
Taco Hoekwater VOORJAAR 2023 35

Paths, pairs, pens and transforms

Abstract
This article tries to explain everything related to paths, pairs, pens and transforms in Meta
Post. A fair bit of familiarity with MetaPost’s data types and general syntax is assumed. In
particular, I assume you have read the ‘sparks, tags, suffixes and subscripts’ article.
I will first discuss the creating of paths, followed by the creating of pairs, and then the creat
ing of pens. Finally, I will discuss the operations on those items, for instance, by using trans
formations.

Defining a path
In MetaPost, paths are the data structures that are added to pictures in order to create
visible shapes in the output.
At its core, a known path is a list of data objects describing Bézier curve segments.
These objects are called ‘knots’, and they are constructed internally from a list of
pairs, other embedded (sub)paths, and the user-specified options on how to connect
them.
To get it out of the way, here is the syntax definition for path expressions:

⟨path primary⟩ → ⟨pair primary⟩ | ⟨path variable⟩ | ⟨path argument⟩ | (⟨path expression⟩)
| begingroup ⟨statement list⟩⟨path expression⟩ endgroup
| makepath ⟨pen primary⟩ | makepath ⟨future pen primary⟩
| reverse ⟨path primary⟩
| subpath ⟨pair expression⟩ of ⟨path primary⟩
| envelope ⟨pen primary⟩ of ⟨path primary⟩

⟨path secondary⟩ → ⟨pair secondary⟩ | ⟨path primary⟩
| ⟨path secondary⟩⟨transformer⟩

⟨path tertiary⟩ → ⟨pair tertiary⟩ | ⟨path secondary⟩
⟨path expression⟩ → ⟨pair expression⟩ | ⟨path tertiary⟩

| ⟨path subexpression⟩⟨direction specifier⟩
| ⟨path subexpression⟩⟨path join⟩ cycle

⟨path subexpression⟩ → ⟨path expression not ending with direction specifier⟩
| ⟨path subexpression⟩⟨path join⟩⟨path tertiary⟩

⟨path join⟩ → ⟨direction specifier⟩⟨basic path join⟩⟨direction specifier⟩
⟨direction specifier⟩ → ⟨empty⟩

| { curl ⟨numeric expression⟩ }
| { ⟨pair expression⟩ }
| { ⟨numeric expression⟩ , ⟨numeric expression⟩ }

⟨basic path join⟩ → & | ..
| ..⟨tension⟩..
| ..⟨controls⟩..

⟨tension⟩ → tension ⟨tension amount⟩
| tension ⟨tension amount⟩ and ⟨tension amount⟩

⟨tension amount⟩ → ⟨numeric primary⟩
| atleast ⟨numeric primary⟩

⟨controls⟩ → controls⟨pair primary⟩
| controls ⟨pair primary⟩ and ⟨pair primary⟩

36 MAPS 53 Taco Hoekwater

This is the formal definition from the Metafont book, and as formal definitions go
it is a bit awkward. Do not stare at it for too long, because the reality of specifying
paths is fairly straightforward and natural. Let’s instead just look at a few simple
examples.
The simplest case is just from a few pair primaries and a basic path join:

path p;
p = (0,0)..(200,100);
draw p;

Nearly as easy is to form a path from a path (sub)expression:

path p;
p = ((0,0)..(200,100));
draw p;

This part of the syntax is about adding () grouping, just like in calculus. It makes sure
that the expression inside the parentheses is converted into a path first, before any of
the outer processing happens. This can be useful because in some cases subsequent
path joins can have an effect on prior bits of the path. Here is an example of both:

path p,q;
p = (0,0)..(100,100)..(200,0);
q = ((0,0)..(100,100))..(200,0);
draw p withcolor red;
draw q withcolor green;

Of course, pairs can also be specified using variable names (we will look at the formal
syntax of pairs later):

path p;
pair startp, endp;
startp = (0,0);
endp = (200,100);
p = startp..endp;
draw p;

Or even from a single point:

path p;
pair startp;
startp = (0,0);
p = startp;
draw p;

Taco Hoekwater VOORJAAR 2023 37

Or from another path:

path p, q;
q = (0,0)..(200,100);
p = q;
draw p;

Or from the reverse of another path:

path p, q;
q = (0,0)..(200,100);
p = reverse q;
draw p;

While there is no visual difference in the above image, as a result of the reverse
operator the beginning and end of the path q have been flipped, as can be clearly
seen from the following examples:

path p, q;
q = (0,0)..(200,100);
p = q--(100,0);
draw p;

path p, q;
q = (0,0)..(200,100);
p = reverse q--(100,0);
draw p;

It is also possible to create a new path from just a section of another path:

path p, q;
q = (0,0)..(200,100);
p = subpath (0.25,0.5) of q;
draw q;
draw p withcolor red;

The two numbers that form the pair expression argument to subpath signify a sec
tion of the ‘travel’ along the given path primary following the of keyword. We will
revisit subpath and path lengths later.

38 MAPS 53 Taco Hoekwater

And from a pen:

path p;
p = makepath pencircle scaled 50;
draw p;

And finally, from the outline of a path drawn with a pen. We will talk about pens in a
following section, but a bit of a sneak peak is needed towrap up the path construction
options. If this current bit is confusing, just skip ahead for now and come back to it
later:

path p,q;
q = (0,0)..(200,100);
p = envelope pensquare scaled 10 of q;
fill p;

This last option for path construction comes with a few warnings and hints:
� For envelope to work properly in the current version of MetaPost, the pen needs
to be polygonal. Elliptical pens, like the built-in pencircle, will not work.

Here are two workarounds, both of which make use of primitives that have
not been covered yet. However, the function of these primitives should hope
fully be clear from the examples.

First, if actual precision in the curves is not very important, you can get away
with converting the pencircle to a path, then converting that path back to a pen.
This procedure creates a polygonal pen with eight sides:

path p,q;
pen trick;
q = (0,0)..(200,100);
trick = makepen makepath pencircle;
p = envelope trick scaled 20 of q;
fill p;

Or second, if greater curve precision is indeed needed, you can create a pen with
a larger number of vertices by using a for loop to construct a new path from the
pencircle:

path p,q,r,s;
pen trick;
q = (0,0)..(200,100);
s = makepath pencircle;
r = for i = 0 step 0.1 until 8:

(point i of s) -- endfor cycle;
trick = makepen r;
p = envelope trick scaled 20 of q;
fill p;

Taco Hoekwater VOORJAAR 2023 39

� To get the ‘other’ side of a cyclic path, reverse the path:

path p,q;
q = (0,0)--(200,0)--(200,100)--

(0,100)--cycle;
p = envelope pensquare scaled 20

of q;
fill p withcolor 0.5;

path p,q;
q = (0,0)--(200,0)--(200,100)--

(0,100)--cycle;
p = envelope pensquare scaled 20

of reverse q;
fill p withcolor 0.5;

�The path created by envelope is not always completely ‘clean’ or even ‘correct’
in the current version of MetaPost; it is intended to produce the visual envelope,
not the ‘best’ path to create that envelope. It also still has bugs, especially with
self-intersecting paths.

For instance, it may contain self-intersections or superfluous points. For that
reason, it is mostly useful with fill instead of draw, and only with quite simple
paths.

You can see some of the problems that may occur in the next example:

path p,q;
q = (0,0)--(200,100)--(200,0)--

(0,100)--cycle;
draw q withcolor blue;
p = envelope pensquare scaled 20

of reverse q;
draw p;

To wrap up this demonstration of how to create a path, here is a combination of
almost all those options:

path p, q;
pair endp;
endp = (200,100);
q = (0,0)..(200,100);
p = (0,100) ..

reverse (subpath (0.25,0.5) of q) ..
makepath pencircle scaled 20 ..
endp;

draw p;

40 MAPS 53 Taco Hoekwater

Path directions and connectors
This section is about how to control the shape of a path: how the points are connected
to form actual curves. Each point will be connected to the next point by a Bézier
curve segment that is controlled by the two points themselves, and two extra ‘control
points’.
To help with visualization, the examples in this section use a macro from MetaFun
called detaileddraw (with some adjusted preset options) to show the actual points
and control points in the example paths. With normal draw it would just show black
lines as in the previous examples.

Direction specifiers
We will start by talking about direction specifiers. In the simplest case, the example
below shows an empty direction specifier. Here two pairs are joined just by the two
dots that we frequently saw in the previous section.

path p;
p = (0,0)..(200,100);
detaileddraw p;

In this example, we are letting MetaPost decide by itself how it wants to connect
the pairs. If there are only two pairs, the result is a straight line connecting them. If
there are more than two more pairs in the sequence that are not in a straight line,
MetaPost will try to create a nice curve connecting them:

path p;
p = (0,0)..(100,100)..(200,00);
detaileddraw p;

When left to its own devices, MetaPost will try to connect the points in such a way
that the overall direction of the combined curve along the path only changes in a
fluid way. The curvature at the start- and endpoints will attempt to follow a circular
arc through the initial set of pairs.This can affect the directions quite a lot, of course:

path p;
p = (0,0)..(100,100)..(200,100);
detaileddraw p;

Just a reminder: parenthesis grouping has an effect on this logic, because it converts
the path inside the parentheses into what is essentially a separate temporary name
less path. For example:

Taco Hoekwater VOORJAAR 2023 41

path p;
p = ((0,0)..(100,100))..(200,100);
detaileddraw p;

Also be aware that tension specifiers elsewhere in the path can have effect on the
chosen directions. Later on we will see some examples of this.

Direction vectors If you want to have explicit direction control, you can add a direc
tion specifier, for example, using pair expressions that represent direction vectors:

path p;
p = (0,0){(0,1)}..{(1,0)}(200,100);
detaileddraw p;

The previous example is not very readable; it is easier to understand using pair ex
pressions stored in variables:

path p;
pair up,right;
up = (0,1);
right = (1,0);
p = (0,0){up}..{right}(200,100);
detaileddraw p;

Here the (0,1) definition of upmeans that this represents the unit-vector that moves
0 in the 𝑥 direction and +1 in the 𝑦 direction, i.e.: upwards. It could as easily have
been defined as (0,10) and it would have made no difference, because the pair is
interpreted as a direction vector which is then treated strictly as an angle. Adding
a bigger 𝑦 displacement has no effect as long as the 𝑥 displacement remains zero,
because only the direction of the vector is taken into account:

path p;
pair up,right;
up = (0,10);
right = (10,0);
p = (0,0){up}..{right}(200,100);
detaileddraw p;

It should be obvious that the vector has to be completely known. If not, an error will
be generated. On the other hand, a vector of (0,0) is acceptable. This has the same
effect as not specifying a vector at all.
Side note: the pairs up and right (as well as down and left) are normally predefined
by the macro package you are using, so the preceding two examples could each be
three lines shorter.

42 MAPS 53 Taco Hoekwater

In MetaPost macro packages there is usually also a macro defined called dir, which
works like this:

path p;
p = (0,0){dir 90}..{dir 0}(200,100);
detaileddraw p;

The actual definition of dir could be:

vardef dir primary d =
right rotated d

enddef;

with right pair variable predefined as before.

The next direction specification option is nearly the same as the previous one. Apart
from using a pair expression, it is also OK to use two known separate numeric
expressions.

path p;
p = (0,0){0,1}..{1,0}(200,100);
detaileddraw p;

When building paths inside macros, either one or the other of these cases (pair or
numeric) may be easier to work with. The end results are identical; there is always
an internal vector constructed.

Curl specifiers The more advanced option has been kept for last; on start- and
endpoint, you can instead use a curl specification.
First off, here is an example of the syntax:

path p;
p = (0,0){curl 0}..(200,100);
detaileddraw p;

The resulting image does not explain a lot, but that is because the rules for curl are
quite specific.
A curl specification is a number from 0 to infinity.
� It sets the amount of curliness (angle) at that point.
� If the requested amount of curl is high, it will adjust the curliness at adjacent
points as well.

� Its assumed default value at ending points is 1.
� An explicit curl setting makes that point an ‘endpoint’ (a.k.a. a corner).

Taco Hoekwater VOORJAAR 2023 43

The vector-based method of specifying the directions from the earlier examples is
always an absolute angle where curl is a relative approach that takes the rest of the
path into account.
If there is no user-supplied direction specifier, curl 1 is implied – which is exactly
how MetaPost comes up with its default near-circular curves.
So:

path p;
p = (0,0)..(100,100)..(200,00);
detaileddraw p;

has the same effect as:
path p;
p = (0,0){curl 1}..

(100,100)..
{curl 1}(200,00);

detaileddraw p;

For a better understanding, it is easier to start by showing a progression. The next
output was created using this example:

path p;
yoff := 40;
for d = 0 step 1 until 5:

p := (0,0){curl d}..(200,50)..{curl d}(400,0);
detaileddraw (p shifted (0,-yoff*d));
draw textext.lft("curl=" & decimal d) shifted (-20,-yoff*d);
draw textext.rt("curl=" & decimal d) shifted (420,-yoff*d);

endfor

There is some extra stuff there to print the labels, but the main thing the example
does is create a set of paths with increasing settings for curl at both of the endpoints:

curl=0 curl=0

curl=1 curl=1

curl=2 curl=2

curl=3 curl=3

curl=4 curl=4

curl=5 curl=5

As you see, the angle (to the control point) increases when the curl value rises. But
there is an upper limit above which it does not matter any more how much higher

44 MAPS 53 Taco Hoekwater

the curl value gets. Above a certain value, there is not enough curvature left for curl
to be able to redistribute towards the endpoints:

curl=0 curl=0

curl=5 curl=5

curl=10 curl=10

curl=15 curl=15

curl=20 curl=20

While curlmodifies the curvature of part of a curve segment, it is itself influenced by
the length and required turning angle of that curve as well. Moving the middle point
up to (200,100) while keeping everything else the same produces quite a different
effect on the control points of the curve, because the required turning angle changes
quite dramatically:

curl=0 curl=0

curl=1 curl=1

curl=2 curl=2

curl=3 curl=3

curl=4 curl=4

curl=5 curl=5

By moving the middle point up even higher to (200,150), eventually the control
points are pushed way off to the side:

Taco Hoekwater VOORJAAR 2023 45

curl=0 curl=0

curl=2 curl=2

curl=4 curl=4

curl=6 curl=6

While the curl specifier takes some getting used to, it is a good tool to control the ini
tial and final curves of a path since using a direction vector is not always straightfor
ward, especially so if paths are rotated or otherwise transformed. On the downside,
it may seem a bit temperamental, because the end result depends on other properties
of the path in a way that is not easily predictable until one gains some experience
with curl.
Side note: the fact that an explicit curl specification forces a point to behave as an
‘endpoint’, is what makes this definition work:

def -- = {curl 1}..{curl 1} enddef;

path p;
p = (0,0)--(100,100)--(200,100);
detaileddraw p;

The path equation with the -- operator expands into:

p = (0,0){curl 1}..{curl 1}(100,100){curl 1}..{curl 1}(200,100);

which makes every point a corner. The segments between those points is then filled
using the ‘2 point’ segment logic, resulting in straight lines.
Some final remarks about direction specifiers that are handy to know:

� explicit vectors are expressions, so you can do calculations while constructing
the path.

� explicit incoming or outgoing curl and vector-based direction specifications
migrate to the inverse side as well, if they are left empty.

46 MAPS 53 Taco Hoekwater

In an example:

path p;
p = (0,0)..{right}(100,50)..

(200,0);
detaileddraw p;

is the same as:
path p;
p = (0,0)..(100,50){right}..

(200,0);
detaileddraw p;

�while vectors do not force a point to behave as an ‘endpoint’, they can be used
to create such, by specifying different values on the left and right side:

path p;
p = (0,0)..{up}(100,50){right}..

(200,0);
detaileddraw p;

Path connectors
Now, let’s talk about connectors. Connectors and directions together decide on the
locations of the control points of the curve segments.
We have seen the simplest case a number of times already; it is just two consecutive
dots:

path p;
p = (0,0)..(100,100)..(200,0);
detaileddraw p;

Tension specifiers Internally, MetaPost has the concept of tension.
Amongst other things, the tension settings control how ‘tight’ the path is between
two points:

path p;
p = (0,0)..tension 2 ..

(100,100)..tension 2 ..
(200,0);

detaileddraw p;

Taco Hoekwater VOORJAAR 2023 47

The example above used only one value, but actually there are two, one for each side
of the segment:

path p;
p = (0,0)..tension 2 and 2..

(100,100)..tension 2 and 2..
(200,0);

detaileddraw p;

If you say just tension 2, it is silently interpreted as tension 2 and 2.
MetaPost’s default for each segment where you do not set up an explicit tension
is to assume that both values for path tension are set to 1, but the actual curvature
and directions of the path can alter the effective values of the tensions to something
more or less than one.
How tension controls the path segments exactly is quite technical, but it is important
to note that the tension values can control the direction at points (if they were not
set up by the user explicitly, of course).
An example of that potential effect on the direction can be seen in the following
code, where the two tension values for each segment are not identical:

path p;
p = (0,0)..tension 2 and 1 ..

(100,100)..tension 1 and 2 ..
(200,0);

detaileddraw p;

Another example is when all the segments do not have the same/complementary
tension settings:

path p;
p = (0,0)..tension 2 ..

(100,100)..
(200,0);

detaileddraw p;

If we ‘fixate’ those examples by filling in explicit direction vectors:

path p;
p = (0,0){up}..tension 2 and 1 ..

(100,100){right}..tension 1 and 2 ..
{down}(200,0);

detaileddraw p;

48 MAPS 53 Taco Hoekwater

path p;
p = (0,0){up}..tension 2 ..

(100,100){right}..
{down}(200,0);

detaileddraw p;

the main effect of tension becomes clearer: it alters the control vectors. In both ex
amples the length of the factors has been shortened where the tension was more
than one.
In these cases, where all the directions are fixed already, every time the tension is
multiplied by two, the length of the vector is divided by two. So with:

path p;
p = (0,0){up}..tension 16 ..

(100,100){right}..
{down}(200,0);

detaileddraw p;

the vector is now 1/16 of its ‘normal’ length, and it becomes almost a straight line.
If there are multiple non-fixated directions, the vector changes becomemore compli
cated because in that case, the extra effect of the tension settings on the first segment
is that the control vectors for the other segments become a bit longer:

path p;
p = (0,0)..tension 16 ..

(100,100)..
(200,0);

detaileddraw p;

This effect is more obvious when multiple values of tension are combined into a
single image:

path p,q;
for i = 2 upto 8:

p := (0,0)..tension i ..
(100,100)..
(200,0);

detaileddraw p;
endfor

The high tension setting on the left segment has lowered the effective tension of the
second segment.

Taco Hoekwater VOORJAAR 2023 49

The inverse effect of the vector shortening is also true, by the way. Tension values
lower than one have the opposite effect:

path p;
p = (0,0)..tension 0.75 ..

(100,100)..
(200,0);

detaileddraw p;

But lowering the tensions (and thus increasing the length of the vectors) also in
creases the chances that the internal calculations that control the behaviour of the
curve become unpredictable. For that reason, the lowest value you are allowed to set
tension to is 0.75.

We have now seen various examples where the tension of the path can alter the
directions of the path where it has not been set explicitly. But, as I wrote earlier, the
directions of the path can also alter the values of the tensions in segments that do
not have explicit values assigned to them.
Sometimes the latter results in sub-optimal curves, like in the following example
where we may not want an inflection to happen:

path p;
p := (0,0){dir 60} ..

{dir -10}(200,0);
detaileddraw p;

This last problem can be helped by using tension atleast which is a special case
that sets a bottom limit for the final effective tension:

path p;
p := (0,0){dir 60}..tension atleast 1..

{dir -10}(200,0);
detaileddraw p;

The combined calculations for curl and tension are at the core of how MetaPost
manages to produce ‘pleasing’ curves with very little explicit set up by the user. But
the fact that both calculations can actually effect each other means that sometimes
the only way to be sure the result is exactly as desired is to verify it manually.
To wrap up the discussion of tension: here are two macros that are usually pre-
defined:

def --- = .. tension infinity .. enddef;
def ... = .. tension atleast 1 .. enddef;

Explicit controls There may be cases where the internal calculations of MetaPost
are not able or willing to create your desired output. And there may be other cases
where you have a Bézier path converted from another input source that uses explicit
control points.

50 MAPS 53 Taco Hoekwater

For such cases, MetaPost allows you to input explicit control point values, either by
using a single point, like:

path p;
p = (0,0)..controls (0,100)..

(200,100);
detaileddraw p;

or by using two separate points:

path p;
p = (0,0)..controls (40,0) and (60,100)..

(200,100);
detaileddraw p;

As with tensions, a single value is essentially the same as repeating that value. The
first example is equivalent to:

path p;
p = (0,0)..controls (0,100) and (0,100)..

(200,100);
detaileddraw p;

Handy to know:

� You cannot use tension and controls together in a single connector.
� Once processed, all path segments always use control points. Using explicit con
trol points simply makes MetaPost skip all its own calculations.

� It follows that using explicit control points will overwrite any other direction
or curl specification for the segment.

Path concatenation Just like with strings, it is possible to concatenate two paths by
using the & operator:

path p;
p = (0,0)..(100,50) & (100,50)..(200,0);
detaileddraw p;

This only works if the left and right points are identical, and it is equivalent to

path p;
p = (0,0)..{curl 1}(100,50)..(200,0);
detaileddraw p;

Taco Hoekwater VOORJAAR 2023 51

Cyclic paths Creating a cyclic path is done by appending the cycle operator to the
last connector:

path p;
p = (0,0)..(100,eps) .. cycle;
detaileddraw p;

The cycle operator adds a reference back to the first point of the path being created,
but it also adds a special marker to the internal path structure. Without it, the path
is not considered to be cyclic, and you cannot use it with e.g. fill.
As can see, the example above produces a circular-looking path. This is the result
of the automatic direction and tension calculations. The path is supposed to travel
360 degrees in total, and the internal calculations try to spread that curvature over
the complete path, instead of producing two 180 degree turns with straight lines in
between them. The nicest solution mathematically is to create two Bézier segments
that have an amplitude that is half the distance between the two points, which is
why you end up with a shape very similar to a circle.
It is not really a circle since Bézier curves simply cannot produce a perfect circle,
but it is fairly close. The pen named pencircle actually is a perfect circle, so we can
visually show the difference:

path p;
p = (0,0)..{down}(100,0) .. cycle;
fill p withcolor red;
draw origin shifted (50,0)

withpen pencircle scaled 100
withcolor white;

In all four quadrants there is a little bit of extra red that sticks out from behind the
perfect invisible circle.

You may be wondering about the use of eps (defined as .00049) one example back.
The reason is that while a two-point path can (and usually does) define a path that
turns 360 degrees (by moving upward through the first point and then downward
through the second point), it can also define a path that turns 0 degrees, where it
goes up in both points. And it so happens that MetaPost decides on that second case
if (and only if) the line through the two points is perfectly horizontal or vertical:

path p,q;
p = (0,50)..(100,50) .. cycle;
q = (200,0)..(200,100) .. cycle;
detaileddraw p;
detaileddraw q;

52 MAPS 53 Taco Hoekwater

Another way to force the 360 degree case would be:

path p;
p = (0,0)..{down}(100,0) .. cycle;
detaileddraw p;

which is what I did in the overlay picture with the pencircle.
So now you have all the tools to define a path.

Path creation wrapup
To end this section, here is some ‘handy to know’ information that did not quite fit
in the earlier parts of this section:
� the length of a path is the number of segments it consists of, which is equal to
the number of explicit points for cyclic paths, and for non-cyclic paths, the same
number minus one.

path p;
p = (0,0)..(100,100)..(200,0);
detaileddraw p;
labelat((100,0),

"length=" & decimal length p) ;

length=2

I brought this up now instead of in the section on operations because it is im
portant to know that ‘empty’ curve segments do count when you define a path,
so:

path p;
p = (0,0)..(0,0)..(0,0)..(100,100);
detaileddraw p;
labelat((100,0),

"length=" & decimal length p) ;

length=3

defines a path of length 3.
� the subpath operator adds points at the beginning and end of the subpath if
needed, so if you combine them back again you can get extra points:

path p, q;
q = (0,0)..(200,100);
p = subpath (0 , 0.5) of q &

subpath (0.5, 1) of q ;
detaileddraw q shifted(0,25);
labelat((100,100),

"length=" & decimal length q);
detaileddraw p shifted(0,-25);
labelat((100,0),

"length=" & decimal length p);

length=1

length=2

Taco Hoekwater VOORJAAR 2023 53

In these examples I used labelat to put a bit of red text in the image. That is a macro
I wrote in the preamble of this article. It will appear in a number of the following
examples as well (along with draw_origin). I will not show you the definitions of
those, they are just for illustrative purposes.

Defining a pair
In MetaPost, pairs are the building block of paths as well as the commonly used de
scriptions of other data that requires two values, like vectors and intersection times.
For reference, let’s start with the formal definition:

⟨pair primary⟩ → ⟨pair variable⟩ | ⟨pair argument⟩
| (⟨numeric expression⟩ , ⟨numeric expression⟩)
| (⟨pair expression⟩)
| begingroup ⟨statement list⟩⟨pair expression⟩ endgroup
| ⟨numeric atom⟩ [⟨pair expression⟩ , ⟨pair expression⟩]
| ⟨scalar multiplication operator⟩⟨pair primary⟩
| point ⟨numeric expression⟩ of ⟨path primary⟩
| precontrol ⟨numeric expression⟩ of ⟨path primary⟩
| postcontrol ⟨numeric expression⟩ of ⟨path primary⟩
| penoffset ⟨pair expression⟩ of ⟨pen primary⟩
| penoffset ⟨pair expression⟩ of ⟨future pen primary⟩

⟨pair secondary⟩ → ⟨pair primary⟩
| ⟨pair secondary⟩⟨times or over⟩⟨numeric primary⟩
| ⟨numeric secondary⟩ * ⟨pair primary⟩
| ⟨pair secondary⟩⟨transformer⟩

⟨pair tertiary⟩ → ⟨pair secondary⟩
| ⟨pair tertiary⟩⟨plus or minus⟩⟨pair secondary⟩
| ⟨path tertiary⟩ intersectiontimes ⟨path secondary⟩

⟨pair expression⟩ → ⟨pair tertiary⟩
Now, let’s look at a few simple examples of defining pairs.
The most simple case is just a pair of numeric values:

pair a;
a = (200,0);
draw_origin;
drawdot a withcolor red;

The examples below will always print the ‘active’ pair in red, and the ‘origin’ point
at (0,0) in black; and occasionally an extra dot or path is drawn as well. The red dot
is always the target of the example.
The dot drawing is done by the drawdot macro, which is usually predefined in the
macro package. In fact, a pair variable origin is usually also defined, so we will use
that from now on as it is a little more readable.
You can also define a pair from another pair variable:

pair a,b;
b = (200,0);
a = b;
draw_origin;
drawdot a withcolor red;

In fact, because of the way collections of equations are solved in MetaPost, you can
invert the equation that gives a value to b and the equation that equates a to b. As

54 MAPS 53 Taco Hoekwater

long as the equation is resolved before you try to draw the dot, the order of the
equations is irrelevant. This is generally true in MetaPost but it bears repeating here
because you will most often use this equation solving capability in the context of
trying to resolve pairs:

pair a,b;
a = b;
b = (200,0);
draw_origin;
drawdot a withcolor red;

You can define a pair from an expression by adding parentheses:

pair a;
a = ((100,0) + (100,0));
draw_origin;
drawdot (100,0);
drawdot a withcolor red;

The internal expression can then do all of the things from the full syntax. Besides
addition, for example, you could also do multiplication:

pair a;
a = ((100,10) * 2);
draw_origin;
drawdot (100,10);
drawdot a withcolor red;

Sometimes, using an expression in this way is not the most elegant way of thinking
about where the new point should be. That is why there is also an ‘off-the-way’
operation:

pair a;
a = .5[(0,0),(200,0)];
draw_origin;
drawdot (200,0);
drawdot a withcolor red;

The syntax rule says that the operator is an ⟨numeric atom⟩, which means that it can be
either a numeric variable, or a numeric token (as in the example; this is typically a
decimal fraction between zero and one), or it can be a numeric token followed by a
/ another numeric token (indicating an explicit fraction).
Here some equivalents of the previous example:

pair a,b,c;
i := .5;
a = i[(0,0),(200,0)];
b = 1/2[(0,0),(200,0)];
c = 5/10[(0,0),(200,0)];
draw_origin;
drawdot (200,0);
drawdot a withcolor red;
drawdot b withcolor red;
drawdot c withcolor red;

It is important to realize that while we informally call this the ‘off-the-way’ operator,
it is really just a multiplier along a line where the first listed pair is at ‘distance’ zero

Taco Hoekwater VOORJAAR 2023 55

and the second listed pair is at ‘distance’ one. If the points are named 𝑎 and 𝑏 and
the multiplier is 𝑥, then it calculates 𝑎 + 𝑥 ∗ (𝑏 − 𝑎). This means that the value can be
outside of the zero-to-one range:

pair a;
a = 1.1[(0,0),(200,100)];
draw_origin;
drawdot (200,100);
drawdot a withcolor red;
labelat((100,0), "a=(220,110)")

a=(220,110)

It may equally well be negative:

pair a;
a = -0.1[(0,0),(200,100)];
draw_origin;
drawdot (200,100);
drawdot a withcolor red;
labelat((100,0), "a=(-20,-10)") a=(-20,-10)

Note that there is no * allowed (or needed, depending on how you think about these
things) between the value and the following square open bracket.
We can also define a new pair from a multiplication applied to another pair:

pair a;
a = .5(200,0);
draw_origin;
drawdot (200,0);
drawdot a withcolor red;

This example may look a bit odd, but it makes much more sense if the explicit pair
is replaced by a predefined variable:

pair b; b = (200,0);
pair a;
a = .5b;
draw_origin;
drawdot b;
drawdot a withcolor red;

The formal syntax rules here are a little contrived, but the end result is that this op
eration is quite like the ‘off-the-way’ operator, except that variables are not allowed.

⟨scalar multiplication operator⟩ → ⟨plus or minus⟩
| ⟨numeric token primary not followed by + or - or a numeric token⟩

⟨numeric token primary⟩ → ⟨numeric token⟩/⟨numeric token⟩
| ⟨numeric token not followed by ‘/ numeric token’ ⟩

Allowing a bare variable in the syntax here would confuse the language parser. It is
simple enough to add a * to the input, but that does have a slightly different meaning
to the MetaPost parser.

56 MAPS 53 Taco Hoekwater

pair a,b,c;
i := .5;
% a = i(200,0); % not allowed
a = i*(200,0);
b = 1/2(200,0);
c = 5/10(200,0);
draw_origin;
drawdot (200,0);
drawdot a withcolor red;
drawdot b withcolor red;
drawdot c withcolor red;

The examples above with the num/denom operation need an extra bit of explanation,
because the explicit num/denom form of a numeric token really is something different
from just multiplying an expression. The explicit fraction here is never converted to
a single fraction internally.The two specified values are both kept, which means that
those calculations are a bit more precise.
The effect is not quite as obvious as the default scaled number system of plain Meta
Post when using the new double number system, but the difference is still important
sometimes.
If you run the following in plain MetaPost:

pair a,b;
a = 1/5(100,100);
b = 1/5*(100,100);
show a;
show b;

it will report the following:

>> (20,20)
>> (19.9997,19.9997)

Because the first equation resolves to (1 ∗ 100/5, 1 ∗ 100/5), which gives the perfect
result of (20,20), while the second equation is ((13107/65536) ∗ 100, (13107/65536) ∗
100). The (13107/65536) part is the internal representation of 1/5 as a decimal frac
tion.
This difference between the exact value and approximation of a fraction happens in
the decimal number system as well, although it is far less obvious there thanks to
the higher precision.

The next two examples deal with defining a new pair based on some part of a path.
First, you take any specific point along a path (it does not have to be an integer
value):

path p;
pair a;
p = (0,0){up}..{right}(200,100);
a = point 0.5 of p;
detaileddraw p;
drawdot a withcolor red;

Taco Hoekwater VOORJAAR 2023 57

Or you can use one of the control points of a point along that path:

path p;
pair a;
p = (0,0){up}..{right}(200,100);
a = precontrol 0.5 of p;
detaileddraw p;
drawdot a withcolor red;

There is also postcontrol, of course. This comes with a warning: the actual path
will change because it first creates a knot at the specified place along the path, as is
shown in this example.
What you are actually getting from precontrol is this:

path p,q;
pair a;
p = (0,0){up}..{right}(200,100);
q = subpath (0,0.5) of p

& subpath(0.5,1) of p;
a = precontrol 1 of q;
detaileddraw q;
drawdot a withcolor red;

This effect does not happen if you use an integer point along the path, because in
this case, MetaPost does not have to bisect the path.

From a path intersection (indirectly):

path p,q;
pair a;
p = (0,0){up}..{right}(200,100);
q = (0,100)..(50,50)..(100,0);
a = p intersectiontimes q;
draw p withcolor .5;
draw q withcolor .5;
drawdot a withcolor red;

No, that is not a typographical error in the example!
The intersectiontimes returns two time values along the paths, encoded as a pair.
In this case, that is (0.35608,0.69121). There are two separate points referenced in
this single pair – point 0.35608 along p, and point 0.69121 along q – but neither
value represents a point individually.
If you want to have an actual point, you have to fetch it from the path using the
point operator:

path p, q;
pair a, b;
p = (0,0){up}..{right}(200,100);
q = (0,100)..(50,50)..(100,0);
a = p intersectiontimes q;
b = point (xpart a) of p;
draw p; draw q;
drawdot b withcolor red;

58 MAPS 53 Taco Hoekwater

Normally there is a predefined macro intersectionpoint that you can use as a drop-
in replacement for intersectiontimes, like this:

path p, q;
pair a;
p = (0,0){up}..{right}(200,100);
q = (0,100)..(50,50)..(100,0);
a = p intersectionpoint q;
draw p; draw q;
drawdot a withcolor red;

But you need to be careful using it because, owing to the definition of intersectionpoint,
you will usually get a point that is not on either path. The typical definition of this
macro tries to give you a point that is very close to both of the two points. The sim
plified definition looks like this:

secondarydef p intersectionpoint q =
begingroup

save x_,y_;
(x_,y_)=p intersectiontimes q;
.5[point x_ of p, point y_ of q]

endgroup
enddef;

It does this ‘off-the-way’ operation because there is no guarantee that the separate
times along the paths will result in a single coincident point; even within the preci
sion limits of the scaled number system. There are various limitations in the algo
rithm in MetaPost that is used to find the time values (e.g. it stops bisection of the
path long before the maximum precision is reached) that are intended to save on
memory usage and processing time. As a result, you rarely get perfect time values
returned.
In our example above, the two points are visually indistinguishable at the normal
zoom level:

path p, q;
pair a, b, c;
p = (0,0){up}..{right}(200,100);
q = (0,100)..(50,50)..(100,0);
a = p intersectiontimes q;
b = point (xpart a) of p;
c = point (ypart a) of q;
draw p; draw q;
drawdot b withcolor red;
drawdot c withcolor red;

But on close inspection, b is (34.56109,65.44007), whereas c is (34.56039,65.439605).
The returned expression by intersectionpoint is therefore (34.56074,65.43984).

Taco Hoekwater VOORJAAR 2023 59

Zoomed in, it looks like this:

...
b = point (xpart a) of p;
c = point (ypart a) of q;
draw p; draw q;
drawdot b withcolor red;
drawdot c withcolor red;
drawdot (p intersectionpoint q)

withcolor green;

If there are no intersections, intersectiontimes returns (-1,-1).
If there are multiple intersections, it normally returns the first one along the left-side
path.
However, it is actually possible for there to be multiple intersections within a single
curve segment (in other words: in the curve section ‘between’ two of knot points
of one of the paths). In this case, MetaPost will return the ‘smallest’ combination of
times along both paths. Here is an example of where that can happen:

pair a;
path p, q;
p := (0,0){up}..{up}(200,0);
q := (200,6)..(0,6);
a := p intersectiontimes q;
draw p; draw q;
drawdot (point (xpart a) of p)

withcolor red;

In this case, it returns the first intersection along p, as expected. Note that q is moving
to the left, not the right, so it is actually the second intersection along q.
But if we make q shorter:

pair a;
path p, q;
p := (0,0){up}..{up}(200,0);
q := (100,6)..(0,6);
a := p intersectiontimes q;
draw p; draw q;
drawdot (point (xpart a) of p)

withcolor red;

it will jump to the second intersection on p (and thus the first on q) instead.
The intersection times along p are the same in both cases: 0.01573 and 0.46989.
But the intersections along q are different. In the first example they happen roughly
at the times 0.55 and 0.98 (remember, it is coming from the right), and in the second
example they are more like 0.09 and 0.96.
In the second example, MetaPost returns the result (0.46989,0.09) because if you
add these two times up, the result is less than the addition of (0.01573,0.96). In the
first example, the total of (0.46989,0.55) was a little bit more than (0.01573,0.98)
instead of less, so it returned the other option instead.

60 MAPS 53 Taco Hoekwater

The last way to define a pair is using a ‘pen offset’:

path p;
pair a;
a = penoffset (1,0.5) of

pencircle scaled 100;
p = makepath pencircle scaled 100;
draw p;
draw_origin;
drawdot a withcolor red;

The primitive operator penoffset returns the ‘offset’ along the pen in which the pen
travels in the direction vector given by its argument (in this case, that is a direction
of approximately 26.5 degrees, because the pair is treated as an angular vector). The
return value is the 𝑥, 𝑦 offset of the edge of the pen to its center at the moment
it is moving in that direction. In the example above the center of the pen is the
origin so the offset is simply a point in the coordinate system. That point is roughly
(22.36,-44.72), where the pen outline moves up at an angle of approximately 26.5
degrees (it helps to know that pens rotate counterclockwise).
For polygonal pens, the results can be a bit confusing because the corner points are
treated as if they have all directions between the incoming and outgoing angles.

path p;
pair a;
a = penoffset (1,0.5) of

pensquare scaled 100;
p = makepath pensquare scaled 100;
draw p;
draw_origin;
drawdot a withcolor red;

Pens
After all this stuff about paths and pairs, pens are surprisingly simple. There is just
not that much you can do with pens. And in MetaPost, pens are even simpler than in
Metafont, because the code that converts elliptical pens into bitmaps was not needed
in MetaPost, which makes the syntax cleaner.
Pens are the objects that are used to ‘trace’ paths when you use draw or filldraw
(or rather the underlying primitive addto). MetaPost has two different kind of pens:
pens that derived from a circle (a.k.a. elliptical pens) and pens that are based on a
convex cycle of straight segments (a.k.a. polygonal pens).
The adjusted syntax rule is:

⟨pen primary⟩ → ⟨pen variable⟩ | ⟨pen argument⟩
| (⟨pen expression⟩)
| begingroup ⟨statement list⟩⟨pen expression⟩ endgroup
| nullpen
| pencircle
| makepen ⟨path primary⟩

⟨pen secondary⟩ → ⟨pen primary⟩
| ⟨pen secondary⟩⟨transformer⟩

⟨pen tertiary⟩ → ⟨pen secondary⟩
⟨pen expression⟩ → ⟨pen tertiary⟩

Taco Hoekwater VOORJAAR 2023 61

We will get to the ⟨transformer⟩ in a later section (as for paths and pairs). And you
should be familiar by now with the ⟨variable⟩ , ⟨argument⟩, ⟨expression⟩, and begingroup
⟨...⟩ endgroup parts. So what is left is defining a pen based on the built-in pencircle:

pen mypen;
mypen = pencircle scaled 40;
draw (0,0){up}..{right}(200,100)

withpen mypen;
fill makepath mypen withcolor red;

You can do all sorts of elliptical pens this way by using the ⟨transformer⟩ to rotate
and scale the pencircle. Internally, an elliptical pen is a perfect ellipse. It is never
converted into separate path segments unless the user asks for it (by using makepath
to make the pen itself drawable, as we do in these examples).
Defining a pen based on the built-in nullpen:

pen mypen;
mypen = nullpen scaled 4000;
draw (0,0){up}..{right}(200,100)

withpen mypen;
fill makepath mypen withcolor red;

But this is only useful to clear an existing pen, as the nullpen is a pen with no di
mensions.

Finally, you can define a pen from a path:

pen mypen;
path p;
p = (-11,0)--(0,14)--(11,0)--cycle;
mypen = makepen p;
draw (0,0){up}..{right}(200,100)

withpen mypen;
fill makepath mypen withcolor red;

The result of makepen is always a polygonal pen. It is not possible to construct ellip
tical pens in this way as they have to be based on pencircle.
Some handy things to know:

� makepen always converts .. to --.
� Pens are always convex; makepen will silently enforce this by ignoring concave
ness-inducing points.

�While elliptical pens are created by transforming pencircle, it can sometimes
be useful to create a polygonal pen with many vertices as an approximation, for
example, for the envelope operation that we saw earlier.

�MetaPost’s pens always travel in an counter-clockwise direction, even if the
input path to makepen was clockwise.

62 MAPS 53 Taco Hoekwater

MetaPost does not have a true linear pen, but it is easy to approximate one:

pen mypen;
path p;
p = (-10,0)--(10,0)--cycle;
mypen = makepen p;
draw (0,0){up}..{right}(200,100)

withpen mypen;
fill makepath mypen withcolor red;

A final hint about defining pens for reuse: when you make a special pen shape inside
of a macro file that will be reused, it is good practice to give it a clear name, and to
place the pen around the origin with one of its major sizes close to 1. This makes it
easier for other macros to build upon the defined pen by rotating and scaling it.
So, instead of the earlier example, which was equivalent to:

pen mypen;
mypen = makepen((-11,0)--(0,14)--(11,0)--cycle);

Use this:

pen penpyramid;
penpyramid = makepen((-0.5,0)--(0,14/22)--(0.5,0)--cycle);

Transformations
Transformations make MetaPost much more versatile. Here is the formal syntax de
finition of everything related to transformations:

⟨transform primary⟩ → ⟨transform variable⟩ | ⟨transform argument⟩
| (⟨transform expression⟩)
| begingroup ⟨statement list⟩⟨transform expression⟩ endgroup

⟨transform secondary⟩ → ⟨transform primary⟩
| ⟨transform secondary⟩⟨transformer⟩

⟨transform tertiary⟩ → ⟨transform secondary⟩

⟨transform expression⟩ → ⟨transform tertiary⟩

⟨transformer⟩ → rotated⟨numeric primary⟩
| scaled ⟨numeric primary⟩
| shifted ⟨pair primary⟩
| slanted ⟨numeric primary⟩
| transformed ⟨transform primary⟩
| xscaled ⟨numeric primary⟩
| yscaled ⟨numeric primary⟩
| zscaled ⟨pair primary⟩

Whenever you use an object of type path, pair or pen (as well as picture and
transform itself) in a MetaPost expression at the secondary level, you are allowed to
transform it using a ⟨transformer⟩.
The following transformation options apply to all those object types, but I will only
show pairs as examples to keep it simple. In these examples, the green dot is the
original, the red dot is the transformed one, and the black cross is at the origin (0,0).

Taco Hoekwater VOORJAAR 2023 63

rotated works counter-clockwise around the origin:

pair a;
a = (100,100) rotated 90;
draw_origin;
drawdot (100,100) withcolor green;
drawdot a withcolor red;

scaled multiplies the separate components:

pair a;
a = (100,50) scaled 2;
draw_origin;
drawdot (100,50) withcolor green;
drawdot a withcolor red;

shifted moves things around:

pair a;
a = (100,50) shifted (100,0);
draw_origin;
drawdot (100,50) withcolor green;
drawdot a withcolor red;

slanted slants things by adding some multiple of the 𝑦 value to the 𝑥 value:

pair a;
a = (100,50) slanted 1;
draw_origin;
drawdot (100,50) withcolor green;
drawdot a withcolor red;

transformed applies a complete 6-variable transformation matrix:

pair a;
transform t;
t := identity scaled 1.5;
a = (100,50) transformed t;
draw_origin;
drawdot (100,50) withcolor green;
drawdot a withcolor red;

Because transformed is at the core of the transformation commands, this is a good
moment to delve a little deeper into what transformations are and do in MetaPost.
A transform variable consists of six parts: xpart, ypart, xxpart, xypart, yxpart and
yypart. This is similar to a pair variable, only there are more parts.
Transformations are just a shorthand notation for applying a set of operations on
an object. For pairs, the expression (x,y) transformed t converts the pair (𝑥,𝑦) into
the pair (𝑡𝑥 + 𝑥𝑡𝑥𝑥 + 𝑦𝑡𝑥𝑦, 𝑡𝑦 + 𝑥𝑡𝑦𝑥 + 𝑦𝑡𝑦𝑦).
Interestingly, there is no direct way to define a variable of type transform.

64 MAPS 53 Taco Hoekwater

Even the transform identity is not actually a primitive, but it is defined in a some
what curious way in the plain MetaPost macros:

transform identity;
for z=origin,right,up:

z transformed identity = z;
endfor

The three equations in the for loop resolve all six parts of the transform object to
gether:

origin transformed identity = origin;
right transformed identity = right;
up transformed identity = up;

Remember that origin, right, and up are defined pairs. Those are already known at
this point in the macro loading process, so the three formulas are actually:

(0,0) transformed identity = (0,0);
(1,0) transformed identity = (1,0);
(0,1) transformed identity = (0,1);

And because they are equations, they can be inverted to set up the six parts of the
transformation:

(0,0) transformed identity = (0,0);

expands to:
(𝑡𝑥 + 𝑥 ∗ 𝑡𝑥𝑥 + 𝑦 ∗ 𝑡𝑥𝑦, 𝑡𝑦 + 𝑥 ∗ 𝑡𝑦𝑥 + 𝑦 ∗ 𝑡𝑦𝑦) = (0, 0)

with 𝑥 and 𝑦 already known to be 0, it is easy to see this reduces to:

(𝑡𝑥, 𝑡𝑦) = (0, 0)

In the next equation, these two values are now also known, so:

(1,0) transformed identity = (1,0);

is really
(0 + 1 ∗ 𝑡𝑥𝑥 + 0 ∗ 𝑡𝑥𝑦, 0 + 1 ∗ 𝑡𝑦𝑥 + 0 ∗ 𝑡𝑦𝑦) = (1, 0)

or, simplified:
(𝑡𝑥𝑥, 𝑡𝑦𝑥) = (1, 0)

So the 𝑡𝑥𝑥 part must be 1 and the 𝑡𝑦𝑥 part 0. At the last step, there are only two
variables left to calculate. The final equation:

(0,1) transformed identity = (0,1);

wraps this up with:

(0 + 0 ∗ 1 + 1 ∗ 𝑡𝑥𝑦, 0 + 0 ∗ 0 + 1 ∗ 𝑡𝑦𝑦) = (0, 1)

(𝑡𝑥𝑦, 𝑡𝑦𝑦) = (0, 1)

So 𝑡𝑥𝑦 must be 0 and 𝑡𝑦𝑦 must be 1.

The identity transformation could also have been defined like this:

transform identity;
xpart identity = ypart identity = 0;
xxpart identity = yypart identity = 1;
xypart identity = yxpart identity = 0;

Taco Hoekwater VOORJAAR 2023 65

but those six equations are not nearly as cute or fun to explain.

We already saw themost important shorthand ⟨transformer⟩s, but there are three more:

pair a;
a = (100,50) xscaled 2;
draw_origin;
drawdot (100,50) withcolor green;
drawdot a withcolor red;

pair a;
a = (200,50) yscaled 1.5;
draw_origin;
drawdot (200,50) withcolor green;
drawdot a withcolor red;

pair a;
a = (100,0) zscaled (2,0.25);
draw_origin;
drawdot (100,0) withcolor green;
drawdot a withcolor red;

The zscaled operation may seem a bit weird.
One way of looking at it is that it treats its argument as a vector. It then rotates over
the angle of that vector and scales by the length of it:

pair a;
a = (100,0)

rotated angle (2,0.25)
scaled (2++0.25);

draw_origin;
drawdot (100,0) withcolor green;
drawdot a withcolor red;

Another way of looking at zscaled is that it performs complex number multiplica
tion. If the argument is 𝑢, 𝑣 it converts 𝑥, 𝑦 into 𝑥𝑢 − 𝑦𝑣, 𝑥𝑣 + 𝑦𝑢.

To wrap up our discussion of transformations, so things that are handy to remember:

� You can chain transformers, they are processed left to right.
�There is no direct assignment syntax for transform type definitions: you have to
modify an existing transform, build one using explicit ⟨transformer⟩ equations, or
assign each of the six parts using separate equations.

� Don’t forget to add groupings if you are mixing pair and path in the same ex
pression.

66 MAPS 53 Taco Hoekwater

Path operations
Now let’s look at the operations you can do on paths.

Find the length of a path:

path p; numeric d;
p = (0,0){up}..{right}(200,100);
d = length p;
detaileddraw p;
labelat((100,0), "length="&decimal d);

length=1

The length operator returns the number of segments. That is one less than the num
ber of defining points, unless the path is a cycle.

Find the drawn length of a path:

path p; numeric d;
p = (0,0){up}..{right}(200,100);
d = arclength p;
detaileddraw p;
labelat((100,0), "arclength="&decimal d);

arclength=248.56473879450363

This returns the total length of the actual curve(s).

Find a specific drawn time of a path:

path p; numeric d;
p = (0,0){up}..{right}(200,100);
d = arctime 200 of p;
detaileddraw p;
labelat((100,0),

"arctime 200="&decimal d);
drawdot (point d of p) withcolor red;

arctime 200=0.83173739692754611

This returns the time along the path at which the arclength is the specified value.

Test if a variable is a path:

path p;
p = (0,0){up}..{right}(200,100);
detaileddraw p;
if path p:

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

yes

The if command tests the type of the following expression. This means that single
pairs fail even though they are valid as path declarations (due to the automatic con
version into a pathwhen an assignment takes place). But on the other hand, it means
that you can use an explicit expression:

Taco Hoekwater VOORJAAR 2023 67

path p;
p = (0,0){up}..{right}(200,100);
detaileddraw p;
if path ((0,0){up}..{right}(200,100)):

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

yes

Test if a variable is a cyclic path:

path p;
p = (0,0){up}..{right}(200,100);
detaileddraw p;
if cycle p:

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

no

Only paths created with cycle are considered cyclic. Paths that just so happen to
end at the same coordinates as they started are not considered a cycle by MetaPost.
There is an implied if path, so you do not have to test for that separately.

Find the time at which a path moves in a certain direction:

path p; numeric d;
p = (0,0){up}..{down}(200,0);
detaileddraw p;
d = directiontime (1,1) of p;
labelat((100,0), decimal d);
drawdot (point d of p) withcolor red;

0.23240812075600159

Side note: in this example it is obvious that a Bézier curve is not the same as a circular
arc. If they were, the return value would have been exactly 0.25.
Some other things of note about directiontime:

� the pair argument is treated as a direction vector
� if the path never travels in that direction, the return value is -1
� if the path travels multiple times in that direction, the first of those is returned.
� corner points are assumed to have all directions between the incoming and out
going angles simultaneously.

Finally, it is possible to find any one of the bounding box points of a path:

path p; pair a;
p = (0,0){up}..{right}(200,100);
detaileddraw p;
a = ulcorner p;
drawdot a withcolor red;

Also defined are the complementing primitives llcorner, lrcorner, and urcorner.

68 MAPS 53 Taco Hoekwater

Pair operations
Now let’s look at the operations you can do on pairs.
Test if a variable is a pair:

pair a;
a = (100,100);
draw_origin;
drawdot a withcolor red;
if pair a:

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

yes

Get the 𝑥 or 𝑦 part:

pair a; numeric d;
a = (100,100);
d = xpart a;
draw_origin;
drawdot a withcolor red;
labelat((100,0), "xpart=" & decimal d); xpart=100

Of course there is also a matching ypart operation.
You can multiply or divide a pair by a numeric:

pair a;
a = (50,50) * 2;
draw_origin;
drawdot a withcolor red;

You can add or subtract another pair:

pair a,b;
b = (10,10);
a = (100,100) + b;
draw_origin;
drawdot b;
drawdot a withcolor red;

You can negate a pair:

pair a;
a = -(100,100);
draw_origin;
drawdot a withcolor red;

Taco Hoekwater VOORJAAR 2023 69

You can compare a pair to another pair:

pair a,b;
b = (10,10);
a = (100,100);
draw_origin;
drawdot b;
drawdot a withcolor red;
if a > b:

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

yes

Pairs are first compared using the xpart values. If these are equal, the ypart values
are compared.

You can mediate between two pairs using the off-the-way operation:

pair a,b,c;
a = (10,10);
b = (60,60);
c = 0.5[a,b];
draw_origin;
drawdot a;
drawdot b;
drawdot c withcolor red;
labelat((100,0), "c=(35,35)")

c=(35,35)

When using mediation with negative values, you have to keep in mind that unary
minus binds less forcefully than mediation:

pair a,b,c;
a = (10,10);
b = (60,60);
c = -1[a,b];
draw_origin;
drawdot a;
drawdot b;
drawdot c withcolor red;
labelat((100,0), "c=(-60,-60)")

c=(-60,-60)

The result here is (-60,-60) because the mediation is processed first (using the pos
itive value of 1):

𝑎 + 𝑥 ∗ (𝑏 − 𝑎) → 10 + 1 ∗ (60 − 10) → 10 + 60 − 10

70 MAPS 53 Taco Hoekwater

And not until after this has been processed to (60,60) is the pair then negated,
whereas in:

pair a,b,c;
a = (10,10);
b = (60,60);
c = (-1)[a,b];
draw_origin;
drawdot a;
drawdot b;
drawdot c withcolor red;
labelat((100,0), "c=(-40,-40)")

c=(-40,-40)

The result is (-40,-40) because the mediation is processed with the value -1:

𝑎 + 𝑥 ∗ (𝑏 − 𝑎) → 10 + (−1) ∗ (60 − 10) → 10 − 60 + 10

For the last of the pair operations, when looking at a pair as a vector, it is often handy
to know the angle:

pair a; numeric d;
a = (200,100);
d = angle a;
draw_origin;
draw (origin--a);
drawdot a withcolor red;
labelat((120,0), "angle="&decimal d)

angle=26.56505117707799

Pen operations
Now let’s look at operations you can do on pens.There are just a few of those, because
pens as independent objects are not very useful.

Test if a variable is a pen:

pen mypen;
mypen = pencircle scaled 50;
draw_origin;
draw makepath mypen withcolor red;
if pen mypen:

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

yes

And, just like for paths, it is possible to find any one of the bounding box points of
a pen:

pen mypen; pair a;
mypen = pencircle scaled 50;
draw_origin;
a = ulcorner mypen;
draw makepath mypen withcolor red;
drawdot a withcolor red;

Also defined are the complementing primitives llcorner, lrcorner, and urcorner.

Taco Hoekwater VOORJAAR 2023 71

Transform operations
Now let’s look at the operations you can do on transforms. Like with pens, there are
not a whole lot of them.

Test if a variable is a transform:
if transform identity:

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

yes

Extract any of the constituent parts:

transform id;
id = identity;
labelat((0,100), "xpart=" & decimal xpart id);
labelat((0,80), "ypart=" & decimal ypart id);
labelat((0,60), "xxpart=" & decimal xxpart id);
labelat((0,40), "xypart=" & decimal xypart id);
labelat((0,20), "yxpart=" & decimal yxpart id);
labelat((0,0), "yypart=" & decimal yypart id);

xpart=0

ypart=0

xxpart=1

xypart=0

yxpart=0

yypart=1

Compare a transform with another transform:

transform T,V;
T = identity;
V = T scaled 2;
if T<V:

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

yes

Comparison of transforms tests xpart, ypart, xxpart, xypart, yxpart, yypart con
secutively. Note that this assigns the most importance to the translation part of the
transformation, which may not be how you think about transformation matrix siz
ing. In some cases it may be better to compare the xxpart and yypart explicitly.

72 MAPS 53 Taco Hoekwater

Wrap-up
This article documents all of the primitive operations relating to paths, pairs, pens,
and transforms.
Normally, onewould useMetaPost with a preloadedmacro package, and such a pack
age will of course define extra operators, functions, predefined variables, et cetera.
For example, plain.mp defines all the extra identifiers already mentioned ear
lier in this article, but also the pair constants left and down, the path con
stants quartercircle, halfcircle, fullcircle and unitsquare, the pen constants
pensquare, penrazor and penspeck, and unary operators dir and unitvector for pairs
(vectors), inverse for transforms, and center for paths. And that is just in the first
200 lines or so of that macro package.
This article does not mention all of those additional definitions on purpose. It is very
long already, and adding just the definitions from plain.mpwould easily add another
20 pages, let alone the number of additions in MetaFun. For practical use of those
macro packages, you will have to look at their documentation. The goal here is to
show you the underpinnings beneath all of those smart macros. Nothing more, and
nothing less.

Taco Hoekwater

