
Hans Hagen VOORJAAR 2020 65

ThreeSix
Don Knuths first colorfont?

In the process of reaching completion and perfection Don Knuth occasionally posts
links to upcoming parts of the TAOCP series on his web pages. Now, I admit that
much is way beyond me but I do understand (and like) the graphics and I know
that Don uses MetaPost. The next example code is just a proof of concept but might
eventually become a decent module (with helpers) for making (runtime) fonts. After
all, we need to adapt to current developments and TEXies are always willing to adapt
and experiment. This chapter was written at the same time as the previous one on
Type3 fonts so you might want to read that first.

The font explored here is FONT36, used in “A potpourri of puzzles” and flagged as “a
special font designed for dissection puzzles” (in fascicle 9b for Volume 4). Playing
with and visualizing for me often works better than formulas, which then distracts
me from the original purpose, but let’s have a closer look anyway.

1234567890

ABCDEFGHIJKLM

NOPQRSTUVWXYZ

The font has a fixed maximum height of 8 quantities. There is no depth in the char-
acters. Some characters are wider. In this example we use a tight bounding box. In
ConTEXt speak this font is just a regular font but with a special feature enabled.

\definefontfeature
[fontthreesix]
[default]
[metapost=fontthreesix]

\definefont[DEKFontA][Serif*fontthreesix]

After this the \DEKFontA command will set this font as current font. The definition
mentions Serif as font name. In ConTEXt this name will resolve in the currently
defined Serif, so when your document uses Latin Modern that will be the one. The
fontthreesix will make this instance use that feature set, and the feature definition
has the defaults as parent (so we get kerning, ligatures, etc.) but as extra feature also
metapost.Thismeans that the new glyphs that are about to be definedwill actually be
injected in the Serif! We will replace characters in that instance. So, the following:

This font is used in \quotation {The Art Of Computer Programming} by
Don Knuth, not in volume~1, 2 or~3, but in number~4!

comes out as:

66 MAPS 50 Hans Hagen

This font is used in “The Art Of Computer Programming” by Don Knuth,
not in volume 1, 2 or 3, but in number 4!

But that doesn’t look too good, so we will tweak the font a bit:

\definefontfeature
[fontthreesix-color]
[default]
[metapost={category=fontthreesix,spread=.1}]

\definefont[DEKFontD][Serif*fontthreesix]

The spread (multiplied by the font unit, which is 12 basepoints here) will add a bit
more spacing around the blob:

This font is used in “TheArt Of Computer Programming” by Don Knuth,
not in volume 1, 2 or 3, but in number4!

Now, keep in mind that we’re talking of a real font here. You can cut and paste these
characters. It’s just the default uppercase Latin alphabet plus digits.

Beforewe go and look at some of the code needed to render this, a fewmore examples
will be given.

1234567890

ABCDEFGHIJKLM

NOPQRSTUVWXYZ

In the above example we not only use color, but also a different shape and random
colors (that is: random per TEX job). The feature definition for this is:

\definefontfeature
[fontthreesix-color]
[default]
[metapost={%

category=fontthreesix,shape=diamond,%
color=random,pen=fancy,spread=.1%

}]

Possible shapes are circle, diamond and square and instead of a random color one
can give a known color name. Using transparency makes no sense in this font.

A nice usage for this font are initials:

\setupinitial[font=Serif*fontthreesix-initial sa 5]
{\DEKFontB \placeinitial \input zapf\par}

The initial feature is defined as:

\definefontfeature
[fontthreesix-initial]
[metapost={category=fontthreesix,color=random,shape=circle}]

We use this in quoting Hermann Zapf, one that for sure is very applicable in a case
like this:

ThreeSix, Don Knuths first colorfont? VOORJAAR 2020 67

C

oming back to the use of typefaces in electronic publishing: many
of the new typographers receive their knowledge and information
about the rules of typography from books, from computer maga-

zines or the instruction manuals which they get with the purchase of a PC
or software. There is not so much basic instruction, as of now, as there was
in the old days, showing the differences between good and bad typographic
design.Many people are just fascinated by theirPC’s tricks, and think that
a widely--praised program, called up on the screen, will make everything au-
tomatic from now on.

Some combinations of sub-features are shown in figure 1. We blow up the diamond
with fancy pen example in figure 2. Alas, the TEX logo doesn’t look that good in such
a font. Using it for acronyms is not a good idea anyway, but maybe you can figure
out figure 3.

DEK DEK DEK

shape=circle shape=square shape=diamond

DEK DEK DEK

shape=circle,pen=fancy shape=square,pen=fancy shape=diamond,pen=fancy

DEK DEK DEK

shape=circle,random=yes shape=square,random=yes shape=diamond,random=yes

Figure 1.

T

E

X

Figure 2.

TAOCP

Figure 3.

You can quit reading now or expose yourself to how this is coded. We use a com-
bination of Lua and MetaPost, but different solutions are possible. The shapes are
entered (or course) with zeros and ones.

68 MAPS 50 Hans Hagen

\startluacode
local font36 = {

["0"] = "00111100 01111110 11000011 11000011 11000011 ...",
["1"] = "00011100 11111100 11101100 00001100 00001100 ...",
.....
["D"] = "11111100 11100010 01100011 01100011 01100011 ...",
["E"] = "1111111 1110001 0110101 0111100 0110100 0110001 ...",
.....
["K"] = "11101110 11100100 01101000 01110000 01111000 ...",
.....

}
\stopluacode

We also use Lua to register this font. The actual code looks slightly different because
it uses some helpers from the ConTEXt Lua libraries. We remap the bits pattern onto
MetaPost macro calls.

\startluacode
local replace = {

["0"] = "N;",
["1"] = "Y;",
[" "] = "L;",

}

function MP.registerthreesix(name)
fonts.dropins.registerglyphs {

name = name,
units = 12,
usecolor = true,

}
for u, v in table.sortedhash(font36) do

local ny = 8
local nx = (#v - ny + 1) // ny
local height = ny * 1.1 - 0.1
local width = nx * 1.1 - 0.1
local code = string.gsub(v,".",replace)
fonts.dropins.registerglyph {

category = name,
unicode = utf.byte(u),
width = width,
height = height,
code = string.format("ThreeSix(%s);",code),

}
end

end

MP.registerthreesix("fontthreesix")
\stopluacode

So, after this the font fontthreesix is known to the system but we still need to pro-
vide MetaPost code to generate it. The glyphs themselves are now just sequences of
N, Y and Lwith some wrapper code around it. The definitions are put in the MP name-
space simply because a first version initialized in MetaPost, and there could create
variants, but in the end I settled on the parameter interface at the TEX end.

The next definition looks a bit complex but normally such a macro is stepwise con-
structed. Notice how we can query the sub features. In order to make that possible

ThreeSix, Don Knuths first colorfont? VOORJAAR 2020 69

the regularMetaFun parameter handling code is used.We just push the sub-features
into to mpsfont namespace.

\startMPcalculation{simplefun}

def InitializeThreeSix =
save Y, N, L, S ; save dx, dy, nx, ny ; save currentpen ;
save shape, fillcolor, mypen, random, spread, hoffset ;
string shape, fillcolor, mypen ; boolean random ;
pen currentpen ;
dx := 11/10 ;
dy := - 11/10 ;
nx := - dx ;
ny := 0 ;
shape := getparameterdefault "mpsfont" "shape" "circle" ;
random := hasoption "mpsfont" "random" "true" ;
fillcolor := getparameterdefault "mpsfont" "color" "" ;
mypen := getparameterdefault "mpsfont" "pen" "" ;
spread := getparameterdefault "mpsfont" "spread" 0 ;
hoffset := 12 * spread / 2 ;
currentpen := pencircle

if mypen = "fancy" :
xscaled 1/20 yscaled 2/20 rotated 45

else :
scaled 1/20

fi ;
if shape == "square" :

def S =
unitsquare if random : randomized 1/10 fi
shifted (nx,ny)

enddef ;
elseif shape = "diamond" :

def S =
unitdiamond if random : randomized 1/10 fi
shifted (nx,ny)

enddef ;
else :

def S =
unitcircle if random : randomizedcontrols 1/20 fi
shifted (nx,ny)

enddef ;
fi ;
def N =

nx := nx + dx ;
draw S ;

enddef ;
if fillcolor = "random" :

def Y =
nx := nx + dx ;
fillup S withcolor white randomized (2/3,2/3,2/3) ;

enddef ;
elseif fillcolor = "" :

def Y =
nx := nx + dx ;
fillup S ;

70 MAPS 50 Hans Hagen

enddef ;
else :

def Y =
nx := nx + dx ;
fillup S withcolor fillcolor ;

enddef ;
fi ;
def L =

nx := - dx ;
ny := ny + dy ;

enddef ;
enddef ;

vardef ThreeSix (text code) =
InitializeThreeSix ; % todo: once per instance run
draw image (code) shifted (hoffset,-ny) ;

enddef ;

\stopMPcalculation

This code is not that efficient in the sense that there’s quite some MetaPost-Lua-
MetaPost traffic going on, for instance each parameter check involves this, but in
practice performance is quite okay, certainly for such a small font. There will be an
initializer option some day soon. The simplefun is a reference to an mplib instance
that does load MetaFun but only the modules that make no sense for this kind of
usage. It also enforces double mode. The calculations wrapper just executes the code
and does not place some (otherwise empty) graphic.

Those who have seen (and/or read) “Concrete Mathematics” will have noticed the
use of inline images, like dice. Dice are also used in “pre-fascicle 5a” (I need a few
more lives to grasp that, so I stick to the images for now!). So, to compensate the
somewhat complex code above, I will show how to accomplish that. This time we do
all in MetaPost:

This is not that hard to follow. We define some shapes first. These could have been
assigned to the code parameter directly but this is nicer. Next we register the font
itself and after that we set glyphs. We also set the official Unicode slots. So, copying
a dice can either result in a digit or in a Unicode slot for a dice. In the example below
we switch to a color which demonstrates that our dice can be colored at the TEX end.
It’s either that or coloring at the MetaPost end as both demand a different kind of
Type3 embedding trickery.

We actually predefine three features. The digits one will map regular digit in the
input to dice. We accomplish that via a font feature:

\startluacode
fonts.handlers.otf.addfeature("dice:digits", {

type = "substitution",
order = { "dice:digits" },
nocheck = true,
data = {

[0x30] = "invaliddice",
[0x31] = 0x2680,
[0x32] = 0x2681,
[0x33] = 0x2682,
[0x34] = 0x2683,
[0x35] = 0x2684,

ThreeSix, Don Knuths first colorfont? VOORJAAR 2020 71

[0x36] = 0x2685,
[0x37] = "invaliddice",
[0x38] = "invaliddice",
[0x39] = "invaliddice",

},
})
\stopluacode

This kind of trickery is part of the font machinery used in ConTEXt and permits run-
time adaption of fonts, so we just use the same mechanism.The nocheck is needed to
avoid this feature not kicking in due to lack of (at the time of checking) yet undefined
dice.

\definefontfeature
[dice:normal]
[default]
[metapost={category=dice}]

\definefontfeature
[dice:reverse]
[default]
[metapost={category=dice,option=reverse}]

\definefontfeature
[dice:digits]
[dice:digits=yes]

\definefont[DiceN] [Serif*dice:normal]
\definefont[DiceD] [Serif*dice:normal,dice:digits]
\definefont[DiceR] [Serif*dice:reverse,dice:digits]

{\DiceD Does 1 it 4 work? And {\darkgreen 3} too?} {\DiceR And how about
{\darkred 3} then? But 8 should sort of fail!}

Does ⚀ it ⚃ work? And ⚂ too? And how about ⚂ then? But � should sort of fail!

The six digits and Unicode characters come out the same:

\red \DiceD \dostepwiserecurse {`1} {`6}{1}{\char#1\quad}%
\blue \DiceN \dostepwiserecurse{"2680}{"2685}{1}{\char#1\quad}%

⚀ ⚁ ⚂ ⚃ ⚄ ⚅ ⚀ ⚁ ⚂ ⚃ ⚄ ⚅

It is tempting to implement for instance 7 as two dice (a one to multi mapping in
OpenType speak) but then one has to decide what combination is taken. One can
also implement ligatures so that for instance 12 results in two six dice. But I think
that’s over the top and only showing TEX muscles. It is anyway not that hard to do
as we have an interface for that already.

So why not do the dominos as well? Because there are so many dominos we prede-
fine the shapes and then register the lot in a loop. We have horizontal and vertical
variants. Being lazy I just made two helpers while one could have done but with
some rotation and shifting of the horizontal one. The loop could be a macro but we
don’t save much code that way.

\startMPcalculation{simplefun}

picture Dominos[] ;

Dominos[0] := image() ;
Dominos[1] := image(draw(4,4);) ;

72 MAPS 50 Hans Hagen

Dominos[2] := image(draw(2,6);draw(6,2););
Dominos[3] := image(draw(2,6);draw(4,4);draw(6,2););
Dominos[4] := image(draw(2,6);draw(6,6);draw(2,2);draw(6,2););
Dominos[5] := image(draw(2,6);draw(6,6);draw(4,4);draw(2,2);draw(6,2););
Dominos[6] := image(draw(2,6);draw(4,6);draw(6,6);draw(2,2);draw(4,2);draw(6,2););

lmt_registerglyphs [
name = "dominos",
units = 12,
width = 16,
height = 8,
depth = 0,
usecolor = true,

] ;

def DrawDominoH(expr a, b) =
draw image (

pickup pencircle scaled 1/2 ;
if (getparameterdefault "mpsfont" "color" "") = "black" :

fillup unitsquare xyscaled (16,8) ;
draw (8,.5) -- (8,7.5) withcolor white ;
pickup pencircle scaled 3/2 ;
draw Dominos[a]

withpen currentpen
withcolor white ;

draw Dominos[b] shifted (8,0)
withpen currentpen
withcolor white ;

else :
draw unitsquare xyscaled (16,8) ;
draw (8,0) -- (8,8) ;
pickup pencircle scaled 3/2 ;
draw Dominos[a]

withpen currentpen ;
draw Dominos[b] shifted (8,0)

withpen currentpen ;
fi ;

) ;
enddef ;

def DrawDominoV(expr a, b) = % is H rotated and shifted
draw image (

pickup pencircle scaled 1/2 ;
if (getparameterdefault "mpsfont" "color" "") = "black" :

fillup unitsquare xyscaled (8,16) ;
draw (.5,8) -- (7.5,8) withcolor white ;
pickup pencircle scaled 3/2 ;
draw Dominos[a] rotatedaround(center Dominos[a],90)

withpen currentpen
withcolor white ;

draw Dominos[b] rotatedaround(center Dominos[b],90) shifted (0,8)
withpen currentpen
withcolor white ;

else :
draw unitsquare xyscaled (8,16) ;
draw (0,8) -- (8,8) ;

ThreeSix, Don Knuths first colorfont? VOORJAAR 2020 73

pickup pencircle scaled 3/2 ;
draw Dominos[a] rotatedaround(center Dominos[a],90)

withpen currentpen ;
draw Dominos[b] rotatedaround(center Dominos[b],90) shifted (0,8)

withpen currentpen ;
fi ;

) ;
enddef ;

begingroup
save unicode ; numeric unicode ; unicode := 127025 ; % 1F031

for i=0 upto 6 :
for j=0 upto 6 :

lmt_registerglyph [
category = "dominos",
unicode = unicode,
code = "DrawDominoH(" & decimal i & "," & decimal j & ");",
width = 16,
height = 8,

] ;
unicode := unicode + 1 ;

endfor ;
endfor ;

save unicode ; numeric unicode ; unicode := 127075 ;

for i=0 upto 6 :
for j=0 upto 6 :

lmt_registerglyph [
category = "dominos",
unicode = unicode,
code = "DrawDominoV(" & decimal i & "," & decimal j & ");",
width = 8,
height = 16,

] ;
unicode := unicode + 1 ;

endfor ;
endfor ;

endgroup ;

\stopMPcalculation

Again we predefine a couple of features:

\definefontfeature
[dominos:white]
[default]
[metapost={category=dominos}]

\definefontfeature
[dominos:black]
[default]
[metapost={category=dominos,color=black}]

\definefontfeature
[dominos:digits]
[dominos:digits=yes]

74 MAPS 50 Hans Hagen

This last feature is yet to be defined. We could deal with the invalid dominos with
some substitution trickery but let’s keep it simple.

\startluacode
local ligatures = { }
local unicode = 127025

for i=0x30,0x36 do
for j=0x30,0x36 do

ligatures[unicode] = { i, j }
unicode = unicode + 1 ;

end
end

fonts.handlers.otf.addfeature("dominos:digits", {
type = "ligature",
order = { "dominos:digits" },
nocheck = true,
data = ligatures,

})
\stopluacode

That leaves showing an example. We define a few fonts and again we just extend the
Serif:

\definefont[DominoW][Serif*dominos:white]
\definefont[DominoB][Serif*dominos:black]
\definefont[DominoD][Serif*dominos:white,dominos:digits]

The example is:

\DominoW
\char"1F043\quad \quad
\char"1F052\quad \quad
\char"1F038\quad \quad
\darkgreen\char"1F049\quad \char"1F07B\quad

\DominoB
\char"1F087\quad
\char"1F088\quad
\char"1F089\quad

\DominoD
\darkred 12\quad56\quad64

Watch the ligatures in action:

🁃 🀱 🁒 🀲 🀸 🀳 🁉 🁻 🂇 🂈 🂉 🀺 🁚 🁟

To what extent the usage of symbols like dice and dominos as characters in the men-
tioned book are responsible for them being in Unicode, I don’t know. Now with all
these emoji showing up one can wonder about graphics in such a standard anyway.
But for sure, even after more than three decades, Don still makes nice fonts.

A treasure of tiny graphics can be found in “pre-fascicle 5c” and many are in color!
In fact, it has dominos too. It must have been a lot of fun writing this! I’m thinking
of turning the pentominoes into a font where a GPOS feature can deal with the in-
ter-pentomino kerning (which mighty work out okay for example 36. The windmill
dominos also make a nice example for a font where ligatures will boil down to the
base form and the (one or more) blades are laid over. It’s definitely an inspiring read.

Hans Hagen

