
Ulrik Vieth VOORJAAR 2009 3

Do we need a ‘Cork’ math font encoding?∗

Abstract
The city of Cork has become widely known in the TEX
community, ever since it gave name to an encoding
developed at the European TEX conference of 1990.
The ‘Cork’ encoding, as it became known, was the
first example of an 8-bit text font encoding that
appeared after the release of TEX 3.0, and was later
followed by a number of other encodings based on
similar design principles.

As of today, the ‘Cork’ encoding represents only one
out of several possible choices of 8-bit subsets from a
much larger repertoire of glyphs provided in fonts such
as Latin Modern or TEX Gyre. Moreover, recent
developments of new TEX engines are making it
possible to take advantage of OpenType font
technology directly, largely eliminating the need for
8-bit font encodings altogether.

During the entire time since 1990 math fonts have
always been lagging behind the developments in text
fonts. While the need for new math font encodings
was recognized early on and while several encoding
proposals have been discussed, none of them ever
reached production quality or became widely used.

In this paper, we review the situation of math fonts as
of 2008, especially in view of recent developments of
Unicode and OpenType math fonts such as the STIX
fonts or Cambria Math. In particular, we try to answer
the question whether a ‘Cork’ math font encoding is
still needed or whether Unicode and OpenType might
eliminate the need for TEX-specific math font
encodings.

History and development of text fonts
The ‘Cork’ encoding
When the 5th European TEX conference was held in
Cork in the summer of 1990, the TEX community was
undergoing a major transition phase. TEX 3.0 had just
been released that year, making it possible to switch
from 7-bit to 8-bit font encodings and to support hy-
phenation for multiple languages.

Since the ability to properly typeset and hyphenate
accented languages strongly depended on overcoming
the previous limitations, European TEX users wanted

∗First published in TUGboat 29:3 (2008), pp.426–434. Reprinted
with permission.

to take advantage of the new features and started to
work on new font encodings [1, 2, 3]. As a result, they
came up with an encoding that became widely known
as the ‘Cork’ encoding, named after the site of the con-
ference [4].

The informal encoding name ‘Cork’ stayed in use for
many years, even after LaTEX 2ε and NFSS2 introduced
a system of formal encoding names in 1993–94, assign-
ing OTn for 7-bit old text encodings, Tn for 8-bit stan-
dard text encodings, and Ln for local or non-standard
encodings [5]. The ‘Cork’ encoding was the first exam-
ple of a standard 8-bit text font and thus became the
T1 encoding.

While the ‘Cork’ encoding was certainly an impor-
tant achievement, it also introduced some novel fea-
tures that may have seemed like a good idea at that
time but would be seen as shortcomings or problems
from today’s point of view, after nearly two decades of
experience with font encodings.

In retrospect, the ‘Cork’ encoding represents a typi-
cal example of the TEX-specific way of doing things of
the early 1990s without much regard for standards or
technologies outside the TEX world.

Instead of following established standards, such as
using ISO Latin 1 or 2 or some extended versions for
Western and Eastern European languages, the ‘Cork’
encoding tried to support as many languages as pos-
sible in a single font encoding, filling the 8-bit font
table to the limit with accented characters at the ex-
pense of symbols. Since there was no more room left
in the font table, typesetting symbols at first had to be
taken from the old 7-bit fonts, until a supplementary
text symbol TS1 encoding [6] was introduced in 1995
to fill the gap.

When it came to implementing the T1 and TS1 en-
codings for PostScript fonts, it turned out that the en-
codings were designed without taking into account the
range of glyphs commonly available in standard Post-
Script fonts.

Both font encodings could only be partially imple-
mented with glyphs from the real font, while the re-
maining slots either had to be faked with virtual fonts
or remain unavailable. At the same time, none of the
encodings provided access to the full set of available
glyphs from the real font.

4 MAPS 38 Ulrik Vieth

Alternatives to the ‘Cork’ encoding
As an alternative to using the T1 and TS1 encodings for
PostScript fonts, the TeXnANSI or LY1 encoding was
proposed [7], which was designed to provide access
to the full range of commonly available symbols (sim-
ilar to the TeXBase1 encoding), but also matched the
layout of the OT1 encoding in the lower half, so that
it could be used as drop-in replacement without any
need for virtual fonts.

In addition to that, a number of non-standard en-
codings have come into use as local alternatives to the
’Cork’ encoding, such as the Polish QX, the Czech CS,
and the Lithuanian L7X encoding, each of them try-
ing to provide better solutions for the needs of specific
languages.

In summary, the ‘Cork’ encoding as the first example
of an 8-bit text encoding (T1) was not only followed by
additional encodings based on the same design princi-
ples for other languages (Tn), but also supplemented
by a text symbol encoding (TS1) and complemented
by a variety of local or non-standard encodings (LY1,
QX, CS, etc.).

As became clear over time, the original goal of the
‘Cork’ encoding of providing a single standard encod-
ing for as many languages as possible couldn’t possibly
be achieved within the limits of 8-bit fonts, simply be-
cause there are far too many languages and symbols
to consider, even when limiting the scope to Latin and
possibly Cyrillic or Greek.

Recent developments of text fonts
Unicode support in new TEX fonts
It was only in recent years that the development of the
Latin Modern [8, 9, 10] and TEX Gyre fonts [11, 12]
has provided a consistent implementation for all the
many choices of encodings.

As of today, the ‘Cork’ encoding represents only one
out of several possible 8-bit subsets taken from a much
larger repertoire of glyphs. The full set of glyphs, how-
ever, can be accessed only when moving beyond the
limits of 8-bit fonts towards Unicode and OpenType
font technology.

Unicode support in new TEX engines
As we are approaching the TUG 2008 conference at
Cork, the TEX community is again undergoing a ma-
jor transition phase. While TEX itself remains frozen
and stable, a number of important developments have
been going on in recent years.

Starting with the development of PDFTEX since the
late 1990s the use of PDF output and scalable Post-
Script or TrueType fonts has largely replaced the use
of DVI output and bitmap PK fonts.

Followed by the ongoing development of X ETEX and
LuaTEX in recent years the use of Unicode and Open-
Type font technology is also starting to replace the use
of 8-bit font encodings as well as traditional PostScript
or TrueType font formats.

Putting everything together, the development of
new fonts and new TEX engines in recent years has
enabled the TEX community to catch up with devel-
opments of font technology in the publishing industry
and to prepare for the future.

The only thing still missing (besides finishing the
ongoing development work) is the development of
support for Unicode math in the new TEX engines and
the development of OpenType math fonts for Latin
Modern and TEX Gyre.

History and development of math fonts
When TEX was first developed in 1977–78, the 7-bit
font encodings for text fonts and math fonts were
developed simultaneously, since both of them were
needed for typesetting mathematical textbooks like
The Art of Computer Programming.

When TEX 3.0 made it possible to switch from 7-bit
to 8-bit font encodings, it was the text fonts dri-
ving these new developments while the math fonts re-
mained largely unchanged.

As a result, the development of math fonts has been
lagging behind the corresponding text fonts for nearly
two decades now, ever since the development of the
‘Cork’ encoding started in 1990.

In principle, a general need for new math fonts was
recognized early on: When the first implementations
of ‘Cork’ encoded text fonts became available, it was
soon discovered that the new 8-bit text fonts couldn’t
fully replace the old 7-bit text fonts without resolving
the inter-dependencies between text and math fonts.
In practice, however, nothing much happened since
there was no pressing need.

The ‘Aston’ proposal
The first bit of progress was made in the summer of
1993, when the LaTEX3 Project and some TEX users
group sponsored a research student to work on math
font encodings for a few months.

As a result, a proposal for the general layout of
new 8-bit math font encodings was developed and pre-
sented at TUG 1993 at Aston University [13]. Unlike
the ‘Cork’ encoding, which became widely known, this
‘Aston’ proposal was known only to some insiders and
went largely unnoticed.

After only a few months of activity in 1993 the
project mailing list went silent and nothing further
happened for several years, even after a detailed re-
port was published as a LaTEX3 Project Report [14].

Do we need a ‘Cork’ math font encoding? VOORJAAR 2009 5

The ‘newmath’ prototype
The next bit of progress was made in 1997–98, when
the ideas of the ‘Aston’ proposal were taken up again
and work on an implementation was started.

This time, instead of just discussing ideas or prepar-
ing research documents, the project focussed on devel-
oping a prototype implementation of new math fonts
for several font families using a mixture of MetaFont
and fontinst work [15].

When the results of the project were presented at
the EuroTEX 1998 conference [16], the project was
making good progress, although the results were still
very preliminary and far from ready for production.

Unfortunately, the project then came to a halt soon
after the conference when other activities came to the
forefront and changed the scope and direction of the
project [17, 18].

Before the conference, the goal of the project had
been to develop a set of 8-bit math font encodings for
use with traditional TEX engines (within the constraints
of 16 families of 256 glyphs) and also to provide some
example implementations by means of reencoding and
enhancing existing font sets.

After the conference, that goal was set aside and put
on hold for an indefinite time by the efforts to bring
math into Unicode.

Recent developments of math fonts
Unicode math and the stix fonts
While the efforts to bring math into Unicode were cer-
tainly very important, they also brought along a lot of
baggage in the form of a very large number of addi-
tional symbols, making it much more work to provide
a reasonably complete implementation and nearly im-
possible to encode all those symbols within the con-
straints of traditional TEX engines.

In the end, the Unicode math efforts continued over
several years until the symbols were accepted [19, 20]
and several more years until an implementation of a
Unicode math font was commissioned [21] by a con-
sortium of scientific and technical publishers, known
as the STIX Project.

When the first beta-test release of the so-called STIX
fonts [22] finally became available in late 2007, nearly
a decade had passed without making progress on math
font encodings for TEX.

While the STIX fonts provide all the building blocks
of Unicode math symbols, they are still lacking TEX sup-
port and may yet have to be repackaged in a different
way to turn them into a usable font for use with TEX or
other systems.

Despite the progress on providing the Unicode math
symbols, the question of how to encode all the many

Unicode math symbols in a set of 8-bit font encodings
for use with traditional TEX engines still remains un-
resolved. Most likely, only a subset of the most com-
monly used symbols could be made available in a set of
8-bit fonts, whereas the full range of symbols would be
available only when moving to Unicode and OpenType
font technology.

OpenType math in ms Office 2007
While the TEX community and the consortium of scien-
tific publishers were patiently awaiting the release of
the STIX fonts before reconsidering the topic of math
font encodings, outside developments have continued
to move on. In particular, Microsoft has moved ahead
and has implemented its own support for Unicode
math in Office 2007.

They did so by adding support for math typesetting
in OpenType font technology [23, 24] and by commis-
sioning the design of the Cambria Math font as an im-
plementation of an OpenType math font [25, 26, 27].
In addition, they have also adopted an input language
called ‘linear math’ [28], which is strongly based on
TEX concepts.

While OpenType math is officially still considered
experimental and not yet part of the OpenType speci-
fication [29], it is already a de facto standard, not only
because it has been deployed to millions of installa-
tions of Office 2007, but also because it has already
been adopted by other projects, such as the FontForge
font editor [30] and independent font designs such as
Asana Math [31].

In addition, the next release of the STIX fonts sched-
uled for the summer of 2008 is also expected to include
support for OpenType math.

OpenType math in new TEX engines
At the time of writing, current development versions
of X ETEX have added some (limited) support for Open-
Type math, so it is already possible to use fonts such
as Cambria Math in X ETEX [32], and this OpenType
math support will soon become available to the TEX
community at large with the upcoming release of TEX
Live 2008.

Most likely, LuaTEX will also be adding support for
OpenType math eventually, so OpenType math is likely
to become a de facto standard in the TEX world as well,
much as we have adopted other outside developments
in the past.

OpenType math for new TEX fonts?
Given these developments, the question posed in the
title of this paper about the need for new math font
encodings may soon become a non-issue.

6 MAPS 38 Ulrik Vieth

If we decide to adopt Unicode and OpenType math
font technology in new TEX engines and new fonts, the
real question is no longer how to design the layout of
encoding tables but rather how to deal with the tech-
nology of OpenType math fonts, as we will discuss in
the following sections.

Future developments in math fonts
Some background on OpenType math
The OpenType font format was developed jointly by
Microsoft and Adobe, based on concepts adopted from
the earlier TrueType and PostScript formats. The over-
all structure of OpenType fonts shares the extensible
table structure of TrueType fonts, adding support for
different flavors of glyph descriptions in either Post-
Script CFF or TrueType format. (An extensive doc-
umentation of the OpenType format and its features
as well as many other important font formats can be
found in [33].)

One of the most interesting points about OpenType
is the support for ‘advanced’ typographic features, sup-
porting a considerable amount of intelligence in the
font, enabling complex manipulations of glyph posi-
tioning or glyph substitutions. At the user level, many
of these ‘advanced’ typographic features can be con-
trolled selectively by the activation of so-called Open-
Type feature tags.

Despite its name, the OpenType font format is not
really open and remains a vendor-controlled specifica-
tion, much like the previous TrueType and PostScript
font formats developed by these vendors. The offi-
cial OpenType specification is published on a Microsoft
web site at [29], but that version may not necessarily
reflect the latest developments.

In the case of OpenType math, Microsoft has used
its powers as one of the vendors controlling the spec-
ification to implement an extension of the OpenType
format and declare it as ‘experimental’ until they see fit
to release it. Fortunately, Microsoft was smart enough
to borrow from the best examples of math typesetting
technology when they designed OpenType math, so
they chose TEX as a model for many of the concepts
of OpenType math.

The details of OpenType math
The OpenType MATH table. One of the most distinc-
tive features of an OpenType math font is the presence
of a MATH table. This table contains a number of global
font metric parameters, much like the \fontdimen pa-
rameters of math fonts in TEX described in Appendix G
of The TEXbook.

In a traditional TEX setup these parameters are es-
sential for typesetting math, controlling various as-
pects such as the spacing of elements such as big oper-
ators, fractions, and indices [34, 35].

In an OpenType font the parameters of the MATH
table have a similar role for typesetting math. From
what is known, Microsoft apparently consulted with
Don Knuth about the design of this table, so the result
is not only similar to TEX, but even goes beyond TEX
by adding new parameters for cases where hard-wired
defaults are applied in TEX.

In the X ETEX implementation the parameters of the
OpenType MATH table are mapped internally to TEX’s
\fontdimen parameters. In most cases this mapping
is quite obvious and straight-forward, but unfortu-
nately there are also a few exceptions where some pa-
rameters in TEX do not have a direct correspondence
in OpenType. It is not clear, however, whether these
omissions are just an oversight or a deliberate design
decision in case a parameter was deemed irrelevant or
unnecessary.

Support for OpenType math in X ETEX still remains
somewhat limited for precisely this reason; until the
mapping problems are resolved, X ETEX has to rely on
workarounds to extract the necessary parameters from
the OpenType MATH table.

At the time of writing, the extra parameters intro-
duced by OpenType generalizing the concepts of TEX
have been silently ignored. It is conceivable, however,
that future extensions of new TEX engines might even-
tually start to use these parameters in the math type-
setting algorithms as well.

In the end, whatever technology is used to typeset
OpenType math, it remains the responsibility of the
font designer to set up the values of all the many para-
meters affecting the quality of math typesetting. Un-
fortunately, for a non-technical designer such a task
feels like a burden, which is better left to a technical
person as a font implementor.

For best results, it is essential to develop a good un-
derstanding of the significance of the parameters and
how they affect the quality of math typesetting. In [35]
we have presented a method for setting up the values
of metric parameters of math fonts in TEX. For Open-
Type math fonts, we would obviously have to recon-
sider this procedure.

Font metrics of math fonts. Besides storing the global
font metric parameters, the OpenType MATH table is
also used to store additional glyph-specific information
such as italic corrections or kern pairs, as well as in-
formation related to the placement of math accents,
superscripts and subscripts.

In a traditional TEX setup the font metrics of math
fonts have rather peculiar properties, because much of
the glyph-specific information is encoded or hidden by
overloading existing fields in the TFM metrics in an un-
usual or non-intuitive way [36].

For example, the width in the TFM metrics is not the
real width of the glyph. Instead, it is used to indicate

Do we need a ‘Cork’ math font encoding? VOORJAAR 2009 7

the position where to attach the subscript. Similarly,
the italic correction is used to indicate the offset be-
tween subscript and superscript.

As another example, fake kern pairs involving a
skewchar are used to indicate how much the visual
center of the glyphs is skewed in order to determine
the position where to attach a math accent.

In OpenType math fonts all such peculiarities will
become obsolete, as the MATH table provides data
structures to store all the glyph-specific metric infor-
mation in a much better way. In the case of indices,
OpenType math has extended the concepts of TEX by
defining ‘cut-ins’ at the corners on both sides of a glyph
and not just to the right.

Unfortunately, while the conceptual clarity of Open-
Type math may be very welcome in principle, it may
cause an additional burden on font designers devel-
oping OpenType math fonts based on traditional TEX
fonts (such as the Latin Modern fonts) and trying to
maintain metric compatibility.

In such cases it may be necessary to examine the
metrics of each glyph and to translate the original met-
rics into appropriate OpenType metrics.

Font encoding and organization. The encoding of
OpenType fonts is essentially defined by Unicode code
points. Most likely, a typical OpenType math font will
include only a subset of Unicode limited to the rele-
vant ranges of math symbols and alphabets, while the
corresponding text font may contain a bigger range of
scripts.

In a traditional TEX setup the math setup consists
of a series of 8-bit fonts organized into families. Typ-
ically, each font will contain one set of alphabets in a
particular style and a selection of symbols filling the
remaining slots.

In a Unicode setup the math setup will consist of
only one big OpenType font, containing all the math
symbols and operators in the relevant Unicode slots, as
well as all the many styles of math alphabets assigned
to slots starting at U+1D400.

As a result, there will be several important concep-
tual implications to consider in the design and imple-
mentation of OpenType math fonts, such as how to
handle font switches of math alphabets, how to include
the various sizes of big operators, delimiters, or radi-
cals, or how to include the optical sizes of superscripts
and subscripts.

Handling of math alphabets. In a traditional TEX
setup the letters of the Latin and Greek alphabets are
subject to font switches between the various math fam-
ilies, usually containing a different style in each family
(roman, italic, script, etc.).

In a Unicode setup each style of math alphabets has
a different range of slots assigned to it, since each style
is assumed to convey a different meaning.

When dealing with direct Unicode input, this might
not be a problem, but when dealing with traditional
TEX input, quite a lot of setup may be needed at the
macro level to ensure that input such as \mathrm{a}
or \mathit{a} or \mathbf{a} will be translated to
the appropriate Unicode slots.

An additional complication arises because the Uni-
code code points assigned to the math alphabets are
non-contiguous for historical reasons [37]. While most
of the alphabetic letters are taken from one big block
starting at U+1D400, a few letters which were part of
Unicode already before the introduction of Unicode
math have to be taken from another block starting at
U+2100.

An example implementation of a LaTEX macro pack-
age for X ETEX to support OpenType math is already
available [32], and it shows how much setup is needed
just to handle math alphabets. Fortunately, such a
setup will be needed only once and will be applica-
ble for all Unicode math fonts, quite unlike the case
of traditional TEX fonts where each set of math fonts
requires its own macro package.

Handling of size variants. Ever since the days of DVI
files and PK fonts, TEX users have been accustomed to
thinking of font encodings in terms of numeric slots
in an encoding table, usually assuming a 1:1 mapping
between code points and glyphs.

However, there have always been exceptions to this
rule, most notably in the case of a math extension font,
where special TFM features were used to set up a linked
list from one code point to a series of next-larger glyph
variants representing different sizes of operators, de-
limiters, radicals, or accents, optionally followed by an
extensible version.

In a traditional TEX font each glyph variant has a slot
by itself in the font encoding, even if it was addressed
only indirectly.

In an OpenType font, however, the font encoding is
determined by Unicode code points, so the additional
glyph variants representing different sizes cannot be
addressed directly by Unicode code points and have to
remain unencoded, potentially mapped to the Unicode
private use area, if needed.

While the conceptual ideas of vertical and horizon-
tal variants and constructions in the OpenType MATH
table are very similar to the concepts of charlists and
extensible recipes in TEX font metrics, it is interesting
to note that OpenType has generalized these concepts
a little bit.

While TEX supports extensible recipes only in a ver-
tical context of big delimiters, OpenType also supports

8 MAPS 38 Ulrik Vieth

horizontal extensible constructions, so it would be pos-
sible to define an extensible overbrace or underbrace
in the font, rather than at the macro level using straight
line segments for the extensible parts. In addition, the
same concept could also be applied to arbitrarily long
arrows.

Optical sizes for scripts. In a traditional TEX setup
math fonts are organized into families, each of them
consisting of three fonts loaded at different design
sizes representing text style and first and second level
script style.

If a math font provides optical design sizes, such as
in the case of traditional MetaFont fonts, these fonts
are typically loaded at sizes of 10 pt, 7 pt, 5 pt, each
of them having different proportions adjusted for im-
proved readability at smaller sizes.

If a math font doesn’t provide optical sizes, such as
in the case of typical PostScript fonts, scaled-down ver-
sions of the 10 pt design size will have to make do, but
in such cases it may be necessary to use bigger sizes of
first and second level scripts, such as 10 pt, 7.6 pt, 6 pt,
since the font may otherwise become too unreadable
at such small sizes.

In OpenType math the concept of optical sizes from
TEX and MetaFont has been adopted as well, but it is
implemented in a different way, typical for OpenType
fonts. Instead of loading multiple fonts at different
sizes, OpenType math fonts incorporate the multiple
design variants in the same font and activate them by
a standard OpenType substitution mechanism using a
feature tag ssty=0 and ssty=1, not much different
from the standard substitutions for small caps or old-
style figures in text fonts.

It is important to note that the optical design vari-
ants intended for use in first and second level scripts,
using proportions adjusted for smaller sizes, are nev-
ertheless provided at the basic design size and subse-
quently scaled down using a scaling factor defined in
the OpenType MATH table.

If an OpenType math font lacks optical design vari-
ants for script sizes and does not support the ssty fea-
ture tag, a scaled-down version of the basic design size
will be used automatically. The same will also apply to
non-alphabetic symbols.

Use of OpenType feature tags. Besides using Open-
Type feature tags for specific purposes in math fonts,
most professional OpenType text fonts also use feature
tags for other purposes, such as for selecting small caps
or switching between oldstyle and lining figures. Some
OpenType fonts may provide a rich set of features, such
as a number of stylistic variants, initial and final forms,
or optical sizes.

Ultimately, it remains to be seen how the use of
OpenType feature tags will influence the organization
of OpenType fonts for TEX, such as Latin Modern or
TEX Gyre, not just concerning new math fonts, but also
existing text fonts.

So far, the Latin Modern fonts have very closely fol-
lowed the model of the Computer Modern fonts, pro-
viding separate fonts for each design size and each font
shape or variant.

While it might well be possible to eliminate some
variants by making extensive use of OpenType feature
tags, such as by embedding small caps into the roman
fonts, implementing such a step would imply an impor-
tant conceptual change and might cause unforeseen
problems.

Incorporating multiple design sizes into a single font
might have similar implications, but the effects might
be less critical if they are limited to the well-controlled
environment of math typesetting.

In the TEX Gyre fonts the situation is somewhat sim-
pler, because these fonts are currently limited to the
basic roman and italic fonts and do not have small caps
variants or optical sizes.

Incorporating a potential addition of small caps in
TEX Gyre fonts by means of OpenType feature tags
might well be possible without causing any incompat-
ible changes. Similarly, incorporating some expanded
design variants with adjusted proportions for use in
script sizes would also be conceivable when designing
TEX Gyre math fonts.

The impact of OpenType math
As we have seen in the previous sections, OpenType
math fonts provide a way of embedding all the relevant
font-specific and glyph-specific information needed for
high-quality math typesetting.

In many aspects, the concepts of OpenType math
are very similar to TEX or go beyond TEX. However, the
implementation of these concepts in OpenType fonts
will be different in most cases.

Given the adoption of OpenType math as a de facto
standard and its likelihood of becoming an official
standard eventually, OpenType math seems to be the
best choice for future developments of new math fonts
for use with new TEX engines.

While X ETEX has already started to support Open-
Type math and LuaTEX is very likely to follow, adopting
OpenType for the design of math fonts for Latin Mod-
ern or TEX Gyre will take more time and will require de-
veloping a deeper understanding of the concepts and
data structures.

Most importantly, however, it will also require re-
thinking many traditional assumptions about the way
fonts are organized.

Do we need a ‘Cork’ math font encoding? VOORJAAR 2009 9

Thus, while the topic of font encodings of math fonts
may ultimately become a non-issue, the topic of font
technology will certainly remain important.

The challenges of OpenType math
Developing a math font has never been an easy job, so
attempting to develop a full-featured OpenType math
font for Latin Modern or TEX Gyre certainly presents a
major challenge to font designers or font implementors
for a number reasons.

First, such a math font will be really large, even
in comparison with text fonts, which already cover a
large range of Unicode. (In the example of the Cam-
bria Math font, the math font is reported to have more
than 2900 glyphs compared to nearly 1000 glyphs in
the Cambria text font.) It will have to extend across
multiple 16-bit planes to account for the slots of the
math alphabets starting at U+1D400, and it will also
require a considerable number of unencoded glyphs to
account for the size variants of extensible glyphs and
the optical variants of math alphabets.

Besides the size of the font, such a project will also
present many technical challenges in dealing with the
technology of OpenType math fonts.

While setting up the font-specific parameters of the
OpenType MATH table is comparable to setting up the
\fontdimen parameters of TEX’s math fonts, setting
up the glyph-specific information will require detailed
attention to each glyph as well as extensive testing and
fine-tuning to achieve optimal placement of math ac-
cents and indices.

Finally, there will be the question of assembling the
many diverse elements that have to be integrated in a
comprehensive OpenType math font. So far, the var-
ious styles of math alphabets and the various optical
sizes of these alphabets have been designed as individ-
ual fonts, but in OpenType all of them have to be com-
bined in a single font. Moreover, the optical sizes will
have to be set up as substitutions triggered by Open-
Type feature tags.

Summary and conclusions
In this paper we have reviewed the work on math font
encodings since 1990 and the current situation of math
fonts as of 2008, especially in view of recent develop-
ments in Unicode and OpenType font technology. In
particular, we have looked in detail at the features of
OpenType math in comparison to the well-known fea-
tures of TEX’s math fonts.

While OpenType math font technology looks very
promising and seems to be the best choice for future
developments of math fonts, it also presents many
challenges that will have to be met.

While support for OpenType math in new TEX en-
gines has already started to appear, the development
of math fonts for Latin Modern or TEX Gyre using this
font technology will not be easy and will take consid-
erable time.

In the past, the TEX conference in Cork in 1990 was
the starting point for major developments in text fonts,
which have ultimately led to the adoption of Unicode
and OpenType font technology.

Hopefully, the TEX conference at Cork in 2008 might
become the starting point for major developments of
math fonts in a similar way, except that this time there
will be no more need for a new encoding that could be
named after the site of the conference.

Acknowledgements
The author wishes to acknowledge feedback, sugges-
tions, and corrections from some of the developers of
projects discussed in this review.

A preprint of this paper has been circulated on the
Unicode math mailing list hosted at Google Groups
[38] and future discussions on the topics of this paper
are invited to be directed here.

References
[1] Yannis Haralambous: TEX and Latin alphabet

languages. TUGboat, 10(3):342–345, 1989.
http://www.tug.org/TUGboat/Articles/
tb10-3/tb25hara-latin.pdf

[2] Nelson Beebe: Character set encoding. TUG-
boat, 11(2):171–175, 1990.
http://www.tug.org/TUGboat/Articles/
tb11-2/tb28beebe.pdf

[3] Janusz S. Bień: On standards for CM font
extensions. TUGboat, 11(2):175–183, 1990.
http://www.tug.org/TUGboat/Articles/
tb11-2/tb28bien.pdf

[4] Michael Ferguson: Report on multilingual
activities. TUGboat, 11(4):514–516, 1990.
http://www.tug.org/TUGboat/Articles/
tb11-4/tb30ferguson.pdf

[5] Frank Mittelbach, Robin Fairbairns, Werner
Lemberg: LaTEX font encodings, 2006.
http://www.ctan.org/tex-archive/macros/
latex/doc/encguide.pdf

[6] Jörg Knappen: The release 1.2 of the Cork
encoded DC fonts and text companion fonts.
TUGboat, 16(4):381–387, 1995. Reprint from
the Proceedings of the 9th European TEX Con-
ference 1995, Arnhem, The Netherlands.
http://www.tug.org/TUGboat/Articles/
tb16-4/tb49knap.pdf

10 MAPS 38 Ulrik Vieth

[7] Berthold K. P. Horn: The European Modern
fonts. TUGboat, 19(1):62–63, 1998
http://www.tug.org/TUGboat/Articles/
tb19-1/tb58horn.pdf

[8] Bogusław Jackowski, Janusz M. Nowacki: Latin
Modern: Enhancing Computer Modern with ac-
cents, accents, accents. TUGboat, 24(1):64–74,
2003. Proceedings of the TUG 2003 Confer-
ence, Hawaii, USA.
http://www.tug.org/TUGboat/Articles/
tb24-1/jackowski.pdf

[9] Bogusław Jackowski, Janusz M. Nowacki:
Latin Modern: How less means more. TUG-
boat, 27(0):171–178, 2006 Proceedings of the
15th European TEX Conference 2005, Pont-à-
Mousson, France.
http://www.tug.org/TUGboat/Articles/
tb27-0/jackowski.pdf

[10] Will Robertson: An exploration of the Latin
Modern fonts. TUGboat, 28(2):177-180, 2007.
http://www.tug.org/TUGboat/Articles/
tb28-2/tb89robertson.pdf

[11] Hans Hagen, Jerzy B. Ludwichowski, Volker
RW Schaa: The new font project: TEX Gyre.
TUGboat, 27(2):250–253, 2006. Proceedings
of the TUG 2006 Conference, Marrakesh, Mo-
rocco.
http://www.tug.org/TUGboat/Articles/
tb27-2/tb87hagen-gyre.pdf

[12] Jerzy B. Ludwichowski, Bogusław Jackowski,
Janusz M. Nowacki: Five years after: Report
on international TEX font projects. TUGboat,
29(1):25–26, 2008. Proceedings of the 17th
European TEX Conference 2007, Bachotek,
Poland.
https://www.tug.org/TUGboat/Articles/
tb29-1/tb91ludwichowski-fonts.pdf

[13] Alan Jeffrey: Math font encodings: A work-
shop summary. TUGboat, 14(3):293–295,
1993. Proceedings of the TUG 1993 Confer-
ence, Aston University, Birmingham, UK.
http://www.tug.org/TUGboat/Articles/
tb14-3/tb40mathenc.pdf

[14] Justin Ziegler: Technical report on math font
encodings. LaTEX3 Project Report, 1993.
http://www.ctan.org/tex-archive/info/
ltx3pub/processed/l3d007.pdf

[15] Math Font Group (MFG) web site, archives,
papers, and mailing list.
http://www.tug.org/twg/mfg/
http://www.tug.org/twg/mfg/archive/
http://www.tug.org/twg/mfg/papers/
http://www.tug.org/mailman/listinfo/
math-font-discuss

[16] Matthias Clasen, Ulrik Vieth: Towards a new
Math Font Encoding for AllTEX. Cahiers GUTen-
berg, 28–29:94–121, 1998. Proceedings of the
10th European TEX Conference 1998, St. Malo,
France.
http://www.gutenberg.eu.org/pub/
GUTenberg/publicationsPDF/28-29-clasen.
pdf

[17] Ulrik Vieth et al.: Summary of math font-
related activities at EuroTEX 1998. MAPS,
20:243–246, 1998.
http://www.ntg.nl/maps/20/36.pdf

[18] Ulrik Vieth: What is the status of new math
font encodings? Posting to mailing list, 2007.
http:/www./tug.org/pipermail/
math-font-discuss/2007-May/000068.html

[19] Barbara Beeton, Asmus Freytag, Murray Sar-
gent III: Unicode Support for Mathematics.
Unicode Technical Report UTR#25. 2001.
http://www.unicode.org/reports/tr25/

[20] Barbara Beeton: Unicode and math, a combi-
nation whose time has come–Finally! TUGboat,
21(3):174–185, 2000. Proceedings of the
TUG 2000 Conference, Oxford, UK.
http://www.tug.org/TUGboat/Articles/
tb21-3/tb68beet.pdf

[21] Barbara Beeton: The STIX Project–From Uni-
code to fonts. TUGboat, 28(3):299–304, 2007.
Proceedings of the TUG 2007 Conference, San
Diego, California, USA.
http://www.tug.org/TUGboat/Articles/
tb28-3/tb90beet.pdf

[22] STIX Fonts Project: Web Site and Frequently
Asked Questions.
http://www.stixfonts.org/
http://www.stixfonts.org/STIXfaq.html

[23] Murray Sargent III: Math in Office Blog.
http://blogs.msdn.com/murrays/default.
aspx

[24] Murray Sargent III: High-quality editing and
display of mathematical text in Office 2007.
http://blogs.msdn.com/murrays/archive/
2006/09/13/752206.aspx

[25] Tiro Typeworks: Cambria Math Specimen.
http://www.tiro.nu/Articles/Cambria/
Cambria_Math_Basic_Spec_V1.pdf

[26] John Hudson, Ross Mills: Mathematical Type-
setting: Mathematical and scientific typesetting
solutions from Microsoft. Promotional Booklet,
Microsoft, 2006.
http://www.tiro.com/projects/

[27] Daniel Rhatigan: Three typefaces for math-
ematics. The development of Times 4-line
Mathematics, AMS Euler, and Cambria Math.
Dissertation for the MA in typeface design,

Do we need a ‘Cork’ math font encoding? VOORJAAR 2009 11

University of Reading, 2007.
http://www.typeculture.com/academic_
resource/articles_essays/pdfs/tc_article_
47.pdf

[28] Murray Sargent III: Unicode Nearly Plain Text
Encodings of Mathematics. Unicode Technical
Note UTN#28, 2006.
http://www.unicode.org/notes/tn28/

[29] Microsoft Typography: OpenType specification
version 1.5.
http://www.microsoft.com/typography/
otspec/

[30] George Williams: FontForge. Math typesetting
information.
http://fontforge.sourceforge.net/math.
html

[31] Apostolos Syropoulos: Asana Math.
www.ctan.org/tex-archive/fonts/
Asana-Math/

[32] Will Robertson: Experimental Unicode math
typesetting: The unicode-math package.
http://github.com/wspr/unicode-math/tree/
master

[33] Yannis Haralambous: Fonts and Encodings.
O’Reilly Media, 2007. ISBN 0-596-10242-9
http://oreilly.com/catalog/9780596102425/

[34] Bogusław Jackowski: Appendix G Illuminated.
TUGboat, 27(1):83–90, 2006. Proceedings

of the 16th European TEX Conference 2006,
Debrecen, Hungary.
http://www.tug.org/TUGboat/Articles/
tb27-1/tb86jackowski.pdf

[35] Ulrik Vieth: Understanding the æsthetics of
math typesetting. Biuletyn GUST, 5–12, 2008.
Proceedings of the 16th BachoTEX Conference
2008, Bachotek, Poland.
http://www.gust.org.pl/projects/
e-foundry/math-support/vieth2008.pdf

[36] Ulrik Vieth: Math Typesetting in TEX: The
Good, the Bad, the Ugly. MAPS, 26:207–216,
2001. Proceedings of the 12th European TEX
Conference 2001, Kerkrade, Netherlands.
http://www.ntg.nl/maps/26/27.pdf

[37] Unicode Consortium: Code Charts for Symbols
and Punctuation.
http://www.unicode.org/charts/symbols.
html

[38] Google Groups: Unicode math for TEX.
http://groups.google.com/group/unimath

Ulrik Vieth
Vaihinger Straße 69
70567 Stuttgart
Germany
ulrik dot vieth (at) arcor dot de

