
Taco Hoekwater VOORJAAR 2023 73

Conditions and loops

Abstract
This article is about how to make your program decide what to do next: conditions and
loops.

Conditions
Conditions in MetaPost are both simple and a bit unexpected.
They are simple because there is only one command: if. The syntactical structure of
that command is simple as well: it is the keyword if followed by a condition test that
is closed off by a colon, then the replacement body and finally it ends with the closing
keyword fi. And as one would expect, conditions can contain nested conditions, and
there are provisions for alternatives (else and elseif).
The unexpected bit: conditions can be inserted (almost) everywhere and do not have
to adhere to syntactical structure rules except for their own internal ones. For exam
ple, a nested condition can start halfway through the condition test and end some
where in the middle of the replacement text of the outer condition. This allows for a
very flexible but also sometimes a little confusing or potentially obscure input code.
I find it helps to think of each if as an in-line preprocessor that stops at the next fi.
First, here is the formal definition of ⟨condition⟩:

⟨condition⟩ → if ⟨boolean expression⟩ : ⟨conditional text⟩⟨alternatives⟩ fi

⟨alternatives⟩ → ⟨empty⟩
| else : ⟨conditional text⟩
| elseif ⟨boolean expression⟩ : ⟨conditional text⟩⟨alternatives⟩

⟨boolean primary⟩ → ⟨boolean variable⟩
| true
| false
| (⟨boolean expression⟩)
| begingroup ⟨statement list⟩⟨boolean expression⟩ endgroup
| known ⟨primary⟩
| unknown ⟨primary⟩
| ⟨type⟩⟨primary⟩
| cycle ⟨primary⟩
| odd ⟨numeric primary⟩
| not ⟨boolean primary⟩
| bounded ⟨primary expression⟩
| clipped ⟨primary expression⟩
| filled ⟨primary expression⟩
| stroked ⟨primary expression⟩
| textual ⟨primary expression⟩

⟨boolean secondary⟩ → ⟨boolean primary⟩
| ⟨boolean secondary⟩ and ⟨boolean primary⟩

⟨boolean tertiary⟩ → ⟨boolean secondary⟩
| ⟨boolean tertiary⟩ or ⟨boolean secondary⟩

74 MAPS 53 Taco Hoekwater

⟨boolean expression⟩ → ⟨boolean tertiary⟩
| ⟨numeric expression⟩⟨relation⟩⟨numeric tertiary⟩
| ⟨pair expression⟩⟨relation⟩⟨pair tertiary⟩
| ⟨transform expression⟩⟨relation⟩⟨transform tertiary⟩
| ⟨boolean expression⟩⟨relation⟩⟨boolean tertiary⟩
| ⟨string expression⟩⟨relation⟩⟨string tertiary⟩

⟨relation⟩ → < | <= | > | >= | = | <>

Condition tests
As you can see above, the ⟨boolean variable⟩s true and false are primitive keywords:

if true:
message "hi";

fi

Of course, this is a silly example.
However, new boolean variables can be declared:

boolean mystate;
mystate = true;

Boolean variables can then be used in if expressions:

if mystate:
message "hi";

fi

Note that declared boolean variables start off in the unknown state, just like all other
declared variables.

If you really want to, you can use parentheses to create a nested ⟨boolean expression⟩:

if (mystate):
message "hi";

fi

But as mentioned in the first paragraph of this article, if can be nested inside another
if without needing extra parentheses, so

if (if mystate: false else: true fi):
message "hi";

fi

and

if if mystate: false else: true fi:
message "hi";

fi

are equivalent. Usually MetaPost programmers do not use parentheses in situations
like this, because parentheses can be easily misunderstood as the syntax for a pair.
But in some cases, parenthesis might be needed to resolve syntactic precedence.
This was another silly example: the if mystate: false else: true fi condition
can be written much clearer and shorter using not mystate instead (see below).

Taco Hoekwater VOORJAAR 2023 75

More important is that you can use grouping, because that allows execution of extra
statements ‘on the fly’:

if begingroup
mystate := false ;
mystate

endgroup:
message "hi";

fi

You can test whether a conditional value is (un)known:

if known mystate:
message "known";

fi
if unknown mystate:

message "unknown";
fi

Boolean variables are unknown unless initialized, but indeed known when they are
false as well as when they are true.

You can test for the variable type:

if boolean mystate:
message "boolean";

fi

this works for all other variable types as well (if path mystate: et cetera).

You can ask if something is a cyclic path:

if cycle fullcircle:
message "cyclic path";

fi

For ease of use this test works on anything, but of course it is only true for cyclic
paths.

You can ask if a ⟨numeric primary⟩ is odd:

if odd 5.5:
message "odd";

fi

A non-integer numeric is rounded before testing for even or oddness. However, the
rounding rule in MetaPost is a little weird: for halfway cases like this one, the odd
test rounds rigorously upward to the nearest integer before it decides, so while 5.5
is even, −5.5 is odd.
That is just for the halfway cases, though:

if odd -5.5004:
message "odd";

else:
message "even";

fi

will print out the string even, because −5.5004 rounds to −6 as one would expect.

76 MAPS 53 Taco Hoekwater

A ⟨boolean primary⟩ can be inverted (as seen earlier):

if not known mystate:
message "known";

fi

There are special if tests for objects inside pictures (pictures are explained in detail
in a different article):

if filled p:
message "filled";

fi

There are different keywords for each of the five different types of graphical objects
that can be contained inside pictures:

filled true for filled paths
stroked true for stroked paths
clipped true for clip objects
bounded true for setbounds objects
textual true for typeset text

The textual test may have unexpected results when you use external processing
for included text (for example btex ... etex in plain MetaPost or textext() in
ConTEXt) because such subsystems do not always translate the text to primitive op
erations in a simple way. The textual test works on graphical objects created using
the low-level infont operation, which may or may not be used by such subsystems.

Actually you can apply these tests not just within within (see below about for-loops),
but also on an actual complete picture. Here is a simple example:

draw fullcircle;
fill fullsquare;
for a within currentpicture:

if stroked a:
message "stroked";

fi
endfor
if stroked currentpicture:

message "still stroked";
fi

This works because if their argument is of type picture, the tests test the first item
inside that picture.

Going down the syntax tree, a ⟨boolean primary⟩ can be composed of ⟨boolean secondary⟩
using and:

boolean mycondition;
if mystate and unknown mycondition:

message "state true but condition unknown"
fi

Similarly, a ⟨boolean secondary⟩ can be composed of ⟨boolean tertiary⟩ using or:

if mystate or unknown mycondition:
message "state true or condition unknown"

fi

Taco Hoekwater VOORJAAR 2023 77

And tertiaries can by built up from expressions:

if 5 < 6:
message "universe still sane";

fi

relation tests are: < (less than), <= (less or equal), > (greater than), >= (greater or equal),
= (equal), and <> (not equal).

Alternatives
There is also a possible else clause:

if 5 < 6:
message "universe still sane";

else:
message "the sky is falling";

fi

And lastly, there is a chained elseif possible:

if 5 < 6:
message "universe still sane";

elseif mystate:
message "in limbo";

else:
message "the sky is falling";

fi

where the elseifs can be repeated.
There is always a colon required (marking the end of the condition), even in the lone
else case!

loops
Loops allow bits of code to be repeated until a certain condition is met.
Loops start with a ⟨loop header⟩ (for..., see below) and end with endfor.
Similar to conditions, loops can be inserted in the input nearly everywhere assuming
their replacement text is syntactically valid at that spot, including containing a loop
inside of another loop. However, there is a restriction related to conditions: loops
cannot be interwoven with the actual syntax of a conditional.
For example, this input generates an error:

if true:
for a = 1, 2: % WRONG!

elseif a>0:
message "found";

endfor
fi

endfor

The error happens because in the first loop iteration, when the alternative text fol
lowing the elseif is processed, MetaPost cannot find its ending command (the
elseifwill not be ‘seen’ until the next iteration, and outer fi is unreachable because
it is not part of the loop text. You can still think of loops as in-line preprocessors, just
be careful if conditionals are also involved.

78 MAPS 53 Taco Hoekwater

Here is the formal syntax definitions for ⟨loop⟩:

⟨loop⟩ → ⟨loop header⟩ : ⟨loop text⟩ endfor

⟨loop header⟩ → for⟨symbolic token⟩⟨is⟩⟨for list⟩
| for ⟨symbolic token⟩⟨is⟩⟨progression⟩
| forsuffixes ⟨symbolic token⟩⟨is⟩⟨suffix list⟩
| forever
| for ⟨symbolic token⟩ within ⟨picture expression⟩

⟨is⟩ → = | :=

⟨for list⟩ → ⟨expression⟩ | ⟨empty⟩
| ⟨for list⟩ , ⟨expression⟩
| ⟨for list⟩ , ⟨empty⟩

⟨suffix list⟩ → ⟨suffix⟩
| ⟨suffix list⟩ , ⟨suffix⟩

⟨progression⟩ → ⟨initial value⟩ step ⟨step size⟩ until ⟨limit value⟩

⟨initial value⟩ → ⟨numeric expression⟩

⟨step size⟩ → ⟨numeric expression⟩

⟨limit value⟩ → ⟨numeric expression⟩

⟨exit clause⟩ → exitif ⟨boolean expression⟩ ;

Loop commands
Loops can be created using an explicit expression list:

for a = "1","2","3":
message (a);

endfor

As shown by the formal syntax, you can use := instead of = if you want:

for a := "1","2","3":
message (a);

endfor

There is no difference between these two examples.
Within each loop iteration, the ⟨symbolic token⟩ becomes a freshly created local-only
temporary alias of the current object in the ⟨for list⟩.
With this example:

for a := "1",2,(origin--cycle),d:
show a;

endfor

the local a will in turn be interpreted as a known string, known numeric, known
path, and the symbolic variable d.
If for some reason you need to access the existing symbolic token a from inside the
loop, you have to use quote a as explained in the article about MetaPost definitions,
like you would inside inside a macro definition body.
The iterator variables (a in the example) are essentially identical to formal arguments
inside macro definitions. Iterator variables are read-only.

Taco Hoekwater VOORJAAR 2023 79

You can also start a loop using a numeric progression:

for a = 1 step 1 until 3:
message (decimal a);

endfor

It should be obvious that in this case the three numerics from the ⟨progression⟩ all have
to produce known values.
In most MetaPost macro packages there is a macro named upto available that is
defined as step 1 until. This allows for more natural input:

for a = 1 upto 3:
message (decimal a);

endfor

You can also do a loop over a list of suffixes:

vardef mymessage @# =
message (decimal @#)

enddef;

forsuffixes a = 1, 2:
mymessage.a;

endfor

This type of loop is very useful for (typically short) lists of ‘familiar’ suffixes. For
example, it is used in the plain.mp definitions of dotlabels and penlabels. Again, see
the the article about MetaPost definitions for a detailed description of what suffixes
are.

If the number of possible loop iterations cannot be determined beforehand, you can
start a loop with the keyword forever:

forever:
message ("eternal");

endfor

Especially with forever: (but also with the other loop types), it is also useful to be
able to abort a loop mid-iteration:

a = 0;
forever:

message ("eternal");
exitif a>10;
a := a + 1;

endfor

MetaPost does not have a way to skip to the next iteration but still remain in the
loop (like ‘continue’ in the language C). If you need that functionality, you will have
to enclose some (or all) of the loop body inside a conditional.

Finally, there is a way to loop over a picture's content:

for a within currentpicture:
if stroked a: message "stroked"; fi

endfor

The explanation of stroked and friends was already done earlier in this article, and
pictures are the subject of another article.

80 MAPS 53 Taco Hoekwater

Final words
This was a rather short article, because there are not that many primitives that con
trol program flow inside MetaPost. This may feel as an oversight in the language if
you are used to languages with more elaborate structures like symbolic switch state
ments and generic list filters. But at the most basic level, all program flow is just a
combination of conditionals and jumps. MetaPost's set of built-in operations may be
small and low-level, but it is sufficient. And nothing stops you from defining more
complex flow control commands on top of those built-in operations.
Here is one such example (like the definition of upto seen earlier), the definitions of
range and thru from plain.mp, that allow you to use shortcut ranges inside lists of
suffixes, like so:

labels(1, range 100 thru 124, 223)

These definitions internally use a loop to generate an explicit list of suffixes for the
outer labels command to use.
To end this article, here is another very small but useful definition from plain.mp:

def exitunless expr c = exitif not c enddef;

Taco Hoekwater

