
Taco Hoekwater VOORJAAR 2020 31

XML to PDF with ConTEXt

Background
One of the DocWolves product lines is an on-line production environment for doc-
uments related to decision workflows. From the users’ input, we create published
HTML pages and PDF documents.

Our clients input text fragments into a web form built around a customized in-
stallation of CKEditor. CKEditor is a free collection of javascript components for
WYSIWYG editing of HTML that runs inside the web browser, without needing any
client-side plugins (see http://ckeditor.com for more details). We save these text
fragments along with various bits of meta-information in a MySQL database. When
the editing cycle is done and the client decides to publish a document we combine
these various text fragments, meta-information and any needed images into either
an HTML page or an XML file. In the case of the XML file, that is then converted into
PDF using ConTEXt.

Figure 1. Example of the web-based input screen

Various Perl scripts control and monitor all stages of the document creation process.
Before being stored, the raw textual (HTML) input is passed through a parser that
removes anything that cannot be handled properly by both the HTML and the XML-
to-PDF backends. But the monitoring system starts even earlier: cut and paste within
the CKEditor is modified to prevent weird HTML (for example from word processing
software) from entering the input stream. Also, various options have been disabled
in the CKEditor.

To make sure that we know exactly what is in our records, the input parser also
converts the angle brackets of the acceptable HTML tags into square brackets in the
stored data, and it removes any unsupported HTML attributes. At the same time
square brackets in the input are converted to HTML character entities.

32 MAPS 50 Taco Hoekwater

Using this intermediate format for storage means that at the output stage, the
backend file generator can convert any and all angle brackets it encounters into char-
acter entities, thus ensuring that the generated output is always valid XML/HTML.

Besides blockingweird (and potentially damaging) input, there is a another reason
for all the filtering. The generated published documents often have to adhere to a
specific client house style, with (for example) predefined margins, font settings, and
a page background.Thus, removing visual markup that conflicts with the house style
settings is a secondary but quite important function of the filtering system. By the
way, those style settings are also stored in our system, somewhere separate from the
actual text fragments. I do not have to explain here why that is handy, TEX users are
quite familiar with separating content from presentation, but for many outside the
TEX community this still a foreign concept.

Here is a small part of a text fragment as it is actually stored inside the database:
[p align="left" class="western" lang="fr-FR"][br /][/p][table cellpadding="7"
cellspacing="0" width="615"][tr][td style="border: 1px solid #000000;
padding: 0in 0.08in" valign="top" width="599"][h3 class="western"
lang="fr-FR"]RAPPORT DE PRESENTATION[/h3][h3 class="western" lang="fr-FR"]BUDGET
PRIMITIF 2018 - EAU[/h3][/td][/tr][/table][p align="justify" class="western"
lang="fr-FR"][br /][/p][p align="justify" class="western" lang="fr-FR"]Le
budget du service de l’Eau s’équilibre en Dépenses et Recettes, aussi
bien en Fonctionnement qu’en Investissement à hauteur de [b]11 459
610,00 €, [/b]soit :[/p][p align="left" class="western" lang="fr-FR"][br
/][/p]
....
[p align="justify" class="western" lang="en-US"][img
data-image-id="2279" height="305" src="
....
Y2UyODA1hnDS2gAAAABJRU5ErkJggg==" width="675"][/p][p align="justify"
class="western" lang="fr-FR"][br /][/p]

There are normally no line breaks in the tag portions of the database record, the line
breaks are added here just for this example. In the actual input text, we preserve the
whitespace characters from the input.

As you can see, there is still a fair bit of HTML and CSS supported in the system.

ConTEXt input files
ThemainConTEXt input is the generated XML file.This contains not only the collected
text fragments, but also a block of house style settings, and some meta-information
about the document.

The XML processing takes place via an environment file called dw-workflow. Most
of the content of this file is Lua code, but there is also a bit of plain TEX code and a
few ConTEXt patches included in there.

There is only one other include file, and that contains our typescript definitions.
In the future dw-workflow may be split into a few more generic modules so that

code may be reused in other DocWolves products, but for now everything is in one
(fairly long) file.

XML structure
The listing below shows the general structure of the generated XML file.
<?xml version="1.0"?>
<root>

<settings>
<setting name="papersize" value="A4"/>
<setting name="textwidth" value="170"/>
<setting name="..." value="..."/>

</settings>
<documentinfo>

<meta name="DOSSIER_REF" value="1819"/>
<meta name="..." value="..."/>

XML to PDF with ConTEXt VOORJAAR 2020 33

<document_content>
<content format="html">

<fragment id="19804" dos_id="2157" dsd_id="5562">
<h2>asdf</h2> ...

</fragment>
<fragment>...</fragment>

</content>
</document_content>

</root>

XML settings and setup
The <meta> information is directly copied to the PDF XMP info, and otherwise ig-
nored.

The <setting> tag is where the style options are communicated to ConTEXt.
Currently, there are about two dozen settings. As is to be expected, most of them
deal with typical page setup. There are settings that are converted into argu-
ments for \setuppapersize and \setuplayout, settings for \setupfootertexts and
\setupheadertexts, and settings for \switchtobodyfont.

A few of the settings are more interesting. In particular, there is a setting for the
font size and a small group of settings for setting up the optional background image
for each page.

As is customary in CSS, the document font size does not only set up the size of the
main text font, but it also sets up the relative sizes of the headings and footnotes, the
white space before and after headings, et cetera, using a multiplier of the base font
size value. And since these multiplications can produce odd body font sizes, there is
a Lua function that not only sets up the actual ConTEXt commands, but also executes
the needed \definebodyfontenvironment commands. The start of this function looks
like this:
function userdata.setupheads(argsize)

local thesize = string.gsub(argsize,"pt",'')
local size = tonumber(thesize)
local e = math.floor(size*cssparser.typemaps.font_size['xx-large'] + 0.5)
local d = math.floor(size*cssparser.typemaps.font_size['x-large'] + 0.5)
local c = math.floor(size*cssparser.typemaps.font_size['large'] + 0.5)
local x = math.floor(size*cssparser.typemaps.font_size['small'] + 0.5)
local xx = math.floor(size*cssparser.typemaps.font_size['x-small'] + 0.5)
context.definebodyfontenvironment({e ..'pt'})
context.definebodyfontenvironment({d ..'pt'})
context.definebodyfontenvironment({c ..'pt'})
context.definebodyfontenvironment({x ..'pt'})
context.definebodyfontenvironment({xx ..'pt'})
-- h1
context.setuphead({'part'},

{align="flushleft", page='no',placehead='yes',number='no',
style='\\switchtobodyfont['..e ..'pt]\\bf ',
before='{\\blank['..xx ..'pt]}',
after='{\\blank['..xx ..'pt]}',
aligntitle='yes',
})

...

Per-client page background images are used so that we do not have to write settings
for each and every client with a special logo in the page top or bottom. We have set
up the system such that for each client, dedicated single-page PDF files are searched
for. If found, these are then added to the page on their own layer. For each combina-
tion of document type and paper size, there are two possible PDFs: one for the first
page, and another for all following pages (often client logos are larger on the first
page of a document). Such backgrounds are searched for in four locations: the client
folder with and without paper size, and the global locations for the same (the global
locations contain single-page empty files).

34 MAPS 50 Taco Hoekwater

The code that deals with this is:
local paths = {}
paths[#paths+1] = valueordefault(settings.clientbackgrounddirectory .. '/'

.. settings.papersize,nil)
paths[#paths+1] = valueordefault(settings.clientbackgrounddirectory,nil)
paths[#paths+1] = valueordefault(settings.backgrounddirectory .. '/'

.. settings.papersize,nil)
paths[#paths+1] = valueordefault(settings.backgrounddirectory,nil)
context.setupexternalfigures({directory = table.concat(paths,',') })
if settings.clientbackgroundname and #settings.clientbackgroundname>0 then

context.resetbackgroundfigure(settings.clientbackgroundname,"1")
end

where \resetbackgroundfigure is a separate macro that ensures the PDF image is
included:
\def\pagebackgroundfigure{}

\def\resetbackgroundfigure#1#2%
{\gdef\outputpagen{#2}%
\gdef\pagebackgroundfigure

{\externalfigure[#1-page-\outputpagen.pdf]
[width=\the\paperwidth,height=\the\paperheight,page=1]}}

\defineoverlay
[pagebackground]
[{\pagebackgroundfigure \gdef\outputpagen{n}}]

\setupbackgrounds
[page]
[state=repeat,background={pagebackground}]

Now, if the above looks a bit sneaky to you? … yeah, I know!
This setup is inherited from an older (mkii) project, where continuous redefining of
the \pagebackgroundfigure was necessary. And it works fine, so I saw no reason to
implement something else.

Before getting into the actual processing of the XML, let me introduce some of the
dw-workflow code that is needed for almost all XML, and especially HTML processing.
First, there is the setup that connects XML tags to Lua functions.
\startxmlsetups xml:oursetups

\xmlsetfunction {\xmldocument}{*} {xml.functions.panic}
\xmlsetfunction {\xmldocument}{root} {xml.functions.flush}
\xmlsetfunction {\xmldocument}{settings} {xml.functions.settings}
\xmlsetfunction {\xmldocument}{setting} {xml.functions.setting}
\xmlsetfunction {\xmldocument}{document_content} {xml.functions.document}
\xmlsetfunction {\xmldocument}{content} {xml.functions.flush}
\xmlsetfunction {\xmldocument}{fragment} {xml.functions.fragment}
\xmlsetfunction {\xmldocument}{h1} {xml.functions.h1}
....

\stopxmlsetups

\xmlregistersetup{xml:oursetups}

At the dotted line are all the functions for the separate HTML tags we support, which
are skipped here for brevity.

The \xmlsetfunction for * is a visualization trick. The panic function typesets
all child data in a bold, red, and ugly way. Even with all the precautions we take
for making sure the input is predictable, it is still possible that something sneaks
through. One example of that happening was when we updated the whole workflow
subsystem in development to support some extra tags, butwe had forgotten to update
the dw-workflow accordingly. The panic function’s output made that mistake clearly
visible during testing.

XML to PDF with ConTEXt VOORJAAR 2020 35

Next up in the dw-workflow is a set of definitions like this:
\def\htmlentity#1#2#3#4{\xmlsetentity{#2}{#1}}
\def\htmltexentity#1#2#3#4{\xmltexentity{#2}{#1}}

% latin chars
\htmlentity{À}{Agrave}{192}{Capital a with grave accent}
\htmlentity{Á}{Aacute}{193}{Capital a with acute accent}
\htmltexentity{~}{nbsp}{160}{Non-breaking space}
...

There are some 250 lines of these, adding support for all of the predefined HTML enti-
ties. ConTEXt converts numeric entities automatically, but the named HTML versions
need explicit definitions. There are four arguments because this information is con-
verted to TEX macros from a HTML table listing all the entities. In an earlier stage of
development, the third and fourth arguments were used to typeset a ConTEXt table
for comparison to that HTML table.

XML text fragments
The text fragments are written out as <fragment> tags in the XML file, and the content
of each of those is basically HTML with a bit of optional inline CSS. Let’s start with a
bit of example listing:
<fragment id="18202" dos_id="3279" dsd_id="6980" title="no">

<p style="text-align:center;">COMMISSION &test; PERMANENTE</p>
<p style="text-align:center;">Séance du </p>
<p style="text-align:center;">DOSSIER N° </p>

</fragment>
<fragment id="18203" dos_id="3279" dsd_id="6980" title="no">

<table border="1" cellpadding="1" cellspacing="1" style="width:639px;">
<tbody>

<tr>
<td style="height:22px; width:626px;">

Politique : COPY

Programma: <placeholder>Arensman Monique</placeholder>

Opération : SOME TEXT

</td>
</tr>

</tbody>
</table>

</fragment>

Most of the attributes of the fragment tag in the XML example above are for debugging
purposes only and are ignored during typesetting. The one processed attribute is
title. As you can see in figure 1, each text fragment can have a system-supplied
heading. If that heading is not given, we add an extra blank to give some visual
separation between adjacent text fragments.

The fragment also supports an is_framed argument, which is not used in
the above example. This creates a border around the whole fragment using
\starttextbackground. The system makes use of text backgrounds to make sure that
the fragment can still break across pages, which is an absolute requirement.
function xml.functions.fragment(t)

local framed = false
if t.at.is_framed and t.at.is_framed == 'true' then

cssparser.prependstyle(t,"border: 1px solid black; padding: 10px;")
framed = true

end
context.flushsidefloats() -- clear left/right divs
if t.at.title and t.at.title:lower() == "no" then

context.blank({'line'})
end
if framed then

local args = textbackgroundarguments(t)
context.definetextbackground({'fragmentbackground'.. tonumber(t.at.id)},args)

36 MAPS 50 Taco Hoekwater

context.starttextbackground({'fragmentbackground'.. tonumber(t.at.id)})
end
lxml.flush(t)
if framed then

context.stoptextbackground()
end

end

Rather than try to process the various background options right in the above
function, the requested frame is converted into CSS statements. The function
textbackgroundarguments() converts that CSS specification into arguments for
\definetextbackground.

Interpreting CSS specifications
Parsing CSS specifications is actually quite easy, especially for the only specification
format we support right now: in-line style elements. A smallish Lua function does
all of the initial work:
local P, S, C = lpeg.P, lpeg.S, lpeg.C

function cssparser.parse(t)
local result = {}
local found = {}
if t.at.style then

local function store(a,b)
found[a] = b

end
local skipspace = S(" \t")^0
local colon = P(":")
local semicolon = P(";")
local eos = P(-1)
local somevalue = (1 - (skipspace * (semicolon + eos)))^1
local somekey = (1 - (skipspace * (colon + eos)))^1
local cssmatch = ((C(somekey) * skipspace * colon * skipspace * C(somevalue))

/store * skipspace * (semicolon + eos) * skipspace)^1 + eos

lpeg.match(cssmatch,t.at.style)

for i,v in ipairs(cssparser.registered) do
local k = v[1]
if found[k] then

local f = v[2]
f(t,result,k,found[k])
if cssparser.inherited_trait[k] then

if found[k] ~= 'inherit' then
cssparser.inherit(t,k,found[k])

end
end
found[k]=nil

end
end
for i,v in pairs(found) do

cssparser.report('unknown css property: '..i)
end
for k,v in pairs(result) do

if v == 'inherit' then
result[k] = cssparser.inherited(t,k, cssparser.inherited_trait[k])

elseif v == 'initial' then
result[k] = cssparser.inherited_trait[k]

end
end

end
return result

end

XML to PDF with ConTEXt VOORJAAR 2020 37

The first half of the above function is the LPEG match needed to split the string into
a key–value table. The second half takes care of interpreting the registered traits.
There are two separate tables that are used in this process:

cssparser.registered
is a table of CSS traits that are known to the system. Each of the array values is a
further array with two items: the name of the trait, and a processing function for
that trait. These functions are then called to interpret the trait’s CSS specification.
They take care of things like converting special color names and oddball length
specifications to something ConTEXt and MetaPost understand. The main table
is an array instead of a dictionary because ordering is important in the case of
shortcut traits, as we will see later.

cssparser.inherited_trait
contains the initial values for inheritable traits. The processing taking place here
is essentially a callback, since normally inheritance is handled by the processing
functions in the previous loop.

Both arrays are set up by calls to cssparser.register:
function cssparser.register (k,f,inherited)

cssparser.registered[#cssparser.registered+1] = {k, f}
if inherited then

cssparser.inherited_trait[k] = inherited
end

end

Throughout the rest of dw-workflow, there are dozens of calls like this:
cssparser.register('font-size',

function (t,result,key,value) result[key] = value end, '11pt')

Thesimplest of those calls use an inline function as seen above.Themore complicated
ones define the function separately, just because that produces nicer formatting of
the source. ‘Complicated’ is perhaps too big a word: the CSS parser callbacks do not
do all that much work besides verifying the input syntax and resolving CSS shortcuts.
local function parse_padding_shortcut(t,result,key,value)

local function process(a,b,c,d)
local t,r,l,b = trlb(a,b,c,d)
result[key ..'-top'] = cssparser.htmldimension(t)
result[key ..'-bottom'] = cssparser.htmldimension(b)
result[key ..'-right'] = cssparser.htmldimension(r)
result[key ..'-left'] = cssparser.htmldimension(l)

end
local pattern = (cssparser.matches.width^-4/process)
pattern:match(value)

end

local function parse_one_padding(t,result,key,value)
local function process(a)

result[key] = cssparser.htmldimension(a)
end
local pattern = (cssparser.matches.width^1/process)
pattern:match(value)

end

cssparser.register("padding", parse_padding_shortcut)
cssparser.register("padding-left", parse_one_padding)

As you can see, there are some other helpers in the cssparser table. For example,
htmldimension converts the CSS width keywords (thin, medium, thick) into discrete
HTML lengths. There is also htmlcolor, which converts named colors into HEX values.
The goal of these functions is not to produce the final trait value that will be used
for typesetting, but just to get rid of some of the idiosyncrasies of CSS.

38 MAPS 50 Taco Hoekwater

The cssparser.matches table contains a small set of predefined LPEG matches for
common CSS data types. Besides width, there are definitions for length, color, and
border_style.

The previous takes care of parsing CSS specifications. But how to use them?
When inside one of the XML tag processing functions, it is normally enough to call

either cssparser.style() or cssparser.styled(). The latter takes care of implicit
inheritance, the former just returns the locally specified CSS trait, if there is any.
function cssparser.styled(t,name)

if not t.__style then
t.__style = cssparser.parse(t)

end
if t.__style[name] then

return t.__style[name]
-- the next elseif is not done in cssparser.style
elseif cssparser.inherited_trait[name] then

return cssparser.inherited(t,name)
end
return nil

end

It is worth noting that cssparser.styled() is not just used for explicit inherit. What
it actually returns is either a local value, or the value youwould get if explicit inherit
was present, even if it is not actually there. This turned out to be quite useful, for
example to query the current font size and text. Both of these are quite often needed
during processing, even in tags that do not actually inherit the value.

The functions cssparser.inherited and its companion cssparser.inherit are used
to query and set inherited traits. They actually allow arbitrary keywords, so they can
also be used to set up inheritance for ad-hoc values, as that turned out be quite useful.
For example when dealing with the implicit CSS state, as in whether the current XML
subtree is part of a floating object or not.

We have already seen cssparser.prependstyle(). In that example, it was used with
a literal CSS string. But the most prevalent use of that function is to convert HTML
attributes into CSS traits. We will see a usage example further down in this article.

Attribute values
Some CSS attribute values can be used directly in the Lua code, like for the various
keyword-valued traits.These are commonly used for decisions in the processing step,
and do not actually need to be passed to ConTEXt. Most of the ones that do need to be
passed on can be handled by a simple hash. The table cssparser.typemaps contains
a small set of tables that map CSS keywords to ConTEXt keywords for this purpose.

For example:
cssparser.typemaps.text_align = {

left = 'flushleft,verytolerant,extremestretch',
right = 'flushright,verytolerant,extremestretch',
center = 'center,verytolerant,extremestretch',
justify = 'verytolerant,extremestretch'

}

At themoment, there are typemaps for float, font_size, font_weight, list_style_type,
text_align and vertical_align.

Very handy, but this does not work for all attribute values. In particular, dimen-
sions and colors require more attention.

CSS dimensions can have a fairly elaborate list of units, and only the basic ones
actually match up with TEX dimensions. Our current system does not support all of
the possible relative CSS dimensions like ‘X percent of the viewport’ and ‘X percent
of the width of the zero’, but it does handle the absolute dimensions, em / ex, bare

XML to PDF with ConTEXt VOORJAAR 2020 39

numbers, and \%. We use a helper function from ConTEXt itself to convert the value
from its CSS format to a number of TEX points.
function styledimension (val, full)

if not full then
full = userdata.settings.actualwidth

else
full = string.gsub(full,"pt",'') -- just in case
full = tonumber(full)*65536

end
ret = (xml.css.dimension(val,72/\pixelsperinch*65536,full/100)/65536)
return ret

end

CSS colors are even more flexible. Not only are there predefined named colors as
mentioned above and the special keyword cases transparent, inherit, initial, and
currentcolor; but colors can also be specified using RGB values, HEX values, HSL val-
ues, RGBA values, and HSLA values. The CSS parser has already converted the named
colors and resolved inheritance into HEX colors when the actual color interpretation
starts, but there is still quite a bit of processing needed.

Here is an example of some of the possibilities borrowed from w3schools.com:
<h1 style="color:Tomato;">Hello World</h1>
<h1 style="background-color:rgb(255, 99, 71);">...</h1>
<h1 style="background-color:#ff6347;">...</h1>
<h1 style="background-color:rgba(255, 99, 71, 0.5);">...</h1>

<h1 style="background-color:hsl(9, 100%, 64%);">...</h1>
<h1 style="background-color:hsla(9, 100%, 64%, 0.5);">...</h1>

HSL values and HSLA values are not supported currently. We have not encountered
any HTML generating software yet that actually uses HSL, and as we do not allow the
users to key in raw HTML code, we are very unlikely to encounter such definitions.
Until we actually need these, they are not worth the hassle.

We do support transparency, both the transparent keyword and the rgba() for-
mat. There are two separate Lua functions, texcolor() and mpcolor() to convert the
value into either \definecolor / \directcolored ConTEXt style (r=1,b=0.45,g=0.4),
or to a format that our MetaPost macros understand. The latter is used for all argu-
ments to \framed and \definetextbackgrounds, so it is used much more often.

For MetaPost, HEX values are converted into CSS rgb() or rgba() syntax. This is
the most straightforward way to pass around the color values in the Lua processing
code.

But it means using transparency in our MetaPost macros requires a little trick,
because the MetaFun macro for transparent colors is based on a different (and more
flexible) syntax:
def rgb(expr a,b,c) = (a/255,b/255,c/255) enddef;
def rgba(expr a,b,c,d) = (a/255,b/255,c/255,d) enddef;
def checkedcolor(expr a)=

if cmykcolor a:
(cyanpart a, magentapart a, yellowpart a) withtransparency(1, blackpart a)

else:
a

fi
enddef;

Actual XML processing
There are some two dozen of XML tag processing functions. Some are shorter, some
are longer, but most all of them are easy to understand. Showing all of the processing

40 MAPS 50 Taco Hoekwater

functions seems overkill, but let’s look at some of the more interesting ones in a bit
of detail.

Images
function xml.functions.img(t)

local function style(a) return cssparser.style(t,a) end
if t.at.width then cssparser.prependstyle(t, 'width:'.. t.at.width) end
if t.at.height then cssparser.prependstyle(t, 'height:' .. t.at.height) end
if t.at.align then cssparser.prependstyle(t, 'text-align:' .. t.at.align) end
local args = {}
if style('width') then args.width = texdimension(style('width')) .. 'pt' end
if style('height') then args.height = texdimension(style('height')) .. 'pt' end
if not userdata.patchimagesource(t) then

t.at.src = userdata.settings.externalfigures .. '/' .. t.at.src
end
local textalignmap = cssparser.typemaps.text_align
if style('align') then context.startalign({textalignmap[style('align')]}) end
if cssparser.inherited(t,'infloat', 0) ~= 1 then context.dontleavehmode() end
context.externalfigure({t.at.src}, args)
if style('align') then context.stopalign() end

end

Most noteworthy here is the call to userdata.patchimagesource(). That function
checks the HTML src attribute for the existence of inline base64 JPEG or PNG images.

If it finds one of these, it writes the binary data to a disk file and returns true. Since
those images will always be in the local directory, there is no need to prepend the
client’s image directory to the src value.

The check for the virtual infloat trait is there because if the image is not in-
side of a \placefigure, then it should be handled in TEX’s horizontal mode. The
\dontleavehmode forces the start of a paragraph in that case.

Inline font switches
Some of the processing functions make use of dedicated subroutines, like the ones
for inline font switches:
function xml.functions.b(t) -- also strong

cssparser.prependstyle(t, 'font-weight:bold;font-style:inherit;')
context.start()
context.dontleavehmode()
handlefontspan(t)
lxml.flush(t)
context.stop()
context("{}")

end

The handlefontspan() routine takes care of all inline font switches and typical
 settings like color changes and text decoration options. It is used through-
out dw-workflow where -style traits need to be set.

Text blocks and structure
Similarly, there is the textbackgroundarguments() function (that we saw earlier) to
take care of typical block level traits like vertical whitespace, margins, and frames.
This makes processing <div> quite simple.

The various <h1..6> tags are simply mapped onto the ConTEXt sectioning com-
mands.

Lists
Itemization lists are a bit problematic because CSS essentially treats every item in a list
separately. The net result of that is that ConTEXt needs to start and stop itemization
lists regularly, and while that works ok, it is quite suboptimal.

XML to PDF with ConTEXt VOORJAAR 2020 41

function xml.functions.li(t)
if t.at.type then

cssparser.prependstyle(t,'list-style-type:' .. t.at.type)
end
cssparser.inherit(t,'inlist', true)
local typemap = cssparser.typemaps.list_style_type
local itemstyle = cssparser.style(t,'list-style-type')
if itemstyle then

context.stopitemize()
if t.at.value then

context.setupitemize({start = t.at.value})
end
context.startitemize({typemap[itemstyle]})

elseif t.at.value then
context.stopitemize()
context.setupitemize({start = t.at.value})
context.startitemize({typemap[cssparser.styled(t,'list-style-type')]})

end
style = cssparser.styled(t,'text-align') or 'left'
context.testpage({'1'})
context.startitem()
-- \vadjust to fix vertical spacing for p

context('\\vadjust{\\kern -\\baselineskip}\\nobreak')
context.startalign({cssparser.typemaps.text_align[style]})
lxml.flush(t)
context.par()
context.stopalign()
context.stopitem()

end

The \vadjust here is particularly ugly, but it is needed because the textual input can
have item content both with and without <p> tags.

At some time in the future, we should move to a completely new list model that
is closer to how CSS thinks about list items. The CSS model for list items is much
closer to plain TEX’s way of having separate \item commands than to the more
structured ConTEXt way of having an enclosing environment. On first sight, you
would think that the ConTEXt way is very close to the HTML structure for lists. But
on closer examination, CSS allows so many low-level traits on the actual list items
that it will probably work better if we switch to something more low-level than the
\startitem …\stopitem environment. For now, these low-level CSS traits are on the
‘unsupported’ list.

Tables

Tables are problematic as well. Not so much because of the cell formatting itself
(\bTABLE generally does a fine job of that), but because all of the possible border
styles and spacing variations around those cells.

Individual \bTD cells inside a \bTABLE are actually disguised \framed calls. This is
great in that it allows various border and background settings. But \framed by itself
is not quite powerful enough to do everything that is possible in CSS. As a result of
that, quite a large section of dw-workflow consists of small extensions to \framed and
a rather long list of MetaPost graphic definitions.

The normal \framed already has four detail values for frame: leftframe=on, etc.
Our version has a similar splits for margin, rulethickness, and framecolor. All of
these variables can be set independently. Also, the ..frame keys like leftframe take
named versions for all of the CSS border styles instead of just on or off. The options
are: dotted, solid, double, dashed, none, hidden, groove, ridge, inset, and outset.
And the color settings are a bit different as well: instead of an actual ConTEXt color
definition, they take a triplet of (r,g,b) or a quarted of (r,g,b,a).

42 MAPS 50 Taco Hoekwater

Most of this data is passed on to MetaPost macros that take care of the actual
typesetting of the border segments. A little section of that part of dw-workflow looks
like this:
def border_left_dotdash(expr wid, col, w, h, pre, post, dist, dotted,

left, top, bottom) =
if wid>0:

pickup pencircle scaled wid;
n := floor((h-pre-post-top-bottom)/(dist));
if not odd n: n:=n-1; fi
nw := (h-pre-post-top-bottom)/n ;
linecap := butt;
draw ((wid/2+left,post+bottom)--(wid/2+left,h-pre-top))

dashed dashpattern(if dotted: off nw on nw else: on nw off nw fi)
withcolor checkedcolor(col);

fill (wid+left,post+bottom)--(left,post+bottom)--(left,bottom)--cycle
withcolor checkedcolor(col);

fill (wid+left,h-pre-top)--(left,h-top)--(left,h-pre-top)--cycle
withcolor checkedcolor(col);

fi
enddef;
def border_left_dotted(expr wid, col, w, h, pre, post, left, top, bottom) =

border_left_dotdash(wid,col,w,h,pre,post,wid,true, left, top, bottom)
enddef;
def border_left_dashed(expr wid, col, w, h, pre, post, left, top, bottom) =

border_left_dotdash(wid,col,w,h,pre,post,3*wid,false, left, top, bottom)
enddef;

The actual connection between \framed and these MetaPost definitions is done by
\startuseMPgraphic{cellbackground}

pickup pencircle scaled 0.0001;
drawdot(0,0) withcolor transparent(1,0,(1,1,1));
drawdot(\overlaywidth,\overlayheight) withcolor transparent(1,0,(1,1,1));
border_left_\framedparameter{leftframe}

(\framedparameter{leftrulethickness}, \framedparameter{leftframecolor},
\overlaywidth,\overlayheight,
\framedparameter{toprulethickness},\framedparameter{bottomrulethickness},
\framedparameter{leftmargin}, \framedparameter{topmargin},
\framedparameter{bottommargin});

border_right_\framedparameter{rightframe}
(\framedparameter{rightrulethickness}, \framedparameter{rightframecolor},
\overlaywidth,\overlayheight,
\framedparameter{bottomrulethickness},\framedparameter{toprulethickness},
\framedparameter{rightmargin}, \framedparameter{bottommargin},
\framedparameter{topmargin});

border_top_\framedparameter{topframe}
(\framedparameter{toprulethickness}, \framedparameter{topframecolor},
\overlaywidth,\overlayheight,
\framedparameter{rightrulethickness},\framedparameter{leftrulethickness},
\framedparameter{topmargin}, \framedparameter{rightmargin},
\framedparameter{leftmargin});

border_bottom_\framedparameter{bottomframe}
(\framedparameter{bottomrulethickness},\framedparameter{bottomframecolor},
\overlaywidth,\overlayheight,
\framedparameter{leftrulethickness},\framedparameter{rightrulethickness},
\framedparameter{bottommargin}, \framedparameter{leftmargin},
\framedparameter{rightmargin});

\stopuseMPgraphic

with the aid of a simple overlay that contains the cellbackground graphic, this is
used as the background for \framed.

In case you are wondering: the two drawdots are needed to ‘anchor’ the graphic
inside of the overlay in cases where not all sides are actually drawn.
The hardest part of table processing is support for the CSS property border-collapse.
Our current version is not quite perfect, but it comes close. Close enough for our

XML to PDF with ConTEXt VOORJAAR 2020 43

clients. The remaining fault is that when two borders are collapsed into one, the
‘winning’ border should be placed in the center of the space between the two cells.
Our code does not do this recentering. In most tables, this is fine. But the flaw is
noticeable in tables where some of the rows (of a single table) have different left and
right border widths, or where some of the columns have different top and bottom
border widths. Considering the complexity of the collapsed border model, this is a
limitation that we can live with. For the moment, at least.

Here is a cleaned up example of the kind of table input we have to process:
<table cellspacing="3" style="width:210mm;border-collapse: separate;">

<tbody>
<tr>

<td style="height:60px;border: 6px solid orange;padding: 4px;">
6px solid orange</td>

<td style="height:60px;border: 3px solid orange;padding: 4px;">
3px solid orange</td>

</tr>
<tr>

<td style="height:60px;border: 5px inset green;padding: 4px;">
inset green</td>

<td style="height:60px;border: 5px outset green;padding: 4px;">
outset green</td>

</tr>
</tbody>

</table>

Figure 2 shows what comes out of our system.

6px solid orange 3px solid orange

inset green outset green

solid orange solid orange

inset green outset green

Figure 2. Example output of a table with and without the border-collapse: collapse setting.

44 MAPS 50 Taco Hoekwater

Summary of the current project state
This project has been in development for about a year now. In that time, we solved
all of the acute problems so that we can correctly process the current input to PDF.

To that end, we:

� wrote a (partial) CSS parser
� with the help of the ntg-context mailing list we added ConTEXt support for the

CSS minheight attribute in \framed
� wrote enough code that we are supporting nearly all of the CSS table border fea-

tures
� can handle in-line images in base64 encoding
� figured out how to support transparent colors in borders.

But that does not mean that we are done. In the future:

� we will have to support more CSS properties as they become requested by our
clients

� we should implement a better solution for CSS inheritance than the current
brute-force method

� we will probably need to implement an itemization model that is closer to the
CSS approach

� and likely more stuff will pop up as we go along.

Taco Hoekwater
DocWolves B.V.

