
116 EUROTEX 2012 & 6CM PROCEEDINGS Luigi Scarso

MFLua: Instrumentation of MF with Lua

Abstract
We present MFLua, a METAFONT version which is
capable of code instrumentation and has an embedded
Lua interpreter that allows glyphs curves extraction and
post-processing. We also show and discuss an example
of a METAFONT source processed by MFLua to output
an OpenType font.

1 Introduction
MFLua is a version of METAFONT, Knuth’s program
(Knuth, 1986b) designed to draw fonts. MFLua has an
embedded Lua interpreter, as well as the capability of the
Pascal-WEB code instrumentation to output informa-
tion about bitmaps and curves used in glyphs drawing.
The latest capability is known as code tracing. MFLua’s
main goal is to ease the production of vector fonts which
source code is a METAFONT code. MFLua doesn’t ex-
tend the METAFONT language in any way (i.e., it’s not
possible to embed Lua code in a METAFONT source �le),
so that a METAFONT source �le is fully compatible with
MFLua and vice versa. MFLua won’t be extended like
LuaTEX extends pdfLaTEX. The code instrumentation is
a facility to gather and manage information collected in
the log �le when METAFONT tracing instructions
are enabled. MFLua automatically saves data into Lua
tables using external Lua scripts. Therefore a program-
mer can manage these tables according to his needs, i.e.
extracting a glyph vector outline(s). Rephrasing the pre-
vious statements, MFLua is a (bitmap) tracing program
that knows curves in advance instead of determining
them from the bitmap. Please notice that this is only
possible when the data have been gathered.

The paper has the following structure: after explain-
ing what code instrumentation is (section 2), it shows the
components used to trace a glyph (section 3) and �nally
two di�erent approaches to manage curves (section 4).

As a �nal remark, we consider MFLua as being in
a state between a proof of concept and alpha and it’s
not (yet) too user-friendly. Its code is hosted at https:
//github.com/luigiScarso/mflua.

2 Code instrumentation
METAFONT is written in Pascal-WEB (a programming
language by Donald Knuth to have a real literate pro-
gramming tool. As the name suggests, it’s a subset

of Pascal) and is automatically translated into C by
tangle and web2c. Instrumentation is the capa-
bility to add trace statements (a.k.a. sensors) in strate-
gic points of the code to register current state infor-
mation and pass it to the Lua interpreter. A typical
sensor has the mflua pre�x. We can see some sen-
sors in the following chunk of code, the main body
of METAFONT (slightly refolded to �t the printing
area).
@p begin @!{|start_here|}
mflua_begin_program;
{in case we quit during initialization}
history:=fatal_error_stop;
t_open_out; {open the terminal for output}
if ready_already=314159 then goto start_of_MF;
@<Check the ‘‘constant’’ values...@>@;
if bad>0 then

begin wterm_ln(’Ouch---my internal constants
have been clobbered!’,

’---case ’,bad:1);
@.Ouch...clobbered@>

goto final_end;
end;

{set global variables to their starting values}
initialize;
@!init if not get_strings_started then

goto final_end;
init_tab; {initialize the tables}
init_prim; {call |primitive| for each primitive}
init_str_ptr:=str_ptr; init_pool_ptr:=pool_ptr;@/
max_str_ptr:=str_ptr; max_pool_ptr:=pool_ptr;
fix_date_and_time;
tini@/
ready_already:=314159;
mfluaPRE_start_of_MF;
start_of_MF: @<Initialize the output routines@>;
@<Get the first line of input and prepare

to start@>;
history:=spotless; {ready to go!}
mflua_initialize;
if start_sym>0 then

{insert the ‘\&{everyjob}’ symbol}
begin cur_sym:=start_sym; back_input;
end;

mfluaPRE_main_control;
main_control; {come to life}
mfluaPOST_main_control;
final_cleanup; {prepare for death}
mfluaPOST_final_cleanup;
end_of_MF: close_files_and_terminate;
final_end: ready_already:=0;
end.

MFLua: Instrumentation of MF with Lua EUROTEX 2012 & 6CM PROCEEDINGS 117

We’re going to examine the role of the
mflua_begin_program sensor. The Pas-
cal-into-C translator, web2c, is smart enough to
distinguish a symbol already present in the Pascal
source from an external symbol (i.e., a symbol de�ned
in another �le). In the latter case, the programmer has
to register that symbol into the �le texmf.defines
if the symbol is related to an argumented procedure:
the translator will manage properly the arguments
translation. The translated code will contain the C
form of the sensor symbol, which will be resolved at
compile-time — i.e., we need an object �le that contains
that symbol. Each sensor is stored into mflua.h and
mflua.c. The �rst one lists the symbol:
#include "lua51/lua.h"
#include "lua51/lualib.h"
#include "lua51/lauxlib.h"
#include <kpathsea/c-proto.h>
#include <web2c/config.h>

extern lua_State* Luas[];
extern int mfluabeginprogram();

while the second one contains the corresponding func-
tion source code:
int mfluabeginprogram()
{

lua_State *L = luaL_newstate();
luaL_openlibs(L);
Luas[0] = L;
/* execute Lua external "begin_program.lua" */

const char* file = "begin_program.lua";
int res = luaL_loadfile(L, file);
if (res==0) {

res = lua_pcall(L, 0, 0, 0);
}

priv_lua_reporterrors(L, res);
return 0;

}

The above function initializes the Lua interpreter,
stores its state in the array Luas[] (it would be
possible to have more than one interpreter but this
feature is currently neglected) and then executes
the external script begin_program.lua calling
lua_pcall(L, 0, 0, 0). This call protects
the interpreter from errors. Every time we run mf (the
METAFONT program), it loads and executes the Lua
script begin_program.lua, customizable by pro-
grammers.

We surely need to pay attention to some issues.
The �rst one is that literate programming style allows
to collect every changes we make in a source �le
into a change �le (mf.ch in our case), which is then
merged into a Pascal program by tangle. This
means that inserting a sensor can interfere with the
change �le. In this case we also have to insert the
sensor into the change �le as we do, for instance, with
mfluaPRE_make_ellipse(major_axis,

minor_axis,theta,tx,ty,0). Of course the
right solution is directly inserting the sensors in the
change �le. Unfortunately it’s usually faster discovering
where to insert a sensor in the source �le and then
managing con�icts in the change �le: source �les have a
context — the source itself — that change �le don’t. The
second issue is the need to export some METAFONT

variables and constants to the Lua interpreter. An
easy way to accomplish this task is inspecting the
translated C code to realize how those variables and
constants are managed. For example, to make Lua read
the charcode variable, which contains the index of
the current glyph, we need to know that it’s stored into
the internal array at index 18 (the index is from
the METAFONT WEB source) so that we can write a
wrapper function like the following one:
#define roundunscaled(i) (((i>>15)+1)>>1)
EXTERN scaled internal[maxinternal + 1] ;
static int
priv_mfweb_LUAGLOBALGET_char_code(lua_State *L)

{
integer char_code=18;
integer p=roundunscaled(internal[char_code])%256;
lua_pushnumber(L,p);
return 1;

}

and then make it available to the Lua interpreter as the
LUAGLOBALGET_char_code variable:
int mfluainitialize()
{

/* execute Lua external "mfluaini.lua" */
lua_State *L = Luas[0];
/* register lua functions */

:
lua_pushcfunction(L,

priv_mfweb_LUAGLOBALGET_char_code);
lua_setglobal(L,"LUAGLOBALGET_char_code");
:

/* execute Lua external "mfluaini.lua" */
const char* file = "mfluaini.lua";
int res = luaL_loadfile(L, file);
if (res==0) {

res = lua_pcall(L, 0, 0, 0);
}
priv_lua_reporterrors(L, res);
return 0;

}

Users can read and set this variable though the set
value won’t be passed to METAFONT in order to inter-
fere as little as possible with its state. That’s why we
prefer to inspect the translated C code, which quality
depends on the translation performed at compile-time.
A clean solution should only depend on the WEB source.
For historical reasons, translating code from Pascal into
C outputs two �les (mf0.c and mf1.c). Finding a
symbol implies searching in two �les, which hardens
the process.

118 EUROTEX 2012 & 6CM PROCEEDINGS Luigi Scarso

There are currently 24 sensors, 33 global variables
and 15 scripts, though it’s possible to increase these
quantities if we discover that tracing a speci�c function
inside METAFONT is better than reimplementing it in
Lua. While it’s easy to implement the algorithm to draw
a curve in Lua, it’s slightly harder to implement the
algorithm to �ll a region. Whatever, the main goal is to
keep the number of sensors as low as possible. Notice
that MFLua currently reads scripts from the current
folder and doesn’t use the standard TEX folders.

The counterpart of mflua_begin_program
is mflua_end_program, which calls the
end_program.lua script. It contains all the
functions used to transform the components of a glyph,
the subject of the next section.

3 The components of a glyph
METAFONT mainly manages Bézier cubic curves (see
�g. 1).1 This curve is completely described by four con-
trols points: p (called the starting point), c1, c2 and q
(known as the ending point). The METAFONT command
to draw such a curve is

draw p .. controls c1 and c2 .. q;

p

q

c1

c2

Figure 1. A cubic Bézier curve and its convex hull.

This curve lies on the XY plane and its parametric
form is quite simple:

B(t) = (1− t)3p+ 3(1− t)2tc1

+ 3(1− t)t2c3 + t3q ∀t ∈ [0, 1] (1)
The corrensponding algebraic expression, the closed
form, is more complex but it’s useful to quickly test
whether a point belongs to the curve or not.

Equation (1) has �rst derivatives B′(0) = 3(c1 − p)
and B′(1) = 3(q− c2) respectively when t = 0 and
t = 1. We can easily calculate them when we know p,
c1, c2 and q. An important property is that a Bézier
cubic curve is completely contained in the polygon
pc1 c2 qp (the convex hull) and this immediately leads
to the conclusion that the intersection of two curves
is empty if and only if the intersection of their con-
vex hulls is empty. Another important property is the
existence of the De Casteljau’s algorithm, very easy to

implement: given the four control points of a curve and
a time t1, it returns the point (x1, y1) = B(t1) on the
curve and the two series of control points, one for the
curve Bl(t) = B(t), t ∈ [0, t1] (the left side) and one
for the curve Br(t) = B(t), t ∈ [t1, 1] (the right side).
It recursively reduces the curve B(t), t ∈ [0, 1] tracing
to the tracing of the left side Bl(t) = B(t), t ∈ [0, 1/2]
and the right side Br(t) = B(t), t ∈ [1/2, 1] (the recur-
sion ends when the distance between two points (xj , yj)
and (xj+1, yj+1) is less than a pixel).

The De Casteljau’s algorithm is useful because it esti-
mates how long a curve is counting the number of pixels
covered by the curve. It also �nds intersections of two
curves B(t) and C(t) reducing this problem to the prob-
lem of calculating the intersection of four curves: left
and right side of B(t) and left and right side of C(t) for
t = 1/2. The algorithm keeps working when one curve
degenerates into a segment (i.e., if p = c1 and c2 = q)
or when it degenerates into a point (p = c1 = c2 = q).
Therefore it can be used to �nd an intersection between
a line and a curve and to test if a point belongs to a curve.
A set of curves {B1,B2 . . .Bn} where qj−1 = pj and
qn = p0 is a simple cycle if the only intersection is
(x, y) = qn = p0. Simple cycles are the building blocks
of a glyph: a simple cycle can be �lled or un�lled and,
according to METAFONT’s point of view, a glyph is a
set of cycles �lled and/or un�lled at the right moment.

A normal METAFONT designer doesn’t care about
these details because METAFONT has a high level lan-
guage to describe curves, points, lines, intersections,
�lled and un�lled cycles and, most important, pens. The
listed entities produce a combination of two di�erent
basic draws: regions (un)�lled by a contour and regions
(un)�lled by the stroke of a pen, i.e., the envelope of a pen.
Both are simple cycles, but their origin is very di�erent.

Let’s consider the code of the glyph 0 from the �le
xmssdc10.mf:
cmchar "The numeral 0";
beginchar("0",9u#,fig_height#,0);
italcorr fig_height#*slant-.5u#;
adjust_fit(0,0);
penpos1(vair,90);
penpos3(vair,-90);
penpos2(curve,180);
penpos4(curve,0);
if not monospace:
interim superness:=sqrt(more_super*hein_super);

fi
x2r=hround max(.7u,1.45u-.5curve);
x4r=w-x2r; x1=x3=.5w;
y1r=h+o; y3r=-o;
y2=y4=.5h-vair_corr;
y2l:=y4l:=.52h;
penstroke pulled_arc.e(1,2) & pulled_arc.e(2,3)
& pulled_arc.e(3,4)
& pulled_arc.e(4,1) & cycle; % bowl

penlabels(1,2,3,4);
endchar;

MFLua: Instrumentation of MF with Lua EUROTEX 2012 & 6CM PROCEEDINGS 119

Figure 2. The glyph of the numeral 0 in xmssdc10.mf
font.

Fig. 2 shows a glyph only made by two contours
which are the result of penpos and penstroke
macros. Of course we could obtain the same result draw-
ing 24 curve sections (12 for the outer contour, 12 for
the inner one) but it should be clear that the META-
FONT description is much more straight or, at least,
“typographic”.

Things completely change when we consider the nu-
meral 2:
cmchar "The numeral 2";
beginchar("2",9u#,fig_height#,0);
italcorr fig_height#*slant-.5u#;
adjust_fit(0,0);
numeric arm_thickness, hair_vair;
hair_vair=.25[vair,hair];

arm_thickness=
Vround(if hefty:slab+2stem_corr

else:.4[stem,cap_stem] fi);
pickup crisp.nib;
pos7(arm_thickness,-90); pos8(hair,0);
bot y7r=0; lft x7=hround .9u; rt x8r=hround(w-.9u);
y8=good.y(y7l+beak/2)+eps;
arm(7,8,a,.3beak_darkness,beak_jut);%arm and beak
pickup fine.nib; pos2(slab,90);
pos3(.4[curve,cap_curve],0);
top y2r=h+o; x2=.5(w-.5u);
rt x3r=hround(w-.9u); y3+.5vair=.75h;
if serifs:
numeric bulb_diam;
bulb_diam=hround(flare+2/3(cap_stem-stem));
pos0(bulb_diam,180); pos1(cap_hair,180);
lft x1r=hround .9u; y1-.5bulb_diam=2/3h;
(x,y2l)=whatever[z1l,z2r];
x2l:=x; bulb(2,1,0); % bulb and arc

else: x2l:=x2l-.25u; pos1(flare,angle(-9u,h));
lft x1r=hround .75u; bot y1l=vround .7h;
y1r:=good.y y1r+eps; x1l:=good.x x1l;
filldraw stroke term.e(2,1,left,.9,4);

fi % terminal and arc
pos4(.25[hair_vair,cap_stem],0);
pos5(hair_vair,0);
pos6(hair_vair,0);
y5=arm_thickness; y4=.3[y5,y3];
top y6=min(y5,slab,top y7l);
lft x6l=crisp.lft x7;
z4l=whatever[z6l,(x3l,bot .58h)];
z5l=whatever[z6l,z4l];
erase fill z4l--
z6l--lft z6l--
(lft x6l,y4l)--cycle;%erase excess at left

filldraw stroke z2e{right}..tension
atleast .9 and atleast 1

..z3e{down}..{z5e-z4e}z4e--z5e--z6e;%stroke
penlabels(0,1,2,3,4,5,6,7,8);
endchar;

As we can see in �g. 3, there are both a contour and
envelopes of more than a pen; there are intersections
between the contour the envelopes and the pens, and
some curves are outside the glyph (some of these curves
are used to delete unwanted black pixels). There are also
some unexpected straight lines and small curves. The
number of curves looks quite large, which is not what
we desire as we want to obtain the outline depicted in
�g. 4.

Unfortunately, things are even di�erent and it’s
necessary to describe how METAFONT calculates
pen envelopes to go on. This is explained in the
book “METAFONT: The Program” (Knuth, 1986a)
at the “Polygonal pens” part, chapter 469, that
we brie�y quote with a slightly modi�ed nota-
tion:

Given a convex polygon with vertices
w0,w1, . . . ,wn−1,wn = w0 a in counter-
clockwise order . . . (and a curve B(t)) the enve-
lope is obtained if we o�set B(t) by wk when
the curve is travelling in a direction B′(t) ly-

120 EUROTEX 2012 & 6CM PROCEEDINGS Luigi Scarso

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

.1.

Figure 3. The glyph of the numeral 2 in xmssdc10 font.
We can see envelopes and pens (thick curves) and a
contour (thin curve).

ing between the directions wk − wk−1 and
wk+1 − wk. At times t when the curve di-
rection B′(t) increases past wk+1 −wk, we
temporarily stop plotting the o�set curve and
we insert a straight line from B(t) + wk to
B(t) + wk+1; notice that this straight line
is tangent to the to the o�set curve. Simi-
larly, when the curve direction decreases past
wk − wk−1, we stop plotting and insert a
straight line from B(t)+wk to B(t)+wk+1;
the latter line is actually a “retrograde” step
which will not be part of the �nal envelope
under the METAFONT’s assumptions. The re-

Figure 4. An outline of the numeral 2 in xmssdc10.mf
font.

sult of this construction is a continuous path
that consist of alternating curves and straight
line segments.

This explains why the number of the curves is large
and why there are small curves, but says nothing about
those circular curves that we can see in �g. 4: META-
FONT indeed converts an elliptical pen into a polygonal
one and then applies the algorithm. The conversion
is accurate enough to guarantee that the envelope is
correctly �lled with the right pixels. This is a key point
to understand: METAFONT’s main task is to produce the
best bitmap of a glyph, not the best outline.

The role of the sensors is to gather as much informa-
tion as possible about pixels, contours, the polygonal

MFLua: Instrumentation of MF with Lua EUROTEX 2012 & 6CM PROCEEDINGS 121

version of the pens, envelopes and their straight lines
and then store these information (basically the edge
structure of the pixels and Bézier curves with an even-
tual o�set) into appropriate Lua tables. As METAFONT

halts, the Lua interpreter calls end_program.lua
and let the programmer manage these tables: sometimes,
as we have seen in the numeral 0 case, the post-process
can be quite simple, sometimes not. MFLua doesn’t
automatically output a glyph outline because it’s the
programmer who has to implement the best strategy
according to his experience.

4 Two different strategies for
post-processing the curves

The Concrete Roman 10 pt
The �rst use of MFLua has been the post-processing of
Concrete Roman 10 pt to obtain an OpenType version of
it. This font is described in the �le ccr10.mf. As we
previously said, sensors collect the data into Lua tables
and end_program.lua post-processes them at the
end of the execution (we could even choose to execute
the no-more post-process during the execution). The
script end_program.lua de�nes the global array
chartable[index] that contains the data for the
glyph with char code index: we have the edge struc-
ture that allows the program to calculate the pixels of the
glyph as well as the three arrays valid_curves_c,
valid_curves_e and valid_curves_p that
gather the data of contours, envelopes and the polygo-
nal version of the pens. Each array contains the array of
the control points {p,c1,c2,q} stored as a string
"(<x>,<y>)", where <x> and <y> are the coordi-
nates of the point. With �g. 3 as a reference, we can see
that when we draw a glyph with a pen it usually has
overlapping strokes. Along with the curves of the pen(s),
these overlaps create curves inside or outside the glyph
that must be deleted. Having the pixels of the glyph, we
can use the parametric form (1) to check if a point (x, y)
(or better, a neighborhood with center (x, y)) is inside
or outside. If all the points of the curve are inside or
outside, we can delete them. The drawback is that while
time t goes linearly in B(t), the points (x(t), y(t)) fol-
low a cubic (i.e., not linear) law in case the curve is not a
straight line. Hence, they are not equally spaced — this
means that we can jump over some critical points. Using
the same time interval steps for each curve means that
short curves are evaluated in times where the points can
di�er less than a pixel — a useless evaluation. Of course
not all the curves are inside the glyph: there are curves
on the border and curves partially lying on the border
and partially inside (or outside). In the latter case the
result of evaluation is an array of time intervals where
the curve crosses the border.

Once we have deleted the curves that are completely
inside (or outside) the glyph, the next step is to merge
all the curves and split them using the previously seen
time interval (this is done by a Lua implementation of
the De Casteljau’s algorithm). Now we have a set of
curves that are on the border or “near” it (i.e., partially
on the border). We can delete those curves having only
one intersection (a pending curve), supposing that each
curve of the �nal outline has exactly 2 intersections at
times t0 = 0 and t1 = 1.

To calculate all the intersections we use the following
trick: if we have n curves, we produce a METAFONT �le
that contains the code that calculates the intersection
between pi and pj for 1 ≤ j ≤ n and j < i ≤ n (given
that pj ∩ pi = pi ∩ pj) and then we parse the log �le
with Lua. For example if
p1={"(57.401,351.877)", "(57.401,351.877)",

"(57.901,349.877)", "(57.901,349.877)"}

and
p2={"(56.834,356.5)", "(56.834,354.905)",

"(57.031,353.356)", "(57.401,351.877)"}

then we have
batchmode;
message "BEGIN i=2,j=1";
path p[];
p1:=(57.401,351.877) ..
controls (57.401,351.877) and (57.901,349.877) ..

(57.901,349.877);
p2:=(56.834,356.5) ..
controls (56.834,354.905) and (57.031,353.356) ..

(57.401,351.877);
numeric t,u;
(t,u) = p1 intersectiontimes p2;
show t,u;
message "" ;

and the log
BEGIN i=2,j=1
>> 0
>> 0.99998

If the result is (−1,−1) the intersection is empty.
There are two problems with this approach: the �rst
one shows when a curve crosses the border and time
intervals can generate two curves, one completely out-
side and one completely inside — hence deleting an
intersection. To avoid this issue we must adjust the
intervals moving the extremes a bit. We have the sec-
ond problem when there can be curves with three or
more intersections — i.e., we can have loops. Opening
a loop can be a di�cult task: e.g., if the curve pa inter-
sects {pb, pc, pd} at the same time ta and pb intersects
{pa, pc, pd} at tb then Ia = {pa} ∪ {pb, pc, pd} is equal
to Ib = {pb} ∪ {pa, pc, pd} and we can delete pa and pb
because pc and pd stay connected. But with more than
three intersections things become more complex.

122 EUROTEX 2012 & 6CM PROCEEDINGS Luigi Scarso

ff fi fl ffi ffl Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam nisl urna,
eleifend vel mollis quis, facilisis vel dolor. Sed auctor nibh eu magna vulputate vulputate.
Curabitur ante mauris, pretium eu laoreet at, venenatis et neque. Vestibulum ante quam,
tristique in posuere eu, pulvinar vel neque. Nam faucibus, neque ut commodo luctus, lacus
risus accumsan felis, a feugiat lorem justo venenatis dui. Aenean bibendum tincidunt enim
ac cursus. Vivamus a arcu a augue auctor consectetur nec sed augue. Quisque dignissim felis
imperdiet mi lacinia suscipit. Maecenas nunc tortor, congue nec posuere sit amet, ultricies
vel diam. In aliquam arcu eu lacus congue eget rutrum justo volutpat. Quisque ac nisi vitae
leo fringilla lobortis.

Curabitur rhoncus lobortis ante, eget euismod magna blandit nec. Praesent non sem
nulla. Sed congue magna sit amet libero sodales eu ultrices orci posuere. Suspendisse sed
nibh a tortor fermentum ornare. Suspendisse vel felis eget tellus gravida rhoncus. Ut vel
magna lacus, placerat semper enim. Vestibulum rutrum condimentum neque et adipiscing.
Duis nulla enim, euismod a cursus id, ornare vel tellus. Vestibulum lobortis metus egestas
velit euismod pellentesque. Praesent elit ante, consequat at posuere a, rhoncus id magna.
Phasellus ut nisl orci, ac molestie eros. Suspendisse potenti. Suspendisse ac porttitor lorem.
Curabitur eu elit sed neque placerat accumsan. Cras eu odio diam. Nunc lorem ligula,
interdum eget consequat non, laoreet eget magna.

Maecenas consequat ultrices est, vitae rutrum nulla egestas sed. Proin rutrum lorem in
sem posuere pretium. Cras accumsan euismod quam eget pulvinar. Maecenas eget posuere
sem. Nulla sit amet luctus elit. Nulla vel ligula velit. Nunc consectetur orci a odio venenatis
facilisis. Integer venenatis commodo nibh sed gravida. Ut ornare arcu in mi eleifend convallis.
Quisque tincidunt, tellus et sodales interdum, nulla massa suscipit ante, non tincidunt ligula
diam id nunc. In eu justo at lectus pulvinar accumsan. Vivamus convallis sodales ligula, ut
gravida elit consectetur at. Ut in augue nec tortor vehicula vehicula eu eu lorem. Vivamus
tristique neque ut tellus tristique aliquet.

Proin quis augue a elit convallis venenatis. Quisque scelerisque dictum augue condimen-
tum rutrum. Integer nec dignissim nisl. Aenean vitae justo lectus, eu vulputate ipsum. Sed
porttitor dapibus arcu sed faucibus. Sed vitae arcu eu quam ultrices ornare. In in est nec pu-
rus consequat vehicula. Integer ut fermentum dolor. Vivamus neque quam, cursus at viverra

1Figure 5. The ConcreteOT font produced by MFLua from ccr10.mf.

To solve these cases, end_program.lua has a
series of �lters. A �lter acts on a speci�c glyph and
typically removes unwanted curves and/or adjusts the
control points to ensure that a curve joins properly with
its predecessors and successor. Of course this means
that the programmer inspects each glyph separately,
which is reasonable when we are designing the font —
less reasonable when we convert it.

We can call this approach per-font and per-glyph:
end_program.lua is a Lua script valid only for
a speci�c font and which has �lters for each glyph.

The script end_program.lua also has some
functions to convert the outlines (with the correct turn-
ing number) of each glyph into a SVG font: this font
format can be imported into FontForge and, usually after
re-editing the glyphs (typically simplifying the curves),
it can be saved as an OpenType CFF. In �g. 5 we can see
an example of this font.

The Computer Modern Sans Serif Demibold
Condensed 10 pt
We now approach a more “geometric” strategy. We
don’t want to output an OpenType font but to �nd an

end_program.lua more universal and per-glyph
and less per-font and per-glyph. Our experience with
ccr10.mf make us believe that is always possibile to
write a METAFONT program that outputs a nice bitmap
of a glyph using a very complex set of curves. This
is especially true when we use pens and the need to
manually correct every error arises. Up to now we only
made few outlines of numerals.

There are new functions to trace a curve and to cal-
culate the intersections between two cubics (both based
on De Casteljau’s bisection algorithm, an application of
De Casteljau’s algorithm) so the parametric form and
the trick to calculate the intersections are not needed
anymore. We also keep contours, envelopes and pens
apart almost until the end of the process, when we �rst
merge envelopes and pens and then, at last, contours.
The most important enhancement is probably the re-
placement of the polygonal version of a pen with an
elliptical one. METAFONT generates a polygonal get-
ting an ideal ellipse with major axis, minor axis and the
angle of rotation from the pen speci�cations and then
calls make_ellipse. Putting a sensor around helps
us store the axis and theta into a Lua table, to be read

MFLua: Instrumentation of MF with Lua EUROTEX 2012 & 6CM PROCEEDINGS 123

Figure 6. Real polygonal pen (black) vs. calculated elliptical pen (gray). Square boxes are the pixels. It’s the bottom
right part of fig. 3 .

later from end_program.lua. The next step is a
trick again: we call MFLua with the following �le:
batchmode;
fill fullcircle

xscaled (majoraxis)
yscaled (minoraxis)
rotated (theta) shifted (0,0);

shipit;
bye.

where majoraxis, minoraxis and theta get
the ellipse data. MFLua then saves the outlines of the
�lled ellipse into another �le, from which they can be
read by end_program.lua. This script then saves
each elliptical pen in a table, with p..c1..c2..q as
a key to be reused later, instead of the polygonal one.
We can see the result in �g. 6: the approximation is quite
good. This reduces the total number of curves and gives
the glyph a more natural look.

5 Conclusion
We believe that MFLua is an interesting tool for
font designers because too many fonts (if not all)
are currently designed using contours. In this case
end_program.lua should be simple (less or even
no intersections, compared to the METAFONT tech-
nique, see the numeral 0 of xmssdc10.mf). On the
other side, using the pens shows that extracting an out-
line is a di�cult task. It’s almost impossible to �nd
an always valid script. The outlines from an envelope
usually have a large number of curves, which is not
a good feature, and this is a METAFONT property: we
can always implement routines to simplify them, though
FontForge already does it.

The work will continue on xmssdc10.mf to �nd
an end_program.lua modular and �exible enough
for a wide application.

References
Knuth, D. E. (1986a). METAFONT: The Program.

Addison-Wesley, Massachusetts, 1ª edizione.

— (1986b). The METAFONTbook. Addison-Wesley, Mas-
sachusetts, 1ª edizione. — with �nal correction made
in 1995 —.

Marsh, D. (2005). Applied Geometry for Computer Graph-
ics and CAD. Springer, London, 2ª edizione.

Notes
1. I borrow notation from Marsh (2005), where points and
functions in the Bézier curves section are represented by bold,
upright letters.

Luigi Scarso
luigi dot scarso at gmail dot com

