
Rens Baardman VOORJAAR 2019 49

Writing my thesis with TEX
A report from the battle�elds

Sharing your TEX-setup feels a little like airing your
dirty laundry in public. The projects I know are often
a mess of haphazardly cobbled up solutions and last-
minute changes, duct-taped together with a bunch of
macros copy-pasted from random pages on the internet.

Nevertheless (or possibly precisely because of this),
sharing these setups and project structures can help
other — especially more novice — users to streamline
their work�ow and lower the threshold to customize
their own system. At least, write-ups like these have
helped me.1

I will follow with a general overview of the setup that
I used to write my thesis last year, with an audience
in mind that would include myself before I started this
thesis. It did get me that sought-after diploma, so you
might try your risk with something similar.

First warning: always remember that content goes
above style. Don’t let the pleasure derived from your
TEX-journeys obscure the thing that matters: that which
you are trying to convey to the reader. Not even the
best design or most comfortable work�ow can mend a
broken text — or a lack of text, for that matter.

Second warning: I’m not a very capable TEX-user by
any means. If anything in the following seems old-
fashioned, clumsy or plain wrong: you’re probably right.
Blame it on a routine built up from anonymous internet
advice coming from several di�erent decades and from
questionable sources. (You could also take it as the indi-
cation of the TEX-pro�ciency level of an average user —
which suggests that better documentation of currently
available options is more useful than adding even more
complex features to them.)

Background
The thesis I wrote was the conclusion of my bachelor
in mathematics, which I followed at the University of
Amsterdam (UvA). In the second year of the program,
the course ‘Computeralgebra / LATEX’ is taught as an in-
troduction to typesetting mathematics with LATEX, com-
bined with some programming in Mathematica. Stu-
dents are then expected to be su�ciently comfortable
in LATEX to use it for research projects, an occasional
homework assignment, and their thesis (this expecta-

tion is met to a certain degree). Also, presentations are
expected to be prepared with beamer.

For the thesis, we are supplied with a class �le with
some basic sca�olding: a title page with institute names,
supervisors and the logo of the university, and a place
to put our abstract.2 The rest (including design choices)
is left to the students.

My thesis was in the area of mathematical logic,
speci�cally set theory. This requires some extra funny
symbols, but my setup should work for any scienti�c
thesis or larger project. For an idea of the size: in the
end, my thesis was 42 pages long, included 6 chapters
and some 10.700 words (according to texcount).

Editor
Let’s start with the main interface — the editor. I’m using
Sublime Text 3 on a MacBook Pro. In the course men-
tioned earlier, Mac users were advised to use TeXShop
since it came bundled with the MacTeX-distribution.
I used it for a while, but never liked its design and de-
fault settings (it uses a proportional width font for code,
and no syntax coloring). It’s possible to tweak this to a
certain extent, but I already used Sublime Text for other
programming tasks, so it was more natural to switch to
that.

The Sublime Text-plugin LaTeXTools3 o�ers various
necessary functionalities. Most importantly, it adds a
con�gurable build pipeline, so you can compile while
staying within Sublime Text. It also installs syntax high-
lighting, auto�ll-options for a.o. citations and references,
and command completion. With this enabled, editing
becomes very intuitive and swift.

A pdf-previewer with auto-reload (so that the pre-
view reloads every time the pdf is compiled) makes
the ‘write-compile-read’-cycle even smoother. Unfor-
tunately, Preview.app (the default pdf-viewer on Mac)
doesn’t o�er this functionality. I use the open source
alternative Skim instead.4

The choice of your editor is usually a very personal
one, and discussions about it usually get very heated. I
do not claim that Sublime Text is the most suitable editor
for everyone — far from it. But in general, picking a good
editor and getting comfortable with it and setting it up



50 MAPS 49 Rens Baardman

/project
img

figure.tikz
logo.png
...

tex
1-introduction.tex
1.1-state-of-the-art.tex
1.2-research-goal.tex
2-experiment-design.tex
2.1-lab-settings.tex
...

.gitignore
project.bib
project.tex
project.sty
style.sty

Figure 1. An outline of the directory structure. For the
function of .gitignore, see section ‘Version control’.

properly (learning the most useful shortcuts, installing
the right packages, con�guring proper �le exclusion
patterns so your workspace doesn’t get cluttered) makes
the whole process a lot smoother.

Project organization
At a certain point, keeping all your text in one �le be-
comes unworkable. I break everything up in smaller
�les quite aggressively — usually, every section gets its
own �le. Then there is another �le per chapter, which
collects all its sections using \input. These are all or-
ganized in a directory called tex. Finally, a main �le is
kept in the root directory. Using \includes, it collects
all the chapters in /tex. This �le can then be compiled
into a pdf.

Since I want to reuse design and package decisions
in later projects, I separated them into two .sty-�les,
that are imported in the main .tex-�le by \usepackage.
One of them (style.sty) contains general customiza-
tions; the other (project.sty) contains project-speci�c
choices. See �g. 1 for how this all comes together.

Version control
Although it seems this is a rare opinion among other
students (who often use the free version of online LATEX
collaboration tools such as Overleaf — which miss any
history tools), to me version control is indispensable.
I use Git to save the complete history of my project.
Using ‘commits’, I can add another state of my �les in
the history tree. This allows me to edit my texts quite
ruthlessly, since I know that if I ever change my mind
about a part or two, I can always revert it to a previous

state, or pick out speci�c sentences (in practice, I rarely
ever actually need this — knowing that the option is
there is enough, apparently).

Git o�ers ‘tags’, with which you can annotate com-
mits. I use it to mark the commits from which I compiled
particular versions — such as the ones I discussed with
my supervisor. It’s also possible to use ‘branches’ —
particular diversions from the main �le history, which
I used a couple of times to try out certain new ideas
or formats, without messing up the main history. To
give an idea: I used 73 commits, 8 tags and 2 branches
(besides the ’master’ branch).

If you use Git, make sure to properly con�gure your
.gitignore-�le, which has �le and folder exclusion
patterns that Git uses (so you don’t save all intermediate
.aux and .log �les in your history). There is a TEX-
speci�c list on Github that is a good starting point.5

Speaking of Github: it is the place to synchronize your
Git-repository with. If you are working on a project
by yourself, it also functions as an external backup (al-
though be sure that you have an extra copy or two saved
on some external disks). And if you are collaborating
on a project, Github can function as a central server
to host your repository. All the participants then have
a local copy of the repository, in which they can edit.
Afterwards, they send their edits (new commits) back
to Github for others to see.

Bibliography
Biblatex seemed the most modern of all options for man-
aging citations, so that was my choice. It comes closest
to working ‘out of the box’.

One of the most important parts in my work�ow is
managing the references. You could edit the .bib-�le di-
rectly, but that is quite error-prone and time-consuming.
A solution which worked very well for me, is to use
the open source Zotero.6 It is a capable reference man-
ager, and together with the plugin ‘Better Bibtex’7 you
can easily exportcitations into a .bib-�le and keep it
updated automatically. If you use the browser plugin
‘Zotero Connector’ on top of that, you get a work�ow
that is so seamless it feels slightly magical (see �g. 2):

1. �nd a reference online

2. import it to Zotero with one click on the Zotero
Connector (this automatically saves the pdf of the
article, and �lls in metadata — usually quite accu-
rately)

3. Zotero automatically updates the .bib-�le

4. Sublime Text recognizes the new reference, and it
is immediately available in the auto�ll suggestions



Writing my thesis with TEX VOORJAAR 2019 51

Figure 2. The Zotero workflow: open article in browser; add to Zotero with Zotero Connector (the ‘page’-icons in the
top right of the browser); Sublime suggest references as soon as you type \cite. (Note that there is a bug where
Sublime doesn’t properly extract the year of the references from the .bib-file.)

Design
After staring at mathematics articles in the default LATEX-
layout for so long, I got a bit bored with the default
design and tried my hand at customizing it. The main
part of this was choosing di�erent fonts. My eye fell on
the nice Spectral as a body font, and Fira Sans for titles
and captions.8 To easily use these fonts and customize
settings, I switched to the X ETEX-engine. It is then as
simple as

\setmainfont{Spectral Light}

to switch to the Light variant of Spectral as the body
font (provided you have the fonts installed on your com-
puter).

For mathematics, the amsthm-theorem environments
are indispensable. To give them a more unique look, I
gave them a line on the left side. This also separates
them more clearly from the running text, leading to
an interesting vertical typographical dynamic. I used
the package mdframed to achieve this. This package is
usually used to draw boxes around theorems, but you
can also use it to draw a line on just one side. Once you
have set this package up with the correct line widths
and spacings, it is as simple as replacing \newtheorem
with \newmdtheoremenv.

Since the margins of a document printed on A4 are
quite wide, I decided to pull the numbering of theorems
and titles into the side margins. This can be achieved
with a quite clever hack with ‘negative phantoms’. Usu-



52 MAPS 49 Rens Baardman

Figure 3. An example of the design: note the custom fonts, the hanging section and definition numbers, and the line
besides the definition (some content faded out for clarity).

ally, \hphantom{text} is used to insert a space exactly
the width of ‘text’ if it would have been rendered at
that place. This can be used to �ne-tune the position of
mathematical formulae, which helps in aligning them
in more complex cases (where align-environments are
not enough). This trick can be extended to use a ‘neg-
ative phantom’, which places a negative space at that
spot. A common de�nition (don’t ask me where I got
it — it was �oating somewhere on the internet) is the
following:

\newcommand{\nhphantom}[1]%
{\sbox0{#1}\hspace{-\the\wd0}}

If you then include this in the de�nition of your
theoremstyle, you can pull the numbering of theorem-
environments as far into the margins as you want — that
is, precisely the length of the numbering itself.

A similar procedure works for chapter and section
titles, with the aid of the package titlesec. I also used
the extra options o�ered by this package to change the
default spacing of titles.

For an example of how this all comes together, see
�g. 3.

General remarks
Some more general wisdom that appeared to me during
this process (which might be obvious to some, but very
helpful to others9)

• Use \label’s and cleveref for automatic referenc-
ing of elements like theorems, chapters and �gures.
It is as easy placing a label at e.g. a new chapter:

\chapter{The best chapter}
\label{ch:best-chapter}

and then elsewhere in the text use this as:

Earlier in \cref{ch:best-chapter},
we discussed [...]

Then, cleveref (the package which supplies the
\cref-command) will automatically expand this to



Writing my thesis with TEX VOORJAAR 2019 53

Earlier in chapter 1, we discussed [...]

If you also include the hyperref-package, it also
changes ‘chapter 1’ into a link in the pdf that brings
you to the right page.
Note that I add the ch:-pre�x to all chapter-labels.
I do something similar for theorems (th:), sections
(sc:), and so on. It helps to remember what you
actually referenced, when you �nd all your \cref’s
scattered throughout the code.

• Make commands for every special symbol. I
was working with set theory and logic, and
had to use a lot of special notation. Because
I made commands for every new symbol (e.g.
\newcommand{\proves}{\vdash} for a speci�c
proof-symbol), I could apply the symbols consis-
tently in my text. And if I changed my mind about
which symbol to use for which purpose, I only had
to update one de�nition to change all occurrences.

• Add plenty of comments, at least in your .sty-
�les. Some de�nitions and commands can be quite
obscure, and comments help to later remember why
you added the code in the �rst place. For the same
reason, when I �nd a solution for some problem
online, I often include the link to the forum post or
webpage where I found it.

• When writing, I often leave todo notes in the text
to remind myself which parts I have to �ll in later
on. I use the aptly named package todonotes for
this.

• If possible, consider a dual-screen monitor setup.
This allows you to have a window with your editor
on one screen, and a preview of the compiled pdf
in the other.

• For any new text: write a draft on paper before you
dive into your editor. Even though LATEX-syntax
can seem relatively easy once you are used to it, it
still slows down your creative process while writ-
ing. If I am not careful, I will waste time tweaking
small typographic details, instead of using that time
to write new text.

Notes
1. Speci�cally, I picked up advice from a couple of interesting
discussions on work�ows on the TEX Stackexchange (besides
the huge number of solutions to more speci�c problems that I
found there — it’s a fantastic resource). For examples, check
out the questions tagged ‘work�ow’: tex.stackexchange.
com/questions/tagged/workflow.
2. The class is available at github.com/UvA-FNWI/uvamath.
3. github.com/SublimeText/LaTeXTools
4. skim-app.sourceforge.io
5. Check the gitignore-repository at github.com/github/
gitignore. You can also use this as an exclude list for your
editor.
6. zotero.org
7. github.com/retorquere/zotero-better-bibtex
8. Both fonts are open source and available on Github (github.
com/productiontype/spectral and github.com/mozilla/
Fira)
9. relevant xkcd: xkcd.com/1053

Rens Baardman


