
Taco Hoekwater VOORJAAR 2023 19

Definitions

Abstract
Definitions in MetaPost are a fairly complicated subject. This article tries to cover everything
you need to know about writing your own definitions, but it assumes a fair bit of familiarity
with MetaPost’s data types and general syntax. In particular, I assume you have read the
preceding ‘Sparks, Tags, Suffixes and Subscripts’ article.

Macro definitions
The def command defines a token to be replaced with a replacement text. This is
close to how macros work in TEX, and is therefore the easiest to explain. So let’s
start with this.
In its simplest form, it looks like this:

def ⟨symbolic token⟩ =
⟨replacement text⟩

enddef;

Since each def is a complete statement in MetaPost, the semicolon after enddef is
required. There is no need for a semicolon to end the ⟨replacement text⟩, because the
expansion of the macro can happen in the middle of an expression, where an extra
semicolon would interfere. The ⟨replacement text⟩ itself can be almost anything (with
some minor limitations, see section for the exact rules).
A simple predefined example is the -- macro that is used to draw straight lines in
path definitions. It is defined like this:

def -- = {curl 1}..{curl 1} enddef;

Macros are much more useful if they take arguments. Here is where MetaPost is
quite different from TEX (or any other language, for that matter). There are quite
a few ways to write the definition such that the defined macro accepts arguments
in some form or another. There is an option for one undelimited argument and/or
multiple delimited arguments, all of which come in various types.
Let’s discuss the three basic types of arguments first: These are expr, suffix, and
text.

expr arguments are for passing expression values.
suffix arguments are for passing (parts of) variable names.
text arguments are for passing a list of arbitrary tokens.

In the most simple form, defining a macro with an argument looks like:

def mymac (expr a) =
...

where you can replace exprwith suffix or text. We will talk about passing multiple
arguments later on.
The parameter name a in this example is actually a ⟨symbolic token⟩ itself. It has to be
a single symbolic token (not a literal number or a string), but it is not required to be
alphanumeric. Any symbolic token will do, except for tokens explicitly set as outer.

20 MAPS 53 Taco Hoekwater

You could do:

def mymac (expr ,) =
, = 5

enddef;

although that is only useful in obfuscation contests. What you cannot do is use nu
meric suffixes like in many other languages:

def mymac (expr a1) = % Error
a1 = 5

enddef;

The parameter names do not actually exist as variables; they are only there to give
you something to use in the ⟨replacement text⟩. Whatever the value of the parameter
is, it is stored in a temporary value slot that has no name (these things are called
capsules internally). You can actually see these slots in the terminal or log if you
turn on tracing. In the trace output they are represented as the parameter type in
uppercase with a sequence number attached, for example:

tracingall;
def mymac (expr a) =

a = 5
enddef;

mymac(5);

will show:

mymac(EXPR0)->(EXPR0)=5
(EXPR0)<-b
{(b)=(5)}
b=5

While there is not really a parameter named a, the use of a as a placeholder for
the capsules does make it seemingly impossible to refer to an actual variable or
command named a. But there is a solution to that.
If youwant to access an outside name awithin amacro that has a parameter named a,
you can still do so by using the quote command:

def mymac (expr a) =
quote a = a

enddef;

mymac(b);

The first (‘quoted’) a is now referring to an outside variable. In this case, it will set
up an equation a = b because b is the replacement value of the parameter a.
Using quote like this works for all three parameter types, and it can also help you if
you happen to have a macro parameter name that matches a MetaPost command’s
name. However, a small warning: it is usually better not to write macros that alter
outside variables as side effects because you are likely to confuse yourself. And for
access to other macros and/or commands, it is much better to come up with unique
parameter names.

expr arguments
Arguments of type expr pass a value to the macro. The argument has to be a valid
expression, and that expression is interpreted to produce a value that is then stored
in the temporary variable that is used in the replacement text of the macro.

Taco Hoekwater VOORJAAR 2023 21

The expression is interpreted as far as possible first. Here is an example: If the macro
mymac is defined to have an argument of type expr, you could call it like this:

mymac(5);

or like this:
mymac(2+3);

and in both cases the replacement text will see the value 5. But the value does not
have to be ‘known’. In these two calls:

mymac(5b);

mymac((2+1)*b +2b);

the replacement text will see 5b if the variable b is not known at the time of calling.
Because the replacement text works with a nameless variable’s value, it is not as
signable. This means that inside the replacement text, the formal names of expr pa
rameters cannot be used on the left side of an assignment (:=). For example, this is
forbidden:

def mymac (expr a) =
a := 5 % Error

enddef;

But that does not mean you cannot alter the value itself, because equations (=) with
that parameter name are still allowed:

def mymac (expr a) =
a = 5

enddef;

mymac(5b);

is correct input and resolves the outer variable b to the integer value 1 (its value will
remain known even after the macro call).
Be aware, though, that macros that have such hidden side-effects are hard to main
tain, so you need to be quite certain of how the macro will be called if you make
use of this. For general purpose macros, it is almost always better to receive and/or
return a value instead of modifying the parameter. The above definition would be
cleaner if written like this:

def mymac(expr a) =
a

enddef;

5b = mymac(5);

Well, this is a silly example, of course, but the point should be clear, I hope.
suffix arguments
Arguments of type suffix pass a ‘suffix’ to the macro. A ‘suffix’ is the trailing part
of a variable name, possibly consisting of multiple segments, and possibly being the
whole name. The argument passed to the macro really is the (partial) name of a vari
able. Per the normal rules, if you try to pass an undefined suffix (or whole variable),
it is initialized to be of type numeric.

def mymac(suffix a) =
a = 5

enddef;

mymac(b);

22 MAPS 53 Taco Hoekwater

assigns the value of 5 to the variable named b, assuming it is of type numeric. If it is
not numeric, an error will be raised.
And:

def mymac(suffix a) =
pair a

enddef;

mymac(b);

converts b into a variable of type pair.
Since this is all resolved by name, this:

def mymac(suffix a) =
pair c.a

enddef;

mymac(b);

sets up c.b to be of type pair. The variable c itself remains untouched, just as if you
wrote

pair c.b;

without any macro definition.
Macros with suffix parameters can sometimes be a little complicated to read because
of the ‘passing a name as a parameter value’ rule. Just to be clear, inside the macro
there is at no time a variable named c.a. In fact, if there was a variable c.a defined
before the macro call, then it will remain completely untouched.
Another effect of the suffix parameter passing a name instead of a value is that it
actually can be used on the left side of an assignment:

def mymac(suffix a) =
a := 5

enddef;

mymac(b);

does indeed assign the value 5 to the variable b.

text arguments
Arguments of text pass literal input text as a macro argument. That text fragment
is not even limited to a single expression or statement.

def mymac (text a) =
a = 5

enddef;

mymac(b);

Of all three possible argument types, this is the closest to a ‘true’ macro replacement.
The argument’s input text is processed exactly where it is called in the replacement
text:

def mymac (text a) =
c = 5;
a = c

enddef;

mymac(b);

Taco Hoekwater VOORJAAR 2023 23

This gives b the value of 5 as well as doing the same to c. This is another case where it
is very important to remember that there is never a variable named a. The parameter
name is just a placeholder that temporarily shields any preexisting variable named a.
Because of the rules for text parameters, this is also allowed:

def mymac (text a) =
c = a c

enddef;

mymac(5; a =);

But constructions like this are not advised if you want your code to remain under
standable.
So how does MetaPost decide when a text argument to macro has ended? When it
sees an unmatched closing parenthesis.
Matching parentheses in the argument are counted, so

def mymac (text a) =
a + 5

enddef;

mymac(b = (3 + 4));

works just fine and equates b to 12. You cannot get an unmatched parenthesis into
the replacement text without some trickery (by defining amacro with a single paren
thesis as its replacement text and using that in the macro call instead of a literal ().

Multiple delimited arguments
So far, we have only dealt with single arguments, but it is also possible to have mul
tiple arguments.
The formal syntax definition for delimited arguments is as follows:

def ⟨symbolic token⟩ ⟨delimited part⟩ =
⟨replacement text⟩

enddef;
⟨delimited part⟩ → ⟨empty⟩

| ⟨delimited part⟩ (⟨parameter type⟩ ⟨parameter tokens⟩)
⟨parameter type⟩ → expr | suffix | text
⟨parameter tokens⟩ → ⟨symbolic token⟩ | ⟨parameter tokens⟩, ⟨symbolic token⟩

Reading a formal syntax like the one above takes a bit of practice, but converted
to English it says that the delimited part of a macro definition header is possibly
an empty sequence of items enclosed in parentheses. Each of these parenthesized
sequences start with expr, suffix or text followed by a comma-separated list of at
least one symbolic token.
Not expressed in the formal syntax is that whitespace is ignored except as a way to
separate tokens, as is normal in the MetaPost language.
Starting with some examples to illustrate the above syntax rules will hopefully help
you learn how to apply these rules. Here are some correct ways to start a definition:

def mymac =
def mymac(expr a) =
def mymac(expr a,b) =
def mymac(expr a)(expr b) =
def mymac(suffix a)(expr b, c) =
def mymac(suffix a)(expr b, c)(suffix d)(text e) =

24 MAPS 53 Taco Hoekwater

When a macro that is defined with multiple delimited arguments is called, speci
fying the internal delimiters is optional unless the argument is of text (this will be
explained below). You can even insert delimiters that were not there in the definition
or split the groups for expr and suffix parameters differently.
That last mymac macro above with the five delimited arguments in four groups can
be called in various ways:

mymac (a,b,c,d,e);
mymac (a)(b)(c)(d)(e);
mymac (a,b)(c,d,e);

But all five arguments are required, and all of them must be part of delimited group.
Here are some attempts that are not allowed:

mymac (a,b); % bad 1
mymac a; % bad 1
mymac (a)(b)()()(e); % bad 2
mymac (a,b,,,e); % bad 2
mymac (a,b)c(d)(e); % bad 3
mymac (a,b)(c,d) e; % bad 3

The ones marked bad 1 are obviously illegal because some parameters are missing
completely.
The ones marked bad 2 are illegal because parameters cannot be empty. If you want
to implement some sort of default behaviour, you will have to pass a variable of a
special type or value, and deal with that as a special case in the replacement text.
Just skipping the parameter is not allowed.
The ones marked bad 3 are disallowed because all delimited arguments must be de
limited.
But the rules above do not mean that you have to always specify all five arguments
explicitly. MetaPost expands macros as it searches for the opening delimiters of the
arguments of a macro call, so this is legal input:

def helper = (d)(e) enddef;
mymac (a,b)(c) helper;

You could even put all of the delimited arguments in separate macro definitions.
Coming back to that last bad 3 case for a bit, this is allowed:

def e = (f) enddef;
mymac (a,b)(c,d) e;

Here, the macro e passes the replacement text of itself as the final argument to mymac.
But this is also possible:

def e = (f) enddef;
mymac (a,b)(c,d)(e);

And here, the macro e itself is the final argument to mymac. That is because once
MetaPost has found a symbolic token that will become a macro argument, it will not
expand it any further, so the macro itself is passed as the text argument instead of
its replacement.
You need to remain aware of the fact that the expansion of macros only happens
while MetaPost is actively looking for argument delimiters (opening parentheses
and commas). You could do this:

def e = (f enddef;
mymac (a,b)(c,d) e);

Taco Hoekwater VOORJAAR 2023 25

or this:

def e = ,f enddef;
mymac (a,b)(c,d e);

or even this:

def c = f) enddef;
mymac (a,b)(c(d,e);

but not this:

def e = f) enddef;
mymac (a,b)(c,d)(e;

because in the last example, MetaPost has already stopped looking for more argu
ments. It knows that there are only five arguments, so it does not bother to scan for
a delimiter that would start a sixth argument.

Multiple and text arguments Because of the nature of text arguments, they need
an extra rule. It is possible to define a delimited macro with multiple text arguments
like this:

def mymac (text e,f) =
show e; show f;

enddef;

But this macro cannot be called without extra parentheses. With:

mymac(g,h);

the replacement text of the e argument becomes g,h and MetaPost stops with an
error about the missing argument f. If there are multiple text arguments or other
arguments following a text argument, extra parentheses groups are required. This
is OK:

mymac (g)(h);

and this is also ok:

mymac (g; i; j; k; l)(h);

There is a simple rule to remember: always put text arguments in separate parenthe
ses.

Undelimited arguments
Besides delimited arguments, macros can also have one undelimited argument.There
can be only one of these and it has to be the last argument, but all three types are
allowed, and there are some extra options as well. The syntax for undelimited argu
ments is as follows:

def ⟨symbolic token⟩ ⟨delimited part⟩ ⟨undelimited part⟩ =
⟨replacement text⟩

enddef;
⟨undelimited part⟩ → ⟨empty⟩

| ⟨parameter type⟩ ⟨parameter⟩
| ⟨precedence level⟩ ⟨parameter⟩
| expr ⟨parameter⟩ of ⟨parameter⟩

⟨precedence level⟩ → primary | secondary | tertiary
(The ⟨delimited part⟩, ⟨parameter type⟩ and ⟨parameter⟩ have not changed and are omitted
from the listing for brevity).

26 MAPS 53 Taco Hoekwater

The three types of argument we have already discussed in the previous paragraph are
the familiar cases. They are much like their delimited counterparts, except without
delimiters. But there are a few extra notes:

� An expr argument grabs the longest expression it can find. When such a macro
is called, MetaPost also allows an = or := just before the argument.

� A suffix argument takes the longest suffix it can find. MetaPost allows that suf
fix to be enclosed in parentheses.

� A text argument stops at the next semicolon or endgroup.

The new options are:

� primary, secondary and tertiary arguments are just like expr, except they grab
a ‘smaller’ argument (a partial expression). This will be explained below.

� expr ⟨parameter⟩ of ⟨parameter⟩ is useful for creating macros that mimic the primi
tive operation point t of p. It grabs the longest syntactically correct ⟨expression⟩
of ⟨primary⟩ (see page 26 for the explanation of ⟨expression⟩ and ⟨primary⟩). It is not
possible to fake the point of primitive syntax in another way.

Operator definitions
Quite often, you will want a macro defined with an expr argument to take only a
part of the following expression instead of the whole of it. This is where the primary,
secondary and tertiary keywords come in, as they operate on a part of an expres
sion.
But for a better understanding, we need to back up a bit. Just like there are syntac
tic rules for macro definitions, there are formal rules for all other bits of MetaPost
programs as well.
A MetaPost program is a sequence of statements. Most statements are internal com
mands, equations, or assignments. Expressions are part of equations and assign
ments. And expressions can be further subdivided into operators that work on vari
ables or on further subdivisions of expressions.
There are a few other options for statements, and all the expression cases exist for all
variable types (booleans, numerics, pairs, etc.). For brevity, I will concentrate on the
numeric expressions to explain what is going on, and ignore all those other cases. In
the syntax definition below, all ⟨...⟩ are extra rules that I have skipped.
Here are the parts that are relevant right now:

⟨equation⟩ → ⟨expression⟩ = ⟨right-hand side⟩
⟨assignment⟩ → ⟨variable⟩ := ⟨right-hand side⟩
⟨right-hand side⟩ → ⟨expression⟩ | ⟨...⟩
⟨expression⟩ → ⟨numeric expression⟩ | ⟨...⟩
⟨numeric expression⟩ → ⟨numeric tertiary⟩
⟨numeric tertiary⟩ → ⟨numeric secondary⟩

| ⟨numeric tertiary⟩ + | - ⟨numeric secondary⟩
| ⟨...⟩

⟨numeric secondary⟩ → ⟨numeric primary⟩
| ⟨numeric secondary⟩ * | / ⟨numeric primary⟩

⟨numeric primary⟩ = ⟨numeric atom⟩
| ⟨numeric atom⟩ [⟨numeric expression⟩ , ⟨numeric expression⟩]
| ⟨...⟩

⟨numeric atom⟩ → ⟨numeric token⟩
| (⟨numeric expression⟩)
| ⟨...⟩

Taco Hoekwater VOORJAAR 2023 27

Working top-down, you can split a numeric expression into parts to the left and right
of a plus or minus operation. Those left and right sides can each be split further into
left and right sides of the multiply and divide operators. These sides can each be split
even further into the arguments of the mediation operator.
In case you are wondering: the off-by-one between the left and the right is what
makes operators in MetaPost left-associative.
Following these rules, let us investigate this expression:

4*(a+1) - b / 2[4,8]

Using the nomenclature from the official syntax, we can say that there are four pri
maries: 4, (a+1), b and 2[4,8]. The two secondaries are 4*(a+1) and b / 2[4,8]. The
single tertiary is the whole 4*(a+1) - b / 2[4,8], which is also the whole expres
sion.
The content of (a+1) is itself a nested expression, which can be subdivided using
the same rules, but with a few shortcuts: a and 1 are the primaries. These are also
the numeric secondaries, because there are no multiplication or division operations
specified. The tertiary is a+1, which is also the expression value.
MetaPost supports four levels of operators: primary, secondary, tertiary, and expres
sion. Not all value types have operators defined for all levels, though. That is why
a ⟨numeric expression⟩ is the same as a ⟨numeric tertiary⟩. The rules for ⟨string expression⟩ look
quite different:

⟨string expression⟩ → ⟨string tertiary⟩
| ⟨string expression⟩ & ⟨string tertiary⟩

⟨string tertiary⟩ → ⟨string secondary⟩
⟨string secondary⟩ → ⟨string primary⟩
⟨string primary⟩ → ⟨string variable⟩

| char ⟨numeric primary⟩
| ⟨...⟩

As you can see, strings only have operators on the primary and expression level.
The operators for the other types are yet again different, but the expression structure
stays the same.

When you are planning on defining operators yourself, it would be helpful to have
a list of the current operators and their level. But alas, such a list typically does not
exist because the built-in operators that are part of the bare MetaPost binary itself
can (and usually will be) augmented by the MetaPost macro package you are using.
If you are lucky, the macro package manual contains a concise list somewhere. If not,
you will have to do some trial and error until your definitions ‘work’ ...

Unary operator definitions
Getting back to macro definitions: expr grabs an ⟨... expression⟩. primary grabs a
⟨... primary⟩, secondary grabs a ⟨... secondary⟩ and tertiary grabs a ⟨... tertiary⟩.
It should now be clear that in:

def mymac primary arg =
arg

enddef;
res = mymac 4*(a+1) - b / 2[4,8];

the argument is the 4.

28 MAPS 53 Taco Hoekwater

In this version:

def mymac secondary arg =
arg

enddef;
res = mymac 4*(a+1) - b / 2[4,8];

the argument is the 4*(a+1) (well, actually it is 4a+4, because MetaPost interprets
the partial expression before storing it in the parameter capsule).
And:

def mymac expr arg =
arg

enddef;
res = mymac 4*(a+1) - b / 2[4,8];

and:

def mymac tertiary arg =
arg

enddef;
res = mymac 4*(a+1) - b / 2[4,8];

both get the full expression as argument (actually -0.08333b+4a+4).
The net effect of using an undelimited expr, primary, secondary or tertiary is that
you have created a new unary operator at that level. See section for how to define
binary operators for the top three levels. Primary operators in MetaPost are always
unary operators.

Binary operator definitions
It is now time to learn about binary operator definitions.

⟨macro definition⟩ → ⟨macro heading⟩ = ⟨replacement text⟩ enddef
⟨macro heading⟩ → primarydef ⟨parameter⟩ ⟨symbolic token⟩ ⟨parameter⟩

| secondarydef ⟨parameter⟩ ⟨symbolic token⟩ ⟨parameter⟩
| tertiarydef ⟨parameter⟩ ⟨symbolic token⟩ ⟨parameter⟩

A macro defined using primarydef defines a new operator with a ⟨... secondary⟩ on the
left and a ⟨.. primary⟩ on the right of its name. For a secondarydef that is a ⟨... tertiary⟩
on the left and a ⟨.. secondary⟩ on the right, and for a tertiarydef it is an ⟨... expression⟩
on the left and a ⟨... tertiary⟩ on the right.
This definition creates an alias for *:

primarydef a mult b =
a * b

enddef;

The names of the primitives seem off by one compared to the keywords for undelim
ited def arguments that we encountered earlier. But since MetaPost does not support
binary primary operators, there would be only three possible levels anyway. You’ll
just have to get used to that. And at least tertiarydef sounds more natural than the
fictitious ‘exprdef’. And remember, you can define unary binary operators with an
undelimited def argument of type primary.

Variable definitions
Note: much of this section is copied and modified from my earlier paper.
The previous commands def, primarydef, secondarydef, and tertiarydef have one
thing in common: they produce what MetaPost calls sparks. Effectively, you are

Taco Hoekwater VOORJAAR 2023 29

defining a new ‘command’ instead of a ‘variable’. But sometimes you may want a
macro to behave more like a named variable. For that to work, the macro has to be
what MetaPost calls a tag.
The restriction of def always producing a spark is why there is a dedicated command
for creating macros that are actually tags. That command is vardef.
Because vardef defines a new tag instead of a spark, the name that is being defined
can still can be used in the middle of an unrelated compound variable name. Occa
sionally, you may want to define a macro with a name that would also make sense
as a suffix to another variable. The Metafont book highlights the example of dir. The
variable macro dir is defined as a vardef precisely because doing it that way means
it is still legal to have a pair variable named p5dir.
In simple uses, use of vardef is very similar to using def.

def stuff =
fill unitsquare

enddef;

and
vardef stuff =

fill unitsquare
enddef;

appear equivalent when they are executed. But there is a difference in execution.The
vardef version actually expands into:

begingroup
fill unitsquare

endgroup

The added grouping makes the macro expansion syntactically equivalent to an ex
pression, which is important because it avoids confusing the MetaPost parser. We
will get to the use of grouping later on.
Here is the formal definition of the syntax of vardef:

⟨macro definition⟩ → ⟨macro heading⟩ = ⟨replacement text⟩ enddef
⟨macro heading⟩ → vardef ⟨declared variable⟩ ⟨delimited part⟩ ⟨undelimited part⟩

| vardef ⟨declared variable⟩ @# ⟨delimited part⟩ ⟨undelimited part⟩
The ⟨delimited part⟩ and ⟨undelimited part⟩ are the same as before and are not repeated.
The use of ⟨declared variable⟩ instead of the ⟨symbolic token⟩ from the earlier definition
commands is important: This is what makes this type of definition produce a tag
instead of a spark. The ⟨declared variable⟩ is actually the syntax rule for a single item in
a type declaration command (boolean, path, picture, etc.).
You can define segmented variable names, and even use collective subscripts:

vardef mymac[]arr =
4

enddef;

defines all variables of the form mymac[]arr to bemacros that expand into begingroup
4 endgroup.
The second option for the ⟨macro heading⟩ of a vardef syntax introduces an extra key
word @#. This is easiest to explain with an example from plain.mp:

vardef z@#=
(x@#,y@#)

enddef;

30 MAPS 53 Taco Hoekwater

This defines the variable macro z. What makes this definition of z special is that it
now has a built-in parameter of type ⟨suffix⟩ that is named @#.
There is a subtle difference between this definition of z and the more naïve version:

vardef z suffix v =
(x.v,y.v)

enddef;

The special token @# only applies to a subsequent suffix; the suffix that becomes
the argument may not be enclosed in parentheses, unlike in the definition with an
undelimited argument.This makes the special definition exceptionally useful for ma
nipulating sub-variables (like z does).
The @# somewhat replaces suffix v. You can still define a macro like this:

vardef mymac @# suffix v =
(x@#v,y@#v)

enddef;

but you always have to call that macro with parentheses around parameter v, other
wise the whole argument becomes part of the @# suffix:

origin = mymac1right;

will have 1right as @# and v empty. With
origin = mymac1(right);

this does not happen, but then you could have equivalently defined mymac as
vardef mymac @# (suffix v) =

(x@#v,y@#v)
enddef;

Finally, every vardef, with or without the special @#, also has two other special im
plicit arguments that can be used anywhere in the ⟨replacement text⟩. The special argu
ment name @ returns the last segment of the name of the defined macro itself, and
the special argument name #@ returns the complement: all segments before that last
one.
When is this useful? Look at this:

vardef p[]dir=
(#@dx,#@dy)

enddef;

After this definition, p5dir expands into:
(p5dx,p5dy)

allowing you to write, for example:
p5dir = up;

to define the dx and dy subvariables, and query those values by
if p5dir = up: fi

which looks and feels a lot nicer than manipulating the dx and dy variables
‘manually’.
In definitions like p[]dir, the special token @, which expands into the macro ‘name’,
is not very useful (we already know that it is dir), but keep in mind that subscripts
can also be vardef macros themselves. Since @ expands into the actual subscript in
that case, it can then be used to differentiate between macro calls for specific sub
scripts by using a numerical comparison, like this:

Taco Hoekwater VOORJAAR 2023 31

vardef a[] =
if odd @: message("odd")
else: message("even")
fi

enddef;
a1; % prints "odd"
a20; % prints "even"
end.

In cases where the expansion of one of the special tokens (#@, @, or @#) is not known
to be numeric beforehand, to test its value, you can use the str command instead to
force an expression with type ⟨string⟩ (this makes most sense with implicit suffixes):

vardef a@# =
if str @# = "o": message("odd")
else: message("even")
fi

enddef;
a.o; % prints "odd"
a.e; % prints "even"

A warning about using vardef: because the result of the vardef is a macro, it only
works as the last typed segment in a complete variable name. After the definition
above, you can not now add another suffix:

pair p[]dir.target; % WRONG!

This is disallowed because that set of variables would actually be inaccessible.
Because of how the MetaPost parser works, the target part of the name would al
ways become a suffix argument to the p[]dir macro. In this case, as the macro is
defined without a suffix argument, the result would be a syntax error. However, if
you really want to write things like p5dir.target, you could extend the definition of
p[]dir to also accept the undelimited suffix @#, and then process the target within
the macro expansion.
In some cases, the implicit extra grouping added by vardef is an impediment, and it
would be better to use def. But sometimes that extra grouping level can be a bonus
as well: it allows trivial macro definitions that need that grouping to be a bit shorter.
Still, that is only a very minor advantage, and the MetaPost manual explicitly warns
against abusing vardef just for grouping.

Grouping
The sequence begingroup ...endgroup can be used as a standalone statement. The
formal definition of ⟨statement⟩ looks like this:

⟨statement⟩ → ⟨equation⟩ | ⟨assignment⟩ | ⟨declaration⟩
| ⟨definition⟩ | ⟨title⟩ | ⟨command⟩ | ⟨empty⟩
| begingroup ⟨statement list⟩ ⟨statement⟩ endgroup

That last statement inside the group should be a valid statement on it own, but it can
also be empty.
Grouping in MetaPost is a bit unusual (yet another way in which MetaPost is un
usual!) in that the begingroup … endgroup block is not only usable as a list of
⟨statement⟩s grouped together, it can also be used as an ⟨expression⟩. And when viewed
as an expression (which is usually the case for vardefmacro expansions, but you can
also write explicit group blocks in the middle of an equation, or as the body of any
type of macro), all the statements in the group are executed as normal, but the last
expression inside the group (which could be empty) is taken as the value to use for

32 MAPS 53 Taco Hoekwater

the expression outside of the group. And precisely that oddity of grouping is what
makes vardef definitions syntactically equivalent to variables.
Formally, all of the expression syntaxes also have an extra begingroup block. For
example, ⟨numeric expression⟩ also has:

⟨numeric atom⟩ → ⟨numeric token⟩
| (⟨numeric expression⟩)
| begingroup ⟨statement list⟩ ⟨numeric expression⟩ endgroup
| ⟨...⟩

and likewise for all other expression types: at the bottom level, there is an begingroup
...endgroup that is equivalent with a delimited group like (\<numeric expression>).
The statements in the ⟨statement list⟩ are executed, but not seen by the expression
parser.
The extra grouping usually will not matter, but it means you cannot do things like:

vardef stuff =
fill unitsquare

enddef;
stuff withcolor green;

which makes sense once you realize that vardef is supposed to equate to a variable.
If we assume for a moment that there was instead a normal path variable named
stuff, the statement would look like this:

fill stuff withcolor green;

and indeed, after adjusting the vardef to:

vardef stuff =
unitsquare % earlier 'fill' deleted

enddef;

it works just fine. This is a silly example, of course, but the point to remember is that
the last line in a begingroup ...endgroup should produce a valid expression (which
may be empty).

The main point of begingroup ...endgroup is so that you can save and temporarily
redefine variables and internals. But it creates only an implicit grouping; nothing is
automatically saved. If you want to save an outside variable or internal, you have to
explicitly use save or interim.

The above rules for the final parts inside of a group block make grouping behave
similar to an anonymous function call with one return value; or as a named function,
when using vardef or the result of a defwith a begingroup ...endgroup block around
the whole replacement text.
Additionally, because the expression parser does not ‘see’ the ⟨statement list⟩, you can
do complicated things right in the middle of an equation. The plain MetaPost macro
named hide makes use of that:

def hide(text t) = gobble begingroup t; endgroup enddef;
def gobble primary g = enddef;

(this is the example definition from the MetaFont book, the actual definition is trick
ier).
The begingroup ...endgroup block inside hide always results in an empty expression
because of the explicit ; at the end. But an empty expression is still an expression,
so that is why the gobble macro is needed to ‘eat’ that empty expression.

Taco Hoekwater VOORJAAR 2023 33

One final note about vardef: the addition of begingroup ...endgroup around the
⟨replacement text⟩ is literal. If you wanted to, you could write a vardef including
endgroup ...begingroup to temporarily escape to the outer group. But of course then
the expansion would not be a valid ⟨... expression⟩ any more, so you could not use that
macro in the middle of an expression.

Replacement text details
A ⟨replacement text⟩ is stored for later use without any expansion at definition time. In
almost all cases, the meaning of the symbolic tokens will be looked up and applied
at expansion time. However, some tokens that may occur inside the ⟨replacement text⟩
have to be interpreted by the program right away to avoid internal confusion:

� def, vardef, primarydef, secondarydef and tertiarydef are the start of an em
bedded definition.

� enddef ends the ⟨replacement text⟩ unless it matches an embedded definition that
started in the previous rule.

� Each ⟨symbolic token⟩ that stands for a macro parameter is changed into a place
holder for that parameter, for later substitution at replacement time.

� quote prevents any of the previous rules applying to the next token. After after
ward, the quote token itself is removed from the replacement.

In all the above cases, the check is made for the meaning of the token, not its literal
representation. In other words, prior use of let can alter the list of ‘keywords’.
The preceding rules mean that

def bfour =
def b = 4 enddef

enddef;

is allowed. Any subsequent use of bfour in the program expands into a definition
that makes b be a macro that expands to the value 4.
But:

def defbfour =
def b = 4

enddef;

will fail, because the definition of defbfour does not end. The enddef stops the em
bedded definition of b.
To get around this, you can write:

def defbfour =
quote def b = 4

enddef;

which is a valid definition of defbfour. Now you will have to use defbfour enddef;
when using defbfour later, of course. Otherwise the embedded definition of b never
ends.
The existence of quote allows some special syntaxes. With the above definition, you
could specify

defbfour *4 enddef;

which would define b to be a macro with replacement text 4*4. Admittedly, this is
not very useful but I want to document everything related to definitions, and the use
of quote cannot be omitted.

34 MAPS 53 Taco Hoekwater

Formal definition syntax
⟨macro definition⟩ → ⟨macro heading⟩ = ⟨replacement text⟩ enddef
⟨macro heading⟩ → def ⟨symbolic token⟩ ⟨delimited part⟩ ⟨undelimited part⟩

| vardef ⟨declared variable⟩ ⟨delimited part⟩ ⟨undelimited part⟩
| vardef ⟨declared variable⟩ @# ⟨delimited part⟩ ⟨undelimited part⟩
| ⟨binary def⟩ ⟨parameter⟩ ⟨symbolic token⟩ ⟨parameter⟩

⟨delimited part⟩ → ⟨empty⟩
| ⟨delimited part⟩ (⟨parameter type⟩ ⟨parameter tokens⟩)

⟨parameter type⟩ → expr | suffix | text
⟨parameter tokens⟩ → ⟨parameter⟩ | ⟨parameter tokens⟩, ⟨parameter⟩
⟨parameter⟩ → ⟨symbolic token⟩
⟨undelimited part⟩ → ⟨empty⟩

| ⟨parameter type⟩ ⟨parameter⟩
| ⟨precedence level⟩ ⟨parameter⟩
| expr ⟨parameter⟩ of ⟨parameter⟩

⟨precedence level⟩ → primary | secondary | tertiary
⟨binary def⟩ → primarydef | secondarydef | tertiarydef

Final words
You now know all about how to define your own MetaPost macros, in theory. But
the best way to learn is by doing and making mistakes, and that is definitely the case
here as well. When I started usingMetaPost in earnest, at first nothing I tried seemed
to work. Remembering my own initial frustrations about anything more than trivial
use of the MetaPost programming language is what prompted me to write these
papers. I hope they will be helpful to you.

Taco Hoekwater

