes. These covers can be
customized in a great number of ways.

Typesetting covers
The setup of the parameters governing the production
of covers is effected with macro \setupcds[.1.]
The settable parameters will be presented gradually
in the text and are summarized in table 1. One
can print their values in the log by calling macro
\showcdcaseparameters.

The sole macro for the production of covers is
\startcase..\stopcase. It is used as follows:

\startcase[.1.][.2.]
<contents of left page>
\page
<contents of right page>

\stopcase

The optional parameters in [.1.] are applied to both
the left and right page of the cover. In addition the
parameters in [.2.] enable one to override these in
the right page. Those parameters are the same as
for \setupcds. The \page separates the left and
righthand page; its presence its mandatory, even where
the right page has no content as is the case for the
backside of the jewelcase.

Types of covers
There are four types of covers, three for CDs and one
for DVDs. Selection of [type=cd] produces the top

of figure 1. This one can be folded over and placed
inside the front of a jewelcase. Another possibility is
to fold the cover, put a CD or DVD into it and store that
in one of those cheap transparent plastic sleeves. In
the middle is the jewelcase cover with [type=jewel]
having left and right extensions. At the bottom is a
very thin cover made by [type=slim], to be used
with very small CD-cases. These are only about 3.8mm
thick and have limited space for a title on the spine,
which extends a bit to the left side.

TITLE
SUBTITLE

R CAST
DESCRIPTION
SOURCE RATING

COUNTRY
YEAR
DURATION

SI
DE

TI
TL

E

TITLE
SUBTITLE

SIDETITLE

SIDETITLE

TITLE
SUBTITLE

R CAST
DESCRIPTION
SOURCE RATING

COUNTRY
YEAR
DURATION

Figure 1. Cover types for CD

Covers for DVDs are produced with [type=dvd]. On
the top of figure 2 stands the usual DVD case with a
spine of 14mm ([spine=big]). Those with a lot of
DVDs might prefer the smaller variant, having a spine
of only 7mm ([spine=small]). One can store twice
as many of the latter in the same space. The width

CD and DVD Covers in ConTEXt NAJAAR 2008 49

of the spine can also be chosen at will by specifying
a dimension; for example [spine=8mm]. This also
works for the CD-types.

TITLE
SUBTITLE

SIDETITLE

R CAST
DESCRIPTION
SOURCE RATING

COUNTRY
YEAR
DURATION

TITLE
SUBTITLE

SIDETITLE

R CAST
DESCRIPTION
SOURCE RATING

COUNTRY
YEAR
DURATION

Figure 2. Cover types for DVD

Output states
The printable versions of CD and DVD covers
([state=final]) are rotated by 90 degrees in order
to fit them on the paper as is shown in figure 3. The
paper is layed out in portrait format and the cover
centered on it. Note that [cutmarks=color] has been
used here; it is taken straight from \setuplayout
(values are off, on, color). The other state value
[state=draft] will put the cover in landscape format
in the same orientation as in figures 1 and 2. That way
the text is easier to read, of course. Additionally the
frame lines can be given another color in draft mode,
preferably one that is well visible.

Printing also requires a setup of the papersize.
This is effected by setting parameter [output=page],
which is the default. The other value is [out-
put=box]. Choosing box suppresses the output and
leaves the result available in a TEX box register. Calling
\getcdcase copies the contents of this box into the
running input stream. Putting that box in standard

Figure 3. Final printable CD cover

ConTEXt macros like scale and rotate enables one
to manipulate it further; in fact the illustrations in this
article have been made that way.

Positioning of contents
Two parameters govern the size of the contents area
on the coverpages. These are offset and margin,
parameters that take a dimension as their value. With
an offset of zero the contents is placed tightly within
the enclosing frame, as can be seen in the top of
figure 4. A positive offset shrinks the inner frame on
all sides by that amount; its effect is shown in the
left page of the bottom illustration. On the right side a
positive margin has been added, narrowing the typing
area and enlarging the margins left and right. As might
be expected, a negative value will enlarge the typing
space by diminishing the respective margin.2

50 MAPS 37 Hans van der Meer

TOP

LEFT + RIGHT

BOTTOM

TOP

LEFT + RIGHT

BOTTOM

TOP

LEFT + RIGHT

BOTTOM

Figure 4. Offset and margin parameters

The contents can be positioned vertically with
[location=middle] (the default), top, bottom or
none. Figure 5 illustrates the middle and top
placement. Likewise the sidetitle has its vertical
position governed by sidelocation, having the same
set of values; figure 5 shows the top option whereas
figure 2 has the sidetitle in the middle.

The Lord of the Rings
SUBTITLE

The “Lord of the Ring” series consists of the follow-
ing parts:
1. The Fellowship of the Ring
2. The Two Towers
3. The Return of the King
New Line Cinema brought them on DVD.

The Lord of the Rings
SUBTITLE

The “Lord of the Ring” series consists of the follow-
ing parts:
1. The Fellowship of the Ring
2. The Two Towers
3. The Return of the King
New Line Cinema brought them on DVD.

Figure 5. Vertical content positioning

Titles, pictures and overlays
Several macros facilitate the placement of titles, sub-
title, pictures and overlays. When the value of title
and/or subtitle parameters has been set, these
are automatically placed at the top of the contents.
By default then, they appear on both pages of the
covers. By judicious application of [title=<text>]
or [title=] on the first and/or second parameter
of \startcase[][] one can let these appear and
disappear at will.

Pictures may be placed with \casepicture. Its first
(optional) argument governs the horizontal position.
The permissable values are [left] and [right], but
if this parameter is left empty the picture will be
centered. The second (optional) argument is trans-
ferred to the second parameter of the \externalfig-
ure[][] with which the picture is placed. The third
argument designates the picture, either a filename or
a picture reference from \useexternalfigure. The
pictures in figures 1 and 2 were placed that way.

TITLE
SUBTITLE

This is the text. This is the text too. This is text also. This
is more text and so on. — This is the text. This is the
text too. This is text also. This is more text and so on. —
This is the text. This is the text too. This is text also. This
is more text and so on. And it goes on, and on, and on.
— This is text also. This is more text and so on. And it
goes on, and on, and on. This is the text. This is the text
too. This is text also. This is more text and so on. — This
is the text. This is the text too. This is text also. This is
more text and so on. — This is the text. This is the text
too. This is text also. This is more text and so on. And
it goes on, and on, and on. — This is text also. This is
more text and so on. And it goes on, and on, and on. This
is the text. This is the text too. This is text also. This is
more text and so on. — This is the text. This is the text
too. This is text also. This is more text and so on. — This
is the text. This is the text too. This is text also. This is
more text and so on. And it goes on, and on, and on. —
This is text also. This is more text and so on. And it goes
on, and on, and on. And so forth.

TITLE
SUBTITLE

This is the text. This is the text too. This is text also. This
is more text and so on. — This is the text. This is the
text too. This is text also. This is more text and so on. —
This is the text. This is the text too. This is text also. This
is more text and so on. And it goes on, and on, and on.
— This is text also. This is more text and so on. And it
goes on, and on, and on. This is the text. This is the text
too. This is text also. This is more text and so on. — This
is the text. This is the text too. This is text also. This is
more text and so on. — This is the text. This is the text
too. This is text also. This is more text and so on. And
it goes on, and on, and on. — This is text also. This is
more text and so on. And it goes on, and on, and on. This
is the text. This is the text too. This is text also. This is
more text and so on. — This is the text. This is the text
too. This is text also. This is more text and so on. — This
is the text. This is the text too. This is text also. This is
more text and so on. And it goes on, and on, and on. —
This is text also. This is more text and so on. And it goes
on, and on, and on. And so forth.

Figure 6. Title, picture, overlay, color

Coloring the background of frames in ConTEXt, ac-
cording to its documentation, is governed by the
background parameter, that can take on the val-
ues screen, none, color, foreground and name;
[background=color] is the default in this module.3

A specific color for the background is then set through
[backgroundcolor=color]. By this the left page
of figure 6 has received the value lavender. On
the right side of that figure an overlay was set
with [overlay=picture] in the second argument of
\startcase. Note that this picture will fill the whole
page, so that it will appear distorted if the dimensions
differ from those of the cover page.

The style and color of the elements can be cus-
tomized too. For example, on the left side in figure 6
the title and subtitle are blue, while the text is green.
On the right side all colors are white in order to make
them visible against the dark overlay. The parameter
style is used for the text, which is the default
for the other elements. The settable parameters
are [style=fontcommand], titlestyle, subti-
tlestyle, sidetitlestyle, [framecolor=color],
foregroundcolor, titlecolor and sidetitlecol-
or. In this figure the color of the frame was changed
to orange. Use [frame=off] to remove the frame.

The background of the inner frame (made visible in
figure 4) can be given a color different from the outer
one with [innerbackgroundcolor=color]. Some-
thing similar applies to the placement of overlays. Set
[inneroverlay=on] and an overlay fills the inner
frame instead of the whole of the coverpage. These
possibilities are illustrated in figure 7.

CD and DVD Covers in ConTEXt NAJAAR 2008 51

TITLE
SUBTITLE

This is the text. This is the text too. This is text also. This
is more text and so on. — This is the text. This is the
text too. This is text also. This is more text and so on. —
This is the text. This is the text too. This is text also. This
is more text and so on. And it goes on, and on, and on.
— This is text also. This is more text and so on. And it
goes on, and on, and on. This is the text. This is the text
too. This is text also. This is more text and so on. — This
is the text. This is the text too. This is text also. This is
more text and so on. — This is the text. This is the text
too. This is text also. This is more text and so on. And
it goes on, and on, and on. — This is text also. This is
more text and so on. And it goes on, and on, and on. This
is the text. This is the text too. This is text also. This is
more text and so on. — This is the text. This is the text
too. This is text also. This is more text and so on. — This
is the text. This is the text too. This is text also. This is
more text and so on. And it goes on, and on, and on. —
This is text also. This is more text and so on. And it goes
on, and on, and on. And so forth.

TITLE
SUBTITLE

This is the text. This is the text too. This is text also. This
is more text and so on. — This is the text. This is the
text too. This is text also. This is more text and so on. —
This is the text. This is the text too. This is text also. This
is more text and so on. And it goes on, and on, and on.
— This is text also. This is more text and so on. And it
goes on, and on, and on. This is the text. This is the text
too. This is text also. This is more text and so on. — This
is the text. This is the text too. This is text also. This is
more text and so on. — This is the text. This is the text
too. This is text also. This is more text and so on. And
it goes on, and on, and on. — This is text also. This is
more text and so on. And it goes on, and on, and on. This
is the text. This is the text too. This is text also. This is
more text and so on. — This is the text. This is the text
too. This is text also. This is more text and so on. — This
is the text. This is the text too. This is text also. This is
more text and so on. And it goes on, and on, and on. —
This is text also. This is more text and so on. And it goes
on, and on, and on. And so forth.

Figure 7. Background variations

Formatting content
Content can be formatted in three variations: [for-
mat=none], columns en packed. The typesetting of
a coverpage takes place within a \framed and the
formatting of the content on the inside depends solely
on the user input. With format none nothing special is
done. In figure 6 this is the option chosen.

The second possibility is typesetting in columns.
The ConTEXt construct used here is \startsim-
plecolumns..\stopsimplecolumns. The reason for
not using the more complete column or columnset
implementations is that these do not work inside
\framed. The cover of figure 9 is typeset with the
columns option while figure 10 has the packed option.
In the latter the content space is filled as much as
possible. This is especially useful when for example
a large number of mp3’s has been burned on the CD.
With this option a great number of titles can be put on
one cover page. For more information on the ins and
outs of the packed format one is referred to the article
by Dennis van Dok.

\track \artist{Bassano} Frais et Gaillard, 1591...(3:06).
\track \artist{Bovicelli} Io son ferito, 1594...(6:36).
\track \artist{De Cabez\‘on} Un gay bergier, 1578...(2:38).
\track \artist{Bovicelli} Anchor che co’l partire, 1594...(3:54).
\track \artist{Ortiz} Recercada segonda, 1553...(3:05).
\track \artist{Ortiz} Recercada tercera, 1553...(2:33).
\track \artist{Coelho} Susanne un jour, 1620...(4:50).
\track \artist{Taeggio} Pulchra es, amica mea, 1620...(5:35).
\track \artist{Bassano} Susanne un jour, 1591...(3:33).
\track \artist{Bovicelli} Angelus ad pastores ait, 1594...(4:32).
\track \artist{De Cabez\‘on} Pour un plaisir, 1578...(2:04).
\track \artist{Rogniono} Un gay bergier, 1592...(4:17).
\track \artist{Salaverde} Susanne un jour, 1638...(6:53).
\track \artist{Luzzaschi} Aura soave, 1601...(2:53).
\track \artist{Luzzaschi} O Primavera, 1601...(2:53).
\track \artist{Bassano} Anchor che co’l partire, 1591...(3:22).
\track \artist{Bassano} La bella netta ignuda, 1591...(5:13).
\track \artist{Bassano} Ricercata prima, 1585...(3:28).
\track \artist{Bassano} Tirsi morir volea, 1591...(5:36).
\track \artist{Bassano} Un gay bergier, 1591...(2:36).
\blanktrack
\track[nonumber] Total time...(79:54).

Figure 8. Input of column format example

Finally there are some macro’s that facilitate the
typesetting of music tracks. An example of their use

is found figures 9 and 10. The first of these also
illustrates the use of casebefore and caseafter. The
title is separated from the body by a horizontal rule
placed with [casebefore=\hrule]. The command
given on the casebefore is executed between the
typesetting of title-subtitle and the start of the con-
tents. Likewise [caseafter=\hrule] is executed just
behind the contents.

SI
DE

TI
TL

E

Virtuose Verzierungskunst um 1600
1. Bassano Frais et Gaillard,

1591 (3:06)
2. Bovicelli Io son ferito, 1594

. (6:36)
3. De Cabezòn Un gay bergi-

er, 1578 (2:38)
4. Bovicelli Anchor che co’l

partire, 1594 (3:54)
5. Ortiz Recercada segonda,

1553 (3:05)
6. Ortiz Recercada tercera,

1553 (2:33)
7. Coelho Susanne un jour,

1620 (4:50)
8. Taeggio Pulchra es, amica

mea, 1620 (5:35)
9. Bassano Susanne un jour,

1591 (3:33)
10. Bovicelli Angelus ad pas-

tores ait, 1594 (4:32)
11. De Cabezòn Pour un

plaisir, 1578 (2:04)
12. Rogniono Un gay bergier,

1592 (4:17)
13. Salaverde Susanne un jour,

1638 (6:53)
14. Luzzaschi Aura soave,

1601 (2:53)
15. Luzzaschi O Primavera,

1601 (2:53)
16. Bassano Anchor che co’l

partire, 1591 (3:22)
17. Bassano La bella netta

ignuda, 1591 (5:13)
18. Bassano Ricercata prima,

1585 (3:28)
19. Bassano Tirsi morir volea,

1591 (5:36)
20. Bassano Un gay bergier,

1591 (2:36)
.

Total time (79:54)

SIDETITLE

Figure 9. Example in column format

SI
DE

TI
TL

E

Virtuose Verzierungskunst um 1600
Side A — 001 Bassano Frais et Gaillard, 1591 (3:06) 002 Bovicelli
Io son ferito, 1594 (6:36) 003 De Cabezòn Un gay bergier, 1578 (2:38)
004 Bovicelli Anchor che co’l partire, 1594 (3:54) 005 Ortiz Recercada
segonda, 1553 (3:05) 006 Ortiz Recercada tercera, 1553 (2:33) 007
Coelho Susanne un jour, 1620(4:50)008Taeggio Pulchra es, amica mea,
1620 (5:35) 009 Bassano Susanne un jour, 1591 (3:33) 010 Bovicelli
Angelus ad pastores ait, 1594(4:32) — Side B — 011De Cabezòn Pour
un plaisir, 1578 (2:04) 012 Rogniono Un gay bergier, 1592 (4:17) 013
Salaverde Susanne un jour, 1638 (6:53) 014Luzzaschi Aura soave, 1601
(2:53) 015Luzzaschi O Primavera, 1601(2:53) 016Bassano Anchor che
co’l partire, 1591 (3:22) 017 Bassano La bella netta ignuda, 1591 (5:13)
018Bassano Ricercata prima, 1585(3:28) 019Bassano Tirsi morir volea,
1591(5:36) 020Bassano Un gay bergier, 1591(2:36) Total time(79:54)

SIDETITLE

Figure 10. Example in packed format

Each music track is described by a \track macro. Its
format is

\track[number] <description>...(duration).

The three dots ... separate the description from the
duration. Within the description the \artist{text}
macro switches the font to the \artiststyle. The
parentheses around the duration can be substituted for
something else through the parameters timebefore

52 MAPS 37 Hans van der Meer

and timeafter. When the duration between the
parentheses is left empty, both the duration and the
filling dots are omitted from the output.

Tracknumbers can be preceded and followed by
commands/text through numberbefore and number-
after. Their number of digits is set with numbersize
and a prefill with leading zeroes can be chosen with
[zeroes=yes]. Font settings are provided for the
track, tracknumber, artist and duration entries. Color
settings are available for track, tracknumber and
duration.

Tracks are numbered consecutively and in figure 9
their width is set by [numbersize=2]. The last
entry, giving the total duration of the CD, had its
tracknumber suppressed through value nonumber.

In order to fit things on a page, one can fiddle with
the space between the lines, except for the packed
format where other rules reign. Set for example
[interlinespace=2ex] on the first cover page and
reset it on the second one with interlinespace=.
One can also set the standard values small, medium
and big. The altered linespacing goes in effect just
after the titles have been typeset, but before the
execution of casebefore.

In figure 10 the same tracks are typeset, but now
in packed format. The two series of tracks were
delineated here with “\title Side A.” and “\title
Side B.” All text between \title and the final dot is
taken as a title and typeset between —’s. This option
is useful when combining several mp3-compressed
albums on one CD. The example also demonstrates
the [zeroes=yes] option in order to make every
tracknumber the same size with preceding zeroes.

The macro \blanktrack sets an empty track,
allthough this will be invisible in the packed format.

It is especially usefull as a filler to even out columns in
the columns-format.4

Accessing variables
The standard values in the module can be redefined,
of course. Their current values are given in table 2.

Inside a page one can access the internal dimen-
sions. These are \dimens which receive their value
during typesetting; thus these values have no meaning
outside the page content. The following are available,
their names speak for themselves; see figure 4 for an
illustration of the frame parameters.

\cdframewidth
\cdframeheight
\cdinnerframewidth
\cdinnerframeheight
\cdspinewidth
\cdpagewidth

1. D. van Dok, Jewel case listings for mp3 cdroms, NTG-
MAPS 33 (2005).
2. For clarity colored framelines on the innerframe were
selected with [innerframe=on].
3. Do not forget to activate colors with \setupcol-
ors[state=start].
4. Whereas \startcolumns can be made to advance to the
next column with \column, \startsimplecolumns does
not respond to it. That leaves us with evening out columns
by adding blank tracks.

Hans van der Meer
H.vanderMeer@uva.nl

CD and DVD Covers in ConTEXt NAJAAR 2008 53

type cd,slim,jewel,dvd type of cover
spine none,big,small,dimension refined type
state draft,final form of output
output page,box print or boxregister
cutmarks on,off,color not for box
offset 0pt,dimension offset of contents
margin 0pt,dimension additional margin
location middle,top,bottom,none vertical position contents
sidelocation middle,top,bottom,none vertical position sidetitle
title \empty,string title text
subtitle \empty,string subtitle text
sidetitle title,string sidetitle text
format none,columns,packed format coverpage
overlay none,picture overlayed picture
inneroverlay off,on overlayed picture inner
casebefore \empty,command before content
caseafter \empty,command after content
n 2,number number of columns
distance 5mm,dimension column distance
numbersize 2,number digits of track number
zeroes no,yes preceding zeroes
numberbefore \empty,command before tracknumber
numberafter \empty,command after tracknumber
timebefore (,command before duration
timeafter),command after duration
frame on,off show coverframe
framerule .4pt,dimension frame rulesize
innerframe off,on show inner coverframe
innerframerule .4pt,dimension innerframe rulesize
interlinespace empty,dimension change interlinespace
style \ss,fontcommand font of contents
titlestyle style,fontcommand font of title
subtitlestyle style,fontcommand font of subtitle
sidetitlestyle style,fontcommand font of sidetitle
trackstyle style,fontcommand font of track data
numberstyle style,fontcommand font of track data
timestyle style,fontcommand font of track length
artiststyle style,fontcommand font of artist data
foregroundcolor black,color color of page content
framecolor cdgray,color color frame
innerframecolor cdgray,color color innerframe
titlecolor foregroundcolor,color color titles
sidetitlecolor foregroundcolor,color color sidetitle
trackcolor foregroundcolor,color color track data
numbercolor foregroundcolor,color color track number
timecolor foregroundcolor,color color track length
background color,none background setting
backgroundcolor white,color frame background
innerbackgroundcolor backgroundcolor,color innerframe background
sidetitlebackgroundcolor backgroundcolor,color sidetitle background

Table 1. Parameters on \startcase[.1.][.2.]

54 MAPS 37 Hans van der Meer

\caseheightcd 120mm cd: height
\casewidthdvd 120mm cd: width
\casesideslim 3.8mm slim cd: width spine
\casesideslimspace 15mm slim cd: offset spine
\snipruleheight 2mm slim cd: height cutout region
\sniprulewidth 11mm slim cd: width cutout region
\jewelcaseheight 117mm jewelcase: height
\jewelcasewidth 138mm jewelcase: width
\jewelcaseside 6mm jewelcase: sides
\caseheightdvd 182mm dvd: height
\casewidthdvd 130mm dvd: height
\casesidebigdvd 14mm dvd: width big spine
\casesidesmalldvd 7mm dvd: width small spine
\grayrulecolor cdgray final: color of greys
\nonfinalgrayrulecolor darkred draft: color of grays
\grayrulesize .4pt thickness gray rules

Table 2. Default definition values

Taco Hoekwater & Hans Hagen NAJAAR 2008 55

Punk from Metafont to MetaPost

Abstract
To make Knuth's punk font usable with ConTEXt MKIV,
it had to be converted from Metafont to MetaPost input.
This article highlights the most important changes that
had to be made in the conversion process.

Introduction
Donald Knuth's punk font is available from CTAN and
in most TEX distributions, such as TEXLive. The TEXLive
description has this to say about it:

“A response to the assertion in a lecture that
‘typography tends to lag behind other stylistic
changes by about 10 years’. Knuth felt it was
(in 1988) time to design a replacement for his
designs of the 1970s, and came up with this
font! The fonts are distributed as Metafont
source. The package offers LaTEX support by
Rohit Grover, from an original by Sebastian
Rahtz, which is slightly odd in claiming that the
fonts are T1-encoded. A (possibly) more rational
support package is to be found in punk-latex.”

Elsewhere in this Maps 37, you can read about the
rather special characteristics of the punk font, and
about the stepts needed to make it usable in the latest
version of mplib--enabled ConTEXt. In an effort to
reduce the overall noise level on these pages, the
current article will not show you what the font looks
like at all. There is enough of that in the two other
articles.

As said already, the original font is based on Meta-
font. For use with mplib, we wanted a version that
could be processed repeatedly by a single mplib in-
stance. A bit of reorganisation was needed.

Punk in Metafont
The original distribution contains about a dozen Meta-
font input les. The content of the Metafont les
is explained below, but we were only interested in
the 10 point upright font, so we will ignore les
like punksl20.mf (that generates a 20 point slanted
version of the font).

punk10.mf
This is the parameter le for the 10 point font. It
contains ten parameter assignments and then inputs

the punk.mf le.

% 10-point PUNK font
designsize:=10pt#; font_identifier:="PUNK";
ht#:=7pt#; % height of characters
u#:=1/4pt#; % unit width
s#:=1.2pt#; % extra sidebar
px#:=.6pt#; % horizontal thickness of pen
py#:=.5pt#; % vertical thickness of pen
dot#:=1.3pt#; % diameter of dots
dev#:=.3pt#; % standard deviation of punk

% points
slant:=0; % obliqueness
seed:=sqrt2; % seed for random number

% generator
input punk
bye

punk.mf
This is a typical Metafont macro le. It denes a few
macros and sets up various drawing parameters for the
characters.

% Font inspired by Gerard and Marjan Unger's
% lectures, Feb 1985
mode_setup;

randomseed:=seed;

define_pixels(u,dev);
define_blacker_pixels(px,py,dot);
define_whole_pixels(s);
xoffset:=s;
pickup pencircle xscaled px yscaled py;
punk_pen:=savepen;
pickup pencircle scaled dot; def_pen_path_;
path dot_pen_path;
dot_pen_path:=currentpen_path;
currenttransform:=identity slanted slant

yscaled aspect_ratio;

def beginpunkchar(expr c,n,h,v) =
% code c; width is n units
hdev:=h*dev; vdev:=v*dev;
% modify horizontal and
% vertical amounts of deviation
beginchar(c,n*u#,ht#,0);
italcorr ht#*slant;

56 MAPS 37 Taco Hoekwater & Hans Hagen

pickup punk_pen enddef;
extra_endchar:=extra_endchar

& "w:=w+2s;charwd:=charwd+2s#";

def ^ = transformed currenttransform enddef;

def makebox(text rule) =
for y=0,h:

rule((-s,y)^,(w-s,y)^); % horizontals
endfor
for x=-s,0,w-2s,w-s:

rule((x,0)^,(x,h)^); % verticals
endfor
enddef;

rulepen:=pensquare;

vardef pp expr z =
z+(hdev*normaldeviate,vdev*normaldeviate)

enddef;

def pd expr z = % {\bf drawdot}
addto_currentpicture contour

dot_pen_path shifted z.t_
withpen penspeck

enddef;

input punkl % uppercase letters
input punkae % uppercase \AE, \OE, \O
input punkg % uppercase greek
input punkp % punctuation
input punkd % digits
input punka % accents

ht#:=.6ht#; dev:=.7dev;
input punksl % special lowercase
extra_beginchar:=extra_beginchar

& "charcode:=charcode+32;";
input punkl % lowercase letters
extra_beginchar:=extra_beginchar

& "charcode:=charcode-35;";
input punkae % lowercase \ae, \oe, \o

font_slant:=slant;
font_quad:=18u#+2s#;
font_normal_space:=9u#+2s#;
font_normal_stretch:=6u#;
font_normal_shrink:=4u#;
font_x_height:=ht#;
font_coding_scheme:=

"TeX text without f-ligatures";
bye

Note that punkl.mf and punkae.mf are loaded twice,
after some redenitions have taken place. The com-
bined effect of

ht#:=.6ht#; dev:=.7dev;

and

extra_beginchar:=extra_beginchar
& "charcode:=charcode+32;";

is that the drawing routines for the uppercase charac-
ters (like ‘P’, with character code 80) are reused for
the lowercase characters (like ‘p’, with character code
112). The heights and widths are diminished, and this
makes punk a ‘Caps and Small Caps’ font.

punkl.mf, punkae.mf, punkg.mf, punkp.mf,
punkd.mf, punka.mf, punksl.mf
These contain the drawing routines for the characters
and a few ligtable commands for the standard tex
ligatures like -- and ''. There is not that much to see,
just a bunch of denitions like this:

beginpunkchar("P",13,1,2);
z1=pp(2u,0); z2=pp(2u,1.1h);
z3=pp(2u,.5h); z4=pp(w,.6[y3,y2]);
pd z1; pd z3;
draw z1--z2--z4--z3; % stem and bowl
endchar;

Punk in MetaPost
In the MetaPost version, we wanted to have only one
le because that makes handling the font a bit easier.
The le's name is punkfont.mp, and even though
there is only one le now, the initial setup is much the
same.

It begins with parameter settings, like this:

if unknown punk_font_loaded :

if unknown scale_factor :
scale_factor := 1 ;

fi ;

boolean punk_font_loaded ;

punk_font_loaded := true ;
warningcheck := 0 ;
designsize := 10pt#;
font_identifier := "Punk Nova" ;

ht# := 7pt# ; % height of characters
u# :=1/4pt# ; % unit width
s# := 0 ; % extra sidebar
px# := .6pt# ; % horizontal pen thickness
py# := .5pt# ; % vertical pen thickness

Punk from Metafont to MetaPost NAJAAR 2008 57

dot# :=1.3pt# ; % diameter of dots
dev# := .3pt# ; % standard deviation of

% punk points

% seed := sqrt2 ;

Most if the changes above should be self--explanatory.
The only things worth noting are the test and setting of
the punk_font_loaded boolean (this prevents errors
when the le is being read multiple times) and the
commented out denition of seed. That latter change
is because we wanted the font to be truly random.
Knuth's original only appears to be random. In fact
it always has the exact same ‘randomness’.

The next bit contains the assignments and macro def-
initions, much like punk.mf:

proofing := 0 ;
pt := .1pt ;
mag := scale_factor * 10 ;
bp_per_pixel := bpppix_ * mag ;

MetaPost's mfplain doesn't have the mode_setup
macro, so the important settings from that are given
explicitly. The trickery with scale_factor and pt is
just so the resulting gures will have a usable range
(in PostScript big points).

Going on:

define_pixels(u,dev) ;
define_blacker_pixels(px,py,dot) ;
define_whole_pixels(s) ;
xoffset := s ;

pickup pencircle xscaled px yscaled py ;
punk_pen := savepen ;
pickup pencircle scaled dot ;
path dot_pen_path ;
dot_pen_path :=tensepath makepath currentpen;

defaultcolormodel := 1 ;

def beginpunkchar(expr c,n,h,v) =
% code c; width is n units
hdev := h * dev ;
% modify horizontal amounts of deviation
vdev := v * dev ;
% modify vertical amounts of deviation
beginchar(c,n*u#,ht#,0) ;
italcorr 0 ;
pickup punk_pen

enddef ;

extra_endchar := extra_endchar
& "w := w+2s ; charwd := charwd+2s# ;";

extra_endchar := extra_endchar
& "setbounds currentpicture to (0,-d)"
& "--(w*1.2,-d)--(w*1.2,ht#)--(0,ht#)"
& "--cycle;";

def ^ = transformed currenttransform enddef ;

def makebox(text rule) =
for y=0, h : % horizontals

rule((-s,y)^,(w-s,y)^) ;
endfor
for x=-s, 0, w-2s, w-s : % verticals

rule((x,0)^,(x,h)^) ;
endfor

enddef ;

rulepen := pensquare ;

vardef pp expr z =
z + (hdev * normaldeviate,

vdev * normaldeviate)
enddef;

def pd expr z = % {\bf drawdot}
addto currentpicture

contour dot_pen_path
shifted z.t_ withpen penspeck

enddef;

This is all pretty much the same as in Metafont. The
trick with the multiple loading doesn't work because
there is only the one le, but we did not want to
manually adjust the drawing macros within de be-
ginpunkchar commands. That is why the following
denitions were added:

def initialize_punk_upper =
ht# := 7pt# ; dev# := .3pt# ;

enddef ;
def initialize_punk_lower =

sht# := ht#; sdev := dev;
ht# := .6ht# ; dev := .7dev ;

enddef ;
def revert_punk_lower =

ht# := sht#; dev := sdev;
enddef ;

fi ;

The fi ends the boolean test that was started at the
top of the le, everything below this point can be safely
re-interpreted.

58 MAPS 37 Taco Hoekwater & Hans Hagen

The rest of the le consists of a few calls to these
three macros and a whole bunch of character deni-
tions. It starts like this:

initialize_punk_upper ;

beginpunkchar("A",13,1,2);
z1=pp(1.5u,0); z2=(.5w,1.1h);
z3=pp(w-1.5u,0);
pd z1; pd z3;
draw z1--z2--z3; % left and right diagonals
z4=pp .3[z1,z2];
z5=pp .3[z3,z2];
pd z4; pd z5;
draw z4--z5; % crossbar

endchar;

The MetaPost version of the font does not have any
ligtable commands; the ligatures are automatically
generated by ConTEXt. This is possible because the
loaded font uses an (incomplete) Unicode encoding.

For example, we have:

beginpunkchar(8221,9,.3,.5);
% '' quotedblright
z1=pp(.5w-.5u,h); z2=pp(u,.6h);
z3=pp(w-u,.95h); pd z1; pd z3;
draw z1--z2--z3; % stroke

endchar;

Incidentally, this is why the warningcheck:=0; above
was needed. Without it, MetaPost would have com-
plained about Number too large.

The last thing worth mentioning is that the origi-
nal font was using 7-bit TEX roman encoding, which
doesn't have a full ASCII set. We have added the
missing denitions: underscore, caret, left brace, right
brace, backslash, and the straight quote and double
quote.

Taco Hoekwater & Hans Hagen

Hans Hagen & Taco Hoekwater NAJAAR 2008 59

60 MAPS 37 Hans Hagen & Taco Hoekwater

How to convince Don and Hermann to use LuaTEX NAJAAR 2008 61

62 MAPS 37 Hans Hagen & Taco Hoekwater

How to convince Don and Hermann to use LuaTEX NAJAAR 2008 63

64 MAPS 37 Hans Hagen & Taco Hoekwater

How to convince Don and Hermann to use LuaTEX NAJAAR 2008 65

66 MAPS 37 Hans Hagen & Taco Hoekwater

Hans Hagen NAJAAR 2008 67

The Punk Module

As with most new tricks in ConTEXt, the punk module
was rst used for presentations. Such a presentation
looks as follows:

As usual we start with a title page, followed by (not too
many) pages with text. As most recent presentation
styles, this one works quite well with the stepper: by
clicking on the page, more text (or whatever) shows
up on the page by simply turning on layers.

If you don't like these colors, you can use another color
palette, or dene your own by simply copying and
patching code from the style.

The presentation style uses the m-punk module, which
contains code similar to the code discussed in the
previous article.

The annotated style follows one the next pages.

68 MAPS 37 Hans Hagen

% engine=luatex

%D \module
%D [file=s-pre-70,
%D version=2008.04.15,
%D title=\CONTEXT\ Style File,
%D subtitle=Presentation Environment 70,
%D author=Hans Hagen,
%D date=\currentdate,
%D copyright=PRAGMA / Hans Hagen]
%C
%C This module is part of the \CONTEXT\ macro||
%C package and is therefore copyrighted by
%C \PRAGMA. See mreadme.pdf for details.

\usemodule[punk] \usetypescript[punk]
\setupbodyfont[punk,20pt]

%D At the cost of more runtime and a larger
%D output file, we turn on randomization.
%D The instances are cached in the MkIV cache,
%D so successive runs use the same shapes.

\EnableRandomPunk

%D We use the regular screen size paper and
%D layout setup.

\setuppapersize
[S6][S6]

\setuplayout
[topspace=30pt,
backspace=30pt,
width=middle,
height=fit,
header=0pt,
footer=0pt,
bottomdistance=24pt,
bottom=30pt,
bottom=18pt,
top=0pt]

\setupinterlinespace
[top=height,
line=1.25\bodyfontsize]

\setupcolors
[state=start,
textcolor=white]

\setupinteraction
[state=start,
%click=off,
menu=on]

%D We predefine a few palets. Of course you can
%D define more.

\definecolor[punkblue] [r=.4,b=.8,g=.4]
\definecolor[punkgreen] [r=.4,b=.4,g=.8]
\definecolor[punkred] [r=.8,b=.4,g=.4]
\definecolor[punkyellow][r=.6,g=.6,b=.2]

\definepalet [punk-one]
[textcolor=punkblue,pagecolor=punkgreen]

\definepalet [punk-two]
[textcolor=punkred,pagecolor=punkyellow]

\definepalet [punk-three]
[textcolor=punkblue,pagecolor=punkyellow]

\definepalet [punk-one-reverse]
[textcolor=punkgreen,pagecolor=punkblue]

\definepalet [punk-two-reverse]
[textcolor=punkyellow,pagecolor=punkred]

\definepalet [punk-three-reverse]
[textcolor=punkyellow,pagecolor=punkblue]

\setuppalet[punk-one]

%D We use a few backgrounds. The hyperlink that
%D invokes the stepper is hooked into the text
%D background.

\definelayer
[page]
[width=\paperwidth,
height=\paperheight]

\setupbackgrounds
[page]
[background={color,page},
backgroundcolor=pagecolor,
setups=pagestuff]

\setupbackgrounds
[text]
[background={color,invoke},
backgroundoffset=12pt,
backgroundcolor=textcolor]

%D We need different symbols for itemized
%D lists.

\definesymbol[1][\hbox{\lower1ex\hbox{*}}]
\definesymbol[2][\endash]
\definesymbol[3][\letterhash]
\definesymbol[3][>]

%D We don't want these reversed clicked areas
%D in Acrobat.

The Punk Module NAJAAR 2008 69

\setupinteraction
[click=no]

%D We define a rather simple navigational panel
%D at the bottom

\setupinteractionmenu
[bottom]
[color=white, % pagecolor,
contrastcolor=white, % pagecolor,
background=color,
backgroundcolor=textcolor,
frame=off,
height=24pt,
left=\hfill,
middle=\hskip12pt]

\setupsubpagenumber
[state=start]

\startinteractionmenu[bottom]
\txt

\interactionbar
[alternative=d,
symbol=yes,
color=white,
contrastcolor=textcolor]

\\
\hfilll
\but [previouspage] < < < \\
\but [nextpage] > > > \\

\stopinteractionmenu

%D Instead of the normal symbols we use more
%D punky ones.

\startsymbolset [punk]
\definesymbol[previous] [\string<\string<]

\definesymbol[somewhere] [\string^\string^]
\definesymbol[next] [\string>\string>]

\stopsymbolset

\setupinteraction[symbolset=punk]

%D Because the font is rather large, we use
%D less whitespace.

\setuphead
[chapter]
[after={\blank[big]}]

%D Run this file with the command:
%D \type {context --mode=demo s-pre-70}
%D in order to get an example.

\doifnotmode{demo} {\endinput}

\usemodule[pre-60] % use the stepper

\starttext

\title {Punk for dummies}

\dorecurse{10} {
\title{Just a few dummy pages}
\StartSteps \startitemize[packed]
\startitemize

\startitem bla \FlushStep \stopitem
\startitem bla bla \FlushStep \stopitem
\startitem bla bla bla \FlushStep \stopitem

\stopitemize \StopSteps
}

\stoptext

Hans Hagen
Pragma ADE

70 MAPS 37 Jonathan Kew

TEXworks: lowering the barrier to entry

Abstract
A multi-platform competitor for TeXShop is described:
TEXworks.

Keywords
editor, gui, interface, multi-platform, TeX front-end,
TeXShop

Introduction
One of the most successful TEX interfaces in recent
years has been Dick Koch’s award-winning TeXShop
on MacOSX. I believe a large part of its success has
been due to its relative simplicity, which has invited
new users to begin working with the system without
baffling them with options or cluttering their screen
with controls and buttons they don’t understand. Ex-
perienced users may prefer environments such as iTeX-
Mac, AUCTeX (or on other platforms, WinEDT, Kile,
TeXmaker, or many others), with more advanced edit-
ing features and project management, but the simplic-
ity of the TeXShop model has much to recommend it
for the new or occasional user.

Besides the relatively “clean” interface, a second fac-
tor in TeXShop’s success is probably the use of a PDF-
centric workflow, with pdfTEX as the default typeset-
ting engine. PDF is the de facto standard for fully-
formatted pages; every user knows what a PDF file is
and what they can do with it. Bypassing DVI reduces
the apparent complexity of the overall process, and
so reduces the “intimidation factor” for a newcomer.
But TeXShop is built on MacOSX-specific technologies,
and is available only to Mac users. There does not
seem to be an equivalent tool available on other plat-
forms; there are many TEX editors and environments,
but none with this particular focus.

The TEXworks project is an effort to build a similar
TEX environment (“front end”) that will be available for
all today’s major desktop operating systems — in par-
ticular, MS Windows (XP and Vista), typical GNU/Linux
distributions, and other X11-based systems, in addi-
tion to MacOSX.

To achieve this, TEXworks is based on cross-
platform, open source tools and libraries. In particular,
the Qt toolkit was chosen for the quality of its cross-
platform user interface capabilities, with native “look

and feel” for each platform being a realistic target. Qt
also provides a rich application framework, facilitating
the relatively rapid development of a usable product.

The standard TEXworks workflow will also be PDF-
centric, using pdfTEX and XeTeX as typesetting engines
and generating PDF documents as the default format-
ted output. Although it will still be possible to config-
ure a processing path based on DVI, newcomers to the
TEX world need not be concerned with DVI at all, but
can generally treat TEX as a system that goes directly
from marked-up text files to ready-to-use PDF docu-
ments.

TEXworks includes an integrated PDF viewer, based
on the Poppler library, so there is no need to switch
to an external program such as Acrobat, xpdf, etc., to
view the typeset output. The integrated viewer also
allows it to support source↔ preview synchronization
(e.g., control-click within the source text to locate the
corresponding position in the PDF, and vice versa).
This capability is based on the “SyncTEX” feature de-
veloped by Jérôme Laurens, now integrated into the
XeTeX and pdfTEX engines in TEX Live 2008, MikTEX,
and other current distributions.

Features for initial release
Figure 1 shows the current TEXworks prototype run-
ning on Windows Vista. While this is not a finished in-
terface, it gives an impression of how the application
will look. TEXworks version 0 will be an easy-to-install
application offering:

1. Simple (non-intimidating — this is not emacs or
vi!) GUI text editor with
a. Unicode support using standard OpenType

fonts
b. multi-level undo/redo
c. search & replace, with (optional) regular

expressions as well as simple string match
d. comment/uncomment lines, etc.
e. TEX/LaTEX syntax coloring
f. TEX-aware spell checker
g. auto-completion for easy insertion of common

commands
h. templates to provide a starting point for com-

mon document types

TEXworks: lowering the barrier to entry NAJAAR 2008 71

Figure 1. A recent TEXworks build running on Windows Vista: source and preview windows, with the TeXShop-style
magnifying glass in use.

2. Ability to run TEX on the current document to
generate PDF
a. extensible set of TEX commands (with common

commands such as pdftex, pdflatex, xelatex,
context, etc. being preconfigured)

b. also support running BibTeX, Makeindex, etc.
c. any terminal output appears in a “console”

panel of the document window; automatically
hidden if no errors occur

d. “root document” metadata so “Typeset” works
from an \included file

3. Preview window to view the output
a. anti-aliased PDF display
b. automatically opens when TEX finishes
c. auto-refresh when re-typesetting (stay at same

page/view)
d. TeXShop-like “magnifying glass” feature to

examine detail in the preview
e. one-click re-typesetting from either source or

preview
f. source↔ preview synchronization based on

Jérôme Laurens’ SyncTEX technology

Current status
An early TEXworks prototype was demonstrated at the
BachoTeX conference (April 2008). It became more
widely available version (though still considered a pro-
totype, not a finished release) when a version was
posted in mid-July before the TUG 2008 conference.
The current code is available as source (easy to build
on typical GNU/Linux systems), and as precompiled
binaries for Windows and MacOSX.

At this time, the application supports text editing
and PDF viewer windows, and has the ability to run
a typesetting job and refresh the output view, etc.
There is not yet any documentation, and many poten-
tial “power user” features do not yet exist, but it is a
usable tool in its current state. In addition to Windows
(XP and Vista), it runs on MacOSX (see figure 2) and
GNU/Linux systems (figure 3).

A few features remain to be implemented before
a formal release of “version 0”, including “single in-
stance” behavior, and various options for window po-
sitioning; appropriate installer packages for MacOSX
and Windows are also needed, to simplify setup.

More information may be found online via the
TEXworks home page at http://texworks.org/.

72 MAPS 37 Jonathan Kew

Figure 2. TEXworks running on MacOSX: using the
Preferences dialog to configure a typesetting tool.

Figure 3. TEXworks running on a typical GNU/Linux
system (Ubuntu).

Future plans
After the release of version 0, several major additional
features are planned; some ideas high on the priority
list include:

2 intelligent handling of TEX errors
2 assistance with graphics inclusion and format

conversions
2 text search and copy in the PDF preview
2 support rich PDF features such as transitions,

embedded media (sound, video), annotations, etc.
2 customizable palettes of symbols, commands, etc.
2 TEX documentation lookup/browser
2 interaction with external editors and other tools
2 additional support for navigating in the source,

e.g., “folding” sections of text, recognizing docu-
ment structure tags such as \section, etc.

I expect development priorities to be guided by user
feedback as well as developer interest, once the initial
version 0 release is available.

Invitation to participate
TEXworks is a free and open source software project,
and all are welcome to participate and contribute to its
development. This does not necessarily mean writing
code; many other roles are equally important. Some
possible ways to participate include:

2 use the prototype for some real work, and give
feedback on what’s good, what’s bad, what’s
broken
– if there’s a current binary download available

for your platform, try that
– get the code and try building it on your plat-

form; provide bug reports (and fixes!) for
whatever problems show up

2 dig in to the code, and submit patches to implement
your favorite missing features

2 write on-line help, documentation and tutorials for
newcomers to TEXworks and TEX

2 review and enhance the command completion lists
available for the integrated editor

2 provide well-commented templates for various
types of document

2 design icons for the toolbars, etc.; TEXworks has
some nice icons from Qt and the Tango project, but
others are merely rough placeholders

2 use the Qt Linguist tool to localize the user interface
for your language

2 package TEXworks appropriately for your favorite
GNU/Linux or BSD distribution, or create an
installer for Windows or MacOSX

There is a TEXworks mailing list for questions and
discussions related to the project; for details, see:
http://tug.org/mailman/listinfo/texworks/.

The TEXworks source itself is maintained in a Google
Code project at http://code.google.com/p/texworks/.
Resources available through this site include the Sub-
version source repository, precompiled binaries for
Windows and MacOSX, and an issue tracker for bug
reports and feature suggestions.

Thanks
The TEXworks project arose out of discussions at sev-
eral recent TUG meetings, and has received generous
support from TUG’s TEX development fund and its con-
tributors, and from UK-TUG. Special thanks to Karl
Berry for his encouragement and support, and to Dick
Koch for showing us the potential of a clean, simple
TEX environment for the average user.

Jonathan Kew
jonathan@jfkew.plus.com

Norbert Preining NAJAAR 2008 73

TEX Live 2008 and the TEX Live
Manager∗

Abstract
TeX Live 2008 has been released recently, and the DVDs are ready to go gold. This
is the first release of TeX Live shipping the TeX Live Manager, tlmgr for short.
Besides taking over some of the tasks from texconfig (which has never been available
for Windows) it finally brings many new features to the TeX Live world, most
importantly the option for dynamic updates.
This article will present the new TeX Live Installer, the TeX Live Manager, and at
the end lists other changes in TeX Live 2008.

Important note
This article describes the status of the TEX Live Manager as it will be shipped around
October 2008, and not the one on DVD. The version on the DVD works fine for local
configuration tasks (which is why we felt it could be shipped), but is not sufficiently
robust for reliable updates over the Internet. Users’ first update will be to get the
new tlmgr.

Introduction
After more than one year of development work TEX Live 2008 has been released
with a complete new infrastructure [?]. At first these infrastructure changes were
only relevant for the developers themselves, since it made life (a bit) easier and the
system more consistent due to the elimination of duplicated information.

As a first user-visible change came the unification of the installer, so that all
supported platforms now share the same installer. Furthermore, this installer has
gotten a GUI which also is uniform across all platforms. On Unix systems the only
prerequsites are a Perl installation, and for the GUI the installation of Perl/Tk. On
Windows we ship a minimal Perl with the necessary modules.

The first part of this article will give an overview of the new installer.
The second user-visible change came from the addition of the TEX Live Manager,

or tlmgr for short, to the list of programs. It manages an existing TEX Live instal-
lation, both packages and options. Besides performing many of the same actions
as texconfig it has the ability to install additional packages, update and remove
existing ones, make backups, search within and list all packages.

The new installer
The creation of a new TEX Live installer was necessitated by the new package infra-
structure [?]. From a user’s point of view the new installer has only one visual
change, but there other significant changes. In particular:

2 It is possible to install TEX Live from the Internet.

∗Originally presented at the GuIT Conference 2008 in Pisa, and published in ArsTEXnica, issue 6

74 MAPS 37 Norbert Preining

=================> TeX Live installation procedure <================

==> Note: Letters/digits in <angle brackets> indicate menu items <==

==> for commands or configurable options <==

Proposed platform: Intel x86_64 with GNU/Linux

 binary systems: 1 out of 15

<S> Installation scheme (scheme-full)

Customizing installation scheme:

<C> standard collections

<L> language collections

83 collections out of 84, disk space required: 1426 MB

<D> directories:

TEXDIR (the main TeX directory):

/usr/local/texlive/2008

TEXMFLOCAL (directory for site-wide local files):

/usr/local/texlive/texmf-local

TEXMFSYSVAR (directory for variable and automatically generated data):

/usr/local/texlive/2008/texmf-var

TEXMFSYSCONFIG (directory for local config):

/usr/local/texlive/2008/texmf-config

TEXMFHOME (directory for user-specific files):

~/texmf

<O> options:

[] use letter size instead of A4 by default

[X] create all format files

[X] install macro/font doc tree

[X] install macro/font source tree

[] create symlinks in standard directories

<V> set up for running from DVD

Other options:

==

<I> start installation to hard disk

<H> help

<Q> quit

Enter command:

Figure 1. Main menu of the text mode installer

2 There is just one installer, which can run either in text mode, emulating the
former install-tl.sh shell script, or in GUI mode (more or less emulating the
TEX Live 2007 tlpmgui).

2 The Windows installation is much closer to using the same implementation
as Unix.

TEX Live 2008 and the TEX Live Manager NAJAAR 2008 75

Figure 2. Main window of the GUI installer

Install TEX Live from the Internet
If you got (by the time you read this article) a TEX Live DVD you can just start the
installer as usual. On Windows this will be by default the GUI installer (see below),
on Unix the text mode installer.

We also ship an installation package [?] containing all the necessary files for an
installation over the network. By default, normal installation will use a CTAN mirror,
selected using the http://mirror.ctan.org service. (See http://tug.org/'
&ctan.html#sites.)

Two installers for network downloads are provided. install-tl-unx.tar.gz
supports Unix only. install-tl.zip additionally contains a small subset of Perl
for Windows which is required to bootstrap the system. The latter works on all
platforms supported by TEX Live. The sole reason for providing a separate package
for Unix is its significantly smaller size.

In any case you can override the source from which you want to install with the
command line option -location.

The text mode installer
If you have used TEX Live in recent years you will see no big changes in the text
mode installer (see fig. 1); we tried to keep it as close as possible to the one used
in former releases. One new option is at the bottom of the menu, namely set up for
running from DVD. This is what we call live installation: it sets up a minimal writable
environment on your computer, while all the input files and binaries remain on the
DVD.

The GUI Installer
The GUI installer has nearly the same functionality as the text version; the option
to set up for live installation is the only missing piece. It is written in Perl/Tk and
thus should run on all platforms (on Unix Perl/Tk has to be installed).

76 MAPS 37 Norbert Preining

The main window can be seen in fig. 2. It should remind you very much of
the text mode installer. As with the text mode installer it allows you to change
which binary systems should be installed (fig. 3), select the scheme to be installed
(fig. 4), where a scheme is a pre-defined set of collections to be installed, and further
specify in more detail which collections (a collection is a set of packages) and which
language packages to install (fig. 5 and 6). You can select the installation directories
for TEX Live and toggle some options, all in line with the installer of recent years
and the text mode installer.

Figure 3. Binary system select window

Figure 4. Scheme select window

During installation the main window’s status line will indicate what is going on
currently, and at the same time the program will print out to the terminal the same
output as the normal installer.

For both the text mode installer and the GUI mode installer, a log file with more
details is created in the installation directory as install-tl.log. (If you report
installation problems, please send us this log file.)

TEX Live 2008 and the TEX Live Manager NAJAAR 2008 77

Figure 5. Collections select window

Figure 6. Language packs select window

Bringing Windows in line with Unix
TEX Live 2008 supports Windows 2000 and later. By dropping older Windows ver-
sions, there is much less need to treat Windows specially.

Under Windows 2000 and later, users have a real home directory, viz. %USER'
&PROFILE%, usually C:\Documents and Settings\username.

78 MAPS 37 Norbert Preining

This is now reflected in tilde expansion by Kpathsea: ˜/texmf is expanded to
%USERPROFILE%\texmf under Windows and to $HOME/texmf under Unix.

It is also possible to differentiate between system settings and user settings. Hap-
pily, there is no longer any need to have a different set of texmf trees on Windows,
or to leave out scripts such as fmtutil-sys and updmap-sys. We also have a single
texmf.cnf used on all platforms.

The TEX Live Manager
TEX Live Manager provides a wealth of options and commands; we will explain
them all here, some tersely, some in more detail. Of course we expect to add more
features in the future.

The TEX Live Database
First of all, it is important to understand where all the information about installed
packages and other options are saved. This is the TEX Live database, which nor-
mally can be found in ROOT/tlpkg/texlive.tlpdb (where ROOT is the destination
folder you have choosen at installation time). It contains the list of all packages, all
the files installed, and in addition to that collects configuration information like the
default installation source, and the options you have set at installation time (e.g.,
whether you want A4 or letter-size paper by default).

Most of tlmgr’s actions will load the local database, and many actions will also
load a remote database: If you want to install a package, the TEX Live Manager
will load the database of the specified installation server and checks whether this
package exists.

Although we say remote, it is not necessarily a remote network location. If you
install from DVD the default installation source will be the DVD, and tlmgr will load
the database located on the DVD when needed.

General syntax of tlmgr
The general syntax of tlmgr is

tlmgr [opt]... action [opt]... [arg]...

The first set of options before the main action configure the general operation of
tlmgr, while the second set of options are specific to the chosen action. We do not
support mixing and reshuffling of all these options, partly for the sake of clarity,
and also for programming reasons. The first set of options can contain:

--location loc specifies the location from which packages should be installed
or updated, overriding the location found in the installation’s TEX Live Package
Database (TLPDB).

--gui starts the GUI version of tlmgr. The GUI does not support all the bells
and whistles of the command-line program. It is in fact a separate program
that calls the command-line version to do the actual work. The difference
between this --gui option and the gui action (see below) is that given the
option, tlmgr tries to open the GUI directly at the screen for the specified
action.

--gui-lang ll selects the language in which the GUI will appear. Normally the
GUI tries to deduce your language from the environment (on Windows via
the registry, on Unix via LC_MESSAGES). If that fails you can select a different
language by giving this option a two-letter language code.

Furthermore, some standard options are supported: --help (also -h) for getting
help, -q which supresses informational messages, and -v (verbose) for turning on

TEX Live 2008 and the TEX Live Manager NAJAAR 2008 79

debugging options. With --version the script will show you the version of your
TEX Live system and of itself.

The actions
There is a (permanently growing) list of actions, currently: help, version, gui,
install, update, backup, restore, remove, option, paper, arch, search, show,
list, check, uninstall, generate.

The general actions.

2 search [option...] what Without any options, search in the list of locally
installed packages for package names or descriptions matching what. If you
give the option --global it also searches the remote database. This might
differ in case you have not installed all of TEX Live, but only a part of it.
Finally, if you specify --file then files are searched, and not package names.

2 show pkg... gives you more detailed information on the listed packages. If
all packages are installed locally, it does not consult the remote database.

2 list [collections|schemes] With no argument, lists all packages
available at the default install location, prefixing those already installed with
"i ". With an argument lists only collections or schemes, as requested.

2 uninstall This action will ask for confirmation, and then remove the entire
installation. Don’t do it or we will be sad. If you give the --force option, it
does not even ask, but proceeds immediately with the removal.

2 check [files|collections|all] Executes one (or all) check(s) on the
consistency of the installation. For files it checks that all files listed in
the local database are actually present, and lists those missing.The option
--use-svn will use the svn command to check for the files.

2 gui starts the GUI, as explained above at --gui.

2 version is the same as --version.

2 help is the same as --help.

The configuration actions.

2 option [show] Shows all configuration settings currently saved in the local
database. The show option is accepted and ignored.

2 option key [value] Without the value, shows the current value of the con-
figuration option key; with value, sets this configuration option. Currently
accepted keys are location (default installation location), formats (cre-
ate formats at installation time), docfiles (install documentation files),
srcfiles (install source files). These are the options you have set at instal-
lation time and will be honoured at later install and upgrade actions. For
example, changing the docfiles options from false to true will not install
or remove the already present documentation files. But a subsequent update
will install or remove them.

2 paper paper Sets the default papersize; possible values are a4 and letter.

2 program paper [help|paper] This allows setting different paper sizes for
the specified program: xdvi, dvips, pdftex, dvipdfm, dvipdfmx, context.
Without any additional argument it reports the currently selected papersize.
With help, it issues all the supported paper sizes for that program. And if you
specify a paper size, it will be set as default papersize for the given program.

80 MAPS 37 Norbert Preining

2 generate what This command generates one or more configuration files, as
follows:

Giving language.dat for what generates the language.dat file which
specifies the hyphenation patterns to be loaded for LaTEX-based formats.
Giving language.def for what generates the language.def file which spec-
ifies hyphenation patterns to be loaded for etex-based formats. Specifying
language for what generates both of these files.

Giving fmtutil for what generates the fmtutil.cnf file which contains
the definitions of all formats available.

Giving updmap for what generates the updmap.cfg file which lists all the
installed font map files.

For fmtutil and the language files, recreating is normal and both the
installer and tlmgr routinely call that.

For updmap, however, neither the installer nor tlmgr use generate,
because the result would be to disable all maps which have been manually
installed via updmap-sys --enable, e.g., for proprietary or local fonts. Only
the changes in the --localcfg file mentioned below are incorporated by
generate.

On the other hand, if you only use the fonts and font packages within
TEX Live, there is nothing wrong with using generate updmap. Indeed, we
use it to generate the updmap.cfg file that is maintained in the live source
repository.

If the files language-local.dat, language-local.def, fmtutil-'
&local.cnf, or updmap-local.cfg are present under TEXMFLOCAL in the
respective directories, their contents will be simply merged into the final files,
with no error checking of any kind.

The package management actions.

2 install pkg… installs the packages given as argument. By default, installing
a package also installs all of its dependencies. The following options are
supported: --no-depends will not install dependent packages. There is
also --no-depends-at-all which in addition disregards the tightly coupled
packages architecture-specific executables; for example, bin-bibtex and
bin-bibtex.i386-linux. That is something you should never use unless
you are sure you know what you are doing. --dry-run fakes the installation
without changing anything.

2 update pkg… updates the packages given as arguments. In addition, if the
pkg is a collection, and the remote server has new packages in this collection,
they will be installed, following the dependencies specified in the collection.
Options:

--list Lists the packages which would be updated or newly installed, but
does not do the update. It also lists the revision numbers of the local
and the remote packages.

--all Update all out-of-date packages.

--dry-run Fake the updates without changing anything.

--backupdir directory Save a snapshot of the current package (as
installed) in directory, before the package is updated. This way one can
easily recover in case an update turned out as not working. See the
restore action for details.

--no-depends Do not install normal dependencies.

--no-depends-at-all See install above for this option.

TEX Live 2008 and the TEX Live Manager NAJAAR 2008 81

2 remove pkg… removes the packages given as arguments. Removing a
collection will remove all package dependencies (but not collection depen-
dencies) in that collection, unless --no-depends is specified. However, when
removing a package, dependencies are never removed.

Options:

--no-depends Do not remove dependent packages.

--no-depends-at-all See install above for this option.

--force By default, when removing a package or collection would
invalidate a dependency of another collection/scheme, the package is
not be removed and an error is given. With this option, the package will
be removed unconditionally. Use with care.

--dry-run Fake the removals without actually changing anything.

2 backup pkg… makes a backup of the given packages, or all packages with
--all, to the directory specified with --backupdir (must exist and be
writable.

The following options are supported:

--backupdir directory The directory is a required argument and must
specify an existing directory where backups are to be placed.

--all Make a backup of all packages in the TEX Live installation. This will
take quite a lot of space and time.

2 restore --backupdir dir [pkg [rev]]
If no pkg is given (and thus no rev), lists the available backup revisions for
all packages.

With pkg given but no rev, list all available backup revisions of pkg.
With both pkg and rev, tries to restore the package from the specified

backup.
The option --backupdir dir is required, and must specify a directory

with backups.
The option --dry-run is also supported, as usual.

2 arch operation arg…If operation is list, this lists the names of architectures
(i386-linux, …) available at the default install location.

If operation is add, adds the executables for each of the following arguments
(architecture names) to the installation.

The option --dry-run is also supported, as usual.

Typical usage of tlmgr
Here we present some typical usage examples of the TEX Live Manager.

Installing a new collection. Suppose that you installed scheme-medium and then
realize that the hyphenation patterns for some language you are using haven’t been
installed, say, Norwegian. First you fire up tlmgr to search for the support:

$ tlmgr search --global norwegian
collection-langnorwegian - Norwegian
hyphen-norwegian -

and then to install this collection:

$ tlmgr install collection-langnorwegian
install: collection-langnorwegian
install: hyphen-norwegian
regenerating language.dat
regenerating language.def

82 MAPS 37 Norbert Preining

and then it continues to regenerate all the format files depending on either lang'
&uage.dat or language.def. (If the the formats option is changed to false in the
local database, the format rebuilding will be skipped. The default is to do so, to
keep them up to date without manual intervention.)

Searching for a package. You want to typeset an invitation in a special form, say
in the shape of a heart. Your first try is

$ tlmgr search paragraph

but that yields no output. Maybe it’s not installed? So try a global search:

$ tlmgr search -global paragraph
tlmgr: installation location /src/TeX/texlive-svn/Master
bigfoot - Footnotes for critical editions
edmargin - Multiple series of endnotes for critical editions
footmisc - A range of footnote options
genmpage - Generalization of LaTeX’s minipages
hanging - Hanging paragraphs
ibycus-babel - Use the Ibycus 4 Greek font with Babel
insbox - A TeX macro for inserting pictures/boxes into paragraphs
layouts - Display various elements of a document’s layout
lettrine - Typeset dropped capitals
lineno - Line numbers on paragraphs
lipsum - Easy access to the Lorem Ipsum dummy text
moresize - Allows font sizes up to 35.83pt
ncctools - A collection of general packages for LaTeX
paralist - Enumerate and itemize within paragraphs
picinpar - Insert pictures into paragraphs
plari - Typesetting stageplay scripts
seqsplit - Split long sequences of characters in a neutral way
shapepar - A macro to typeset paragraphs in specific shapes
vwcol - Variable-width multiple text columns

and here we are, shapepar seems to be what’s needed. So let us see what it is:

$ tlmgr show shapepar
tlmgr: installation location /src/TeX/texlive-svn/Master
Package: shapepar
Category: Package
ShortDesc: A macro to typeset paragraphs in specific shapes.
LongDesc: \shapepar is a macro to typeset paragraphs in a
special ...
Installed: No
Collection:collection-latexextra

Ok, confirmed, now we can either install the respective collection using

$ tlmgr install collection-latexextra

which will install quite a lot of packages, or only that one single package in the
hope that it does not depend on anything else:

$ tlmgr install shapepar
tlmgr: installation location /src/TeX/texlive-svn/Master
install: shapepar
running mktexlsr
...

These examples are about finding uninstalled packages. The default for TEX Live
is a full installation, i.e., everything is installed that is available.

TEX Live 2008 and the TEX Live Manager NAJAAR 2008 83

Updating your installation. After the initial installation you want to get the latest
and greatest of everything, but first you want to see what that means:

$ tlmgr update --list
tlmgr: installation location /mnt/cdrom
Cannot load TeX Live database from /mnt/cdrom at /home/norbert/tltest'

&/2008/bin/i386-linux/tlmgr line 1505, <TMP> line 1982.

Hmm, there seems to be an error, it tries to install from the DVD which you returned
to your friend last week. Well, then you should switch to the network installation
source; best to do it for all future sessions by saving it as default location. But what
was that strange address again? Fortunately you can tell tlmgr to use CTAN and it
will know what to do:

$ tlmgr option location ctan
tlmgr: setting default installation location to http://mirror.ctan.org'

&/systems/texlive/tlnet/2008

Fine. Now let us see what we can upgrade:

$ tlmgr update --list
shapepar: local: 10400, source: 10567
bin-texlive: local: 10693, source: 10750
pdftex: local: 10622, source: 10705
texlive.infra: local: 10685, source: 10748

Well, some things are there, so let us update all of them at once:

$ tlmgr update --all
update: shapepar (10400 -> 10567) ... done
update: bin-texlive (10693 -> 10750) ... done
update: pdftex (10622 -> 10705) ... done
update: texlive.infra (10685 -> 10748) ... done
running mktexlsr ...

Paper size configuration. You are moving to Japan and want letter as your default
paper size; nothing easier:

$ tlmgr paper letter

will switch to letter for the most important programs, and at also recreate the for-
mats.

The GUI for tlmgr
To make most Windows users and some Unix users happy we provide a front end
for the TEX Live Manager written in Perl/Tk. It does not do the actual work, but
leaves that for tlmgr. It also does not provide quite the full functionality of tlmgr,
but almost all of it is there.

This program features several screens for different functionalities: installation,
update, and removal of packages, removal of TEX Live as a whole, architecture
support and configuration.

The GUI is started with either tlmgr gui or tlmgr --gui action where action
is one of the actions given above. In the latter case it tries to open the respective
screen of the GUI.

The install screen
The first window to be seen normally is the package installation screen (fig. 7).

At the top you see the current installation source, as given either on the com-
mand line of tlmgr, or in the absence of a command line argument as taken from

84 MAPS 37 Norbert Preining

Figure 7. TEX Live Manager GUI install screen

the default option. It is not loaded automatically, you have to press the Load but-
ton, or the Change button to select a different installation source for this run only.
Below you see the list of available packages on the left, first all the collections and
schemes, then all the other packages in alphabetic order. You can search by enter-
ing a string into the search text field, which immediately jumps to the first entry.
The button Next jumps to the next match. After selecting one package you can
see its description in the right half of this screen. Below there is the action button
for installing the selected package(s), and also a switch that allows you to install a
package without those it depends on.

The update screen
The update screen is similar to the install screen, but only lists those packages which
have an upgrade available on the installation location. The upper part of the right
pane gives you information on the package, and in the action area below you see
two buttons, one for updating only the selected packages, and one for updating all
packages.

In fig. 8 you can see the update screen with updates available and the information
for the selected package shown in the right part of the screen.

The remove screen
The remove screen is also similar to the install screen, with the list of all installed
packages in the left part, the information window in the upper right part, and the
action area with two toggles and the remove button in the lower right part; see
fig. 9.

The two toggles correspond to the option --force and --no-depends of the
tlmgr remove action, see above.

TEX Live 2008 and the TEX Live Manager NAJAAR 2008 85

Figure 8. TEX Live Manager GUI update screen

Figure 9. TEX Live Manager GUI remove screen

The uninstallation screen
This screen only sports one button which allows you to completely remove the
TEX Live installation from your system. This button is not present on Windows sys-
tems, being replaced by an informational note that you should use the Add/Remove
entry from the Control Panel.

The architectures screen
TEX Live allows you to install the binaries for several architecture-operating system
combinations in case you want to distribute your installation via NFS or other means
in an inhomogen local network, see fig. 10.

This screen lists the available architectures at the current installation source, and
allows you to select new architectures to be installed by pressing the Apply changes
button.

86 MAPS 37 Norbert Preining

Figure 10. TEX Live Manager GUI architectures screen

Note that the removal of architectures is currently not supported, and that the
whole screen is disabled on Windows systems since Windows does not support nor-
mal symbolic links.

The config screen
This screen allows the user to comfortably examine and set the various options of
the TEX Live installation, see figure 11.

In the upper part you can change the defaults for the installation source, whether
formats should be created (and updated) by default, and whether macro/font doc-
umentation and source files should be installed.

In the lower left part you can set the letter for all the programs to either A4 or
letter, or for each program individually. In the latter case you can choose from a
wide range of paper formats depending on the programs support.

In the lower right part there are some convenience buttons for updating the ls-R
databases, the outline font list (updmap-sys) and rebuilding all formats.

Execution of the commands
As mentioned above, this GUI is only a front end and leaves the actual work to tlmgr
itself. So every action you do (installation, removal, etc.) will pop up a window
where the output of the tlmgr process is shown.

On Unix systems that output will be shown immediately. Windows lacks good
support for forking in Perl/Tk, and thus you have to wait until the whole process
has terminated before the output appears. That can take quite some time, so please
be patient.

We are working on merging the tlmgr and its GUI into one program so that the
output would become more immediate in all cases.

TEX Live 2008 and the TEX Live Manager NAJAAR 2008 87

Figure 11. TEX Live Manager GUI config screen

What else is there?
Besides reworking the whole infrastructure, which is only user-visible in the new
installer and the TEX Live Manager, as with every year, all the programs and pack-
ages have been updated. We currently ship around 1400 normal packages, e.g.,
LaTEX and font packages, and around 300 other packages, mostly documenation
and a few packages which are TEX Live internal.

The new player in the game this year is the new engine LuaTEX (http://luatex.org);
besides a new level of flexibility in typesetting, this provides an excellent scripting
language for use both inside and outside of TEX documents.

Windows-specific features
To be complete, a TEX Live installation needs support packages that are not com-
monly found on a Windows machine. TEX Live provides the missing pieces:

Perl and Ghostscript. Because of the importance of Perl and Ghostscript,
TEX Live includes ‘hidden’ copies of these programs. TEX Live programs that
need them know where to find them, but they don’t betray their presence
through environment variables or registry settings. They aren’t full-scale
distributions, and shouldn’t interfere with any system installations of Perl or
Ghostscript.

Command-line tools. A number of Windows ports of common Unix command-
line programs are installed along with the usual TEX Live binaries. These
include gzip, chktex, jpeg2ps, unzip, wget and the command-line utilities
from the xpdf suite. (The xpdf viewer itself is not available for Windows, but
the Sumatra PDF viewer is based on it: http://blog.kowalczyk.info/'
&software/sumatrapdf.)

88 MAPS 37 Norbert Preining

fc-cache helps XeTEX to handle fonts more efficiently.

PS_View. Also installed is PS_View, a new PostScript viewer that is free software;
see fig. 12. It also supports viewing of PDF files and is extremely fast. Please
contact us with any suggestions, this program is in active development.

dviout This is a DVI previewer which is shipped only in the support directory of
the DVD, but you will get it if you use the network update procedure. See
fig. 13 for a screenshot.

Figure 12. PS_View allows very high magnification, and renders pdf, too

Figure 13. DVIout on Windows

TEX Live 2008 and the TEX Live Manager NAJAAR 2008 89

Final remarks and other resources
The TEX Live Manager is very much work in progress, and its GUI even more. We
are adding new functionality frequently, and improving existing functionality to
make it more robust. If you see any anomalies don’t hesitate to contact us at tex-
live@tug.org, and we will try to improve it further.

As with most volunteer projects the group of core programmers is quite small.
Most of tlmgr and its GUI has been programmed by the author with some minor con-
tributions from others. Anyone being more or less able to program Perl is heartily
invited to join forces and help us, there are long lists of TODOs for the TEX Live
Manager, let alone for all of TEX Live.

If you are searching more information on TEX Live your starting place should be
http://tug.org/texlive/ and the documentation page http://tug.org/texlive/'
&doc.html.

The list of people to thank is too long to be included here, please see the online
TEX Live documentation, Chapter 9 (Acknowledgments), for the ever growing list.
Of course one name has to be mentioned and that is Karl Berry who with great
enthusiasm and perpetual support (and a sometimes critical voice if I was too fast
in implementing something!) prepared the TEX Live 2008 release.

Norbert Preining
preining@logic.at

EuroTEX 2009 3rd ConTEXt Meeting

The Dutch TEX Language User Group and the ConTEXt task force
are pleased to invite you to the combined EuroTEX 2009 confer-
ence and third international ConTEXt meeting.

24 – 28 August 2009, The Hague

Call for Papers
As usual, proposals for presentations and workshops are wel-
comed on just about any topic of interest to TEX users, but the
conference focus will be on

Educational uses of TEX

such as manuals, courseware and college presentations, so we
especially welcome proposals on subjects in those elds.

The language of the conference is English. Please send abstracts
and proposals in plain text or TEX format to the conference com-
mittee at eurotex@ntg.nl.

Registration
The conference is made possible by the Netherlands Defence
Academy (NLDA) that graciously invited us to their facilities, in-
cluding the on-site hotel.

http://www.ntg.nl/EuroTeX2009/

Participants who complete registration before February 1, 2009
will benet from a special early bird discount.

C O N
T E XT

