
Hans Hagen VOORJAAR 2011 15

Tagged PDF

Introduction
Occasionally users asked me if ConTEXt can produce tagged pdf and the answer to
that has been: I'll implement it when I need it. However, users tell me that publishers
show an increasing demand for tagged pdf files, although one might wonder what
for, except maybe for accessibility. Another reason for not having spent too much
time on it before, is that the specification was not that inviting.

At any rate, when I saw Ross Moore1 presenting tagged math at TUG 2010, I de-
cided to look up the spec once more and see if I could get into the mood to implement
tagging. Before I started it was already clear that there were a couple of boundary
conditions:

Tagging should not put a burden on the user but users should be able to do the
tagging themselves.
Tagging should not slow down a run too much; this is no big deal as one can
postpone tagging till the last run.
Tagging should in no way interfere with typesetting, so no funny nodes should
be injected.
Tagging should not make the code look worse, neither the document source, nor
the low level ConTEXt code.

And of course implementing it should not take more than a few days' work, certainly
not during an exceptionally hot summer.

You can ‘google’ for one of Ross's documents (like DML_002-2009-1_12.pdf) to see
how a document source looks at his end using a special version of pdfTEX. However,
the version on my machine didn't support the primitives shown, so I could not see
what was happening under the hood. Unfortunately it is quite hard to find a properly
tagged document so we have only the reference manual as starting point. As the
pdfTEX approach didn't look that pleasing anyway, I just started from scratch.

Tags can help Acrobat Reader when reading out the text aloud. But you cannot
browse the structure in the no-cost version of Acrobat and as not all users have
the professional version of Acrobat, the fact that a document has structure can go
unnoticed. Add to that the fact that the overhead in terms of bytes is quite large as
many more objects are generated, and you will understand why this feature is not
enabled by default.

Implementation
So, what does tagging boil down to? We can best look at how tagged information is
shown in Acrobat. Figure 1 shows the content tree that has been added (automati-
cally) to a document while figure 2 shows a different view.

In order to get that far, we have to do the following:

Carry information with (typeset) text.
Analyse this information when shipping out pages.

16 MAPS 42 Hans Hagen

Figure 1. A tag list in Acrobat.

Figure 2. Acrobat showing the tag order.

Tagged PDF VOORJAAR 2011 17

Add a structure tree to the page.
Add relevant information to the document.

That first activity is rather independent of the other three and we can use that infor-
mation for other purposes as well, like identifying where we are in the document.
We carry the information around using attributes. The last three activities took a
bit of experimenting mostly using the “Example of Logical Structure” from the pdf
standard 32000-1:2008.

This resulted in a tagging framework that uses explicit tags, meaning the user is
responsible for the tagging:

\setupstructure[state=start,method=none]

\starttext

\startelement[document]

\startelement[chapter]
\startelement[p] \input davis \stopelement \par

\stopelement

\startelement[chapter]
\startelement[p] \input zapf \stopelement \par
\startelement[whatever]

\startelement[p] \input tufte \stopelement \par
\startelement[p] \input knuth \stopelement \par

\stopelement
\stopelement

\startelement[chapter]
oeps
\startelement[p] \input ward \stopelement \par

\stopelement

\stopelement

\stoptext

Since this is not much fun, we also provide an automated variant. In the previous
example we explicitly turned off automated tagging by setting method to none. By
default it has the value auto.

\setupstructure[state=start] % default is method=auto

\definedescription[whatever]

\starttext

\startfrontmatter
\startchapter[title=One]

\startparagraph \input tufte \stopparagraph
\startitemize

\startitem first \stopitem
\startitem second \stopitem

\stopitemize
\startparagraph \input ward \stopparagraph
\startwhatever {Herman Zapf} \input zapf \stopwhatever

\stopchapter

\stopfrontmatter

18 MAPS 42 Hans Hagen

\startbodymatter
..................

If you use commands like \chapter you will not get the desired results. Of course
these can be supported but there is no real reason for it, as in MkIV we advise using
the start-stop variant.

It will be clear that this kind of automated tagging brings with it a couple of extra
commands deep down in ConTEXt and there (of course) we use symbolic names for
tags, so that one can overload the built-in mapping.

\setuptaglabeltext[en][document=text]

As with other features inspired by viewer functionality, the implementation of tag-
ging is independent of the backend. For instance, we can tag a document and access
the tagging information at the TEX end. The backend driver code maps tags to rele-
vant pdf constructs. First of all, we just map the tags used at the ConTEXt end onto
themselves. But, as validators expect certain names, we use the pdf rolemap feature
to map them to (less interesting) names. The next list shows the currently used in-
ternal names, with the pdf ones between parentheses.

construct (Span), delimited (Quote), delimitedblock (BlockQuote), description
(Div), descriptioncontent (Div), descriptionsymbol (Span), descriptiontag (Div),
division (Div), document (Div), float (Div), floatcaption (Caption), floatcontent
(P), floattag (Span), floattext (Span), formula (Div), formulacontent (P), formulaset
(Div), formulatag (Span), image (P), item (Li), itemcontent (LBody), itemgroup (L),
itemtag (Lbl), link (Link), list (TOC), listcontent (P), listdata (P), listitem (TOCI),
listpage (Reference), listtag (Lbl), margintext (Span), margintextblock (Span),
math (Div), merror (Span), mfrac (Span), mi (Span), mn (Span), mo (Span), mover
(Span), mpgraphic (P), mroot (Span), mrow (Span), ms (Span), msqrt (Span), msub
(Span), msubsup (Span), msup (Span), mtext (Span), munder (Span), munderover
(Span), paragraph (P), register (Div), registerentries (Div), registerentry (Span),
registerpage (Span), registerpagerange (Span), registerpages (Span), registersection
(Div), registersee (Span), registertag (Span), section (Sect), sectioncontent (Div),
sectionnumber (H), sectiontitle (H), sort (Span), subformula (Div), subsentence
(Span), synonym (Span), table (Table), tablecell (TD), tablerow (TR), tabulate
(Table), tabulatecell (TD), tabulaterow (TR), verbatim (Code), verbatimblock
(Code), verbatimline (Code), verbatimlines (Code).

So, the internal ones show up in the tag trees as shown in the examples but ap-
plications might use the rolemap which normally has less detail.

Since we keep track of where we are, we can also use that information for making
decisions.

\doifinelementelse{structure:section} {yes} {no}
\doifinelementelse{structure:chapter} {yes} {no}
\doifinelementelse{division:*-structure:chapter} {yes} {no}
\doifinelementelse{division:*-structure:*} {yes} {no}

As shown, you can use * as a wildcard. The elements are separated by -. If you don't
know what tags are used, you can always enable the tag related tracker:

\enabletrackers[structure.tags]

This tracker reports the identified element chains to the console and log.

Tagged PDF VOORJAAR 2011 19

Special care
Of course there are a few complications. First of all the tagging model sort of contra-
dicts the concept of a nicely typeset document where structure and outcome are not
always related. Most TEX users are aware of the fact that TEX does not have space
characters and does a great job on kerning and hyphenation. The tagging machinery
on the other hand uses a rather dumb model of strings separated by spaces.2 But we
can trick TEX into providing the right information to the backend so that words get
nicely separated. The non-optimized function that does this looks as follows:

function injectspaces(head)
local p
for n in node.traverse(head) do

local id = n.id
if id == node.id("glue") then

if p and p.id == node.id("glyph") then
local g = node.copy(p)
local s = node.copy(n.spec)
g.char, n.spec = 32, s
p.next, g.prev = g, p
g.next, n.prev = n, g
s.width = s.width - g.width

end
elseif id == node.id("hlist") or id == node.id("vlist") then

injectspaces(n.list,attribute)
end
p = n

end
end

Here we squeeze in a space (given that it is in the font which it normally is when
you use ConTEXt) and make a compensation in the glue. Given that your page sits
in box 255, you can do this just before shipping the page out:

injectspaces(tex.box[255].list)

Then there are the so-called suspects: things on the page that are not related to
structure at all. One is supposed to tag these in a special way to prevent the built-in
reading equipment from getting confused. So far we could get around them simply
because they don't get tagged at all and therefore are not seen anyway. This might
well be enough of a precaution.

Of course we need to deal with mathematics. Fortunately the presentation
MathML model is rather close to TEX and so we can map onto that. After all we
don't need to care too much about back-mapping here. The currently present code
is rather experimental and might get extended or thrown out in favour of inline
MathML. Figure 3 demonstrates that a first approach does not even look that bad. In
future versions we might deal with table-like math constructs, like matrices.

This is a typical case where more energy has to be spent on driving the voice of
Acrobat but I will do that when we find a good reason.

As mentioned, it will take a while before all relevant constructs in ConTEXt sup-
port tagging, but support is already quite complete. Some screen dumps are included
as examples at the end.

20 MAPS 42 Hans Hagen

Figure 3. Experimental math tagging.

Conclusion
Surprisingly, implementing all this didn't take that much work. Of course detailed
automated structure support from the complete ConTEXt kernel will take some time
to get completed, but that will be done on demand and when we run into missing
bits and pieces. It's still not decided to what extent alternate representations and
alternate texts will be supported. Experiments with the reading-aloud machinery are
not satisfying yet but maybe it just can't get any better. It would be nice if we could
get some tags being announced without overloading the content, that is: without
using ugly hacks.

And of course, code like this is never really finished if only because pdf evolves.
Also, it is yet another nice test case and torture test for LuaTEX and it helps us to
find buglets and oversights.

Some more examples
In ConTEXtwe have user definable verbatim environments. As with other user defin-
able environments we show the specific instance as comment next to the structure
component. See figure 4. Some examples of tables are shown in figure 5. Future ver-
sions will have a bit more structure. Tables of contents (see figure 6) and registers
(see figure 7) are also tagged. (One might wonder how useful this is.) In figure 8 we
see some examples of floats. External images as well as MetaPost graphics are tagged
as such. This example also shows an example of a user environment, in this case:

\definestartstop[notabene][style=\bf]

In a similar fashion, footnotes (figure 9) end up in the structure tree, but in the type-
set document they move around (normally forward when there is no room).

Hans Hagen
Pragma ADE, Hasselt, The Netherlands
pragma@wxs.nl

Tagged PDF VOORJAAR 2011 21

Figure 4. Verbatim, including dedicated instances.

Figure 5. Natural tables as well as the tabulate mechanism is supported.

22 MAPS 42 Hans Hagen

Figure 6. Tables of content with specific entries tagged.

Figure 7. A detailed view of registered is provided.

Tagged PDF VOORJAAR 2011 23

Figure 8. Floats tags end up in text stream. Watch the user defined construct.

Figure 9. Footnotes are shown at the place in the input (flow).

