
Hans Hagen VOORJAAR 2020 49

Performance again

Introduction
In a Maps article of 2019 I tried to answer the question
‘Is TEX really slow?’. A while after it was published on
the Dutch TEX mailing list a user posted a comment
stating that in his experience the LuaTEX engine in
combination with LATEX was terribly slow: one page
per second for a Japanese text. It was also slower than
pdfTEX with English, but for Japanese it was close to
unusable. The alternative, using a Japanese TEX engine
was no option due to lack of support for certain images.

In order to check this claim I ran a test in ConTEXt.
Even on my 8 year old laptop I could get 45 pages
per second for full page Japanese texts (6 paragraphs
with each 300 characters per page): 167 pages took
just less than 4 seconds. Typesetting Japanese involves
specific spacing and line break handling. So, naturally
the question arises: why the difference. Frans Goddijn
wondered if I could explain a bit more about that, so
here we go.

In the mentioned article I already have explained
what factors play a role and the macro package is one
of them. It is hard to say to what extent inefficient
macros or a complex layout influence the runtime, but
my experience is that it is pretty hard to get speeds
as low as 1 page per second. On an average complex
document like the LuaTEXmanual (lots of verbatim and
tables, but nothing else demanding apart from color
being used and a unique MetaPost graphic per page)
I get at least a comfortable 20 pages per second.

I can imagine that for a TEX user who sees other
programs on a computer do complex things fast, the
performance of TEX is puzzling. But, where for instance
rendering videos can benefit from specific features of
(video) processors, multiple cores, or just aggressive
optimization by compilers of (nested) loops and ma-
nipulation of arrays of bytes, this is not the case for
TEX.This programprocesses all in sequence, there is not
much repetition that can be optimized, it cannot exploit
the processor in special ways and the compiler can not
do that many optimizations.

I can’t answer why a LATEX run is slower than a
ConTEXt run. Actually, one persistent story has always
been that ConTEXt was slow in comparison. But maybe
it helps to know a bit what happens deep down in TEX
and how macro code can play a role in performance.

When doing that I will simplify things a bit.

Text and nodes
The TEX machinery takes input and turns that into
some representation that can be turned into a visual
representation ending up as pdf. So say that we have
this:

hello

In a regular programming language this is a string
with five characters. When the string is manipulated
it is basically still a sequence of bytes in memory. In
TEX, if this is meant as text, at some point the internal
representation is a so called node list:

[h] -> [e] -> [l] -> [l] -> [o]

In traditional TEX these are actually character nodes.
They have a few properties, like what font the character
is from and what the character code is (0 up to 255). At
some point TEX will turn that list into a glyph list. Say
that we have this:

efficient

This will eventually become seven nodes:

[e] -> [ffi] -> [c] -> [i] -> [e] -> [n] -> [t]

Theffi ligature is a glyph nodewhich actually also keeps
information about this one character being made from
three.

In LuaTEX it is different, and this is one of the reasons
for it being slower. We stick to the first example:

[h] <-> [e] <-> [l] <-> [l] <-> [o]

So, instead of pointing to the next node, we also point
back to the previous: we have a double linked list. This
means that all over the program we need to maintain
these extra links too.They are not used by TEX itself, but
handy at the Lua end. But, instead of only having the
font as property there is much more. The TEX program
can deal with multiple languages at the same time and
this relates to hyphenation. In traditional TEX there
are language nodes that indicate a switch to another
language. But in LuaTEX that property is kept with each
glyph node. Actually, even specific language properties
like the hyphen min, hyphen max and the choice if



50 MAPS 50 Hans Hagen

uppercase should be hyphenated are kept with these
nodes. Spaces are turned into glue nodes, and these
nodes are also larger than in regular TEX engines.

So, in LuaTEX, when a character goes from the input
into a node, a more complex data structure has to be
set up and the larger data structure also takes more
memory. That in turn means that caching (close to
the cpu) gets influenced. Add to that the fact that we
operate on 32 bit character values, which also comes
with higher memory demands.

We mentioned that a traditional engine goes from
one state of node list into another (the ligature build-
ing). Actually this is an integrated process: a lot hap-
pens on the fly. If something is put into a \hbox no
hyphenation takes place, only ligature building and
kerning. When a paragraph is typeset, hyphenation
happens on demand, in places where it makes sense.

In LuaTEX these stages are split. A node list is always
hyphenated. This step as well as ligature building and
kerning are three separate steps. So, there’s always
more hyphenation going on than in a traditional TEX
engine: we get more discretionary nodes and again
these take more memory than before; also the more
nodes we have, the more it will impact performance
down the line. The reason for this is that each step
can be intercepted and replaced by a Lua driven one.
In practice, with modern OpenType fonts that is what
happens: these are dealt with (or at least managed in)
Lua. For Japanese for sure the built-in ligature and
kerning doesn’t apply: the work is delegated and this
comes at a price. Japanese needs no hyphenation but
instead characters are treated with respect to their
neighbors and glue nodes are injected when needed.
This is something that Lua code is used for so here
performance is determined by how well the plugged in
code behaves. It can be inefficient but it can also be so
clever that it just takes a bit of time to complete.

I didn’t mention another property of nodes: attrib-
utes. Each node that has some meaning in the node
list (glyphs, kerns, glue, penalties, discretionary, . . . ,
these terms should ring bells for a TEX user) have a
pointer to an attribute list. Often these are the same
for neighboring nodes, but they can be different. If a
macro package sets 10 attributes, then there will be
lists of ten attributes nodes (plus some overhead) active.
When values change, copies are made with the change
applied. Grouping even complicates this a little more.
This has an impact on performance. Not only need these
lists be managed, when they are consulted at the Lua
end (as they are meant as communication with that bit
of the engine) these lists are interpreted. It all adds up
tomore runtime.There is nothing like that in traditional
TEX, but there somemore macro juggling to achieve the
same effects can cause a performance hit.

Macros and tokens
When you define macro like this:

\def\MyMacro#1{\hbox{here: #1!}}

the TEX engine will parse this as follows (we keep it
simple):

\def primitive token
\MyMacro user macro pointing to:

#1 argument list of length 1 and no delimiters
{ openbrace token

\hbox hbox primitive token
h letter token h
e letter token e
r letter token r
e letter token e
: other token :

space token
#1 reference to argument
! other token !
} close brace token

The \def is eventually lost, and the meaning of the
macro is stored as a linked list of tokens that get bound
to the user macro \MyMacro. The details about how this
list is stored internally can differ a bit per engine but
the idea remains. If you compare tokens of a traditional
TEX engine with LuaTEX, the main difference is in the
size: those in LuaTEX take more memory and again that
impacts performance.

Processing
Now, for a moment we step aside and look at a regular
programming language, like Pascal, the language TEX
is written in, or C that is used for LuaTEX. The high
level definitions, using the syntax of the language, gets
compiled into low level machine code: a sequence of
instructions for the cpu. When doing so the compiler
can try to optimize the code. When the program is
executed all the cpu has to do is fetch the instructions,
and execute them, which in turn can lead to fetching
data from memory. Successive versions of cpu’s have
become more clever in handling this, predicting what
might happen, (pre) fetching data from memory etc.

When you look at scripting languages, again a high
level syntax is used but after interpretation it becomes
compact so called byte-code: a sequence of instructions
for a virtual machine that itself is a compiled program.
The virtual machine fetches the bytes and acts upon
them. It also deals with managing memory and vari-
ables. There is not much optimization going on there,
certainly not when the language permits dynamically
changing function calls and such. Here performance is
not only influenced by the virtual machine but also by
the quality of the original code (the scripts). In LuaTEX



Performance again VOORJAAR 2020 51

we’re talking Lua here, a scripting language that is
actually considered to be pretty fast.

Sometimes byte-code can be compiled Just In Time
into low level machine code but for LuaTEX that doesn’t
work out well. Much Lua code is executed only once
or a few times so it simply doesn’t pay off. Apart
from that there are other limitations with this (in itself
impressive) technology so I will not go into more detail.

So how does TEX work? It is important to realize
that we have a mix of input and macros. The engine
interprets that on the fly. A character enters the input
and TEX has to look at it in the perspective of what it
what it expects. Is is just a character? Is it part of a
control sequence that started (normally) with a back-
slash? Does it have a special meaning, like triggering
math mode? When a macro is defined, it gets stored as
a linked list of tokens and when it gets called the engine
has to expand thatmeaning. In the process some actions
themselves kind of generate input. When that happens
a new level of input is entered and further expansion
takes place. Sometimes TEX looks ahead and when not
satisfied, pushes something back into the input which
again introduces a new level. A lot can happen when
a macro gets expanded. If you want to see this, just
add \tracingall at the top of your file: you will be
surprised! Youwill not see how often tokens get pushed
and popped but you can see how much got expanded
and how often local changes get restored. By the way,
here is something to think about:

\count4=123
\advance \count4 by 123

If this is in your running text, the scanner sees \count
and then triggers the code that handles it. That code
expects a register number, here that is the 4. Then it
checks if there is an optional = which means that it
has to look ahead. In the second line it checks for the
optional keyword by. This optional scanning has a side
effect: when the next token is not an equal or keyword,
it has to push back what it just read (we enter a new
input level) and go forward. It then scans a number.
That number ends with a space or \relax or something
not being a number. Again, some push back onto the
input can happen. In fact, say that instead of 4we have a
macro indicating the register number, intermediate ex-
pansion takes place. So, even these simple lines already
involve a lot of action! Now, say that we have this

\scratchcounter 123
\scratchcounter =123
\advance\scratchcounter by 123
\advance\scratchcounter 123

Can you predict what is more efficient? If this doesn’t
happen a lot performance wise there is no real differ-
ence because TEX is pretty fast in doing this, but given

what we said before, adding the equal sign and by could
actually be faster because there is no pushing back onto
the input stack involved. It probably makes no sense
to take this into account when writing macros but just
keep in mind that performance is in the details.

This model of expansion is very different from com-
piled code or byte-code. To some extent you can con-
sider a list of tokens that make up a macro to be
byte-code, but instead of a sequence of bytes it is a
linked list. That itself has a penalty in performance.
Depending on how macros expand, the engine can
be hopping all over the token memory following that
list. That means that quite likely the data that gets
accessed is not in your cpu cache and as a result
performance cannot benefit from it apart of course from
the expanding machinery itself, but that one is not a
simple loop messing around with variables: it accesses
code all over the place! Text gets hyphenated, fonts get
applied, material gets boxed, paragraphs constructed,
pages built. We’re not moving a blob of bits around
(as in a video) but we’re constantly manipulating small
amounts of memory scattered around memory space.

Now, where a traditional TEX engine works on 8 bit
characters and smaller tokens, the 32 bit LuaTEX works
on larger chunks. Although macro names are stored
as single symbolic units, there are times when its real
name is used, for instance when the \csname primitive
is used. At that time, the real name is used and there
are plenty cases where temporary string variables are
allocated and filled. Compare:

\def\foo{\hello}

Here the macro \foo has just a one token reference
to \hello because that’s how a macro reference gets
stored. But in

\def\foo{\csname hello\endcsname}

we have two plus five tokens to access what effectively
is \hello. Each character token has to be converted to
a byte into the assembled string. Now it must be said
that in practice this is still pretty fast but when we have
longer names and especially when we have utf8 char-
acters in there it can come at a price. It really depends
on how your macro package works and sometimes you
just pay the price of progress. Buying a faster machine
is then the solution because often we’re not talking of
extreme performance loss here. And modern cpu’s can
juggle bytes quite efficiently. Actually, when we go to
64 bit architectures, LuaTEX’s data structures fit quite
well to that. As a side note: when you run a 32 bit binary
on a 64 bit architecture there can even be a price being
paid for that when you use LuaTEX. Just move on!



52 MAPS 50 Hans Hagen

Management
Before we can even reach the point that some content
becomes typeset, much can happen: the engine has to
start up. It is quite common that a macro package uses
a memory dump so that macros are not to be parsed
each run. In traditional engines hyphenation patterns
are stored in the memory dump as well. And some
macro packages can put fonts in it. All kind of details,
like upper- and lowercase codes can get stored too.
In LuaTEX fonts and patterns are normally kept out
of the dump. That dump itself is much larger already
because we have 32 bit characters instead of 8 bit so
more memory is used. There are also new concepts,
like catcode tables that take space. Math is 32 bit too,
so more codes related to math are stored. Actually the
format is so much larger that LuaTEX compresses it.
Anyway, it has an impact on startup time. It is not
that much, but when you measure differences on a one
page document the overhead in getting LuaTEX up and
running will definitely impact the measurement.

The same is true for the backend. A traditional en-
gine uses (normally) Type1 fonts and LuaTEX relies on
OpenType. So, the backend has to do more work. The
impact is normally only visible when the document is
finalized. There can be a slightly larger hickup after the

last page. So, when youmeasure one page performance,
it again pollutes the page per second performance.

Summary
So, to come back to the observation that LuaTEX is
slower that pdfTEX. At least for ConTEXt we can safely
conclude that indeed pdfTEX is faster when we talk
about a standard English document, with TEX ascii in-
put, where we can do with traditional small fonts, with
only some kerning and simple ligatures. But as soon as
we deal with for instance xml, have different languages
and scripts, have more demanding layouts, use color
and images, and maybe even features that we were not
aware of and therefore didn’t require in former times
the LuaTEX engine (and for ConTEXt it’s LuaMetaTEX
follow up) performs way better than pdfTEX. So, there
is no simple answer and explanation for the fact that the
observed slow LATEX run on Japanese text, apart from
that we can say: look at the whole picture: we have
more complex tokens, nodes, scripts and languages,
fonts, macros, demands on the machinery, etc. Maybe
it is just the price you are paying for that.

Hans Hagen
Hasselt NL
Februari 2020


