
Taco Hoekwater VOORJAAR 2023 81

Colors and pictures

Abstract
This article is about MetaPost output. MetaPost produces graphics by means of picture
variables that can contain a few different object types. The most important drawing object
types can be colorized, so the first part of this article will talk about color data structures.

Colors
Color models
In order to understand how MetaPost handles color, it is necessary to understand a
little bit about color models. Explaining that prerequisite knowledge in this article
would make it much too long, so the assumption is made that you at least under
stand the difference between the basic principle behind greyscale, RGB, and CMYK
specifications as ways to describe colors.
For once, this section does not start with a formal syntax. The formal specification
would not really help because almost all the information we need cannot be seen in
the expression syntax: parsing colors is easy for MetaPost. The interpretation that
needs to happen after the reading has been done is the complicated bit.
MetaPost internally has four color models, any one of which can be chosen to do
actual output with. Each of the color models also has an associated data type that
can be used to define variables with that color model as its ‘type’:

� No model: boolean
� Greyscale: numeric
� RGB: rgbcolor (this is the initial default color model)
� CMYK: cmykcolor

None of these color models have an alpha/opacity component.
There is an internal variable defaultcolormodel that allows you to set a default color
model:

defaultcolormodel := 5; % RGB

Each of the four color models MetaPost supports has an integer value associated
with it, and these are the numerics used with defaultcolormodel. The numbers are:
No model: 1, Greyscale: 3, RGB: 5, and CMYK: 7.
In case you are wondering: they are all odd because MetaPost uses the values 0, 2, 4,
and 6 internally to signify ⟨unknown⟩ variables in each of these color models.
When you ask MetaPost to create a graphic element (a path or picture, as will be
discussed in the next section) there are primitive operations to specify both the color
model and the color value that is to be used while adding this object to the picture
it will become part of.
The next set of examples use draw as example of creating a graphic element. All of the
examples produce output with the color value ‘black’, depending on how that is done
within that particular color model.The examples use draw as an educational shortcut,
but in reality they apply to one of the primitive operations that will be discussed in
the next section. A typical definition of the draw macro does more work than just



82 MAPS 53 Taco Hoekwater

a single primitive operation, so please focus on the color differences between the
examples only.

First up, there is the option to use the current default:

draw p;

which uses a suitable ‘black’ definition for the current defaultcolormodel.

To use an explicit black greyscale when drawing a path:

draw p withgreyscale 0;
% or its alias:
draw p withcolor 0;

To use an explicit black RGB when drawing a path:

draw p withrgbcolor (0,0,0);
% or its alias:
draw p withcolor (0,0,0);

To use an explicit black CMYK when drawing a path:

draw p withcmykcolor (0,0,0,1);
% or its alias:
draw p withcolor (0,0,0,1);

From the above, you can see that withcolor is smart about what argument it gets
and automatically picks the correct color model based on that value's specification.
It will do the same thing if the value is a named variable. Use of the withcolor alias
is recommended because it is shorter and (when used with color variables instead of
literal values) it allows you to switch to a different color model without having to
manually change every drawing command.
You will probably have noticed that the preceding examples covered only three of
the four color models. The ‘No color’ color mode needs a bit more explanation.
The equivalent of

draw p;

is this:

draw p withcolor true;

Which uses the ‘No model’ color model to explicitly enable the black initialization.
On its own that is not valuable. The real reason for the ‘No model’ is seen when the
color model is used as a negation.
To skip black initialization when drawing a path, you can do this:

draw p withoutcolor;
% or its alias:
draw p withcolor false;

In this situation, the current object (p) will have no color information attached to it
at all. No default ‘black’ will be output, so this object will be drawn with the color
of the preceding object, if there is one. Be warned though that if this is the very first
object to be output, it is likely it will still come out as black because usually printing
systems start by initializing a default black color value.



Taco Hoekwater VOORJAAR 2023 83

Color variables
Variables of all color model types can be created using:

boolean mynocolor;
numeric mygreycolor;
rgbcolor myrgbcolor;
cmykcolor mycmykcolor;

As we saw earlier in the literal color model syntax examples, the input syntax for
rgbcolor is a triplet of ⟨numeric expression⟩s inside parentheses, and for cmykcolor it is
a quartet of ⟨numeric expression⟩s.
Just like pairs have xpart and ypart to access the parts of the variable, there are
dedicated primitives for the RGB and CMYK color model parts as well.
For RGB:

redpart myrgbcolor;
greenpart myrgbcolor;
bluepart myrgbcolor;

For CMYK:

cyanpart mycmykcolor;
magentapart mycmykcolor;
yellowpart mycmykcolor;
blackpart mycmykcolor;

For orthogonality, there is also a primitive for the single greyscale part of a ⟨numeric⟩:

greypart mygreycolor;

These eight primitives can be used in equations, just like their pair counterparts.
The ⟨numeric expression⟩s that are used for the color parts in colors are treated a bit spe
cial when they are used as part of one of the primitive drawing commands. Most
importantly, no error is produced when any of the parts are unknown or outside of
the [0, 1] range.They are just silently clipped to fit within the range. It is your respon
sibility as programmer to make sure that all the combination of ⟨numeric expression⟩s
actually make sense as a color value.

Operations on colors
There are relatively few operations MetaPost can perform on RGB or CMYK colors
as a singular object. Quite a lot of operations can already be done by manipulating
the separate parts that were mentioned in the previous section, so there is little need
for color-specific operators. Still, there are a few operations at ‘top level’ available.
You can multiply or divide color variables by a numeric:

rgbcolor myrgb;
myrgb = (0.5,0.5,0.5) * 1.5;
% => (0.75,0.75,0.75)

Or you can add or subtract two colors of the same type:

rgbcolor myrgb;
myrgb = (0.5,0.5,0.5) + (0.25,0.25,0.25);
% => (0.75,0.75,0.75)



84 MAPS 53 Taco Hoekwater

You can also find the ‘along-the-way’ between two colors:
rgbcolor myrgb;
myrgb = .5[(0.5,0.5,0.5),(0.25,0.25,0.25)];
% => (0.375,0.375,0.375)

And colors can be negated:
rgbcolor myrgb;
myrgb = -(0.5,0.5,0.5);
% => (-0.5,-0.5,-0.5)

Finally, you can compare colors of the same type with each other:
rgbcolor myrgb, myrgba;
myrgb = (0.5,0.5,0.5);
myrgba = (0.25,0.25,0.25);
if myrgb > myrgba:

message "true";
fi

Such tests process each component in order, and stop as soon as they notice a differ
ence.
Operations on color variables like these may seem a bit useless at first glance, but
the MetaPost macro packages that do three-dimensional drawings typically depend
on color-based triplets or quartets as their data structures for points in space.

Pictures
MetaPost uses ⟨picture⟩s to internally store and eventually output graphical items.
Here is the syntax tree for specifying ⟨picture⟩s:

⟨picture primary⟩ → ⟨picture variable⟩
| nullpicture
| (⟨picture expression⟩)

⟨picture secondary⟩ → ⟨picture primary⟩
| ⟨picture secondary⟩⟨transformer⟩

⟨picture tertiary⟩ → ⟨picture secondary⟩

⟨picture expression⟩ → ⟨picture tertiary⟩

⟨addto command⟩ → addto⟨picture variable⟩also⟨picture expression⟩⟨option list⟩
| addto⟨picture variable⟩contour⟨path expression⟩⟨option list⟩
| addto⟨picture variable⟩doublepath⟨path expression⟩⟨option list⟩

⟨option list⟩ → ⟨empty⟩ | ⟨drawing option⟩⟨option list⟩

⟨drawing option⟩ → withcolor⟨color expression⟩
| withrgbcolor⟨rgbcolor expression⟩
| withcmykcolor⟨cmykcolor expression⟩
| withgreyscale⟨numeric expression⟩
| withoutcolor
| withprescript⟨string expression⟩
| withpostscript⟨string expression⟩
| withpen⟨pen expression⟩
| dashed⟨picture expression⟩

There are simple parts like ⟨transformer⟩ and subexpressions in parentheses that can be
skipped because we have talked about those before. The expression part of this syn
tax diagram is quite unremarkable, except for mentioning the one predefined picture



Taco Hoekwater VOORJAAR 2023 85

variable: nullpicture. But this is a really important variable, because nullpicture is
the way to create or reset a picture variable to the ⟨known⟩ (and empty) state.

Creating pictures and adding to them
Before you look at the examples below, there is some information you should know.
The examples use a predefined path with the name heart, like this:

path heart;
heart := (0,0){dir 30}..{up}(20,20)..

{left}(10,30)..
{dir -150}(0,25){dir 150}..
{left}(-10,30)..{down}(-20,20)..
{dir -30}cycle;

and a picture arrow_pic that already contains a simple graphic. The complete defin
ition for that picture is:

path t_,h_,a_;
picture arrow;
arrow := nullpicture;
t_ := (-4,19){down}..{right}(0,15)

{left}..{down}(-4,11);
h_ := t_ shifted (45,0);
a_ := (0,15)--(45,15);
def stroke_ =

withpen pencircle scaled 1
enddef;
addto arrow doublepath t_ stroke_;
addto arrow doublepath a_ stroke_;
addto arrow doublepath h_ stroke_;
arrow := arrow rotated -30

shifted (-25,12);

The last line of an example is typically

shipout A;

We will talk about the shipout command (and the withpen option) a bit later in the
article. Now let's start with the examples ...

You create a new picture variable using picture:

picture A;

however, this creates a picture variable with the ‘unknown’ state. To convert it to a
usable state, you always have to initialize it from another picture, for example:

picture A;
A = nullpicture;

Use an assignment (:=) instead of an equation (=) if you need to clear the receiving
picture.



86 MAPS 53 Taco Hoekwater

You can add another picture to a picture:

picture A,B;
A = nullpicture;
B = arrow;
addto A also B;
shipout A;

Add a stroked path to a picture:

picture A;
A = nullpicture;
addto A doublepath heart;
shipout A;

Add a filled path to a picture:

picture A;
A = nullpicture;
addto A contour heart;
shipout A;

The path must be cyclic for contour to work, because it needs a closed path to fill.

Adding a text label to a picture:

picture A,B;
A = nullpicture;
B = "a" infont "cmr10" scaled 4;
addto A also B;
shipout A;

a
The infont operation is a bit special because it literally creates a picture and therefore
it wants to be pairedwith a non-initialized picture variable.There is no need to assign
nullpicture to B first. In fact, if B is a ‘known’ variable at this point, you will get the
Redundant or inconsistent equation. error.

All three of the ⟨addto command⟩ versions accept a list of options that we will discuss
shortly.
At the expression level, a picture expression can be transformed in all the normal
ways:

picture A,B;
A = nullpicture;
B = arrow;
A := B scaled 2;
shipout A;



Taco Hoekwater VOORJAAR 2023 87

or (for example)

picture A,B;
A = nullpicture;
B = arrow;
addto A also B scaled 2 rotated 60;
shipout A;

Options to the addto command
The addto command forms accept various options.
We have already encountered the color options:

withcolor⟨color expression⟩
withrgbcolor⟨rgbcolor expression⟩
withcmykcolor⟨cmykcolor expression⟩
withgreyscale⟨numeric expression⟩
withoutcolor

It is useful to know that when multiple color options are specified, the last one in
the sequence ‘wins’.
Here are a few examples:

picture A,B;
A = nullpicture;
B = arrow;
addto A also B

withrgbcolor (0.2, 0.7, 0.2);
shipout A;

picture A;
A = nullpicture;
addto A contour heart

withcmykcolor (0.2, 0.7, 0.2, 0);
shipout A;

picture A;
A = nullpicture;
addto A contour heart

withcmykcolor (0.2, 0.7, 0.2, 0);
addto A also arrow

withcolor (0.2, 0.7, 0.2);
shipout A;

picture A;
A = nullpicture;
addto A contour heart

withcmykcolor (0.2, 0.7, 0.2, 0);
addto A also arrow

withgreyscale 0.75;
shipout A;



88 MAPS 53 Taco Hoekwater

picture A;
A = nullpicture;
addto A contour heart

withcmykcolor (0.2, 0.7, 0.2, 0);
addto A also arrow;
shipout A;

The withpen option allows specifying a pen:

picture A;
A = nullpicture;
addto A doublepath heart

withpen pencircle scaled 5;
shipout A;

This also works for the contour case, where it then does ‘filldraw’:

picture A;
A = nullpicture;
addto A contour heart

withcmykcolor (0.2, 0.7, 0.2, 0)
withpen pencircle scaled 5;

shipout A;

The example above uses a single color for both the filling and the stroking. If you
want to use separate colors for each, you have to add two items to the image:

picture A;
A = nullpicture;
addto A contour heart

withcmykcolor (0.1, 0.6, 0.1, 0);
addto A doublepath heart

withcmykcolor (0.2, 0.7, 0.2, 0)
withpen pencircle scaled 5;

shipout A;

With dashed, it is possible to specify a dash pattern to use for stroking a path.This ac
cepts a picture as argument, so that needs be exist first. One of the simplest examples
looks like this:

picture A,B;
A = nullpicture;
B = nullpicture;
addto B doublepath (0,0)--(2,0);
addto B doublepath (6,0)--(8,0);
addto A doublepath heart

dashed B;
shipout A;

Dash patterns are quite special pictures. When the dash pattern gets used, MetaPost
flattens whatever the content of the picture is onto the 𝑥 axis. The left-most and
right-most 𝑥 values define the bounds of the pattern. The set of produced 𝑥 values
will then be used as the pattern to use to stroke the path the dash pattern is applied
to. MetaPost will repeat that whole picture as a pattern if needed, but it will initially
start at 𝑥 = 0. This allows shifting of the pattern.



Taco Hoekwater VOORJAAR 2023 89

Here are the dashes from the example above again, but now applied to a straight line.
I also added a dot to show to (0,0) point:

picture A,B;
A = nullpicture;
B = nullpicture;
addto A doublepath (0,0)

withpen pencircle;
addto B doublepath (0,0)--(2,0);
addto B doublepath (6,0)--(8,0);
addto A doublepath (0,0)--(48,0)

dashed B;
shipout A;

Note that the dash picture produces a repeating pattern 2 units on, 4 units off, 2 units
on. The middle dashes in the example output are the same width as the gaps because
they consist of the last part of the first repetition and the first part of the second
repetition (and that repeated five times).
Shifting the pattern to the left by two units allows it to start with a gap.

picture A,B;
A = nullpicture;
B = nullpicture;
addto A doublepath (0,0)

withpen pencircle;
addto B doublepath (0,0)--(2,0);
addto B doublepath (6,0)--(8,0);
addto A doublepath (0,0)--(48,0)

dashed (B shifted (-2,0));
shipout A;

There are lots of rules for dash patterns because MetaPost typically uses primitive
support in the backend to handle the actual dashing (e.g. setdash for Encapsulated
PostScript output):

� A dash pattern should not contain text or filled objects (so only non-cyclic paths
are allowed)

� None of the paths may overlap when projected on the 𝑥 axis (and all the 𝑦 coor
dinates are ignored)

� Any used pens (withpen) are ignored.
� Color settings (withcolor c.s.) are simply not allowed at all.

The last two limitations come from the fact that a dash patterns uses the pen and
color of the object they are applied to. Finally, dashed does not work well with pens
other than pens derived from pencircle. Again, this is because of limitations in the
backend(s).

The final two options are for specifying pre- or postscripts:

withprescript⟨string expression⟩
withpostscript⟨string expression⟩

These can be useful when generating EPS or SVG output. It is not possible to give an
actual example inside this (ConTEXt-processed) article, because ConTEXt uses these
primitives for its own purposes, unfortunately.



90 MAPS 53 Taco Hoekwater

But here is a listing of an example that assumes the default EPS output mode in
standalone MetaPost:

picture A;
A = nullpicture;
addto A doublepath (0,0)

withprescript "start1"
withprescript "start2"
withpostscript "stop1"
withpostscript "stop2";

shipout A;
end.

When the above is processed by MetaPost, it will create an output file containing the
typical EPS preamble followed by:

start2
start1
0 0 0 setrgbcolor 0 0 dtransform truncate idtransform setline...

newpath 0 0 moveto 0 0 rlineto stroke
stop1
stop2
showpage

The withprescript and withpostscript options are therefore a lot like special in
TEX: if you are familiar with PostScript (or SVG, for that output format), you can use
these options to tweak the output to support features that are not possible within
MetaPost itself, like for example spot colors or transparency.
Two uses of each option are included in the example to show off the relative ordering
in the output when either one of them is specified more than once.

Picture commands
Possibly the most important command that can be used with a picture is shipout,
because that instructs MetaPost to open an output file for the picture and convert its
contents to the correct format. Using the command itself is simple:

shipout A;

This uses the internal variables outputformat and outputtemplate to construct the
filename to be used.

There is a command to clip a picture to a path:

picture A;
path p;
...
clip A to p;

This path can have any shape, but it must be cyclic.

Set the bounding box of a picture to a path:

picture A;
path p;
...
setbounds A to p;

the path must be cyclic, and is always simplified to a rectangle based on the smallest
and largest 𝑥 and 𝑦 values of the path's explicit points.



Taco Hoekwater VOORJAAR 2023 91

You can ask for the corners of a picture:

picture A;
pair t;
...
t = llcorner A;
% also lrcorner, urcorner, ulcorner

Finally, it is possible to loop over de contents of a picture using the within operator.
Using the for ... within operation, it is possible to ask for the constituent parts of
each of the drawing items in a picture. The part names are given in a condensed
form in the following examples. By recombining the extracted parts, it is possible to
completely reconstruct a picture.
For these tests, you may have to check the type with an if test (one of filled,
stroked, clipped, bounded, textual, as discussed in the article about conditionals)
first, because not all graphical objects have all parts.
Here is the list:

Pre- and postscripts:

string part;
for v within A:

part := prescriptpart v;
% postscriptpart
endfor

Transformation parts:

numeric part;
for v within A:

part := xpart v;
% ypart xxpart yypart xypart yxpart
endfor

Color model and/or color part

numeric part;
for v within A:

part := colormodel v;
endfor

Color parts (RGB)

numeric part;
for v within A:

part := redpart v;
% bluepart greenpart

endfor

Color parts (CMYK)

numeric part;
for v within A:

part := cyanpart v;
% magentapart yellowpart blackpart

endfor



92 MAPS 53 Taco Hoekwater

Color parts (grey)

numeric part;
for v within A:

part := greypart v;
endfor

The dash part (which is itself a picture):

picture part;
for v within A:

part := dashpart v;
endfor

The pen part:

pen part;
for v within A:

part := penpart v;
endfor

The path part:

path part;
for v within A:

part := pathpart v;
endfor

The text part of a label:

string part;
for v within A:

part := textpart v;
endfor

The font part of a label:

string part;
for v within A:

part := fontpart v;
endfor

Summary
That wraps up this article about the primitive operations on pictures and colors. As
usual, many of the commands mentioned here are normally hidden behind macro
definitions. In particular, as far as I know all of the MetaPost macro packages define
a macro draw for adding stroked paths and a macro fill for adding filled paths to
a picture. These are then used in combination with a predefined picture variable
called currentpicture. Macros packages usually predefine the primary RGB colors
red, green, and blue as well.
Maybe more higher level commands are available. For that, you will have to check
the documentation of the macro package you are using.

Taco Hoekwater


