
14 MAPS 41 Hans Hagen

Up to ConTEXt MkVI

Introduction
No, this is not a typo: MkVI is the name of upcoming
functionality but with an experimental character. It is
also a playground. Therefore this is not the final story.

Defining macros
When you define macros in TEX, you use the # to
indicate variables. So, you code can end up with the
following:

\def\MyTest#1#2#3#4%
{\dontleavehmode
\dostepwiserecurse{#1}{#2}{#3}
{\ifnum\recurselevel>#1 \space,\fi
\recurselevel: #4\space}%

.\par}

This macro is called with 4 arguments:

\MyTest{3}{8}{1}{Hi}

However, using numbers as variable identifiers might
not have your preference. It makes perfect sense if
you keep in mind that TEX supports delimited argu-
ments using arbitrary characters. But in practice, and
especially in ConTEXt we use only a few well defined
variants. This is why you can also imagine:

\def\MyTest#first#last#step#text%
{\dontleavehmode
\dostepwiserecurse{#first}{#last}{#step}
{\ifnum\recurselevel>#first \space,\fi
\recurselevel: #text}%

.\par}

In order for this to work, you need to give your file the
suffix mkvi or you need to put a directive on the first
line:

% macros=mkvi

You can of course use delimited arguments as well,
given that the delimiters are not letters.

\def\TestOne[#1]%
{this is: #1}

\def\TestTwo#some%

{this is: #some}

\def\TestThree[#whatever][#more]%
{this is: #more and #whatever}

\def\TestFour[#one]#two%
{\def\TestFive[#alpha][#one]%

{#one, #two, #alpha}}

You can also use the following variant which is already
present for a while but not that much advertised. This
method ignores all spaces in definitions so if you need
one, you have to use \space.

\starttexdefinition TestSix #oeps

here: #oeps

\stoptexdefinition

These commands work as expected:

\startlines
\TestOne [one]
\TestTwo {one}
\TestThree[one][two]
\TestFour [one]{two}
\TestFive [one][two]
\TestSix {one}

\stoplines

this is: one
this is: one
this is: two and one
two, two, one
here: one

You can use buffers to collect definitions. In that
case you can force preprocessing of the buffer with
\mkvibuffer[name].

Implementation
This functionality is not hard coded in the LuaTEX
engine as this is not needed at all. We just preprocess
the file before it gets loaded and this is something that
is relatively easy to implement. Already early in the
development of LuaTEXwe have decided that instead of
hard coding solutions, opening up makes more sense.
One of the first mechanisms that were opened up was

Up to ConTEXt MkVI NAJAAR 2010 15

file IO. This means that when a file is opened, you
can decide to intercept lines and process them before
passing them to the traditional built in input parser.
The user can be completely unaware of this. In fact,
as LuaTEX only accepts UTF-8, preprocessing will likely
happen already when other input encodings are used.
The following helper functions are available:

local result = resolvers.macros.preprocessed(str)

This function returns a string with all named parame-
ters replaced.

resolvers.macros.convertfile(oldname,newname)

This function converts a file into a new one.

local result =
resolvers.macros.processmkvi(str,filename)

This function converts the string but only if the suffix of
the filename is mkvi or when the first line of the string is
a comment line containing macros=mkvi. Otherwise the
original string is returned. The filename is optional.

A few details
Imagine that you want to do this:

\def\test#1{before#1after}

When we use names this could look like:

\def\test#inbetween{before#inbetweenafter}

and that is not going to work out well. We could be
more liberal with spaces, like

\def\test #inbetween {before #inbetween after}

but then getting spaces in the output before or after
variables would get more complex. However, there is
a way out:

\def\test#inbetween{before#{inbetween}after}

As the sequence #{ has a rather low probablility of
showing up in a TEX source file, this kind of escaping is
part of the game. So, all the following cases are valid:

\def\test#oeps{... #oeps ...}
\def\test#oeps{... #{oeps} ...}
\def\test#{main:oeps}{... #{main:oeps} ...}
\def\test#{oeps:1}{... #{oeps:1} ...}
\def\test#{oeps}{... #oeps ...}

When you use the braced variant, all characters except
braces are acceptable as name, optherwise only lower-
case and uppercase characters are permitted.
Normally LuaTEX uses a couple of special tokens like ^
and _. In a macro definition file you can avoid these by
using primitives:

& \aligntab
\alignmark
^ \Usuperscript
_ \Usubscript
$ \Ustartmath
$ \Ustopmath
$$ \Ustartdisplaymath
$$ \Ustopdisplaymath

Especially the alignmark is worth noticing: using that
one directly in a macro definition can result in un-
wanted replacements, depending on whether a match
can be found. In practice the following works out well

\def\test#oeps{test:#oeps
\halign{##\cr #oeps\cr}}

You can use UTF-8 characters as well. For practical
reasons this is only possible with the braced variant.

\def\blä#{blá}{blà:#{blá}}

There will probably be more features in future versions
but each of them needs careful consideration in order
to prevent interferences.

Utilities
There is currently one utility (or in fact an option to an
existing utility):

mtxrun --script interface
--preprocess whatever.mkvi

This will convert the given file(s) to new ones, with the
default suffix tex. Existing files will not be overwritten
unless ---force is given. You can also force another
suffix:

mtxrun --script interface
--preprocess whatever.mkvi
--suffix=mkiv

A rather plainmodule luatex-preprocessor.lua is pro-
vided for other usage. That variant provides a some-
what simplified version.
Given that you have a luatex-plain format you can
run:

luatex --fmt=luatex-plain
luatex-preprocessor-test.tex

Such a plain format can be made with:

luatex --ini luatex-plain

You probably need to move the format to a proper
location in your TEX tree.

Hans Hagen

16 MAPS 41 Hans Hagen

if not modules then modules = { } end modules ['luat-mac'] = {
version = 1.001,
comment = "companion to luat-lib.mkiv",
author = "Hans Hagen, PRAGMA-ADE, Hasselt NL",
copyright = "PRAGMA ADE / ConTeXt Development Team",
license = "see context related readme files"

}

local P, V, S, R, C, Cs, Cmt = lpeg.P, lpeg.V, lpeg.S, lpeg.R, lpeg.C, lpeg.Cs, lpeg.Cmt
local lpegmatch, patterns = lpeg.match, lpeg.patterns

local insert, remove = table.insert, table.remove
local rep, sub = string.rep, string.sub
local setmetatable = setmetatable

local report_macros = logs.new("macros")

local stack, top, n, hashes = { }, nil, 0, { }

local function set(s)
if top then

n = n + 1
if n > 9 then

report_macros("number of arguments > 9, ignoring %s",s)
else

local ns = #stack
local h = hashes[ns]
if not h then

h = rep("#",ns)
hashes[ns] = h

end
m = h .. n
top[s] = m
return m

end
end

end

local function get(s)
local m = top and top[s] or s
return m

end

local function push()
top = { }
n = 0
local s = stack[#stack]
if s then

setmetatable(top,{ __index = s })
end
insert(stack,top)

end

local function pop()
top = remove(stack)

end

local leftbrace = P("{") -- will be in patterns
local rightbrace = P("}")

Up to ConTEXt MkVI NAJAAR 2010 17

local escape = P("\\")

local space = patterns.space
local spaces = space^1
local newline = patterns.newline
local nobrace = 1 - leftbrace - rightbrace

local longleft = leftbrace -- P("(")
local longright = rightbrace -- P(")")
local nolong = 1 - longleft - longright

local name = R("AZ","az")^1 -- @?! -- utf?
local longname = (longleft/"") * (nolong^1) * (longright/"")
local variable = P("#") * Cs(name + longname)
local escapedname = escape * name
local definer = escape * (P("def") + P("egdx") * P("def"))
local startcode = P("\\starttexdefinition")
local stopcode = P("\\stoptexdefinition")
local anything = patterns.anything
local always = patterns.alwaysmatched

local pushlocal = always / push
local poplocal = always / pop
local declaration = variable / set
local identifier = variable / get

local function matcherror(str,pos)
report_macros("runaway definition at: %s",sub(str,pos-30,pos))

end

local grammar = { "converter",
texcode = pushlocal

* startcode
* spaces
* name
* spaces
* (declaration + (1 - newline - space))^0
* V("texbody")
* stopcode
* poplocal,

texbody = (V("definition")
+ identifier
+ V("braced")
+ (1 - stopcode)

)^0,
definition = pushlocal

* definer
* escapedname
* (declaration + (1-leftbrace))^0
* V("braced")
* poplocal,

braced = leftbrace
* (V("definition")

+ identifier
+ V("texcode")
+ V("braced")
+ nobrace

)^0

18 MAPS 41 Hans Hagen

-- * rightbrace^-1, -- the -1 catches errors
* (rightbrace + Cmt(always,matcherror)),

pattern = V("definition") + V("texcode") + anything,

converter = V("pattern")^1,
}

local parser = Cs(grammar)

local checker = P("%") * (1 - newline - P("macros"))^0
* P("macros") * space^0 * P("=") * space^0 * C(patterns.letter^1)

-- maybe namespace

local macros = { } resolvers.macros = macros

function macros.preprocessed(str)
return lpegmatch(parser,str)

end

function macros.convertfile(oldname,newname) -- beware, no testing on oldname == newname
local data = resolvers.loadtexfile(oldname)
data = interfaces.preprocessed(data) or ""
io.savedata(newname,data)

end

function macros.version(data)
return lpegmatch(checker,data)

end

function macros.processmkvi(str,filename)
if (filename and file.suffix(filename) == "mkvi") or lpegmatch(checker,str) == "mkvi" then

return lpegmatch(parser,str) or str
else

return str
end

end

if resolvers.schemes then

local function handler(protocol,name,cachename)
local hashed = url.hashed(name)
local path = hashed.path
if path and path ~= "" then

local data = resolvers.loadtexfile(path)
data = lpegmatch(parser,data) or ""
io.savedata(cachename,data)

end
return cachename

end

resolvers.schemes.install('mkvi',handler,1) -- this will cache !

utilities.sequencers.appendaction(resolvers.openers.helpers.textfileactions,
"system","resolvers.macros.processmkvi")

end

