
24 MAPS 42 Hans Hagen

Inter-character spacing and ligatures1

There was a discussion on the LuaTEX (dev) list about inter character spacing and lig-
atures. The discussion involved a mechanism inherited from pdfTEX but in ConTEXt
we don't use that at all. Actually, support for inter character spacing was added in
an early stage of MkIV development as an alternative for the MkII variant, which
used parsing at the TEX end. Personally I never use this spacing, unless a design in a
project demands it.

In the MkIV method we split ligatures when its components are known. This
works quite well. It's anyway a good idea to disable ligatures, so it's more of a fall-
back. Actually we should create components for hard coded characters like æ but as
no one ever complained I leave that for a later moment.

As we already had the mechanisms in place, support for selective spacing of lig-
atures was a rather trivial extension. If there is ever a real need for it, I will provide
control via the normal user interface, but for now using a few hooks will do. The
following code shows an example of an implementation.

local utfbyte = utf.byte

local keep = {
[0x0132] = true, [0x0133] = true, -- IJ ij
[0x00C6] = true, [0x00E6] = true, -- AE ae
[0x0152] = true, [0x0153] = true, -- OE oe

}

function typesetters.kerns.keepligature(n)
return keep[n.char]

end

local together = {
[utfbyte("c")] = { [utfbyte("k")] = true },
[utfbyte("i")] = { [utfbyte("j")] = true },
[utfbyte("I")] = { [utfbyte("J")] = true },

}

function typesetters.kerns.keeptogether(n1,n2)
local k = together[n1.char]
return k and k[n2.char]

end

The following also works:

local lpegmatch = lpeg.match
local fontdata = fonts.identifiers

local keep = -- start of name
lpeg.P("i_j")

+ lpeg.P("I_J")
+ lpeg.P("aeligature")

1. Excerpt from the ‘Weird Examples’ chapter in hybrid.pdf



Inter-character spacing and ligatures VOORJAAR 2011 25

+ lpeg.P("AEligature")
+ lpeg.P("oeligature")
+ lpeg.P("OEligature")

function typesetters.kerns.keepligature(n)
local d = fontdata[n.font].descriptions
local c = d and d[n.char]
local n = c and c.name
return n and lpegmatch(keep,n)

end

A more generic solution would be to use the tounicode information, but it would be
overkill as we're dealing with a rather predictable set of characters that have gotten
Unicode slots assigned. When using basemode most fonts will work anyway.

So, is this really worth the effort? Take a look at the following example.

\definecharacterkerning [KernMe] [factor=0.25]

\start
\setcharacterkerning[KernMe]
\definedfont[Serif*default]
Ach kijk effe, \ae sop draagt een knickerbocker! \par
\definedfont[Serif*smallcaps]
Ach kijk effe, \ae sop draagt een knickerbocker! \par

\stop

Typeset this (Dutch text) looks like:

Ac h k ij k e f f e, æ s o p d r a a g t ee n k n i cke r bocke r !
Ac h k i j k e f f e , æ s o p d r aag t e e n k n i c k e r b oc k e r !

You might wonder why I decided to look into it. Right at the moment when it was
discussed, I was implementing a style that needed the Calibri font that comes with
MS Windows, and I visited the FontShop website to have a look at the font. To my
surprise it had quite some ligatures, way more than one would expect.

Hans Hagen
Pragma ADE, Hasselt, The Netherlands
pragma@wxs.nl



26 MAPS 42 Hans Hagen

Figure 1. Some of the ligatures in Calibri Regular. Just wonder what intercharacter spacing will do here.


