
58 MAPS 49 Piet van Oostrum

LaTEX on the Road
An adventure with LaTEX while travelling light

Abstract
This article describes the adventures that I had while
working on a small TEX project without my beloved
laptop at hand. With only an iPad to do the work and
without a local TEX system installed on it, there were
several challenges. I document them here so that others
can enjoy the struggles I had and can benefit from the
solutions when they encounter similar situations.

Keywords
LaTEX, travelling, iPad, Overleaf, git, distributed
version management, Github

The context
In July 2018, my wife Cary and I were travelling in
South America, to visit friends in Brazil and Bolivia, and
additionally to have some vacation. We wanted to travel
light, so I had decided not to take my MacBook with me,
saving a little bit more than 2 kgs. of weight. We both
had our iPhones and iPads (mine is an iPad mini), and we
hoped that would do. They were mainly to be used for
reading email, interactions on social media, searching
for city and transport information, and the like.

I did not expect to do any TEX work, maybe some
light programming, for which I had a Python system
(Pythonista)1 on my iPad.

While we were travelling in Brazil, on our way to
Bolivia, I got an email from a user of the multirow pack-

Figuur 1. On our way to Brazil

age about a possible bug. It came with a solution which
was a very simple substitution, and back home on the
laptop, it would have been a few minutes to make the
change, check it in into the version control system, do
some test, generate a new version of the documentation,
and upload the new version to CTAN.

Because this person had already made a local change,
and the problem was not urgent anyway, my �rst reac-
tion was: I will correct it when I am back home, which,
by the way, would be some 2 months later. However
when we arrived in Bolivia, where we were staying a
couple of weeks, the temptation to solve the problem
right there became too large.

But what would have taken at most 10 minutes at
home, became a major e�ort without having a computer
with a TEX system. In the end it took me more than two
days of struggling, but with victory in the end.

If I would have distributed the package just as a col-
lection of .sty �les (there are three included), with a
separate documentation, the task would have been sim-
ple. I could have downloaded the package from CTAN,
changed the .sty �les with a text editor in my iPad,
and uploaded them back to CTAN. It might have cau-
sed some frowning from the CTAN maintainers if the
version number in the documentation would have been
di�erent from the one in the .sty �les, but that would
have been temporary anyway.

However, the package was distributed as a .dtx �le,
with a corresponding .ins �le, and a separate PDF �le
containing the documentation which is generated from
the .dtx �le. The .sty �les are also generated from
the .dtx �le with the aid of the .ins �le. This is the
standard setup for most CTAN packages. But this requi-
res the .dtx and .ins �les to be processed by LaTEX (or
TEX in case of the .ins �le). And I did not have a LaTEX
distribution on my iPad.

What were the options?
There were in practice two options to solve the problem:

• Install a LaTEX system on my iPad.

• Use an online (cloud-based) LaTEX system.

LaTEX on the Road VOORJAAR 2019 59

Figuur 2. Our trip

LaTEX apps on the iPad I found two LaTEX apps on
the iOS App Store: Texpad and TeX Writer. Both are
o�ine apps, i.e. you don’t need an internet connection
to compile your LaTEX documents. But, on the other
hand, in order to limit the size of the application, they
don’t have every package from CTAN installed. You can
install additional packages, but as iOS is quite a closed
operating system, you are dependent on the developers
to supply these packages. Of course you have always the
option to add the required �les to your project directory,
but there might be some cases (for example if you need
additional fonts) that this is not su�cient.

Also it isn’t clear from the documentation of these
packages if they can process something like .dtx and
.ins �les to extract the .sty �les and the documenta-
tion for the package, which was essential in my case. I
got the impression that they were mainly meant for the
‘normal’ user to write articles and reports.

They are also not particularly cheap. At this moment
Texpad costs e21.99 and TeX Writer e16.99. If I remem-
ber correctly they were a little bit cheaper at the time
I was travelling. In itself that is not a very steep price,
but I did not expect to use it very often, and just for this

single case I thought it was too much. And they don’t
have a tryout version to see if it really �ts you, so if you
buy one of these, and you don’t like it, you e�ectively
lost your money. And then there is this nagging choice:
which of the two is best? All in all, I decided not to go
that way.

For the cloud-based systems, I had heard about Over-
leaf (formerly called WriteLatex) and ShareLaTeX, so
I decided to investigate these. It appeared that at that
time, these two systems were in a processed of being
merged. The result was Overleaf version 2 which had
the ShareLaTeX interface, but was still in beta phase.
For the simple task that I had, a free account would be
su�cient, so I started to try that. However, the mer-
ging process introduced some teething troubles. In fact
it made editing the �les from the iPad browser almost
impossible. It wasn’t clear if this was a speci�c problem
on the iPad, or that the browser interface in general was
not yet mature enough. In e�ect it wasn’t usable at all,
because its behaviour was very erratic.

I had also tried to use the Overleaf version 1 interface,
but I also could not get that working. I have no idea
whether these problems were iPad speci�c, but anyway
I could not use it. By the way, the Overleaf editor is
now functioning also on the iPad. However, some func-
tionality is not available without an external keyboard,
because they are invoked with control keys. For example
the search function is invoked by Control-F on Windows
and Linux, and by Command-F on MacOS. On an iPad
you can’t give these with the virtual keyboard. With an
external keyboard it is possible. The current Overleaf
editor is reasonable. It has some TEX-speci�c functiona-
lity. For example, if you type \begin{enumerate} the
editor adds \item and \end{enumerate} and positions
the cursor after the \item (see �gure 3).

Figuur 3. Editor supplies useful parts

Cloud-based LaTEX systems Despite the problems
that the editor gave at that time, it seemed to me that
this was the best way to go forward. Figure 5 shows
the screen from the current version of Overleaf on my
MacBook. The default screen has an edit window with
the LaTEX source text and a preview window with the
resulting PDF. The preview is not live, you have to hit
the Recompile button to update it. There is also a �le
list on the left and it has the possibility to hide or show
each of these parts and to adjust the sizes of each part.
Especially on the smaller iPad screen it is advisable to

60 MAPS 49 Piet van Oostrum

Figuur 4. Texpad and TeX Writer in the iOS App Store

have only the source code part while editing. But even
then, the virtual iPad keyboard takes so much space that
hardly any source code is visible. See �gure 6. Also
in this case, the �le list at the left would make the edit
window even smaller, but the �le list can be hidden, as
shown in the image.

It helps to put the iPad in portrait mode, as shown
in �gure 7. But then the keyboard is rather small. For
a setup like this to be workable, it would be better to
use an external keyboard. There are several keyboards
on the market that can be used. They are generally
connected through Bluetooth. They are light-weight
and don’t take much space, so ideal for travelling light.
See �gure 8. I did not have one at that moment, however.

Setting up the project
Setting up the project is easy. You can create a new
project in the Overleaf in the Web interface. You can
upload each �le individually, or a zip-�le with every-
thing included. Overleaf will unpack the zip-�le in your
project.

Immediately, it became apparent that there was a pro-
blem with my project. Overleaf wants you to designate
one of your �les as the main TEX �le, which for me
would have been multirow.dtx, but it doesn’t accept
this. It wants to have a .tex �le. It does not recognise
the .dtx �le as a valid LaTEX �le. Neither does it want
to edit the .dtx �le, but as the editor was unusable, this
was of a minor concern. I would have to edit the �les
locally on my iPad anyway.

So I had to give it a .tex �le extension to make it
(and myself) happy. I tried two ways

• Copy multirow.dtx to multirow.tex

• Make a �le multirow.tex that just contains
\include{multirow.dtx}

I had expected that each of these would compile the
.dtx �le when the Compile button would be pressed.
However, it didn’t. It took some time to �nd out why.
My multirow.dtx contains a line
\DocInput{\jobname.dtx}

which is quite usual in .dtx �les. After some searching
I found out that \jobname wasn’t multirow as was to
be expected, but output. It appears that Overleaf runs
the job in a kind of sandbox where the jobname of the
main �le is output. You can see that in �gure 12.

After some googling I found that Overleaf uses
Latexmk2 to process the job. It provides a standard,
but invisible, latexmkrc �le that controls the compi-
lation process. However, you can also supply your
latexmkrc �le. This �le is described in section ‘La-
texmk’ on page 64.

So the challenge was now to upload a correct
latexmkrc �le, and to update the multirow.dtx �le.
This could be done by uploading these �les after each
modi�cation, but this might be an error-prone process,
and you don’t have a record of what has been done.
Enter version management.

Distributed version management
In any project where you have to make changes more
or less regularly, it is important to keep track of what
you have done. Also, in general it is useful to have ac-
cess to previous versions of your project, for example
if you want to go back to a previous situation. Some
people do this by making copies of their �les at regular
moments. Sometimes they put the date and the time in
the �le names, to keep a kind of history. But this soon
becomes unwieldy. This is the problem that version ma-
nagement system (also called version control systems)
o�er a solution for. Each serious developer, whether it is
of software or of texts, should consider using a version
management system.

For those readers that are unfamiliar with version
management, here follows a brief description. You have

LaTEX on the Road VOORJAAR 2019 61

Figuur 5. An early version of this article in Overleaf, with some of the maps.cls documentation still in place

Figuur 6. Overleaf screen with virtual keyboard on an iPad

a working copy or working directory, which is the collec-
tion of �les that you work upon in your project. This
is just like when you do not use version management.
Additionally you have a repository, which is a kind of
database containing the history of your project. It will

contain the state of your working copy at certain mo-
ments in the past, together with information about who
made the changes, and a description of what has chan-
ged.

62 MAPS 49 Piet van Oostrum

Figuur 7. Overleaf screen with virtual keyboard on an iPad in portrait mode

If, at a certain moment, you have a state of your pro-
ject that you want to keep, you commit, which means a
copy is made to the repository, together with a descrip-
tion that you enter. The opposite operation (i.e. making
a copy from your repository to your working directory)
is called checkout. You usually have a separate repository
for each project. The repository can be on your local
computer, or on a server. In the latter case it is possible
that di�erent people working on the same project use
the same repository. They would then each have their
own working copy. As they are working independently,
these could be di�erent. A version management system
usually has provisions to resolve con�icting working
copies.

Although these systems can store any type of �le,
they work best with plain text �les. As our TEX sour-
ces are plain text, they are ideal candidates for using a
version management system.

There are several version management systems avai-
lable. One older, well-known system is subversion
(SVN3). It usually has the repositories at a central server,

but you can also have the repository on your local com-
puter, if you are working alone. As SVN has only one
repository per project it is called a centralised version
management system.

Centralised version management systems have some
big disadvantages for cooperation in teams:

• If you work together the repository must be on
a central server, which means you cannot use it
when you are o�ine.

• If you want to keep your changes registered often
in the repository, then this can be confusing for
the other team members. On the other hand, if you
want to keep the repository relatively clean, that
is, only commit major updates, then you lose the
possibility to keep your own history detailed.

One solution would be to have both a central repository
for the team, and your local repository for your own
work, but then synchronising these repositories could
become tedious. However, this is where distributed ver-
sion management systems have their strength.

LaTEX on the Road VOORJAAR 2019 63

Figuur 8. iPad mini with external keyboard

In a distributed version management system you can
have both a local repository on your computer and a
central repository on a server. Or even more than one of
each. And these can be easily synchronised. The usual
way to work in a team is to have a central repository for
the team, and a local repository on each team member’s
computer. Each team member keeps a history in the
local repository. This can be done often, and also o�ine.
When the changes are good enough to be put in the
central repository, the team member pushes the local
changes to the central repository, often after making
one set of changes that do not re�ect all the details of
the work done locally. Other team member can the fetch
these changes from the central repository when they
want to be up-to-date. It is then probable that this is
not consistent with some changes that they made them-
selves. The two sets of changes must then be merged.
This is the simple explanation. Much more complicated
work�ows are also possible.

Both centralised and distributed version management
systems support the concept of branches. A branch
is a separate line of development in your project. For
example you have a project that you release from time
to time. The development of this release version would
for example take place on the main branch in your re-

pository. Now after a release you want to start working
on some very new experimental features for a future
release. If you would just continue your development,
then when a bug in your project is detected, your pro-
ject is in an unstable state. So you cannot just apply
a bug-�x to the current state of your project, but you
would have to go back to the state just after the release.
As the repository has kept the history of your project,
this is easy, but you want also to keep the current state,
so that you can go back there after making the bug-�x.
Here branches come to the rescue. After your release
you create a new branch for your experimental work,
and continue working there. When you want to make
the bug-�x, you switch back to the main branch. The
repository will remember your experimental branch,
and after releasing the bug-�x you can switch back to
the experimental branch. If you wish you can then also
merge the �x in your experimental branch. Later when
your experiment is successful and you want to release
it, you can merge it back to the main branch. You can
have as many branches as you want. For example if your
bug-�x is expected to be complicated, you can �rst try
it out on a separate branch.

A very popular site for central repositories is Github.4
This site is based on the distributed version management

64 MAPS 49 Piet van Oostrum

Github

repo

Overleaf

Git

repo

iPad

Git

repo

PushFetch

Overleaf

Working

Copy

iPad

Working

Copy

commitcommit
(automatic)

checkout
(automatic)

LaTeX Edit

Figuur 9. Git workflow

system Git. Git is probably the most popular version
management system in use today. For my own projects
I use Git exclusively nowadays, often only locally, but
sometimes in combination with Github.
Use with Overleaf To come back to the project I am
currently describing, it appeared that Overleaf also had
Git possibilities. Although these were in beta phase at
that moment, it could be used for my project. Nowadays
you need a paid account on Overleaf to use the Git
facilities, but because I had started using them during
the beta testing, I have access to them in my free account.

Git can be used in two ways on Overleaf.

• Your Overleaf project can function as a Git reposi-
tory

• You Overleaf project can be synchronised with a
Github repository

I decided to take the Github route, mainly because
I have experience with Github and I could not get the
direct Git repository on Overleaf working from the iPad.
At this moment it is working, but its functionality is
very minimalist compared to Github.

In order to use Git on the iPad you need a Git app. I
found Git2Go,5 which is said to be the �rst app to use
Git on iOS. It worked well for my needs, but later I tried
two others that I found: Working Copy6 and TIG.7 In
the appendix I give a comparison of these apps.

My work�ow can be found in �gure 9. My editing
took place in the lower right corner, on the working copy
(managed by Git2Go). I could have used the editor that

Git2Go provides, but it is not very sophisticated. It does
not have syntax highlighting for LaTEX �les, and it gives
no editing support beyond the standard iPad keyboard.
I also had a much better text editing program called
Textastic8. It has syntax highlighting for LaTEX, good
search facilities and an extended keyboard (see �g. 10)
that makes it easier to enter non-alphanumeric symbols.
Also it has a special provision for easy cursor movement.
Git2Go, and the other Git apps mentioned above, func-
tion as a kind of �le system, which means that Textastic
can directly edit their �les without copying between the
two apps. So the only extra operation to edit in Textas-
tic rather than in Git2Go itself, is switching between
the apps. This extra e�ort I deemed worthwhile for the
added comfort of using a good text editor.

After editing the �le(s), I switch to Git2Go, commit
the change, and immediately push it to the Github repo-
sitory. Then I switch to Overleaf in the browser, fetch
the changes from Github to Overleaf in the Overleaf
synchronisation menu, and process the �les, hopefully
producing a new PDF �le. Many times it did not yet
work correctly, so I had to go back to Textastic and start
a new cycle. The problem wasn’t so much in the LaTEX
code, as the changes there were very simple. The main
problem was getting the latexmkrc �le correct. The
di�culty was that Overleaf did not have good documen-
tation about the context in which the Latexmk program
was running. Also, running it on their server did not
give as much feedback as running on your own compu-
ter. Several times I had to write extra information to a
text �le, and then download that to the iPad to see what
happened. For example, I had to make directory listings,
and write them to a text �le, just to see what �les where
generated and what their names were. And the process
was a bit tedious because I had to synchronise the �les
as described above before each try. But after some 50
tries, everything worked perfectly. I will spare you all
the attempts that I made, but in the next section I will
give you the resulting latexmkrc �le, and explain what
it does.

Latexmk
Latexmk is a program (a Perl script) to process a LaTEX

�le with all the necessary bibtex, makeindex and simi-
lar calls. It will run LaTEX and these other programs
as many times as is necessary to get a completely pro-
cessed and stable output. For the run-of-the-mill LaTEX
�le, Latexmk has enough knowledge to know what to
do. However, when there are additional requirements,
like a non-standard index, glossaries etc. you must give
Latexmk a recipe of how to process the various stages.
The recipe is given in the latexmkrc �le, which in fact
is also a Perl script. Latexmk has an enormous amount
of possibilities, and its manual9 contains 48 pages. So it
took some time to get everything right.

LaTEX on the Road VOORJAAR 2019 65

Figuur 10. Textastic extended keyboard

Overleaf provides a standard latexmkrc �le for its
jobs, but as we have seen above, this is not adequate for
processing the .ins and .dtx �les. To make Overleaf
happy, we must provide a main .tex �le, but with our
latexmkrc �le we don’t use it, so its content is unim-
portant.

In �gure 11 the resulting latexmkrc for this process
is given, annotated with line numbers. In the remainder
of this section I explain what it does.
line 1. This sets the timezone to your local time. This
is so that messages with date and time will get your
local time, and not the time of Overleaf’s servers, which
would be useless in most cases. As I was in Bolivia at
the time, the timezone was ’America/La Paz’. Now at
home it would be ’Europe/Amsterdam’.
line 3-6. In a .dtx �le the �le extension .glo, which
is normally used for glossaries, is used for the list of chan-
ges. And the sorted version, to be created by makeindex,
will be .gls. These lines give a recipe how to create the
.gls �le from the .glo �le using makeindex.

line 8. For processing the normal index in a .dtx
�le makeindex needs the additional argument
-s gind.ist.
line 10. This de�nes which extra �le extensions we
need in the process. Besides the already mentioned .glo
and .gls, there is also .glg which is the log output of
the makeindex command from line 5. And the .txt
extension is used for debugging.
line 12. Here comes the trick to let Overleaf do our
work. Normally it will run pdflatex on the main TEX
�le, which in our case is multirow.tex. But you can
de�ne the $pdflatex variable to let it use another com-
mand. In our case we let it run the internal function
mylatex that follows. In this function we do all the
preparatory work before we run the actual pdflatex.
line 14. Pick up the arguments from the call to
mylatex in the variable @args. This is standard Perl
prose.

66 MAPS 49 Piet van Oostrum

Latexmkrc file:

1 $ENV{'TZ'} = 'America/La Paz';
2

3 add_cus_dep('glo', 'gls', 0, 'makeglo2gls');
4 sub makeglo2gls {
5 system("makeindex -s gglo.ist -o \"$_[0].gls\" \"$_[0].glo\"");
6 }
7

8 $makeindex = 'makeindex -s gind.ist -o %D %S';
9

10 push @generated_exts, 'glo', 'gls', 'glg', 'sty', 'txt';
11

12 $pdflatex = 'internal mylatex';
13 sub mylatex {
14 my @args = @_;
15 (my $base = $$Psource) =~ s/\.[^.]+$//;
16 system("tex $base.ins");
17 # backslashes are interpreted by (1) perl string (2) shell (3) sed regexp
18 # therefore we need 8 backslashes to match a single one
19 system("sed -e s/\\\\\\\\jobname/$base/g $base.dtx > $base.tex");
20 return system("pdflatex @args");
21 }

Figuur 11. The final latexmkrc file. The line numbers are not part of the file.

line 15. Latexmk puts the name of the main TEX �le
in $$Psource (see page 45 in the Latexmk manual). This
line is actually a shorthand for two statements:
my $base = $$Psource;
$base =~ s/\.[^.]+$//;

The �rst line copies $$Psource to a local variable $base.
The second line strips of the part after (and including)
the last dot. So multirow.tex will be transformed to
just multirow. The reason I use $$Psource rather than
just using multirow is that now the latexmkrc �le is
also usable for other .dtx �les.
line 16. First we run tex on our .ins �le, which
would be multirow.ins in our case. This generates
the required .sty �les. This is to ensure that we use the
new versions of our .sty �les, rather than an outdated
version in Overleaf’s TEX system.
line 19. From our .dtx �le we generate a copy to
our .tex �le where the text \jobname is replaced by
the actual base name of our �le (in our case multirow).
This is necessary, as Overleaf supplies a \jobname of
output. So in this case we generate multirow.tex from
multirow.dtx. But this �le will input multirow.dtx
during its processing.
We do the replacement by calling the Unix program
sed. The \jobname is inside a regular expression in sed,
therefore the backslash must be doubled. But then, this
command is processed by the Unix shell, which also

interprets backslashes. Therefore we must double all
the backslashes again. And then this command is inside
a Perl string where backslashes are also interpreted.
So we must double them again, and we end up with
8 backslashes to represent a single one.
line 20. Finally we run the real pdflatex command
with the original arguments. Note that we process the
new multirow.tex �le, because that is what Overleaf
expects to do. Also, because this is run in a sandbox (i.e.
on a copy of the original �les in a separate directory),
this does not a�ect our original �le.

Finally, we also give an example of the latexmkrc
�le with debugging statements included in �gure 12
and the corresponding output in �gure 13. You see
the values of $$Psource and $base, the arguments
to the pdflatex call, and the directory listing at the
end of the process. Please note that in the directory
listing there is a �le multirow.log; this is the result
of the call tex multirow.ins. Note also the genera-
ted .sty �les. The �les resulting from the pdflatex
call on multirow.tex/dtx are all called output.*. So
makeindex must also act on these �les. In �gure 11,
line 5, this is accomplished because the �le name is gi-
ven as argument to the function makeglo2gls. In line 8
it is accomplished because the patterns %S and %D are re-
placed by the source and destination of the command,
respectively. I.e. output.idx and output.ind.

LaTEX on the Road VOORJAAR 2019 67

Latexmkrc with debugging:
$ENV{'TZ'} = 'America/La Paz';

add_cus_dep('glo', 'gls', 0, 'makeglo2gls');
sub makeglo2gls {

system("makeindex -s gglo.ist -o \"$_[0].gls\" \"$_[0].glo\"");
}
$makeindex = 'makeindex -s gind.ist -o %D %S';

push @generated_exts, 'glo', 'gls', 'glg', 'sty', 'txt';

$pdflatex = 'internal mylatex';
sub mylatex {

my @args = @_;
Run_subst("echo \"%%B=%B %%R=%R %%S=%S %%T=%T\" > debugout.txt"); ## DEBUG ##
system("echo '\@args' = \"@args\" >> debugout.txt"); ## DEBUG ##
system("echo '\$\$Psource' = \"$$Psource\" >> debugout.txt"); ## DEBUG ##
(my $base = $$Psource) =~ s/\.[^.]+$//;
system("echo '\$base' = \"$base\" >> debugout.txt"); ## DEBUG ##
system("tex $base.ins");
backslashes are interpreted by (1) perl string (2) shell (3) sed regexp
therefore we need 8 backslashes to match a single one
system("sed -e s/\\\\\\\\jobname/$base/g $base.dtx > $base.tex");
$status = system("pdflatex @args");
system("ls -l >> debugout.txt"); ## DEBUG ##
return $status;

}

Figuur 12. latexmkrc file with debug statements

Conclusion
Although working at home on my MacBook is much
more comfortable, it is possible to do some serious LaTEX
work on your iPad while you are travelling. It takes some
e�ort to �nd the proper way to do it, however. And I
hope this article helps you to get started if you need this
work �ow.

Appendix – iOS Git apps compared
In this section I compare the three Git apps on iOS that
I tried. I did all the production work in Git2Go, but after
it was �nished I also tried Working Copy and TIG.
Git2Go has a limitation that it only cannot work with
Git repositories on all servers. It works with a limited
number of services, namely Github, Bitbucket10 and
Gitlab11. Other remote repositories can be used if they
o�er access by the SSH protocol. SSH is one of the two
main protocols used to connect to Git servers. The other
is HTTPS. Overleaf only o�ers HTTPS, which Git2Go
does not support.
To create a repository on your iPad you must clone (i.e.
copy) an existing repository on one of the supported
servers. You cannot create a local-only repository on the
iPad. Once you have the repository on your iPad, you

can edit the �les in the repository, commit the changes,
create new branches. It can fetch from and push to the
remote repository, but these are not separate operations.
It always does a fetch (which may be empty), followed
by a push. It can also merge di�erent branches. It is a
limited set of operations compared to the full Git func-
tionality, but it is su�cient for a normal work�ow as
described above. Also cooperating with other people
would be possible, if it doesn’t require the more esoteric
Git functionality. Git2Go’s editor has syntax highligh-
ting for a limited number of programming languages.
Git2Go is free, as long as you only access public repo-
sitories (i.e. repositories that everybody can see). To
access private repositories you would have to buy an
upgrade.
For the push operation you will have to login, and
Git2Go will remember your username and password,
until you explicitly logout.
And occasionally it crashes.
Last minute Note: I tried to re-install Git2Go on my
iPhone, and got the message that it was no longer avai-
lable on the App Store. Also a search in the App Store
did not come up with Git2Go. I have no idea if this is a
permanent situation, or that it might be in a process of
updating.

68 MAPS 49 Piet van Oostrum

Debug Output:
%B=output %R=output %S=multirow.tex %T=multirow.tex
@args = -synctex=1 -interaction=batchmode -recorder -output-directory=/compile --jobname=output multirow.tex
$$Psource = multirow.tex
$base = multirow
total 1176
-rw-r--r-- 1 tex tex 3871 Mar 4 14:12 README
-rw-r--r-- 1 tex tex 49 Mar 4 14:12 README.md
-rw-r--r-- 1 tex tex 1417 Mar 4 14:12 bigdelim.sty
-rw-r--r-- 1 tex tex 1234 Mar 4 14:12 bigstrut.sty
-rw-r--r-- 1 tex tex 203 Mar 4 14:12 debugout.txt
-rw-r--r-- 1 tex tex 1054 Mar 4 14:12 latexmkrc
-rw-r--r-- 1 tex tex 80398 Mar 4 14:12 multirow.dtx
-rw-r--r-- 1 tex tex 2182 Mar 4 14:12 multirow.ins
-rw-r--r-- 1 tex tex 3719 Mar 4 14:12 multirow.log
-rw-r--r-- 1 tex tex 5022 Mar 4 14:12 multirow.sty
-rw-r--r-- 1 tex tex 80398 Mar 4 14:12 multirow.tex
-rw-r--r-- 1 tex tex 3487 Mar 4 14:12 output.aux
-rw-r--r-- 1 tex tex 0 Mar 4 14:12 output.chktex
-rw-r--r-- 1 tex tex 25207 Mar 4 13:10 output.fdb_latexmk
-rw-r--r-- 1 tex tex 20593 Mar 4 14:12 output.fls
-rw-r--r-- 1 tex tex 3281 Mar 4 14:12 output.glo
-rw-r--r-- 1 tex tex 3578 Mar 4 08:13 output.gls
-rw-r--r-- 1 tex tex 3270 Mar 4 14:12 output.idx
-rw-r--r-- 1 tex tex 891 Mar 4 08:13 output.ilg
-rw-r--r-- 1 tex tex 2655 Mar 4 08:13 output.ind
-rw-r--r-- 1 tex tex 34086 Mar 4 14:12 output.log
-rw-r--r-- 1 tex tex 610336 Mar 4 14:12 output.pdf
-rw-r--r-- 1 tex tex 262970 Mar 4 14:12 output.synctex.gz
-rw-r--r-- 1 tex tex 1467 Mar 4 14:12 output.toc

Figuur 13. latexmkrc debug output

Working Copy is the nicest of the three apps. It has
a very elaborate set of functions. It can connect to all
kinds of servers, including Overleaf. However, to use
the push functionality you have to pay. The price is
quite steep (e17.99 at the time of writing), but you can
get a free 10 day trial. I used this for writing this article
to see how it worked.
Working Copy can clone from existing repositories, in-
cluding through SSH and HTTPS, and also create local
repositories. It can also create a local repository from
a .zip �le. Once you have a repository it can connect
your repository to more than one remote repository,
which sometimes can be quite handy. For example in
the current example, the repository on the iPad could
have been connected both to the Overleaf repository
and to the Github repository. Of course you will have
to be careful not to mess up your work�ow.
If your iPad is connected to a Mac or PC with iTunes,
you can drag and drop a repository on your computer
through iTunes, and it will be copied to the iPad.
Working Copy’s editor has syntax highlighting for more
than 50 di�erent languages. It can show nice graphi-

cal representations of your branches and your commit
history (see �g. 14). Besides the merge functionality it
also has the rebase functionality, which is an alterna-
tive for merge. For cooperating in large projects this
functionality is sometimes necessary.
There is more than �ts in this limited space, but Working
Copy is far out the best of the three apps. It is expensive,
but when you do a lot of work with Git on your iPad, it
is worth the price. Working Copy operates in a small
market, so the price is understandable. If you really
want to do serious work with Git on your iPad, it is
recommendable to buy this app.
TIG is the third app I tried. It takes more or less a
middle ground between Git2Go and Working Copy. Like
Working Copy it can connect to all kinds of repositories,
including Overleaf, and it has push functionality. And
it is free. It can clone existing repositories, and create
local ones. It can also connect repositories to more than
one remote repository.
Its editor has syntax highlighting support for 166 langu-
ages.

LaTEX on the Road VOORJAAR 2019 69

Figuur 14. Graphical commit history in Working Copy

Figuur 15. Opening a Git2Go file or repository in Textastic

70 MAPS 49 Piet van Oostrum

However, although the functionality is great for a free
app, I found its user interface sometimes confusing. And
to fetch/push to your remote repositories you have to
enter your username and password every time. I did not
�nd a way in which it could remember these. This is
very annoying. And it crashed quite often.

As I have mentioned above, all these apps have the
facility that you can open their �les in an external editor.
Figure 15 shows how to open �les from Git2Go in Tex-
tastic. This is done inside Textastic with the “Open. . . ”
button, then selecting “Git2Go”. It is then possible to
choose “Open” down in the pop-up, which will open
the whole directory in Textastic, or select one �lename,
which will open that �le.

Summary:

• If you only need access to repositories hosted by
Github, Bitbucket or Gitlab, or repositories that can
be accessed by the SSH protocol, and your require-
ments are modest, you can choose Git2Go (if still
available).

• If you need access to repositories that do not fall in
the previous categories (such as Overleaf), and you
can live with a not so optimal user interface, and
your requirements are modest, you can choose TIG.
It may be a good choice when you want to connect
to a repository that Git2Go does not support, and
when you �nd Working Copy too expensive.

• If you want the top Git app on your iPad (or iPhone)
and are willing to pay the price, I would recommend
Working Copy. If you want to do serious work with
Git, this is the choice and it would be worth the
price.

There are nowadays some other Git apps available, but
it seems that they are roughly comparable to one of the
above. Some of them only support just Github, Bitbucket
or Gitlab. I have not found any free app that comes with
the functionality of Git2Go or TIG. And paid apps may
be slightly cheaper than Working Copy, but they also
have less functionality.

Footnotes
1. http://omz-software.com/pythonista/
2. https://mg.readthedocs.io/latexmk.html
3. http://subversion.apache.org
4. https://www.github.com
5. https://git2go.com
6. https://workingcopyapp.com
7. https://itunes.apple.com/us/app/tig-git-client/
id1161732225
8. https://www.textasticapp.com
9. http://mirrors.ctan.org/support/latexmk/latexmk.
pdf
10. https://bitbucket.org
11. https://gitlab.com

Piet van Oostrum
piet@vanoostrum.org
http://piet.vanoostrum.org

