98 MAPS 46

Hans Hagen

SciTE

Introduction

The SciTE editor is now some 15 years old, and still one of the nicest around. This
editor is a wrapper around the scintilla editor framework. It is available for free for
Windows and Linux, and there is a relatively cheap version for MacOSX.

Here are a few reasons why I prefer using this editor:

0 The footprint is small and (at least on Windows and Linux) installation and up-
dating is easy.

O The editor starts up fast, performs well and the fonts have always been rendered
very well.

0O Configuration is easy and flexible, and changes to configuration files are re-
flected immediately (no restart required).

O Lots of file formats are supported by syntax highlighting.

O Processing of files is logged in a fast and efficient log pane.

O There is a Lua interface built-in that permits you to write extensions.

Syntax highlighting

One of the first things that I did when I started using SciTE is to (re)write the TgX
and MetaPost lexers so that they were more suitable for ConTgXt. For quite some
years ConTgXt has shipped with the relevant files for editing and processing TgX.

Recently the external lexer feature has been extended by an Lpeg based lexer. As
a consequence, I wrote a couple of lexers that go beyond the older ones. These are
tuned for ConTgXt and are shipped with the ConTgXt distribution.

O The TgX lexer can not only distinguish between tex primitives (including condi-
tionals), low level ConTgXt commands, special registers, ConTgXt user interface
commands and special symbols, but can also deal with nested Lua and MetaPost
code.

O The Lua lexer has a variant that can recognize some of the ConTgXt MKIV fea-
tures.

0O The xml lexer can recognize some errors in the syntax.

O The Pdf lexer can recognize the relevant objects to some extent.

0 The MetaPost lexer can distinguish primitives, MetaFun and user defined com-
mands.

The ConTgXt distribution ships with all the files needed for getting this up and run-
ning. In addition to initializing lexers, we also tune some of the menus for use with
TgX based workflows. The background of the text areas is set to a light shade of
gray and the font defaults to Dejavu Mono; which happens to cover lots of Unicode
characters.

The TgX, xml and the yet unmentioned text lexers can do realtime spell checking.
As with the lexers, spell checking is more advanced in the Lpeg lexers than in the
traditional ones: we recognize rightly spelled words, mark unknown words and also
mark words that need case checking. The nice thing is that the regular command
highlighting works in parallel. This is shown in figure 1. Normally I use the full (high-
res and wide) screen which gives enough room for regular documents as well as the
(real-time) log pane. Menus and configured tools adapt themselves automatically to
the current file type.

SciTE

@ tscite\datascte-context-visualtek T
Ele Edt Search View Tools Options Language Buffers Help
Lteookster| 2 Lua | 35-methods.ual & [5 s-sessionsiua ual 7 pleiua] § [9 miallival o [craptex| tex| \ l
T % language=uk = [Pmexrun --autogenerate --script context --autopdf scite-context-visual tex
mtx-context | run 1: luatex --fmt="c:/data/develop/tex-context/tex/texnf-
Bl \defineframedtext [This is LuaTex, Version beta-9.71.0-2011062811 (rev 4315)
4 [entry] (scite-context-visual . tex
5 ConText ver: 2011.11.08 19:35 MKIV fnt: 2011.11.8 int: english/english
| S sys > cont-new.kiv loaded
7 (c /ﬂata/deve\np/:untext/suw:esl(nnt new. mkiv
8 (\startchapter[title=Some fancy title] S’ys en > beware: some patches loaded from cont-new.akiv
9 nt-loc.mkiv loaded
20| \startluacode e s e
11 local entries = { -- there can be more) . fiv tonded
B i " > exp.nkiv loade
12 { text = "The third entry!" }, 41 /ﬂata/dzv:lnp/:anux(/:aurtu/(nn “exp.mk
13 { text = "The fourth entry!" }, o B Ers et (B e G
14 } sys itecontext- visual.top loaded
(s:ue context-visuat
15 . . L okin medern fonts are not preloaded
16 for i=1,#entries do - > language en is act
i tex/temnt -context/ /mkiv-
17 context.startentry() > preloading latin modern fonts (second stage)
18 context(entries[i].text) e B O A T], (B e s
19 text. st ity fonts > virtual math > unable to resolve name mapsfromchar
context.stopentry fonts > fallback modern rm 12pt is loaded
20 end structure > sectioning » chapter @ level 2 ; 0.1 -» some fancy title
netapost > initializing instance ‘metafun' using format ‘metafu
21 \stopluacode metapost = Lasdingactafun; e /data/develop/content/metapost/context
2 backend > xmp > using file ‘c:/data/develop/context/sources/Lpdf-px
. . pages S e sl eatane) 1H e maciatcubpenal
23 This is just some text to demonstrate the realtime spellchecker o [z x-context/tex/texaf/ fonts/ope o laromamz. ¢
i inati i = |nkiv lua stats > used config fi selfautoparent: texnf-local /web2
2 in combination with the embedded lua and metapost lexers and P vjuinfecats foon Jom ol B e
25 inline as well as display \ctxlua{context("lua code")}. m:w :ua s:a:s > EI@ ;ew;ve; " B ;;;dn:e\ﬂ n]g;::qus, ;B;:a;s.
nkiv lua stats > stored bytecode data - 302 modules ables, 365 chu
26 nkiv lua stats > cleaned up reserved nodes - 39 nodes, 9 lists of 427 i
i i nkiv lua stats > node memory usage - 2 glue, 2 penalty, 12 attribute |
g; \Sta{::;ﬁ;‘;gsztm" iy Tus stats - node list callback tasks - 6 unique task lizts, 5 anscance |
nkiv lua stats > used backend - pdf (backend for directly gener
i= . nkiv lua stats > loaded patterns -enii2
29 e) siv Lua stats > callbacks © 3806 direct, 3573 indirect, 63
30 draw fullcircle scaled (i*mm) ; mkiv lua stats > randomizer - resuned with value 0.6823328348
31 endtonk R I e
nkiv lua stats > result saved in file - scite-context visual
32 \stopMPcode akciv lua stats > loaded fonts B A Hm
5 - mkiv lua stats > fonts load tine - 9361 seconds I
33 \stoplinecorrection mkiv lua stats > metapost processing time - 0.016 seconds, loading: 0.97 s |
mkiv lua stats > luatex ban - this is luatex, version beta-0
= . nkiv lua stats > control sequences - 31366 of 65536 + 100000
35 \iftrue mkiv lua stats > current memory usage - 34 1 (ctx: 35 1)
36 \def\crap{some text} % who cares nkiv lua stats > runtine - 1.188 seconds, 1 processed page
37 \else mtx-context I pdfview methods: acrobat default okular, current method: ac
38 \def\crap{some crap} % about this system total runtine: 2.264Exit code: ©
39 \fi
40
41 \blank[2*big]
42
[l 43 \crap
44
Il 45 | \stopchapter
46
47 | \stoptext
« O K== '
Ltex|5-10-2011 231225 | umn 31 R+LF| 5102011 231225

Figure 1. Nested lexers in action.

A side note: currently the MacOSX version does not ship with the library needed
for the Ipeg lexer. Hopefully this will change one day.

Functionality

Of course, SciTE provides all the regular editing functionality; although in practice
one will use only a small subset of features. A real nice feature is the rectangular
selection, cut and paste. It’s really easy to move columns around. Spacing can be
visualized. Structures can be folded.

As an example of a Lua extensions I wrote a word wrapper, simply because I want
document sources to look nice as well.

Many files can be open at the same time and are accessed using tabs. The state
is remembered and restored at a next startup. Quite handy is the fact that one can
collapse all start—ups into one instance.

Word completion is supported (which is quite handy) as is expansion of abbre-
viation (although I never used that). Also nice is the ability to comment a line or a
selected block of text with one key.

Of course, once you are fluent with an editor it stays your favourite no matter
what others tell you, but for me it’s the only editor that I want to work with.

Side note: a nice alternative is textadept, an editor written in Lua using the same
scintilla editing component. It shares the Lpeg lexing code but it lacks a realtime log
pane and has no tabs.

Processing

Users can easily tweak the .properties files to define commands that can be ap-
plied to a file. One can add runners to menus and associate them with keys. For
TgX compiling, linking et cetera this makes no sense, but checking, processing and

NAJAAR 2015

99

100 MAPS 46

Hans Hagen

previewing does. For ConTgXt we use (mtx-)check for checking, (mtx-)context for
processing TgX and xml files, mtxrun for running Lua, et cetera.

Of course, you can use SciTE for any macro package you like. If you don’t use
ConTgXt, it provides support for TgX anyway. It’s an easy to install editor, so if you’re
looking for something new it’s worth a try.

Hans Hagen

