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De Nederlandstalige TEX Gebruikersgroep (NTG) is een vereniging die tot doel
heeft de kennis en het gebruik van TEX te bevorderen. De NTG fungeert als een
forum voor nieuwe ontwikkelingen met betrekking tot computergebaseerde document-
opmaak in het algemeen en de ontwikkeling van ‘TEX and friends’ in het bijzonder.
De doelstellingen probeert de NTG te realiseren door onder meer het uitwisselen van
informatie, het organiseren van conferenties en symposia met betrekking tot TEX en
daarmee verwante programmatuur.
De NTG biedt haar leden ondermeer:

@ Tweemaal per jaar een NTG-bijeenkomst.
@ Het NTG-tijdschrift MAPS.
@ De ‘TEX Live’-distributie op DVD/CDROM inclusief de complete CTAN

software-archieven.
@ Verschillende discussielijsten (mailing lists) over TEX-gerelateerde onderwerpen,

zowel voor beginners als gevorderden, algemeen en specialistisch.
@ De FTP server ftp.ntg.nl waarop vele honderden megabytes aan algemeen

te gebruiken ‘TEX-producten’ staan.
@ De WWW server www.ntg.nl waarop algemene informatie staat over de NTG,

bijeenkomsten, publicaties en links naar andere TEX sites.
@ Korting op (buitenlandse) TEX-conferenties en -cursussen en op het lidmaatschap

van andere TEX-gebruikersgroepen.

Lid worden kan door overmaking van de verschuldigde contributie naar de NTG-giro
(zie links); vermeld IBAN zowel als SWIFT/BIC en selecteer shared cost. Daarnaast
dient via www.ntg.nl een informatieformulier te worden ingevuld. Zonodig kan
ook een papieren formulier bij het secretariaat worden opgevraagd.
De contributie bedraagt ¤ 35. Voor studenten geldt een tarief van ¤ 18. Dit geeft alle
lidmaatschapsvoordelen maar geen stemrecht. Een bewijs van inschrijving is vereist. Een
gecombineerd NTG/TUG-lidmaatschap levert een korting van 10% op beide contributies
op. De prijs in euro’s wordt bepaald door de dollarkoers aan het begin van het jaar. De
ongekorte TUG-contributie is momenteel $105.

Afmelding kan met ingang van het volgende kalenderjaar door opzegging per e-mail
aan de penningmeester.

MAPS bijdragen kunt u opsturen naar maps@ntg.nl, bij voorkeur in LATEX- of
ConTEXt formaat. Bijdragen op alle niveaus van expertise zijn welkom.

Productie. De Maps wordt gezet met behulp van een LATEX class �le en een ConTEXt
module. Het pdf bestand voor de drukker wordt aangemaakt met behulp van pdftex 1.40
en luametatex 2.09 draaiend onder MacOS X 13. De gebruikte fonts zijn Linux Libertine,
het niet-proportionele font Inconsolata, schree�oze fonts uit de Latin Modern collectie,
en de Euler wiskunde fonts, alle vrij beschikbaar.

TEX is een door professor Donald E. Knuth ontwikkelde ‘opmaaktaal’ voor het let-
terzetten van documenten, een documentopmaaksysteem. Met TEX is het mogelijk
om kwalitatief hoogstaand drukwerk te vervaardigen. Het is eveneens zeer geschikt
voor formules in mathematische teksten.
Er is een aantal op TEX gebaseerde producten, waarmee ook de logische structuur van
een document beschreven kan worden, met behoud van de letterzet-mogelijkheden
van TEX. Voorbeelden zijn LATEX van Leslie Lamport, AMS-TEX van Michael Spivak,
en ConTEXt van Hans Hagen.
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Redactioneel

Dit is een speciale uitgave van de Maps met daarin vijf artikelen van de hand van
Taco Hoekwater over diverse fundamentele zaken in MetaPost.

Door middel van deMaps willen we u op de hoogte houden van ontwikkelingen, ook
om daarmee onze leden te danken voor hun trouwe steun aan de TEX ontwikkelaars.
Verder bieden we ruimte aan lezers die anderen laten delen in hun ervaringen met
TEX, MetaPost, fonts en aanverwanten. Aarzel dus niet ons artikelen te sturen. Een
halve pagina is al heel leuk, meer mag ook, graag zelfs. Het hoeft geen ‚zware kost’
te zijn want het is voor lezers bijvoorbeeld al heel interessant te lezen hoe anderen
TEX gebruiken. Dus een artikeltje als „dit doe ik met TEX, zo doe ik dat en nu kun jij
het ook” is zeer welkom!

Hoewel het internet tegenwoordig een belangrijke bron van informatie is, blijft pa­
pier een functie vervullen binnen de vereniging. Dat past immers bij TEX!

Veel leesplezier,

Uw redactie
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Introduction

What you have here is a series of articles about details of the MetaPost programming
language.

The target audience of these articles are users that are already somewhat familiar
with simple graphics in MetaPost but want to have a clearer understanding of the
language to make better use of its possibilities.

Each of the articles discusses a specific subsystem and together they should provide
a solid base for improving the reader's knowledge of MetaPost.

“Variables” will attempt to explain the various uses of type declarations, saves, and
variable definitions, “Definitions” tries to cover everything you need to know about
writing your own general purpose definitions, “Paths, pairs, pens and transforms”
tries to explain everything related to paths, pairs, pens and transforms, “Conditions
and loops” is about making your program decide what to do next, and finally “Colors
and pictures” is all about MetaPost output.

There is a lot of information in this set of articles, but this is not a manual. The actual
user manual for MetaPost is mpman.pdf and is probably installed on your computer
already as part of TEXLive. If you cannot find it, or if you do not have TEXLive at all:
there is an only version at the tug website at https://www.tug.org/docs/metapost
/mpman.pdf. The point of this set of articles is not to replace that manual, but to
elaborate and clarify some parts of it.

Happy MetaPost-ing!

Taco Hoekwater
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Variables
Sparks, Tags, Suffixes and Subscripts

Abstract
MetaPost variables are rather complicated things. This article will attempt to explain the
various uses of type declarations, saves, and vardefs.

Introduction
MetaPost inherits almost all of its syntax and internal structures from Metafont. Un­
fortunately, it did not inherit Metafont’s documentation. The MetaPost manual by
John Hobby (and later extended by the current development team) does a fine job
of explaining how to make simple use of MetaPost and it explains where it differs
from Metafont, but it is very light on details. The implicit assumption is that you
should have read the Metafont book by D. E. Knuth and if you want to know more
you should ask a Metafont guru for help.
That perhaps made sense in the nineties, but nowadays Metafont usage has dwindled
to nothing (whereas MetaPost continues to be developed) and Metafont gurus are
hard to find. The spiral-bound (cheap) version of the Metafont book is out of print,
and even if you could find a copy of the Metafont book, it is not an easy read. In the
late eighties when D. E. Knuth wrote Metafont, the terminology used for describing
programming languages was quite different from what is popular today. Even back
then, Metafont was an odd and very original language, with unfamiliar concepts. It
all results in a book (and a programming language) that can only be used fully after
a lot of careful study.
An immediately obvious weird and powerful thing about the Metafont and MetaPost
languages is that the programs not only have the capability of solving linear equa­
tions, but also define a syntax to specify such equations in a partial, deconstructed
format.
Less obvious is that Metafont and MetaPost variable names are quite special con­
structs.
In my opinion, the MetaPost manual as well as Hans Hagen’s MetaFun manual do
a fine job to explain linear equations but both authors are short on details when it
comes to the syntax for identifiers (and variable names are an important part of such
identifiers).
What follows is my attempt at explaining how variable names work in Metafont
and MetaPost. There are other peculiarities of the programming languages that I
could also write about, but I believe variable names are the most important things to
explain for beginners.

Tokens, sparks and tags
As I assume all readers of this article are TEXies, I dare predict that you are familiar
with the concepts of ‘primitives’ and ‘macros’; if you did any kind of macro pro­
gramming in TEX, you will also understand what a ‘token’ means to TEX.
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While TEX interprets your input file, it converts the bytes it finds into tokens. Many
tokens are just letters of text to be typeset. Some of the other tokens are primitive
operations to TEX itself, like e.g. \par. Other tokens are macro names, like \section.
The latter are in turn expanded, producing more tokens to be interpreted: text to
be typeset, primitive operations, or perhaps other macros (that will be expanded in
turn as well). In the end, your input converts itself into tokens that execute primitive
operations of the typesetting engine.
Even if you are not so familiar with the intricacies of TEX, these are concepts common
to any macro language and lexicographical analyzer and parser.
In TEX, (almost) all tokens are also commands for the engine. The only exceptions
are things like space tokens to end number scanning and macro arguments that are
stored for later use. Whenever you see a symbolic token like \par, you can be sure
that it instructs TEX to do something at some point. In fact, for a word in a TEX
paragraph, each individual character is a token that instructs TEX to typeset the glyph
(an actual drawing of a particular character in a particular font) associated with it.
And when TEX sees a digit in the right-hand side of an assignment like \count0=123,
each separate digit from left to right instructs TEX to multiply the present value of
\count0 (starting at zero) by ten, and then successively add that digit.
TEX has only two types of tokens: ‘control sequence tokens’ and ‘character tokens’.
Control sequence tokens are used for multi-letter constructs like primitive and macro
names, and character tokens are used for everything else. Tokenization in TEX is con­
trolled via the so-called \catcode or category code of the various input characters.

MetaPost has a somewhat different repertoire of tokens. There are ‘numeric tokens’
(floating point numbers), ‘string tokens’ (stuff between double quotes), and ‘symbolic
tokens’ (everything else). Numeric and string tokens are quite straightforward and
can be explained succinctly but symbolic tokens have to be explained in detail be­
cause they are quite different from control sequence tokens in TEX.
MetaPost does not have the \catcode command of TEX. However, it does have its own
internal list of category codes, and those internal categories are used to construct
tokens using a fairly short (but perhaps unexpected) list of rules.
When MetaPost is not in an exceptional situation like during the processing of btex
...etex or readfrom where the standard MetaPost language conventions do not apply,
it processes input text as follows:
If the next thing ...

� is a space character, it is ignored;
� is a period character, it is ignored unless followed by another period or by a digit

(see below for those);
� is a percent sign, everything further is ignored until an end of line character is

seen;
� is a decimal digit or a period followed by a decimal digit, a numeric token is

scanned and created;
� is a double (ascii) quote, a string token is scanned and created;
� is a left or right parenthesis, a comma, or a semicolon, a symbolic token is cre­

ated with that value;
� is something not matched above, then it combines with the longest following

sequence of characters in the same internal category as itself to become a single
(multi-letter) symbolic token.
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Creation of numeric tokens
Once the start of a numeric token has been detected, MetaPost runs a numeric
token scanner that is specific to the current numbersystem. In the default scaled
mode, a numeric token is the expected combination of digits and a dot. In the other
numbersystem modes, an optional exponent can follow immediately afterwards. An
exponent specification starts with the letter e or E, followed by an optional + or -, and
then a series of digits. No intervening spaces are allowed (this limitation is present
to ensure that the new syntax for numeric tokens has as small as possible an impact
on existing MetaPost input).
Some examples of valid numeric tokens in all number systems are:

12
0.001
.2

The double and decimal number systems also allow numeric tokens to be created
from this input:

12E0
1e-3
.000000002E8

Creation of string tokens
Once the start of a string token has been detected, MetaPost gobbles up characters
from the current input line until it finds the matching double quote. The resulting
string token consists of the letters in between those double quotes.

Creation of symbolic tokens
When MetaPost sees a left or right parenthesis, a comma, or a semicolon, it immedi­
ately creates a symbolic token with just that value.
The next rule in the list of processing actions mentioned above is what makes e.g.
‘beginfig’ be a single token. The actual internal categories (‘classes’, in MetaPost
jargon) are defined by the list below, and they highlight some of the oddness of the
MetaPost input language.

AZ _ az
< = > : |
‘ ’
+ -
/ * \
! ?
# & @ $
^ ~
[
]
{ }
.

For example, this nonsensical input:

beginfig.a ====>;

produces four symbolic tokens: ‘beginfig’, ‘a’, ‘====>’, and ‘;’. The period character
and the space are ignored per the rules above.



8 MAPS 53 Taco Hoekwater

Some things to meditate on
The statements above explain the existence of some fairly common MetaPost sym­
bols such as ‘beginfig’, ‘:=’, ‘..’ and ‘---’.
But it also means:

� that ‘!?!’ and ‘[[[[’ are valid symbols, which could be defined if you so desired;
� that there can never be symbolic tokens containing spaces, percent signs, double

quotes, or digits;
� that period characters are often (but not always) equivalent to spaces (in fact,

MetaPost usually replaces spaces with periods in log reports);
� that ‘a.b.c’ is equivalent to ‘a b c’;
� that numeric tokens are never negative (negative numbers are composed of two

tokens);
� that string tokens are limited to a single line and never contain explicit double

quotes (those strings need to be created using char).

Before reading on, make sure the above makes sense to you. Until you grasp these
tokenization rules, you will be constantly surprised by what MetaPost thinks your
input means.

Symbolic token processing
In MetaPost, it is not necessarily the case that a symbolic token is actually a command
for the engine (as is the case for TEX-derived engines).
Symbolic tokens in MetaPost come in two possible types: those that are actually
commands, and those that are not. To make it easier to talk about this distinction,
the tokens that do signify commands are called sparks, and the ones that do not are
called tags.
By definition, sparks are symbolic tokens that either refer to primitive operations
(e.g. :=, path, and withcolor) or are defined to be macros (like beginfig and fill).
Because those are the two groups of things that MetaPost considers ‘commands’.
Symbolic tokens that do not refer to commands (tags) are the building blocks to con­
struct variable names. All variable names are always constructed using only symbolic
tokens that are tags, never sparks (also numeric tokens can be part of a variable
name, but that will be covered later. For now, it is important to stress that sparks
like path cannot be part of variable names).
In a simple assignment like

w := 12pt;

there are four symbolic tokens and one numeric token: w, :=, 12, pt, and ;.
The w and pt are tags. The other two symbolic tokens (:= and ;) are (normally)
sparks.
There was the word ‘(normally)’ in the previous sentence. That is because like in
TEX, MetaPost primitive operations are separate from the symbolic tokens that are
normally used to execute them. There are options available in MetaPost to remap
those connections, as will be explained in following sections.
Note that pt is actually a variable name. MetaPost does not have any built-in dimen­
sions, so the typical pt, cm, … specifications are actually variables with a numeric
value that are used as a multiplier for its native system, which is PostScript points.
For example, the typesetting point pt is defined in the plain.mp macros as a numeric
variable with the value 0.99626 (=72/72.27) as well as cm with the value 28.34646
(=72/2.54).
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Variable names, suffixes and subscripts
Before getting into the actual details of variable names, I should explain some pecu­
liarities of actual variable values in MetaPost.
In MetaPost, variables are always single objects: there are no arrays or dictionaries
or objects or other compound variables in the language at all. Some language con­
structs may make it appear as if there are arrays and object structures, but MetaPost
handles these constructs in a completely different manner from just about any other
programming languages that you may be used to.
If you see x1 in a MetaPost language definition, this refers to a variable that is actually
called ‘x1’. It is not the entry at index ‘1’ in the array ‘x’!

Variables in MetaPost are always strongly typed. That type comes from a fixed list
of value types that are compiled into the binary and cannot be altered. The list of
variable types is longer than average for a programming language: besides variable
types for numerics and strings, MetaPost also has types for pairs (of numbers), paths,
colors, et cetera. Those more complex variable values have components that can be
queried and extracted separately.
For example, a variable valued as pair (the type normally used to express two-di­
mensional points) internally consists of two numerics that can be accessed using the
xpart and ypart operations. While variable values are always single objects, that
does not mean that they are always a single primitive value.

MetaPost deals with the lack of compound variables in a very interesting (or odd,
depending on your viewpoint) way: variable names in MetaPost are not limited to
a single symbolic token. Instead, variable names can be constructed using partial
names (like firstnames and surnames, if you will).
The separate parts of a variable name can be either tags (as explained above) or
numeric values.
A simple example is an equation like:

x1 = 12pt;

where the x and 1 are two parts that are actually combined into a single variable
name.
So what exactly is a variable name, then? The parsing rules say that a variable name
is built up from a tag optionally followed by a suffix. A suffix in turn is either a
subscript or a tag, possibly followed by yet another suffix, and so forth. A subscript
is either a numeric token, or a bracketed numeric expression (which then should
result in a known numeric value).
There is no need to pre-declare numeric variables in MetaPost. Combined with the
above parser rules means input like

x3ab c[2.1+1] f.4 = 12pt;

is perfectly valid. It defines a single variable with seven parts to its name: x, 3, ab,
c, 3.1, f, and .4, having a numeric value of 11.95514 (12 times 0.99626). In ‘normal’
MetaPost jargon, it starts with a tag and has a suffix consisting of six parts. The first,
fourth, and last suffixes are subscripts, and the other three are tags.
A subscript can be an immediate numeric token like 3 and .4 in the above example,
or it can be a bracketed expression like [2.1+1] that directly results in a numeric
value. The brackets are required for MetaPost to interpret the subscript as an ex­
pression. Without them, the expression becomes part of the enclosing expression,
which itself is usually an equation.
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For example:
x3ab c 2.1+1 f. 4 = 12pt;

is also syntactically correct input (without brackets and with a space between f.
and 4). However, it defines an equation for two variables:

x[3]ab.c[2.1] + 1*f[4] = 12pt;

This demonstrates that it is quite possible to write very obscure MetaPost code. To
avoid confusing MetaPost (and yourself!) my advice is to always use square brackets
around floating-point variable name segments, and to always use periods instead of
blanks in between tags.
Numeric tokens cannot be negative, but the result of a numeric expression can be
negative. The ability to use a numeric expression in a subscript is very powerful as it
can contain calculus operations and even contain macro calls. The only requirement
is that it has to produce a known numeric value. The following is allowed (although
likely not very useful):

a[- floor uniformdeviate 20 + 5] = 12pt;

The parsing rules mean that
� a string token can never be part of a variable name,
� and neither can any spark,
� and a variable name never starts with a numeric token or numeric expression.
The restriction on sparks in variable names is a cause of common errors in MetaPost
input. Because numeric variables do not need to be predeclared in MetaPost, it is
quite common to invent variable names on the fly. Chances are that at some point
one of those spontaneous variable names uses a spark in some part of it, and an
error will be reported by MetaPost.
When this happens, the actual error message will depend on the spark’s meaning,
which can be quite confusing, indeed.

Declarations
Earlier it was mentioned that there is no need to pre-declare numeric variables. But
numeric is not the only variable type that MetaPost knows about; the other types do
need to be predeclared (otherwise they default to the numeric type).
In the simple cases, declarations look like this:

boolean mybool;
cmykcolor mycolor;
color mycolor;
numeric mynumber;
pair mypair;
path mypath;
pen mypen;
picture mypic;
rgbcolor mycolor;
string mystring;
transform mytransform;

For a total of ten types (color is a pre-defined alias for rgbcolor).
While numeric variables do not need to be predeclared, the numeric keyword is still
useful. That is because all declaration commands completely wipe out the current
meaning of the to-be-declared object, whatever it is (as does save, to be described
later).
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For a slightly more complex case, you can declare multiple variables at the same
time:

path p, q;

The argument to a declaration command is not exactly a variable name (or even a
list of those), it is a bit more complicated than that: for starters, each element of
the argument list is allowed to be a spark. Of course, after the declaration has been
processed, any such sparks will become variable names (as they are now tags). This
may be what you want, but it usually isn't. MetaPost does not give any warnings
about redefining sparks in this way, so you have to be careful!
The statement

path path;

is allowed. It will be the last working path declaration in the current run, though, as
it will turn path into a variable name as well as making the original meaning of path
inaccessible.
Besides making sure you do not redeclare something important like end or z, also
make sure not to have empty entries in the declaration list. If you do, the rule above
will happily declare a variable for you whose name starts with a comma, in the
process turning , into a tag and thus breaking every following statement that uses
a comma anywhere in it!
The second big special thing about declaration lists is that they are not allowed to
contain direct numeric tokens, and the only allowed bracketed numeric expressions
are ones that are completely empty. This is because MetaPost insists that all variables
whose names are identical except for subscript values have the same type.
You cannot have a1 be a pair and a2 be a color, for example (nor is this a very good
idea from a code comprehension point-of-view). To enforce this rule, you can only
use so-called ‘collective subscripts’, and the declaration would look like this:

pair a[];

After this, both a1 and a2 become unknown variables of type pair. To be more precise:
all variables whose name consists of an initial tag a followed by a single subscript
are now pairs.
If you are familiar with other programming languages, you may be tempted to look
at the above example as an array declaration. But it is not: it just tells MetaPost that
any variable with a combined name consisting of a followed by a numeric part will
be of type pair. This does not prohibit you from using a as if it is an array, but it is
important to realise that MetaPost does not actually see it that way.
Internally, subscript segments are stored as a linked list of numeric values in as­
cending order (the difference can be significant in terms of performance, especially
for multi-dimensional pseudo-arrays).
An important advantage of how collective subscript declarations like the one above
work is that it has no influence on any other variables whose names are not of
the form a plus subscript. For example a.colr can still be a color, and if a pair
a.direction pre-existed, then it will not have changed at all. Also, the variable a it­
self in not affected (and defaults to the numeric type unless declared otherwise). Even
a nested set of variable names with each level having a different type is acceptable:

pair a;
path a[];
color a[]c;

Although, I would not necessarily recommend setups like this in actual use, as it gets
confusing to yourself rather quickly.



12 MAPS 53 Taco Hoekwater

A small warning: do not forget that the statements
path a.path;
color a.color;

are both illegal because they would result in variables names with sparks in them.
You need something like this instead:

path a.pth;
color a.col;

Internal quantities
Besides user-defined variables, MetaPost also has a number of internal variables that
are used by the MetaPost executable itself while processing your input. These are offi­
cially called ‘internal quantities’. To keep things simple, all the names of the internal
variable names are a single symbolic token.
Most have numeric type:

tracingtitles
tracingequations
tracingcapsules
tracingchoices
tracingspecs
tracingcommands
tracingrestores
tracingmacros
tracingoutput
tracingstats
tracinglostchars
tracingonline
year
month
day
time
hour
minute
charcode
charext
charwd
charht
chardp
charic
designsize
pausing
showstopping
fontmaking
linejoin
linecap
miterlimit
warningcheck
boundarychar
prologues
truecorners
defaultcolormodel
mpprocset
troffmode
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restoreclipcolor
numberprecision
hppp
vppp

And a few have the string type:

outputtemplate
outputfilename
outputformat
outputformatoptions
jobname
numbersystem

It is not possible to change the type of these variables. If you try to do a type dec­
laration anyway, you will end up with a new user-defined variable that happens to
have the name of an internal quantity but is in fact not related to it at all.
From then on, the internal quantity has become inaccessible from within your code,
even though the variable itself still exists. In situations where MetaPost needs to use
that internal variable, it will use the value it held before you made it inaccessible.
There is a command to make new internal quantities: newinternal. Its usefulness
is limited since proper variables can do a number of things that internal quantities
cannot, but access to internal quantities is a little bit faster than normal variables,
and that is even true for user-defined ones. On the other hand internal quantities can
only receive known values. It can be quite useful to define new internal quantities
for numerical constants.
For example, plain.mp defines eps as:

newinternal eps;
eps := .00049;

For the internal MetaPost parser, these internal quantity names pose a bit of a prob­
lem. Because they are variables, they are actually tags. However, internal quantities
cannot be suffixed or subscripted. This means the definition of a variable as given
earlier on is not quite correct. To be precise, a variable is either a single tag match­
ing one of the currently known internal quantities, or it is the construct with a tag
optionally followed by suffixes as explained earlier.

Save and interim
The save command functions in a very straightforward way: it processes a list of
symbolic tokens (either sparks or tags), saves the current meaning or value in a
safe place, and then converts the symbolic token into an undefined tag. It also makes
every sub-variable that starts with that specific symbolic token be undefined. The
save command operates on individual symbolic tokens, so it cannot be used to save
just some sub-part of a segmented variable. It does not wipe-out and replace the
previous variable as a new declaration would but instead, it makes the tag available
locally.
The normal use for save is within a group starting with begingroup and ending with
endgroup, like within beginfig ...endfig.
The traditional beginfig macro contains the equivalent of

save x,y;

to make sure that any values of type x[] and y[] outside of the current figure do not
have any undue influence, while still saving them for potential later use.
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If you use save twice within a single group, it will actually do the saving and un­
defining two times. However, since both are unwound at the endgroup, whatever
you saved first will always win out once you are outside of the group again.

For internal quantities, using save would not work, because the symbolic token be­
comes undefined and therefore unassignable. That is why there is a separate com­
mand for temporarily altering and internal quantity. The argument to interim looks
like a normal assignment. The only difference is that the previous value is restored
at the end of the group.

interim warningcheck := 0;

As with save, repeated calls do perform extra saves, but at the endgroup they are all
unwound in save order, so the first saved value wins.

Let and def
A quick note on let and def for those of you that are familiar with their counterparts
in TEX: while the principles are roughly equivalent in both languages, there are some
important differences. MetaPost does not have user-controlled macro expansion, and
it handles grouping in a completely different way, so the typical prefixes like \global
and \expanded of TEX do not exist.

The let command makes one symbolic token be an alias for another symbolic token.
It is typically used just before redefining a spark, but it can also be used to get more
readable input. For example:

let graycolor = numeric ;

will improve readability of the input if you routinely want to defined specific
greyscale colors. It is important to realise that graycolor is now a spark, because
numeric is a spark.
The downside to let is that it only works (quite as you would expect) on sparks.
The exact details are as follows:
� If the token on the left-hand side is a tag that starts a user-defined variable, then

all variables that start with that tag become undefined (so besides redefining the
token itself, it also destroys the whole variable structure);

� if the token on the right-hand side is a tag that starts a user-defined variable,
then the left-hand side becomes undefined but the variable(s) on the right-hand
side are left as-is;

� and if the token on the right-hand side is one of a set of currently defined delim­
iters, then the let will silently produce a bad delimiter definition (for matching
delimiters there is a separate delimiters command).

But the exact details are not so important. The important thing to remember is that
the let command is meant to provide aliases for sparks and cannot really be used
for anything else other than that.
The def command is much more flexible. However, if you want to actually redefine
a spark using def but still need the original meaning available somehow, then you
have no choice but to first use let to store that original meaning in an alias.

As was implied earlier, def (and its cousins primarydef, secondarydef, and
tertiarydef) produce sparks (since macro names are sparks according to the to­
kenization rules). This means that any name defined using a def command can no
longer be used as part of the name of another variable. If that were allowed, it would
be expanded immediately to its replacement text, and the macro’s replacement text
would be used instead of its name.
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To elaborate, assuming there is a definition like

def up = (0,1) enddef;

then the variable name a.up would be impossible until that definition goes out of
scope again, because MetaPost would actually interpret a.up as a (0,1); which then
produces a syntax error (unless a is actually a macro itself that requires two delimited
arguments).
Since this article is about variables and variable names, I do not want to delve into
the details of the def command. But perhaps this would be a good topic for another
article.

Variable definitions
The restriction that def always produces a spark is why there is a dedicated com­
mand for creating macros that are actually tags. This command is called vardef. In
simple cases, the use of vardef is very similar to using def.

def stuff =
fill unitsquare

enddef;

and

vardef stuff =
fill unitsquare

enddef;

appear equivalent when they are executed. But there is a difference in execution: the
vardef version actually expands into:

begingroup
fill unitsquare

endgroup

The extra grouping makes the macro expansion syntactically equivalent to a variable
when the MetaPost needs to see an expression next. This is important because it
avoids confusing the MetaPost parser.
This works because grouping in MetaPost is a bit unusual (yet another way in which
MetaPost is unusual!) in that the begingroup ...endgroup block is not only seen as
a list of statements grouped together. It can also be used as an expression. When
viewed as an expression (which is usually the case for vardef macro expansions), all
the statements in the group are executed as normal, but the last expression inside
the group (it could be empty) is taken as the value to use for the expression outside
of the group. It is precisely this oddity of grouping that makes vardef definitions
syntactically equivalent to variables.
Incidentally, it also makes grouping behave similar to an anonymous function call
with one return value.
The extra grouping usually will not matter, but it means you cannot do things like

stuff withcolor green;

which makes sense once you realise that vardef is supposed to equate to a variable.
If we assume for a moment that there was instead a normal path variable named
stuff, then the call would look like this:

fill stuff withcolor green;

and indeed, after adjusting the vardef to
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vardef stuff =
unitsquare % earlier 'fill' deleted

enddef;

it works just fine.
In some cases, the implicit extra grouping is an impediment, and it would be better
to use def. But sometimes that extra grouping level can be a bonus: it allows trivial
macro definitions that need grouping to be a bit shorter. Still, this is only a very
minor advantage, and the MetaPost manual explicitly warns against abusing vardef
just for grouping.
So why is vardef useful?
First, because vardef defines a new tag instead of a spark, the symbolic token itself
can still be used in the middle of an unrelated compound variable name. Occasionally,
you may want to define a macro with a name that would also make sense as a suffix
to another variable. The Metafont book highlights the example of dir. The variable
macro dir is defined as a vardef precisely because doing it this way means it is still
legal to have a pair variable named p5dir.
Also, because vardef produces a tag, it can be used to create variable ‘names’ that
are actually macros. This is not just the case in standalone situations like with dir.
Macros that are vardef’ed can also be used at the end of compound variable names.
For example, you could have:

rgbcolor p[]col;
vardef p[]dir=

(#@dx,#@dy)
enddef;
p5col = red;
p5dir = up;

and that vardef definition would not interfere with the rgbcolor declaration (see
below for the usage of the special #@ token).
There is a more specialized use of vardef as well. The heading of a vardef allows
a special syntax that is a little more elaborate than a normal def. This is easiest to
explain with an example from plain.mp:

vardef z@#=
(x@#,y@#)

enddef;

This defines the variable macro z. What makes this definition heading of z special
is that the definition now has a built-in parameter of type suffix that is named @#
(remember that @# is a single token, as explained in the tokenization rules at the start
of this article). The use of @# in the definition heading triggers this behaviour. You
can always ask for @# in the replacement body, but if @# was not also used in the
heading, @# would always be empty.
There is a subtle difference between this definition of z and the more naïve version:

vardef z suffix v =
(x.v,y.v)

enddef;

The special token @# only applies to a subsequent suffix; the suffix that becomes
the argument may not be enclosed in parentheses (unlike in the second definition,
where parentheses when calling are optional). Getting into the details of these defi­
nition headings is quite far outside of the scope of this article but for advanced usage
with multiple arguments to the vardef, the main advantage of @# is that when the
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vardef is called, it allows for an undelimited suffix that is processed before any other
arguments are considered. With ‘normal’ definition headings, this is impossible to
do.
I had an example of usage here in an earlier draft, but that created more confusion
than it solved because definition headings needed explaining in detail. Just remember
that the special token @# in a vardef definition heading makes it especially useful for
manipulating sub-variables (like the actual z definition from plain.mp does).

Finally every vardef, with or without the special @#, also has two other special im­
plicit arguments that can be used anywhere in the replacement text. The special
argument name @ returns the last part of the name of the defined macro, and the
special argument name #@ returns the complement: all the parts before the last one.
When is this useful? Look at this:

vardef p[]dir=
(#@dx,#@dy)

enddef;

After this definition, p5dir expands into:

(p5dx,p5dy)

allowing you to write, for example:

p5dir = up;

to define the dx and dy subvariables, and query those values by

if p5dir = up: .... fi

which looks and feels a lot nicer than having to manipulate the dx and dy variables
‘manually’ like so:

(p5dx,p5dy) = (0,1);

In definitions like p[]dir, the special token @ which expands into the macro ‘name’ is
not very useful (we already know that it is dir), but keep in mind that subscripts can
also be vardef macros themselves. Since @ expands into the actual subscript in that
case, it can then be used to differentiate between macro calls for specific subscripts
by using a numerical comparison, like this:

vardef a[] =
if odd @: message("odd")
else: message("even")
fi

enddef;
a1; % prints "odd"
a20; % prints "even"
end.

In cases where one of the special tokens is not guaranteed to be a subscript, to
test its value you could use the str command instead (this makes most sense with
implicit suffixes):

vardef a@# =
if str @# = "o": message("odd")
else: message("even")
fi

enddef;
a.o; % prints "odd"
a.e; % prints "even"
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A warning about using vardef: because vardef is a macro, it only works as the last
part in a complete variable name. After the p[]dir definition above, you cannot now
add another suffix to create a new variable name:

pair p[]dir.target; % WRONG!

This is disallowed, because that set of variables would actually be inaccessible.
Because of how the MetaPost parser works, the target part of this name would need
to become a suffix argument to the p[]dir macro for the syntax to be correct. But
in this case, as the macro is defined without a suffix argument, it is never picked up,
and the result is a syntax error:

! Isolated expression.
<to be read again>

target

If you really want to write things like p5dir.target in the input, you could extend
the definition of p[]dir to also accept the undelimited suffix @#, and then process
the target within the macro expansion but note that p5dir.target would then not
a variable name. The variable name is p5dir, with the special type vardef, and it
receives the argument suffix target.
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Definitions

Abstract
Definitions in MetaPost are a fairly complicated subject. This article tries to cover everything
you need to know about writing your own definitions, but it assumes a fair bit of familiarity
with MetaPost’s data types and general syntax. In particular, I assume you have read the
preceding ‘Sparks, Tags, Suffixes and Subscripts’ article.

Macro definitions
The def command defines a token to be replaced with a replacement text. This is
close to how macros work in TEX, and is therefore the easiest to explain. So let’s
start with this.
In its simplest form, it looks like this:

def ⟨symbolic token⟩ =
⟨replacement text⟩

enddef;

Since each def is a complete statement in MetaPost, the semicolon after enddef is
required. There is no need for a semicolon to end the ⟨replacement text⟩, because the
expansion of the macro can happen in the middle of an expression, where an extra
semicolon would interfere. The ⟨replacement text⟩ itself can be almost anything (with
some minor limitations, see section for the exact rules).
A simple predefined example is the -- macro that is used to draw straight lines in
path definitions. It is defined like this:

def -- = {curl 1}..{curl 1} enddef;

Macros are much more useful if they take arguments. Here is where MetaPost is
quite different from TEX (or any other language, for that matter). There are quite
a few ways to write the definition such that the defined macro accepts arguments
in some form or another. There is an option for one undelimited argument and/or
multiple delimited arguments, all of which come in various types.
Let’s discuss the three basic types of arguments first: These are expr, suffix, and
text.

expr arguments are for passing expression values.
suffix arguments are for passing (parts of) variable names.
text arguments are for passing a list of arbitrary tokens.

In the most simple form, defining a macro with an argument looks like:

def mymac (expr a) =
...

where you can replace exprwith suffix or text. We will talk about passing multiple
arguments later on.
The parameter name a in this example is actually a ⟨symbolic token⟩ itself. It has to be
a single symbolic token (not a literal number or a string), but it is not required to be
alphanumeric. Any symbolic token will do, except for tokens explicitly set as outer.
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You could do:

def mymac (expr ,) =
, = 5

enddef;

although that is only useful in obfuscation contests. What you cannot do is use nu­
meric suffixes like in many other languages:

def mymac (expr a1) = % Error
a1 = 5

enddef;

The parameter names do not actually exist as variables; they are only there to give
you something to use in the ⟨replacement text⟩. Whatever the value of the parameter
is, it is stored in a temporary value slot that has no name (these things are called
capsules internally). You can actually see these slots in the terminal or log if you
turn on tracing. In the trace output they are represented as the parameter type in
uppercase with a sequence number attached, for example:

tracingall;
def mymac (expr a) =

a = 5
enddef;

mymac(5);

will show:

mymac(EXPR0)->(EXPR0)=5
(EXPR0)<-b
{(b)=(5)}
## b=5

While there is not really a parameter named a, the use of a as a placeholder for
the capsules does make it seemingly impossible to refer to an actual variable or
command named a. But there is a solution to that.
If youwant to access an outside name awithin amacro that has a parameter named a,
you can still do so by using the quote command:

def mymac (expr a) =
quote a = a

enddef;

mymac(b);

The first (‘quoted’) a is now referring to an outside variable. In this case, it will set
up an equation a = b because b is the replacement value of the parameter a.
Using quote like this works for all three parameter types, and it can also help you if
you happen to have a macro parameter name that matches a MetaPost command’s
name. However, a small warning: it is usually better not to write macros that alter
outside variables as side effects because you are likely to confuse yourself. And for
access to other macros and/or commands, it is much better to come up with unique
parameter names.

expr arguments
Arguments of type expr pass a value to the macro. The argument has to be a valid
expression, and that expression is interpreted to produce a value that is then stored
in the temporary variable that is used in the replacement text of the macro.
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The expression is interpreted as far as possible first. Here is an example: If the macro
mymac is defined to have an argument of type expr, you could call it like this:

mymac(5);

or like this:
mymac(2+3);

and in both cases the replacement text will see the value 5. But the value does not
have to be ‘known’. In these two calls:

mymac(5b);

mymac((2+1)*b +2b);

the replacement text will see 5b if the variable b is not known at the time of calling.
Because the replacement text works with a nameless variable’s value, it is not as­
signable. This means that inside the replacement text, the formal names of expr pa­
rameters cannot be used on the left side of an assignment (:=). For example, this is
forbidden:

def mymac (expr a) =
a := 5 % Error

enddef;

But that does not mean you cannot alter the value itself, because equations (=) with
that parameter name are still allowed:

def mymac (expr a) =
a = 5

enddef;

mymac(5b);

is correct input and resolves the outer variable b to the integer value 1 (its value will
remain known even after the macro call).
Be aware, though, that macros that have such hidden side-effects are hard to main­
tain, so you need to be quite certain of how the macro will be called if you make
use of this. For general purpose macros, it is almost always better to receive and/or
return a value instead of modifying the parameter. The above definition would be
cleaner if written like this:

def mymac(expr a) =
a

enddef;

5b = mymac(5);

Well, this is a silly example, of course, but the point should be clear, I hope.
suffix arguments
Arguments of type suffix pass a ‘suffix’ to the macro. A ‘suffix’ is the trailing part
of a variable name, possibly consisting of multiple segments, and possibly being the
whole name. The argument passed to the macro really is the (partial) name of a vari­
able. Per the normal rules, if you try to pass an undefined suffix (or whole variable),
it is initialized to be of type numeric.

def mymac(suffix a) =
a = 5

enddef;

mymac(b);
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assigns the value of 5 to the variable named b, assuming it is of type numeric. If it is
not numeric, an error will be raised.
And:

def mymac(suffix a) =
pair a

enddef;

mymac(b);

converts b into a variable of type pair.
Since this is all resolved by name, this:

def mymac(suffix a) =
pair c.a

enddef;

mymac(b);

sets up c.b to be of type pair. The variable c itself remains untouched, just as if you
wrote

pair c.b;

without any macro definition.
Macros with suffix parameters can sometimes be a little complicated to read because
of the ‘passing a name as a parameter value’ rule. Just to be clear, inside the macro
there is at no time a variable named c.a. In fact, if there was a variable c.a defined
before the macro call, then it will remain completely untouched.
Another effect of the suffix parameter passing a name instead of a value is that it
actually can be used on the left side of an assignment:

def mymac(suffix a) =
a := 5

enddef;

mymac(b);

does indeed assign the value 5 to the variable b.

text arguments
Arguments of text pass literal input text as a macro argument. That text fragment
is not even limited to a single expression or statement.

def mymac (text a) =
a = 5

enddef;

mymac(b);

Of all three possible argument types, this is the closest to a ‘true’ macro replacement.
The argument’s input text is processed exactly where it is called in the replacement
text:

def mymac (text a) =
c = 5;
a = c

enddef;

mymac(b);
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This gives b the value of 5 as well as doing the same to c. This is another case where it
is very important to remember that there is never a variable named a. The parameter
name is just a placeholder that temporarily shields any preexisting variable named a.
Because of the rules for text parameters, this is also allowed:

def mymac (text a) =
c = a c

enddef;

mymac(5; a =);

But constructions like this are not advised if you want your code to remain under­
standable.
So how does MetaPost decide when a text argument to macro has ended? When it
sees an unmatched closing parenthesis.
Matching parentheses in the argument are counted, so

def mymac (text a) =
a + 5

enddef;

mymac(b = (3 + 4));

works just fine and equates b to 12. You cannot get an unmatched parenthesis into
the replacement text without some trickery (by defining amacro with a single paren­
thesis as its replacement text and using that in the macro call instead of a literal ().

Multiple delimited arguments
So far, we have only dealt with single arguments, but it is also possible to have mul­
tiple arguments.
The formal syntax definition for delimited arguments is as follows:

def ⟨symbolic token⟩ ⟨delimited part⟩ =
⟨replacement text⟩

enddef;
⟨delimited part⟩ → ⟨empty⟩

| ⟨delimited part⟩ (⟨parameter type⟩ ⟨parameter tokens⟩)
⟨parameter type⟩ → expr | suffix | text
⟨parameter tokens⟩ → ⟨symbolic token⟩ | ⟨parameter tokens⟩, ⟨symbolic token⟩

Reading a formal syntax like the one above takes a bit of practice, but converted
to English it says that the delimited part of a macro definition header is possibly
an empty sequence of items enclosed in parentheses. Each of these parenthesized
sequences start with expr, suffix or text followed by a comma-separated list of at
least one symbolic token.
Not expressed in the formal syntax is that whitespace is ignored except as a way to
separate tokens, as is normal in the MetaPost language.
Starting with some examples to illustrate the above syntax rules will hopefully help
you learn how to apply these rules. Here are some correct ways to start a definition:

def mymac =
def mymac(expr a) =
def mymac(expr a,b) =
def mymac(expr a)(expr b) =
def mymac(suffix a)(expr b, c) =
def mymac(suffix a)(expr b, c)(suffix d)(text e) =
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When a macro that is defined with multiple delimited arguments is called, speci­
fying the internal delimiters is optional unless the argument is of text (this will be
explained below). You can even insert delimiters that were not there in the definition
or split the groups for expr and suffix parameters differently.
That last mymac macro above with the five delimited arguments in four groups can
be called in various ways:

mymac (a,b,c,d,e);
mymac (a)(b)(c)(d)(e);
mymac (a,b)(c,d,e);

But all five arguments are required, and all of them must be part of delimited group.
Here are some attempts that are not allowed:

mymac (a,b); % bad 1
mymac a; % bad 1
mymac (a)(b)()()(e); % bad 2
mymac (a,b,,,e); % bad 2
mymac (a,b)c(d)(e); % bad 3
mymac (a,b)(c,d) e; % bad 3

The ones marked bad 1 are obviously illegal because some parameters are missing
completely.
The ones marked bad 2 are illegal because parameters cannot be empty. If you want
to implement some sort of default behaviour, you will have to pass a variable of a
special type or value, and deal with that as a special case in the replacement text.
Just skipping the parameter is not allowed.
The ones marked bad 3 are disallowed because all delimited arguments must be de­
limited.
But the rules above do not mean that you have to always specify all five arguments
explicitly. MetaPost expands macros as it searches for the opening delimiters of the
arguments of a macro call, so this is legal input:

def helper = (d)(e) enddef;
mymac (a,b)(c) helper;

You could even put all of the delimited arguments in separate macro definitions.
Coming back to that last bad 3 case for a bit, this is allowed:

def e = (f) enddef;
mymac (a,b)(c,d) e;

Here, the macro e passes the replacement text of itself as the final argument to mymac.
But this is also possible:

def e = (f) enddef;
mymac (a,b)(c,d)(e);

And here, the macro e itself is the final argument to mymac. That is because once
MetaPost has found a symbolic token that will become a macro argument, it will not
expand it any further, so the macro itself is passed as the text argument instead of
its replacement.
You need to remain aware of the fact that the expansion of macros only happens
while MetaPost is actively looking for argument delimiters (opening parentheses
and commas). You could do this:

def e = (f enddef;
mymac (a,b)(c,d) e);
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or this:

def e = ,f enddef;
mymac (a,b)(c,d e);

or even this:

def c = f) enddef;
mymac (a,b)(c(d,e);

but not this:

def e = f) enddef;
mymac (a,b)(c,d)(e;

because in the last example, MetaPost has already stopped looking for more argu­
ments. It knows that there are only five arguments, so it does not bother to scan for
a delimiter that would start a sixth argument.

Multiple and text arguments Because of the nature of text arguments, they need
an extra rule. It is possible to define a delimited macro with multiple text arguments
like this:

def mymac (text e,f) =
show e; show f;

enddef;

But this macro cannot be called without extra parentheses. With:

mymac(g,h);

the replacement text of the e argument becomes g,h and MetaPost stops with an
error about the missing argument f. If there are multiple text arguments or other
arguments following a text argument, extra parentheses groups are required. This
is OK:

mymac (g)(h);

and this is also ok:

mymac (g; i; j; k; l)(h);

There is a simple rule to remember: always put text arguments in separate parenthe­
ses.

Undelimited arguments
Besides delimited arguments, macros can also have one undelimited argument.There
can be only one of these and it has to be the last argument, but all three types are
allowed, and there are some extra options as well. The syntax for undelimited argu­
ments is as follows:

def ⟨symbolic token⟩ ⟨delimited part⟩ ⟨undelimited part⟩ =
⟨replacement text⟩

enddef;
⟨undelimited part⟩ → ⟨empty⟩

| ⟨parameter type⟩ ⟨parameter⟩
| ⟨precedence level⟩ ⟨parameter⟩
| expr ⟨parameter⟩ of ⟨parameter⟩

⟨precedence level⟩ → primary | secondary | tertiary
(The ⟨delimited part⟩, ⟨parameter type⟩ and ⟨parameter⟩ have not changed and are omitted
from the listing for brevity).
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The three types of argument we have already discussed in the previous paragraph are
the familiar cases. They are much like their delimited counterparts, except without
delimiters. But there are a few extra notes:

� An expr argument grabs the longest expression it can find. When such a macro
is called, MetaPost also allows an = or := just before the argument.

� A suffix argument takes the longest suffix it can find. MetaPost allows that suf­
fix to be enclosed in parentheses.

� A text argument stops at the next semicolon or endgroup.

The new options are:

� primary, secondary and tertiary arguments are just like expr, except they grab
a ‘smaller’ argument (a partial expression). This will be explained below.

� expr ⟨parameter⟩ of ⟨parameter⟩ is useful for creating macros that mimic the primi­
tive operation point t of p. It grabs the longest syntactically correct ⟨expression⟩
of ⟨primary⟩ (see page 26 for the explanation of ⟨expression⟩ and ⟨primary⟩). It is not
possible to fake the point of primitive syntax in another way.

Operator definitions
Quite often, you will want a macro defined with an expr argument to take only a
part of the following expression instead of the whole of it. This is where the primary,
secondary and tertiary keywords come in, as they operate on a part of an expres­
sion.
But for a better understanding, we need to back up a bit. Just like there are syntac­
tic rules for macro definitions, there are formal rules for all other bits of MetaPost
programs as well.
A MetaPost program is a sequence of statements. Most statements are internal com­
mands, equations, or assignments. Expressions are part of equations and assign­
ments. And expressions can be further subdivided into operators that work on vari­
ables or on further subdivisions of expressions.
There are a few other options for statements, and all the expression cases exist for all
variable types (booleans, numerics, pairs, etc.). For brevity, I will concentrate on the
numeric expressions to explain what is going on, and ignore all those other cases. In
the syntax definition below, all ⟨...⟩ are extra rules that I have skipped.
Here are the parts that are relevant right now:

⟨equation⟩ → ⟨expression⟩ = ⟨right-hand side⟩
⟨assignment⟩ → ⟨variable⟩ := ⟨right-hand side⟩
⟨right-hand side⟩ → ⟨expression⟩ | ⟨...⟩
⟨expression⟩ → ⟨numeric expression⟩ | ⟨...⟩
⟨numeric expression⟩ → ⟨numeric tertiary⟩
⟨numeric tertiary⟩ → ⟨numeric secondary⟩

| ⟨numeric tertiary⟩ + | - ⟨numeric secondary⟩
| ⟨...⟩

⟨numeric secondary⟩ → ⟨numeric primary⟩
| ⟨numeric secondary⟩ * | / ⟨numeric primary⟩

⟨numeric primary⟩ = ⟨numeric atom⟩
| ⟨numeric atom⟩ [ ⟨numeric expression⟩ , ⟨numeric expression⟩ ]
| ⟨...⟩

⟨numeric atom⟩ → ⟨numeric token⟩
| ( ⟨numeric expression⟩ )
| ⟨...⟩
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Working top-down, you can split a numeric expression into parts to the left and right
of a plus or minus operation. Those left and right sides can each be split further into
left and right sides of the multiply and divide operators. These sides can each be split
even further into the arguments of the mediation operator.
In case you are wondering: the off-by-one between the left and the right is what
makes operators in MetaPost left-associative.
Following these rules, let us investigate this expression:

4*(a+1) - b / 2[4,8]

Using the nomenclature from the official syntax, we can say that there are four pri­
maries: 4, (a+1), b and 2[4,8]. The two secondaries are 4*(a+1) and b / 2[4,8]. The
single tertiary is the whole 4*(a+1) - b / 2[4,8], which is also the whole expres­
sion.
The content of (a+1) is itself a nested expression, which can be subdivided using
the same rules, but with a few shortcuts: a and 1 are the primaries. These are also
the numeric secondaries, because there are no multiplication or division operations
specified. The tertiary is a+1, which is also the expression value.
MetaPost supports four levels of operators: primary, secondary, tertiary, and expres­
sion. Not all value types have operators defined for all levels, though. That is why
a ⟨numeric expression⟩ is the same as a ⟨numeric tertiary⟩. The rules for ⟨string expression⟩ look
quite different:

⟨string expression⟩ → ⟨string tertiary⟩
| ⟨string expression⟩ & ⟨string tertiary⟩

⟨string tertiary⟩ → ⟨string secondary⟩
⟨string secondary⟩ → ⟨string primary⟩
⟨string primary⟩ → ⟨string variable⟩

| char ⟨numeric primary⟩
| ⟨...⟩

As you can see, strings only have operators on the primary and expression level.
The operators for the other types are yet again different, but the expression structure
stays the same.

When you are planning on defining operators yourself, it would be helpful to have
a list of the current operators and their level. But alas, such a list typically does not
exist because the built-in operators that are part of the bare MetaPost binary itself
can (and usually will be) augmented by the MetaPost macro package you are using.
If you are lucky, the macro package manual contains a concise list somewhere. If not,
you will have to do some trial and error until your definitions ‘work’ ...

Unary operator definitions
Getting back to macro definitions: expr grabs an ⟨... expression⟩. primary grabs a
⟨... primary⟩, secondary grabs a ⟨... secondary⟩ and tertiary grabs a ⟨... tertiary⟩.
It should now be clear that in:

def mymac primary arg =
arg

enddef;
res = mymac 4*(a+1) - b / 2[4,8];

the argument is the 4.
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In this version:

def mymac secondary arg =
arg

enddef;
res = mymac 4*(a+1) - b / 2[4,8];

the argument is the 4*(a+1) (well, actually it is 4a+4, because MetaPost interprets
the partial expression before storing it in the parameter capsule).
And:

def mymac expr arg =
arg

enddef;
res = mymac 4*(a+1) - b / 2[4,8];

and:

def mymac tertiary arg =
arg

enddef;
res = mymac 4*(a+1) - b / 2[4,8];

both get the full expression as argument (actually -0.08333b+4a+4).
The net effect of using an undelimited expr, primary, secondary or tertiary is that
you have created a new unary operator at that level. See section for how to define
binary operators for the top three levels. Primary operators in MetaPost are always
unary operators.

Binary operator definitions
It is now time to learn about binary operator definitions.

⟨macro definition⟩ → ⟨macro heading⟩ = ⟨replacement text⟩ enddef
⟨macro heading⟩ → primarydef ⟨parameter⟩ ⟨symbolic token⟩ ⟨parameter⟩

| secondarydef ⟨parameter⟩ ⟨symbolic token⟩ ⟨parameter⟩
| tertiarydef ⟨parameter⟩ ⟨symbolic token⟩ ⟨parameter⟩

A macro defined using primarydef defines a new operator with a ⟨... secondary⟩ on the
left and a ⟨.. primary⟩ on the right of its name. For a secondarydef that is a ⟨... tertiary⟩
on the left and a ⟨.. secondary⟩ on the right, and for a tertiarydef it is an ⟨... expression⟩
on the left and a ⟨... tertiary⟩ on the right.
This definition creates an alias for *:

primarydef a mult b =
a * b

enddef;

The names of the primitives seem off by one compared to the keywords for undelim­
ited def arguments that we encountered earlier. But since MetaPost does not support
binary primary operators, there would be only three possible levels anyway. You’ll
just have to get used to that. And at least tertiarydef sounds more natural than the
fictitious ‘exprdef’. And remember, you can define unary binary operators with an
undelimited def argument of type primary.

Variable definitions
Note: much of this section is copied and modified from my earlier paper.
The previous commands def, primarydef, secondarydef, and tertiarydef have one
thing in common: they produce what MetaPost calls sparks. Effectively, you are
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defining a new ‘command’ instead of a ‘variable’. But sometimes you may want a
macro to behave more like a named variable. For that to work, the macro has to be
what MetaPost calls a tag.
The restriction of def always producing a spark is why there is a dedicated command
for creating macros that are actually tags. That command is vardef.
Because vardef defines a new tag instead of a spark, the name that is being defined
can still can be used in the middle of an unrelated compound variable name. Occa­
sionally, you may want to define a macro with a name that would also make sense
as a suffix to another variable. The Metafont book highlights the example of dir. The
variable macro dir is defined as a vardef precisely because doing it that way means
it is still legal to have a pair variable named p5dir.
In simple uses, use of vardef is very similar to using def.

def stuff =
fill unitsquare

enddef;

and
vardef stuff =

fill unitsquare
enddef;

appear equivalent when they are executed. But there is a difference in execution.The
vardef version actually expands into:

begingroup
fill unitsquare

endgroup

The added grouping makes the macro expansion syntactically equivalent to an ex­
pression, which is important because it avoids confusing the MetaPost parser. We
will get to the use of grouping later on.
Here is the formal definition of the syntax of vardef:

⟨macro definition⟩ → ⟨macro heading⟩ = ⟨replacement text⟩ enddef
⟨macro heading⟩ → vardef ⟨declared variable⟩ ⟨delimited part⟩ ⟨undelimited part⟩

| vardef ⟨declared variable⟩ @# ⟨delimited part⟩ ⟨undelimited part⟩
The ⟨delimited part⟩ and ⟨undelimited part⟩ are the same as before and are not repeated.
The use of ⟨declared variable⟩ instead of the ⟨symbolic token⟩ from the earlier definition
commands is important: This is what makes this type of definition produce a tag
instead of a spark. The ⟨declared variable⟩ is actually the syntax rule for a single item in
a type declaration command (boolean, path, picture, etc.).
You can define segmented variable names, and even use collective subscripts:

vardef mymac[]arr =
4

enddef;

defines all variables of the form mymac[]arr to bemacros that expand into begingroup
4 endgroup.
The second option for the ⟨macro heading⟩ of a vardef syntax introduces an extra key­
word @#. This is easiest to explain with an example from plain.mp:

vardef z@#=
(x@#,y@#)

enddef;
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This defines the variable macro z. What makes this definition of z special is that it
now has a built-in parameter of type ⟨suffix⟩ that is named @#.
There is a subtle difference between this definition of z and the more naïve version:

vardef z suffix v =
(x.v,y.v)

enddef;

The special token @# only applies to a subsequent suffix; the suffix that becomes
the argument may not be enclosed in parentheses, unlike in the definition with an
undelimited argument.This makes the special definition exceptionally useful for ma­
nipulating sub-variables (like z does).
The @# somewhat replaces suffix v. You can still define a macro like this:

vardef mymac @# suffix v =
(x@#v,y@#v)

enddef;

but you always have to call that macro with parentheses around parameter v, other­
wise the whole argument becomes part of the @# suffix:

origin = mymac1right;

will have 1right as @# and v empty. With
origin = mymac1(right);

this does not happen, but then you could have equivalently defined mymac as
vardef mymac @# (suffix v) =

(x@#v,y@#v)
enddef;

Finally, every vardef, with or without the special @#, also has two other special im­
plicit arguments that can be used anywhere in the ⟨replacement text⟩. The special argu­
ment name @ returns the last segment of the name of the defined macro itself, and
the special argument name #@ returns the complement: all segments before that last
one.
When is this useful? Look at this:

vardef p[]dir=
(#@dx,#@dy)

enddef;

After this definition, p5dir expands into:
(p5dx,p5dy)

allowing you to write, for example:
p5dir = up;

to define the dx and dy subvariables, and query those values by
if p5dir = up: .... fi

which looks and feels a lot nicer than manipulating the dx and dy variables
‘manually’.
In definitions like p[]dir, the special token @, which expands into the macro ‘name’,
is not very useful (we already know that it is dir), but keep in mind that subscripts
can also be vardef macros themselves. Since @ expands into the actual subscript in
that case, it can then be used to differentiate between macro calls for specific sub­
scripts by using a numerical comparison, like this:
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vardef a[] =
if odd @: message("odd")
else: message("even")
fi

enddef;
a1; % prints "odd"
a20; % prints "even"
end.

In cases where the expansion of one of the special tokens (#@, @, or @#) is not known
to be numeric beforehand, to test its value, you can use the str command instead to
force an expression with type ⟨string⟩ (this makes most sense with implicit suffixes):

vardef a@# =
if str @# = "o": message("odd")
else: message("even")
fi

enddef;
a.o; % prints "odd"
a.e; % prints "even"

A warning about using vardef: because the result of the vardef is a macro, it only
works as the last typed segment in a complete variable name. After the definition
above, you can not now add another suffix:

pair p[]dir.target; % WRONG!

This is disallowed because that set of variables would actually be inaccessible.
Because of how the MetaPost parser works, the target part of the name would al­
ways become a suffix argument to the p[]dir macro. In this case, as the macro is
defined without a suffix argument, the result would be a syntax error. However, if
you really want to write things like p5dir.target, you could extend the definition of
p[]dir to also accept the undelimited suffix @#, and then process the target within
the macro expansion.
In some cases, the implicit extra grouping added by vardef is an impediment, and it
would be better to use def. But sometimes that extra grouping level can be a bonus
as well: it allows trivial macro definitions that need that grouping to be a bit shorter.
Still, that is only a very minor advantage, and the MetaPost manual explicitly warns
against abusing vardef just for grouping.

Grouping
The sequence begingroup ...endgroup can be used as a standalone statement. The
formal definition of ⟨statement⟩ looks like this:

⟨statement⟩ → ⟨equation⟩ | ⟨assignment⟩ | ⟨declaration⟩
| ⟨definition⟩ | ⟨title⟩ | ⟨command⟩ | ⟨empty⟩
| begingroup ⟨statement list⟩ ⟨statement⟩ endgroup

That last statement inside the group should be a valid statement on it own, but it can
also be empty.
Grouping in MetaPost is a bit unusual (yet another way in which MetaPost is un­
usual!) in that the begingroup … endgroup block is not only usable as a list of
⟨statement⟩s grouped together, it can also be used as an ⟨expression⟩. And when viewed
as an expression (which is usually the case for vardefmacro expansions, but you can
also write explicit group blocks in the middle of an equation, or as the body of any
type of macro), all the statements in the group are executed as normal, but the last
expression inside the group (which could be empty) is taken as the value to use for
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the expression outside of the group. And precisely that oddity of grouping is what
makes vardef definitions syntactically equivalent to variables.
Formally, all of the expression syntaxes also have an extra begingroup block. For
example, ⟨numeric expression⟩ also has:

⟨numeric atom⟩ → ⟨numeric token⟩
| ( ⟨numeric expression⟩ )
| begingroup ⟨statement list⟩ ⟨numeric expression⟩ endgroup
| ⟨...⟩

and likewise for all other expression types: at the bottom level, there is an begingroup
...endgroup that is equivalent with a delimited group like (\<numeric expression>).
The statements in the ⟨statement list⟩ are executed, but not seen by the expression
parser.
The extra grouping usually will not matter, but it means you cannot do things like:

vardef stuff =
fill unitsquare

enddef;
stuff withcolor green;

which makes sense once you realize that vardef is supposed to equate to a variable.
If we assume for a moment that there was instead a normal path variable named
stuff, the statement would look like this:

fill stuff withcolor green;

and indeed, after adjusting the vardef to:

vardef stuff =
unitsquare % earlier 'fill' deleted

enddef;

it works just fine. This is a silly example, of course, but the point to remember is that
the last line in a begingroup ...endgroup should produce a valid expression (which
may be empty).

The main point of begingroup ...endgroup is so that you can save and temporarily
redefine variables and internals. But it creates only an implicit grouping; nothing is
automatically saved. If you want to save an outside variable or internal, you have to
explicitly use save or interim.

The above rules for the final parts inside of a group block make grouping behave
similar to an anonymous function call with one return value; or as a named function,
when using vardef or the result of a defwith a begingroup ...endgroup block around
the whole replacement text.
Additionally, because the expression parser does not ‘see’ the ⟨statement list⟩, you can
do complicated things right in the middle of an equation. The plain MetaPost macro
named hide makes use of that:

def hide(text t) = gobble begingroup t; endgroup enddef;
def gobble primary g = enddef;

(this is the example definition from the MetaFont book, the actual definition is trick­
ier).
The begingroup ...endgroup block inside hide always results in an empty expression
because of the explicit ; at the end. But an empty expression is still an expression,
so that is why the gobble macro is needed to ‘eat’ that empty expression.
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One final note about vardef: the addition of begingroup ...endgroup around the
⟨replacement text⟩ is literal. If you wanted to, you could write a vardef including
endgroup ...begingroup to temporarily escape to the outer group. But of course then
the expansion would not be a valid ⟨... expression⟩ any more, so you could not use that
macro in the middle of an expression.

Replacement text details
A ⟨replacement text⟩ is stored for later use without any expansion at definition time. In
almost all cases, the meaning of the symbolic tokens will be looked up and applied
at expansion time. However, some tokens that may occur inside the ⟨replacement text⟩
have to be interpreted by the program right away to avoid internal confusion:

� def, vardef, primarydef, secondarydef and tertiarydef are the start of an em­
bedded definition.

� enddef ends the ⟨replacement text⟩ unless it matches an embedded definition that
started in the previous rule.

� Each ⟨symbolic token⟩ that stands for a macro parameter is changed into a place­
holder for that parameter, for later substitution at replacement time.

� quote prevents any of the previous rules applying to the next token. After after­
ward, the quote token itself is removed from the replacement.

In all the above cases, the check is made for the meaning of the token, not its literal
representation. In other words, prior use of let can alter the list of ‘keywords’.
The preceding rules mean that

def bfour =
def b = 4 enddef

enddef;

is allowed. Any subsequent use of bfour in the program expands into a definition
that makes b be a macro that expands to the value 4.
But:

def defbfour =
def b = 4

enddef;

will fail, because the definition of defbfour does not end. The enddef stops the em­
bedded definition of b.
To get around this, you can write:

def defbfour =
quote def b = 4

enddef;

which is a valid definition of defbfour. Now you will have to use defbfour enddef;
when using defbfour later, of course. Otherwise the embedded definition of b never
ends.
The existence of quote allows some special syntaxes. With the above definition, you
could specify

defbfour *4 enddef;

which would define b to be a macro with replacement text 4*4. Admittedly, this is
not very useful but I want to document everything related to definitions, and the use
of quote cannot be omitted.
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Formal definition syntax
⟨macro definition⟩ → ⟨macro heading⟩ = ⟨replacement text⟩ enddef
⟨macro heading⟩ → def ⟨symbolic token⟩ ⟨delimited part⟩ ⟨undelimited part⟩

| vardef ⟨declared variable⟩ ⟨delimited part⟩ ⟨undelimited part⟩
| vardef ⟨declared variable⟩ @# ⟨delimited part⟩ ⟨undelimited part⟩
| ⟨binary def⟩ ⟨parameter⟩ ⟨symbolic token⟩ ⟨parameter⟩

⟨delimited part⟩ → ⟨empty⟩
| ⟨delimited part⟩ (⟨parameter type⟩ ⟨parameter tokens⟩)

⟨parameter type⟩ → expr | suffix | text
⟨parameter tokens⟩ → ⟨parameter⟩ | ⟨parameter tokens⟩, ⟨parameter⟩
⟨parameter⟩ → ⟨symbolic token⟩
⟨undelimited part⟩ → ⟨empty⟩

| ⟨parameter type⟩ ⟨parameter⟩
| ⟨precedence level⟩ ⟨parameter⟩
| expr ⟨parameter⟩ of ⟨parameter⟩

⟨precedence level⟩ → primary | secondary | tertiary
⟨binary def⟩ → primarydef | secondarydef | tertiarydef

Final words
You now know all about how to define your own MetaPost macros, in theory. But
the best way to learn is by doing and making mistakes, and that is definitely the case
here as well. When I started usingMetaPost in earnest, at first nothing I tried seemed
to work. Remembering my own initial frustrations about anything more than trivial
use of the MetaPost programming language is what prompted me to write these
papers. I hope they will be helpful to you.

Taco Hoekwater
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Paths, pairs, pens and transforms

Abstract
This article tries to explain everything related to paths, pairs, pens and transforms in Meta­
Post. A fair bit of familiarity with MetaPost’s data types and general syntax is assumed. In
particular, I assume you have read the ‘sparks, tags, suffixes and subscripts’ article.
I will first discuss the creating of paths, followed by the creating of pairs, and then the creat­
ing of pens. Finally, I will discuss the operations on those items, for instance, by using trans­
formations.

Defining a path
In MetaPost, paths are the data structures that are added to pictures in order to create
visible shapes in the output.
At its core, a known path is a list of data objects describing Bézier curve segments.
These objects are called ‘knots’, and they are constructed internally from a list of
pairs, other embedded (sub)paths, and the user-specified options on how to connect
them.
To get it out of the way, here is the syntax definition for path expressions:

⟨path primary⟩ → ⟨pair primary⟩ | ⟨path variable⟩ | ⟨path argument⟩ | (⟨path expression⟩)
| begingroup ⟨statement list⟩⟨path expression⟩ endgroup
| makepath ⟨pen primary⟩ | makepath ⟨future pen primary⟩
| reverse ⟨path primary⟩
| subpath ⟨pair expression⟩ of ⟨path primary⟩
| envelope ⟨pen primary⟩ of ⟨path primary⟩

⟨path secondary⟩ → ⟨pair secondary⟩ | ⟨path primary⟩
| ⟨path secondary⟩⟨transformer⟩

⟨path tertiary⟩ → ⟨pair tertiary⟩ | ⟨path secondary⟩
⟨path expression⟩ → ⟨pair expression⟩ | ⟨path tertiary⟩

| ⟨path subexpression⟩⟨direction specifier⟩
| ⟨path subexpression⟩⟨path join⟩ cycle

⟨path subexpression⟩ → ⟨path expression not ending with direction specifier⟩
| ⟨path subexpression⟩⟨path join⟩⟨path tertiary⟩

⟨path join⟩ → ⟨direction specifier⟩⟨basic path join⟩⟨direction specifier⟩
⟨direction specifier⟩ → ⟨empty⟩

| { curl ⟨numeric expression⟩ }
| { ⟨pair expression⟩ }
| { ⟨numeric expression⟩ , ⟨numeric expression⟩ }

⟨basic path join⟩ → & | ..
| ..⟨tension⟩..
| ..⟨controls⟩..

⟨tension⟩ → tension ⟨tension amount⟩
| tension ⟨tension amount⟩ and ⟨tension amount⟩

⟨tension amount⟩ → ⟨numeric primary⟩
| atleast ⟨numeric primary⟩

⟨controls⟩ → controls⟨pair primary⟩
| controls ⟨pair primary⟩ and ⟨pair primary⟩
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This is the formal definition from the Metafont book, and as formal definitions go
it is a bit awkward. Do not stare at it for too long, because the reality of specifying
paths is fairly straightforward and natural. Let’s instead just look at a few simple
examples.
The simplest case is just from a few pair primaries and a basic path join:

path p;
p = (0,0)..(200,100);
draw p;

Nearly as easy is to form a path from a path (sub)expression:

path p;
p = ((0,0)..(200,100));
draw p;

This part of the syntax is about adding () grouping, just like in calculus. It makes sure
that the expression inside the parentheses is converted into a path first, before any of
the outer processing happens. This can be useful because in some cases subsequent
path joins can have an effect on prior bits of the path. Here is an example of both:

path p,q;
p = (0,0)..(100,100)..(200,0);
q = ((0,0)..(100,100))..(200,0);
draw p withcolor red;
draw q withcolor green;

Of course, pairs can also be specified using variable names (we will look at the formal
syntax of pairs later):

path p;
pair startp, endp;
startp = (0,0);
endp = (200,100);
p = startp..endp;
draw p;

Or even from a single point:

path p;
pair startp;
startp = (0,0);
p = startp;
draw p;
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Or from another path:

path p, q;
q = (0,0)..(200,100);
p = q;
draw p;

Or from the reverse of another path:

path p, q;
q = (0,0)..(200,100);
p = reverse q;
draw p;

While there is no visual difference in the above image, as a result of the reverse
operator the beginning and end of the path q have been flipped, as can be clearly
seen from the following examples:

path p, q;
q = (0,0)..(200,100);
p = q--(100,0);
draw p;

path p, q;
q = (0,0)..(200,100);
p = reverse q--(100,0);
draw p;

It is also possible to create a new path from just a section of another path:

path p, q;
q = (0,0)..(200,100);
p = subpath (0.25,0.5) of q;
draw q;
draw p withcolor red;

The two numbers that form the pair expression argument to subpath signify a sec­
tion of the ‘travel’ along the given path primary following the of keyword. We will
revisit subpath and path lengths later.
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And from a pen:

path p;
p = makepath pencircle scaled 50;
draw p;

And finally, from the outline of a path drawn with a pen. We will talk about pens in a
following section, but a bit of a sneak peak is needed towrap up the path construction
options. If this current bit is confusing, just skip ahead for now and come back to it
later:

path p,q;
q = (0,0)..(200,100);
p = envelope pensquare scaled 10 of q;
fill p;

This last option for path construction comes with a few warnings and hints:
� For envelope to work properly in the current version of MetaPost, the pen needs
to be polygonal. Elliptical pens, like the built-in pencircle, will not work.

Here are two workarounds, both of which make use of primitives that have
not been covered yet. However, the function of these primitives should hope­
fully be clear from the examples.

First, if actual precision in the curves is not very important, you can get away
with converting the pencircle to a path, then converting that path back to a pen.
This procedure creates a polygonal pen with eight sides:

path p,q;
pen trick;
q = (0,0)..(200,100);
trick = makepen makepath pencircle;
p = envelope trick scaled 20 of q;
fill p;

Or second, if greater curve precision is indeed needed, you can create a pen with
a larger number of vertices by using a for loop to construct a new path from the
pencircle:

path p,q,r,s;
pen trick;
q = (0,0)..(200,100);
s = makepath pencircle;
r = for i = 0 step 0.1 until 8:

(point i of s) -- endfor cycle;
trick = makepen r;
p = envelope trick scaled 20 of q;
fill p;
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� To get the ‘other’ side of a cyclic path, reverse the path:

path p,q;
q = (0,0)--(200,0)--(200,100)--

(0,100)--cycle;
p = envelope pensquare scaled 20

of q;
fill p withcolor 0.5;

path p,q;
q = (0,0)--(200,0)--(200,100)--

(0,100)--cycle;
p = envelope pensquare scaled 20

of reverse q;
fill p withcolor 0.5;

�The path created by envelope is not always completely ‘clean’ or even ‘correct’
in the current version of MetaPost; it is intended to produce the visual envelope,
not the ‘best’ path to create that envelope. It also still has bugs, especially with
self-intersecting paths.

For instance, it may contain self-intersections or superfluous points. For that
reason, it is mostly useful with fill instead of draw, and only with quite simple
paths.

You can see some of the problems that may occur in the next example:

path p,q;
q = (0,0)--(200,100)--(200,0)--

(0,100)--cycle;
draw q withcolor blue;
p = envelope pensquare scaled 20

of reverse q;
draw p;

To wrap up this demonstration of how to create a path, here is a combination of
almost all those options:

path p, q;
pair endp;
endp = (200,100);
q = (0,0)..(200,100);
p = (0,100) ..

reverse (subpath (0.25,0.5) of q) ..
makepath pencircle scaled 20 ..
endp;

draw p;
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Path directions and connectors
This section is about how to control the shape of a path: how the points are connected
to form actual curves. Each point will be connected to the next point by a Bézier
curve segment that is controlled by the two points themselves, and two extra ‘control
points’.
To help with visualization, the examples in this section use a macro from MetaFun
called detaileddraw (with some adjusted preset options) to show the actual points
and control points in the example paths. With normal draw it would just show black
lines as in the previous examples.

Direction specifiers
We will start by talking about direction specifiers. In the simplest case, the example
below shows an empty direction specifier. Here two pairs are joined just by the two
dots that we frequently saw in the previous section.

path p;
p = (0,0)..(200,100);
detaileddraw p;

In this example, we are letting MetaPost decide by itself how it wants to connect
the pairs. If there are only two pairs, the result is a straight line connecting them. If
there are more than two more pairs in the sequence that are not in a straight line,
MetaPost will try to create a nice curve connecting them:

path p;
p = (0,0)..(100,100)..(200,00);
detaileddraw p;

When left to its own devices, MetaPost will try to connect the points in such a way
that the overall direction of the combined curve along the path only changes in a
fluid way. The curvature at the start- and endpoints will attempt to follow a circular
arc through the initial set of pairs.This can affect the directions quite a lot, of course:

path p;
p = (0,0)..(100,100)..(200,100);
detaileddraw p;

Just a reminder: parenthesis grouping has an effect on this logic, because it converts
the path inside the parentheses into what is essentially a separate temporary name­
less path. For example:



Taco Hoekwater VOORJAAR 2023 41

path p;
p = ((0,0)..(100,100))..(200,100);
detaileddraw p;

Also be aware that tension specifiers elsewhere in the path can have effect on the
chosen directions. Later on we will see some examples of this.

Direction vectors If you want to have explicit direction control, you can add a direc­
tion specifier, for example, using pair expressions that represent direction vectors:

path p;
p = (0,0){(0,1)}..{(1,0)}(200,100);
detaileddraw p;

The previous example is not very readable; it is easier to understand using pair ex­
pressions stored in variables:

path p;
pair up,right;
up = (0,1);
right = (1,0);
p = (0,0){up}..{right}(200,100);
detaileddraw p;

Here the (0,1) definition of upmeans that this represents the unit-vector that moves
0 in the 𝑥 direction and +1 in the 𝑦 direction, i.e.: upwards. It could as easily have
been defined as (0,10) and it would have made no difference, because the pair is
interpreted as a direction vector which is then treated strictly as an angle. Adding
a bigger 𝑦 displacement has no effect as long as the 𝑥 displacement remains zero,
because only the direction of the vector is taken into account:

path p;
pair up,right;
up = (0,10);
right = (10,0);
p = (0,0){up}..{right}(200,100);
detaileddraw p;

It should be obvious that the vector has to be completely known. If not, an error will
be generated. On the other hand, a vector of (0,0) is acceptable. This has the same
effect as not specifying a vector at all.
Side note: the pairs up and right (as well as down and left) are normally predefined
by the macro package you are using, so the preceding two examples could each be
three lines shorter.
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In MetaPost macro packages there is usually also a macro defined called dir, which
works like this:

path p;
p = (0,0){dir 90}..{dir 0}(200,100);
detaileddraw p;

The actual definition of dir could be:

vardef dir primary d =
right rotated d

enddef;

with right pair variable predefined as before.

The next direction specification option is nearly the same as the previous one. Apart
from using a pair expression, it is also OK to use two known separate numeric
expressions.

path p;
p = (0,0){0,1}..{1,0}(200,100);
detaileddraw p;

When building paths inside macros, either one or the other of these cases (pair or
numeric) may be easier to work with. The end results are identical; there is always
an internal vector constructed.

Curl specifiers The more advanced option has been kept for last; on start- and
endpoint, you can instead use a curl specification.
First off, here is an example of the syntax:

path p;
p = (0,0){curl 0}..(200,100);
detaileddraw p;

The resulting image does not explain a lot, but that is because the rules for curl are
quite specific.
A curl specification is a number from 0 to infinity.
� It sets the amount of curliness (angle) at that point.
� If the requested amount of curl is high, it will adjust the curliness at adjacent
points as well.

� Its assumed default value at ending points is 1.
� An explicit curl setting makes that point an ‘endpoint’ (a.k.a. a corner).
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The vector-based method of specifying the directions from the earlier examples is
always an absolute angle where curl is a relative approach that takes the rest of the
path into account.
If there is no user-supplied direction specifier, curl 1 is implied – which is exactly
how MetaPost comes up with its default near-circular curves.
So:

path p;
p = (0,0)..(100,100)..(200,00);
detaileddraw p;

has the same effect as:
path p;
p = (0,0){curl 1}..

(100,100)..
{curl 1}(200,00);

detaileddraw p;

For a better understanding, it is easier to start by showing a progression. The next
output was created using this example:

path p;
yoff := 40;
for d = 0 step 1 until 5:

p := (0,0){curl d}..(200,50)..{curl d}(400,0);
detaileddraw (p shifted (0,-yoff*d));
draw textext.lft("curl=" & decimal d) shifted (-20,-yoff*d);
draw textext.rt("curl=" & decimal d) shifted (420,-yoff*d);

endfor

There is some extra stuff there to print the labels, but the main thing the example
does is create a set of paths with increasing settings for curl at both of the endpoints:

curl=0 curl=0

curl=1 curl=1

curl=2 curl=2

curl=3 curl=3

curl=4 curl=4

curl=5 curl=5

As you see, the angle (to the control point) increases when the curl value rises. But
there is an upper limit above which it does not matter any more how much higher
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the curl value gets. Above a certain value, there is not enough curvature left for curl
to be able to redistribute towards the endpoints:

curl=0 curl=0

curl=5 curl=5

curl=10 curl=10

curl=15 curl=15

curl=20 curl=20

While curlmodifies the curvature of part of a curve segment, it is itself influenced by
the length and required turning angle of that curve as well. Moving the middle point
up to (200,100) while keeping everything else the same produces quite a different
effect on the control points of the curve, because the required turning angle changes
quite dramatically:

curl=0 curl=0

curl=1 curl=1

curl=2 curl=2

curl=3 curl=3

curl=4 curl=4

curl=5 curl=5

By moving the middle point up even higher to (200,150), eventually the control
points are pushed way off to the side:
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curl=0 curl=0

curl=2 curl=2

curl=4 curl=4

curl=6 curl=6

While the curl specifier takes some getting used to, it is a good tool to control the ini­
tial and final curves of a path since using a direction vector is not always straightfor­
ward, especially so if paths are rotated or otherwise transformed. On the downside,
it may seem a bit temperamental, because the end result depends on other properties
of the path in a way that is not easily predictable until one gains some experience
with curl.
Side note: the fact that an explicit curl specification forces a point to behave as an
‘endpoint’, is what makes this definition work:

def -- = {curl 1}..{curl 1} enddef;

path p;
p = (0,0)--(100,100)--(200,100);
detaileddraw p;

The path equation with the -- operator expands into:

p = (0,0){curl 1}..{curl 1}(100,100){curl 1}..{curl 1}(200,100);

which makes every point a corner. The segments between those points is then filled
using the ‘2 point’ segment logic, resulting in straight lines.
Some final remarks about direction specifiers that are handy to know:

� explicit vectors are expressions, so you can do calculations while constructing
the path.

� explicit incoming or outgoing curl and vector-based direction specifications
migrate to the inverse side as well, if they are left empty.
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In an example:

path p;
p = (0,0)..{right}(100,50)..

(200,0);
detaileddraw p;

is the same as:
path p;
p = (0,0)..(100,50){right}..

(200,0);
detaileddraw p;

�while vectors do not force a point to behave as an ‘endpoint’, they can be used
to create such, by specifying different values on the left and right side:

path p;
p = (0,0)..{up}(100,50){right}..

(200,0);
detaileddraw p;

Path connectors
Now, let’s talk about connectors. Connectors and directions together decide on the
locations of the control points of the curve segments.
We have seen the simplest case a number of times already; it is just two consecutive
dots:

path p;
p = (0,0)..(100,100)..(200,0);
detaileddraw p;

Tension specifiers Internally, MetaPost has the concept of tension.
Amongst other things, the tension settings control how ‘tight’ the path is between
two points:

path p;
p = (0,0)..tension 2 ..

(100,100)..tension 2 ..
(200,0);

detaileddraw p;
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The example above used only one value, but actually there are two, one for each side
of the segment:

path p;
p = (0,0)..tension 2 and 2..

(100,100)..tension 2 and 2..
(200,0);

detaileddraw p;

If you say just tension 2, it is silently interpreted as tension 2 and 2.
MetaPost’s default for each segment where you do not set up an explicit tension
is to assume that both values for path tension are set to 1, but the actual curvature
and directions of the path can alter the effective values of the tensions to something
more or less than one.
How tension controls the path segments exactly is quite technical, but it is important
to note that the tension values can control the direction at points (if they were not
set up by the user explicitly, of course).
An example of that potential effect on the direction can be seen in the following
code, where the two tension values for each segment are not identical:

path p;
p = (0,0)..tension 2 and 1 ..

(100,100)..tension 1 and 2 ..
(200,0);

detaileddraw p;

Another example is when all the segments do not have the same/complementary
tension settings:

path p;
p = (0,0)..tension 2 ..

(100,100)..
(200,0);

detaileddraw p;

If we ‘fixate’ those examples by filling in explicit direction vectors:

path p;
p = (0,0){up}..tension 2 and 1 ..

(100,100){right}..tension 1 and 2 ..
{down}(200,0);

detaileddraw p;
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path p;
p = (0,0){up}..tension 2 ..

(100,100){right}..
{down}(200,0);

detaileddraw p;

the main effect of tension becomes clearer: it alters the control vectors. In both ex­
amples the length of the factors has been shortened where the tension was more
than one.
In these cases, where all the directions are fixed already, every time the tension is
multiplied by two, the length of the vector is divided by two. So with:

path p;
p = (0,0){up}..tension 16 ..

(100,100){right}..
{down}(200,0);

detaileddraw p;

the vector is now 1/16 of its ‘normal’ length, and it becomes almost a straight line.
If there are multiple non-fixated directions, the vector changes becomemore compli­
cated because in that case, the extra effect of the tension settings on the first segment
is that the control vectors for the other segments become a bit longer:

path p;
p = (0,0)..tension 16 ..

(100,100)..
(200,0);

detaileddraw p;

This effect is more obvious when multiple values of tension are combined into a
single image:

path p,q;
for i = 2 upto 8:

p := (0,0)..tension i ..
(100,100)..
(200,0);

detaileddraw p;
endfor

The high tension setting on the left segment has lowered the effective tension of the
second segment.
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The inverse effect of the vector shortening is also true, by the way. Tension values
lower than one have the opposite effect:

path p;
p = (0,0)..tension 0.75 ..

(100,100)..
(200,0);

detaileddraw p;

But lowering the tensions (and thus increasing the length of the vectors) also in­
creases the chances that the internal calculations that control the behaviour of the
curve become unpredictable. For that reason, the lowest value you are allowed to set
tension to is 0.75.

We have now seen various examples where the tension of the path can alter the
directions of the path where it has not been set explicitly. But, as I wrote earlier, the
directions of the path can also alter the values of the tensions in segments that do
not have explicit values assigned to them.
Sometimes the latter results in sub-optimal curves, like in the following example
where we may not want an inflection to happen:

path p;
p := (0,0){dir 60} ..

{dir -10}(200,0);
detaileddraw p;

This last problem can be helped by using tension atleast which is a special case
that sets a bottom limit for the final effective tension:

path p;
p := (0,0){dir 60}..tension atleast 1..

{dir -10}(200,0);
detaileddraw p;

The combined calculations for curl and tension are at the core of how MetaPost
manages to produce ‘pleasing’ curves with very little explicit set up by the user. But
the fact that both calculations can actually effect each other means that sometimes
the only way to be sure the result is exactly as desired is to verify it manually.
To wrap up the discussion of tension: here are two macros that are usually pre-
defined:

def --- = .. tension infinity .. enddef;
def ... = .. tension atleast 1 .. enddef;

Explicit controls There may be cases where the internal calculations of MetaPost
are not able or willing to create your desired output. And there may be other cases
where you have a Bézier path converted from another input source that uses explicit
control points.
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For such cases, MetaPost allows you to input explicit control point values, either by
using a single point, like:

path p;
p = (0,0)..controls (0,100)..

(200,100);
detaileddraw p;

or by using two separate points:

path p;
p = (0,0)..controls (40,0) and (60,100)..

(200,100);
detaileddraw p;

As with tensions, a single value is essentially the same as repeating that value. The
first example is equivalent to:

path p;
p = (0,0)..controls (0,100) and (0,100)..

(200,100);
detaileddraw p;

Handy to know:

� You cannot use tension and controls together in a single connector.
� Once processed, all path segments always use control points. Using explicit con­
trol points simply makes MetaPost skip all its own calculations.

� It follows that using explicit control points will overwrite any other direction
or curl specification for the segment.

Path concatenation Just like with strings, it is possible to concatenate two paths by
using the & operator:

path p;
p = (0,0)..(100,50) & (100,50)..(200,0);
detaileddraw p;

This only works if the left and right points are identical, and it is equivalent to

path p;
p = (0,0)..{curl 1}(100,50)..(200,0);
detaileddraw p;
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Cyclic paths Creating a cyclic path is done by appending the cycle operator to the
last connector:

path p;
p = (0,0)..(100,eps) .. cycle;
detaileddraw p;

The cycle operator adds a reference back to the first point of the path being created,
but it also adds a special marker to the internal path structure. Without it, the path
is not considered to be cyclic, and you cannot use it with e.g. fill.
As can see, the example above produces a circular-looking path. This is the result
of the automatic direction and tension calculations. The path is supposed to travel
360 degrees in total, and the internal calculations try to spread that curvature over
the complete path, instead of producing two 180 degree turns with straight lines in
between them. The nicest solution mathematically is to create two Bézier segments
that have an amplitude that is half the distance between the two points, which is
why you end up with a shape very similar to a circle.
It is not really a circle since Bézier curves simply cannot produce a perfect circle,
but it is fairly close. The pen named pencircle actually is a perfect circle, so we can
visually show the difference:

path p;
p = (0,0)..{down}(100,0) .. cycle;
fill p withcolor red;
draw origin shifted (50,0)

withpen pencircle scaled 100
withcolor white;

In all four quadrants there is a little bit of extra red that sticks out from behind the
perfect invisible circle.

You may be wondering about the use of eps (defined as .00049) one example back.
The reason is that while a two-point path can (and usually does) define a path that
turns 360 degrees (by moving upward through the first point and then downward
through the second point), it can also define a path that turns 0 degrees, where it
goes up in both points. And it so happens that MetaPost decides on that second case
if (and only if) the line through the two points is perfectly horizontal or vertical:

path p,q;
p = (0,50)..(100,50) .. cycle;
q = (200,0)..(200,100) .. cycle;
detaileddraw p;
detaileddraw q;
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Another way to force the 360 degree case would be:

path p;
p = (0,0)..{down}(100,0) .. cycle;
detaileddraw p;

which is what I did in the overlay picture with the pencircle.
So now you have all the tools to define a path.

Path creation wrapup
To end this section, here is some ‘handy to know’ information that did not quite fit
in the earlier parts of this section:
� the length of a path is the number of segments it consists of, which is equal to
the number of explicit points for cyclic paths, and for non-cyclic paths, the same
number minus one.

path p;
p = (0,0)..(100,100)..(200,0);
detaileddraw p;
labelat((100,0),

"length=" & decimal length p) ;

length=2

I brought this up now instead of in the section on operations because it is im­
portant to know that ‘empty’ curve segments do count when you define a path,
so:

path p;
p = (0,0)..(0,0)..(0,0)..(100,100);
detaileddraw p;
labelat((100,0),

"length=" & decimal length p) ;

length=3

defines a path of length 3.
� the subpath operator adds points at the beginning and end of the subpath if
needed, so if you combine them back again you can get extra points:

path p, q;
q = (0,0)..(200,100);
p = subpath (0 , 0.5) of q &

subpath (0.5, 1 ) of q ;
detaileddraw q shifted(0,25);
labelat((100,100),

"length=" & decimal length q);
detaileddraw p shifted(0,-25);
labelat((100,0),

"length=" & decimal length p);

length=1

length=2
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In these examples I used labelat to put a bit of red text in the image. That is a macro
I wrote in the preamble of this article. It will appear in a number of the following
examples as well (along with draw_origin). I will not show you the definitions of
those, they are just for illustrative purposes.

Defining a pair
In MetaPost, pairs are the building block of paths as well as the commonly used de­
scriptions of other data that requires two values, like vectors and intersection times.
For reference, let’s start with the formal definition:

⟨pair primary⟩ → ⟨pair variable⟩ | ⟨pair argument⟩
| ( ⟨numeric expression⟩ , ⟨numeric expression⟩ )
| ( ⟨pair expression⟩ )
| begingroup ⟨statement list⟩⟨pair expression⟩ endgroup
| ⟨numeric atom⟩ [ ⟨pair expression⟩ , ⟨pair expression⟩ ]
| ⟨scalar multiplication operator⟩⟨pair primary⟩
| point ⟨numeric expression⟩ of ⟨path primary⟩
| precontrol ⟨numeric expression⟩ of ⟨path primary⟩
| postcontrol ⟨numeric expression⟩ of ⟨path primary⟩
| penoffset ⟨pair expression⟩ of ⟨pen primary⟩
| penoffset ⟨pair expression⟩ of ⟨future pen primary⟩

⟨pair secondary⟩ → ⟨pair primary⟩
| ⟨pair secondary⟩⟨times or over⟩⟨numeric primary⟩
| ⟨numeric secondary⟩ * ⟨pair primary⟩
| ⟨pair secondary⟩⟨transformer⟩

⟨pair tertiary⟩ → ⟨pair secondary⟩
| ⟨pair tertiary⟩⟨plus or minus⟩⟨pair secondary⟩
| ⟨path tertiary⟩ intersectiontimes ⟨path secondary⟩

⟨pair expression⟩ → ⟨pair tertiary⟩
Now, let’s look at a few simple examples of defining pairs.
The most simple case is just a pair of numeric values:

pair a;
a = (200,0);
draw_origin;
drawdot a withcolor red;

The examples below will always print the ‘active’ pair in red, and the ‘origin’ point
at (0,0) in black; and occasionally an extra dot or path is drawn as well. The red dot
is always the target of the example.
The dot drawing is done by the drawdot macro, which is usually predefined in the
macro package. In fact, a pair variable origin is usually also defined, so we will use
that from now on as it is a little more readable.
You can also define a pair from another pair variable:

pair a,b;
b = (200,0);
a = b;
draw_origin;
drawdot a withcolor red;

In fact, because of the way collections of equations are solved in MetaPost, you can
invert the equation that gives a value to b and the equation that equates a to b. As
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long as the equation is resolved before you try to draw the dot, the order of the
equations is irrelevant. This is generally true in MetaPost but it bears repeating here
because you will most often use this equation solving capability in the context of
trying to resolve pairs:

pair a,b;
a = b;
b = (200,0);
draw_origin;
drawdot a withcolor red;

You can define a pair from an expression by adding parentheses:

pair a;
a = ((100,0) + (100,0));
draw_origin;
drawdot (100,0);
drawdot a withcolor red;

The internal expression can then do all of the things from the full syntax. Besides
addition, for example, you could also do multiplication:

pair a;
a = ((100,10) * 2);
draw_origin;
drawdot (100,10);
drawdot a withcolor red;

Sometimes, using an expression in this way is not the most elegant way of thinking
about where the new point should be. That is why there is also an ‘off-the-way’
operation:

pair a;
a = .5[(0,0),(200,0)];
draw_origin;
drawdot (200,0);
drawdot a withcolor red;

The syntax rule says that the operator is an ⟨numeric atom⟩, which means that it can be
either a numeric variable, or a numeric token (as in the example; this is typically a
decimal fraction between zero and one), or it can be a numeric token followed by a
/ another numeric token (indicating an explicit fraction).
Here some equivalents of the previous example:

pair a,b,c;
i := .5;
a = i[(0,0),(200,0)];
b = 1/2[(0,0),(200,0)];
c = 5/10[(0,0),(200,0)];
draw_origin;
drawdot (200,0);
drawdot a withcolor red;
drawdot b withcolor red;
drawdot c withcolor red;

It is important to realize that while we informally call this the ‘off-the-way’ operator,
it is really just a multiplier along a line where the first listed pair is at ‘distance’ zero
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and the second listed pair is at ‘distance’ one. If the points are named 𝑎 and 𝑏 and
the multiplier is 𝑥, then it calculates 𝑎 + 𝑥 ∗ (𝑏 − 𝑎). This means that the value can be
outside of the zero-to-one range:

pair a;
a = 1.1[(0,0),(200,100)];
draw_origin;
drawdot (200,100);
drawdot a withcolor red;
labelat((100,0), "a=(220,110)")

a=(220,110)

It may equally well be negative:

pair a;
a = -0.1[(0,0),(200,100)];
draw_origin;
drawdot (200,100);
drawdot a withcolor red;
labelat((100,0), "a=(-20,-10)") a=(-20,-10)

Note that there is no * allowed (or needed, depending on how you think about these
things) between the value and the following square open bracket.
We can also define a new pair from a multiplication applied to another pair:

pair a;
a = .5(200,0);
draw_origin;
drawdot (200,0);
drawdot a withcolor red;

This example may look a bit odd, but it makes much more sense if the explicit pair
is replaced by a predefined variable:

pair b; b = (200,0);
pair a;
a = .5b;
draw_origin;
drawdot b;
drawdot a withcolor red;

The formal syntax rules here are a little contrived, but the end result is that this op­
eration is quite like the ‘off-the-way’ operator, except that variables are not allowed.

⟨scalar multiplication operator⟩ → ⟨plus or minus⟩
| ⟨numeric token primary not followed by + or - or a numeric token⟩

⟨numeric token primary⟩ → ⟨numeric token⟩/⟨numeric token⟩
| ⟨numeric token not followed by ‘/ numeric token’ ⟩

Allowing a bare variable in the syntax here would confuse the language parser. It is
simple enough to add a * to the input, but that does have a slightly different meaning
to the MetaPost parser.
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pair a,b,c;
i := .5;
% a = i(200,0); % not allowed
a = i*(200,0);
b = 1/2(200,0);
c = 5/10(200,0);
draw_origin;
drawdot (200,0);
drawdot a withcolor red;
drawdot b withcolor red;
drawdot c withcolor red;

The examples above with the num/denom operation need an extra bit of explanation,
because the explicit num/denom form of a numeric token really is something different
from just multiplying an expression. The explicit fraction here is never converted to
a single fraction internally.The two specified values are both kept, which means that
those calculations are a bit more precise.
The effect is not quite as obvious as the default scaled number system of plain Meta­
Post when using the new double number system, but the difference is still important
sometimes.
If you run the following in plain MetaPost:

pair a,b;
a = 1/5(100,100);
b = 1/5*(100,100);
show a;
show b;

it will report the following:

>> (20,20)
>> (19.9997,19.9997)

Because the first equation resolves to (1 ∗ 100/5, 1 ∗ 100/5), which gives the perfect
result of (20,20), while the second equation is ((13107/65536) ∗ 100, (13107/65536) ∗
100). The (13107/65536) part is the internal representation of 1/5 as a decimal frac­
tion.
This difference between the exact value and approximation of a fraction happens in
the decimal number system as well, although it is far less obvious there thanks to
the higher precision.

The next two examples deal with defining a new pair based on some part of a path.
First, you take any specific point along a path (it does not have to be an integer
value):

path p;
pair a;
p = (0,0){up}..{right}(200,100);
a = point 0.5 of p;
detaileddraw p;
drawdot a withcolor red;
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Or you can use one of the control points of a point along that path:

path p;
pair a;
p = (0,0){up}..{right}(200,100);
a = precontrol 0.5 of p;
detaileddraw p;
drawdot a withcolor red;

There is also postcontrol, of course. This comes with a warning: the actual path
will change because it first creates a knot at the specified place along the path, as is
shown in this example.
What you are actually getting from precontrol is this:

path p,q;
pair a;
p = (0,0){up}..{right}(200,100);
q = subpath (0,0.5) of p

& subpath(0.5,1) of p;
a = precontrol 1 of q;
detaileddraw q;
drawdot a withcolor red;

This effect does not happen if you use an integer point along the path, because in
this case, MetaPost does not have to bisect the path.

From a path intersection (indirectly):

path p,q;
pair a;
p = (0,0){up}..{right}(200,100);
q = (0,100)..(50,50)..(100,0);
a = p intersectiontimes q;
draw p withcolor .5;
draw q withcolor .5;
drawdot a withcolor red;

No, that is not a typographical error in the example!
The intersectiontimes returns two time values along the paths, encoded as a pair.
In this case, that is (0.35608,0.69121). There are two separate points referenced in
this single pair – point 0.35608 along p, and point 0.69121 along q – but neither
value represents a point individually.
If you want to have an actual point, you have to fetch it from the path using the
point operator:

path p, q;
pair a, b;
p = (0,0){up}..{right}(200,100);
q = (0,100)..(50,50)..(100,0);
a = p intersectiontimes q;
b = point (xpart a) of p;
draw p; draw q;
drawdot b withcolor red;
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Normally there is a predefined macro intersectionpoint that you can use as a drop-
in replacement for intersectiontimes, like this:

path p, q;
pair a;
p = (0,0){up}..{right}(200,100);
q = (0,100)..(50,50)..(100,0);
a = p intersectionpoint q;
draw p; draw q;
drawdot a withcolor red;

But you need to be careful using it because, owing to the definition of intersectionpoint,
you will usually get a point that is not on either path. The typical definition of this
macro tries to give you a point that is very close to both of the two points. The sim­
plified definition looks like this:

secondarydef p intersectionpoint q =
begingroup

save x_,y_;
(x_,y_)=p intersectiontimes q;
.5[point x_ of p, point y_ of q]

endgroup
enddef;

It does this ‘off-the-way’ operation because there is no guarantee that the separate
times along the paths will result in a single coincident point; even within the preci­
sion limits of the scaled number system. There are various limitations in the algo­
rithm in MetaPost that is used to find the time values (e.g. it stops bisection of the
path long before the maximum precision is reached) that are intended to save on
memory usage and processing time. As a result, you rarely get perfect time values
returned.
In our example above, the two points are visually indistinguishable at the normal
zoom level:

path p, q;
pair a, b, c;
p = (0,0){up}..{right}(200,100);
q = (0,100)..(50,50)..(100,0);
a = p intersectiontimes q;
b = point (xpart a) of p;
c = point (ypart a) of q;
draw p; draw q;
drawdot b withcolor red;
drawdot c withcolor red;

But on close inspection, b is (34.56109,65.44007), whereas c is (34.56039,65.439605).
The returned expression by intersectionpoint is therefore (34.56074,65.43984).
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Zoomed in, it looks like this:

...
b = point (xpart a) of p;
c = point (ypart a) of q;
draw p; draw q;
drawdot b withcolor red;
drawdot c withcolor red;
drawdot (p intersectionpoint q)

withcolor green;

If there are no intersections, intersectiontimes returns (-1,-1).
If there are multiple intersections, it normally returns the first one along the left-side
path.
However, it is actually possible for there to be multiple intersections within a single
curve segment (in other words: in the curve section ‘between’ two of knot points
of one of the paths). In this case, MetaPost will return the ‘smallest’ combination of
times along both paths. Here is an example of where that can happen:

pair a;
path p, q;
p := (0,0){up}..{up}(200,0);
q := (200,6)..(0,6);
a := p intersectiontimes q;
draw p; draw q;
drawdot (point (xpart a) of p)

withcolor red;

In this case, it returns the first intersection along p, as expected. Note that q is moving
to the left, not the right, so it is actually the second intersection along q.
But if we make q shorter:

pair a;
path p, q;
p := (0,0){up}..{up}(200,0);
q := (100,6)..(0,6);
a := p intersectiontimes q;
draw p; draw q;
drawdot (point (xpart a) of p)

withcolor red;

it will jump to the second intersection on p (and thus the first on q) instead.
The intersection times along p are the same in both cases: 0.01573 and 0.46989.
But the intersections along q are different. In the first example they happen roughly
at the times 0.55 and 0.98 (remember, it is coming from the right), and in the second
example they are more like 0.09 and 0.96.
In the second example, MetaPost returns the result (0.46989,0.09) because if you
add these two times up, the result is less than the addition of (0.01573,0.96). In the
first example, the total of (0.46989,0.55) was a little bit more than (0.01573,0.98)
instead of less, so it returned the other option instead.
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The last way to define a pair is using a ‘pen offset’:

path p;
pair a;
a = penoffset (1,0.5) of

pencircle scaled 100;
p = makepath pencircle scaled 100;
draw p;
draw_origin;
drawdot a withcolor red;

The primitive operator penoffset returns the ‘offset’ along the pen in which the pen
travels in the direction vector given by its argument (in this case, that is a direction
of approximately 26.5 degrees, because the pair is treated as an angular vector). The
return value is the 𝑥, 𝑦 offset of the edge of the pen to its center at the moment
it is moving in that direction. In the example above the center of the pen is the
origin so the offset is simply a point in the coordinate system. That point is roughly
(22.36,-44.72), where the pen outline moves up at an angle of approximately 26.5
degrees (it helps to know that pens rotate counterclockwise).
For polygonal pens, the results can be a bit confusing because the corner points are
treated as if they have all directions between the incoming and outgoing angles.

path p;
pair a;
a = penoffset (1,0.5) of

pensquare scaled 100;
p = makepath pensquare scaled 100;
draw p;
draw_origin;
drawdot a withcolor red;

Pens
After all this stuff about paths and pairs, pens are surprisingly simple. There is just
not that much you can do with pens. And in MetaPost, pens are even simpler than in
Metafont, because the code that converts elliptical pens into bitmaps was not needed
in MetaPost, which makes the syntax cleaner.
Pens are the objects that are used to ‘trace’ paths when you use draw or filldraw
(or rather the underlying primitive addto). MetaPost has two different kind of pens:
pens that derived from a circle (a.k.a. elliptical pens) and pens that are based on a
convex cycle of straight segments (a.k.a. polygonal pens).
The adjusted syntax rule is:

⟨pen primary⟩ → ⟨pen variable⟩ | ⟨pen argument⟩
| ( ⟨pen expression⟩ )
| begingroup ⟨statement list⟩⟨pen expression⟩ endgroup
| nullpen
| pencircle
| makepen ⟨path primary⟩

⟨pen secondary⟩ → ⟨pen primary⟩
| ⟨pen secondary⟩⟨transformer⟩

⟨pen tertiary⟩ → ⟨pen secondary⟩
⟨pen expression⟩ → ⟨pen tertiary⟩
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We will get to the ⟨transformer⟩ in a later section (as for paths and pairs). And you
should be familiar by now with the ⟨variable⟩ , ⟨argument⟩, ⟨expression⟩, and begingroup
⟨...⟩ endgroup parts. So what is left is defining a pen based on the built-in pencircle:

pen mypen;
mypen = pencircle scaled 40;
draw (0,0){up}..{right}(200,100)

withpen mypen;
fill makepath mypen withcolor red;

You can do all sorts of elliptical pens this way by using the ⟨transformer⟩ to rotate
and scale the pencircle. Internally, an elliptical pen is a perfect ellipse. It is never
converted into separate path segments unless the user asks for it (by using makepath
to make the pen itself drawable, as we do in these examples).
Defining a pen based on the built-in nullpen:

pen mypen;
mypen = nullpen scaled 4000;
draw (0,0){up}..{right}(200,100)

withpen mypen;
fill makepath mypen withcolor red;

But this is only useful to clear an existing pen, as the nullpen is a pen with no di­
mensions.

Finally, you can define a pen from a path:

pen mypen;
path p;
p = (-11,0)--(0,14)--(11,0)--cycle;
mypen = makepen p;
draw (0,0){up}..{right}(200,100)

withpen mypen;
fill makepath mypen withcolor red;

The result of makepen is always a polygonal pen. It is not possible to construct ellip­
tical pens in this way as they have to be based on pencircle.
Some handy things to know:

� makepen always converts .. to --.
� Pens are always convex; makepen will silently enforce this by ignoring concave­
ness-inducing points.

�While elliptical pens are created by transforming pencircle, it can sometimes
be useful to create a polygonal pen with many vertices as an approximation, for
example, for the envelope operation that we saw earlier.

�MetaPost’s pens always travel in an counter-clockwise direction, even if the
input path to makepen was clockwise.
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MetaPost does not have a true linear pen, but it is easy to approximate one:

pen mypen;
path p;
p = (-10,0)--(10,0)--cycle;
mypen = makepen p;
draw (0,0){up}..{right}(200,100)

withpen mypen;
fill makepath mypen withcolor red;

A final hint about defining pens for reuse: when you make a special pen shape inside
of a macro file that will be reused, it is good practice to give it a clear name, and to
place the pen around the origin with one of its major sizes close to 1. This makes it
easier for other macros to build upon the defined pen by rotating and scaling it.
So, instead of the earlier example, which was equivalent to:

pen mypen;
mypen = makepen((-11,0)--(0,14)--(11,0)--cycle);

Use this:

pen penpyramid;
penpyramid = makepen((-0.5,0)--(0,14/22)--(0.5,0)--cycle);

Transformations
Transformations make MetaPost much more versatile. Here is the formal syntax de­
finition of everything related to transformations:

⟨transform primary⟩ → ⟨transform variable⟩ | ⟨transform argument⟩
| ( ⟨transform expression⟩ )
| begingroup ⟨statement list⟩⟨transform expression⟩ endgroup

⟨transform secondary⟩ → ⟨transform primary⟩
| ⟨transform secondary⟩⟨transformer⟩

⟨transform tertiary⟩ → ⟨transform secondary⟩

⟨transform expression⟩ → ⟨transform tertiary⟩

⟨transformer⟩ → rotated⟨numeric primary⟩
| scaled ⟨numeric primary⟩
| shifted ⟨pair primary⟩
| slanted ⟨numeric primary⟩
| transformed ⟨transform primary⟩
| xscaled ⟨numeric primary⟩
| yscaled ⟨numeric primary⟩
| zscaled ⟨pair primary⟩

Whenever you use an object of type path, pair or pen (as well as picture and
transform itself) in a MetaPost expression at the secondary level, you are allowed to
transform it using a ⟨transformer⟩.
The following transformation options apply to all those object types, but I will only
show pairs as examples to keep it simple. In these examples, the green dot is the
original, the red dot is the transformed one, and the black cross is at the origin (0,0).
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rotated works counter-clockwise around the origin:

pair a;
a = (100,100) rotated 90;
draw_origin;
drawdot (100,100) withcolor green;
drawdot a withcolor red;

scaled multiplies the separate components:

pair a;
a = (100,50) scaled 2;
draw_origin;
drawdot (100,50) withcolor green;
drawdot a withcolor red;

shifted moves things around:

pair a;
a = (100,50) shifted (100,0);
draw_origin;
drawdot (100,50) withcolor green;
drawdot a withcolor red;

slanted slants things by adding some multiple of the 𝑦 value to the 𝑥 value:

pair a;
a = (100,50) slanted 1;
draw_origin;
drawdot (100,50) withcolor green;
drawdot a withcolor red;

transformed applies a complete 6-variable transformation matrix:

pair a;
transform t;
t := identity scaled 1.5;
a = (100,50) transformed t;
draw_origin;
drawdot (100,50) withcolor green;
drawdot a withcolor red;

Because transformed is at the core of the transformation commands, this is a good
moment to delve a little deeper into what transformations are and do in MetaPost.
A transform variable consists of six parts: xpart, ypart, xxpart, xypart, yxpart and
yypart. This is similar to a pair variable, only there are more parts.
Transformations are just a shorthand notation for applying a set of operations on
an object. For pairs, the expression (x,y) transformed t converts the pair (𝑥,𝑦) into
the pair (𝑡𝑥 + 𝑥𝑡𝑥𝑥 + 𝑦𝑡𝑥𝑦, 𝑡𝑦 + 𝑥𝑡𝑦𝑥 + 𝑦𝑡𝑦𝑦).
Interestingly, there is no direct way to define a variable of type transform.
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Even the transform identity is not actually a primitive, but it is defined in a some­
what curious way in the plain MetaPost macros:

transform identity;
for z=origin,right,up:

z transformed identity = z;
endfor

The three equations in the for loop resolve all six parts of the transform object to­
gether:

origin transformed identity = origin;
right transformed identity = right;
up transformed identity = up;

Remember that origin, right, and up are defined pairs. Those are already known at
this point in the macro loading process, so the three formulas are actually:

(0,0) transformed identity = (0,0);
(1,0) transformed identity = (1,0);
(0,1) transformed identity = (0,1);

And because they are equations, they can be inverted to set up the six parts of the
transformation:

(0,0) transformed identity = (0,0);

expands to:
(𝑡𝑥 + 𝑥 ∗ 𝑡𝑥𝑥 + 𝑦 ∗ 𝑡𝑥𝑦, 𝑡𝑦 + 𝑥 ∗ 𝑡𝑦𝑥 + 𝑦 ∗ 𝑡𝑦𝑦) = (0, 0)

with 𝑥 and 𝑦 already known to be 0, it is easy to see this reduces to:

(𝑡𝑥, 𝑡𝑦) = (0, 0)

In the next equation, these two values are now also known, so:

(1,0) transformed identity = (1,0);

is really
(0 + 1 ∗ 𝑡𝑥𝑥 + 0 ∗ 𝑡𝑥𝑦, 0 + 1 ∗ 𝑡𝑦𝑥 + 0 ∗ 𝑡𝑦𝑦) = (1, 0)

or, simplified:
(𝑡𝑥𝑥, 𝑡𝑦𝑥) = (1, 0)

So the 𝑡𝑥𝑥 part must be 1 and the 𝑡𝑦𝑥 part 0. At the last step, there are only two
variables left to calculate. The final equation:

(0,1) transformed identity = (0,1);

wraps this up with:

(0 + 0 ∗ 1 + 1 ∗ 𝑡𝑥𝑦, 0 + 0 ∗ 0 + 1 ∗ 𝑡𝑦𝑦) = (0, 1)

(𝑡𝑥𝑦, 𝑡𝑦𝑦) = (0, 1)

So 𝑡𝑥𝑦 must be 0 and 𝑡𝑦𝑦 must be 1.

The identity transformation could also have been defined like this:

transform identity;
xpart identity = ypart identity = 0;
xxpart identity = yypart identity = 1;
xypart identity = yxpart identity = 0;
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but those six equations are not nearly as cute or fun to explain.

We already saw themost important shorthand ⟨transformer⟩s, but there are three more:

pair a;
a = (100,50) xscaled 2;
draw_origin;
drawdot (100,50) withcolor green;
drawdot a withcolor red;

pair a;
a = (200,50) yscaled 1.5;
draw_origin;
drawdot (200,50) withcolor green;
drawdot a withcolor red;

pair a;
a = (100,0) zscaled (2,0.25);
draw_origin;
drawdot (100,0) withcolor green;
drawdot a withcolor red;

The zscaled operation may seem a bit weird.
One way of looking at it is that it treats its argument as a vector. It then rotates over
the angle of that vector and scales by the length of it:

pair a;
a = (100,0)

rotated angle (2,0.25)
scaled (2++0.25);

draw_origin;
drawdot (100,0) withcolor green;
drawdot a withcolor red;

Another way of looking at zscaled is that it performs complex number multiplica­
tion. If the argument is 𝑢, 𝑣 it converts 𝑥, 𝑦 into 𝑥𝑢 − 𝑦𝑣, 𝑥𝑣 + 𝑦𝑢.

To wrap up our discussion of transformations, so things that are handy to remember:

� You can chain transformers, they are processed left to right.
�There is no direct assignment syntax for transform type definitions: you have to
modify an existing transform, build one using explicit ⟨transformer⟩ equations, or
assign each of the six parts using separate equations.

� Don’t forget to add groupings if you are mixing pair and path in the same ex­
pression.
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Path operations
Now let’s look at the operations you can do on paths.

Find the length of a path:

path p; numeric d;
p = (0,0){up}..{right}(200,100);
d = length p;
detaileddraw p;
labelat((100,0), "length="&decimal d);

length=1

The length operator returns the number of segments. That is one less than the num­
ber of defining points, unless the path is a cycle.

Find the drawn length of a path:

path p; numeric d;
p = (0,0){up}..{right}(200,100);
d = arclength p;
detaileddraw p;
labelat((100,0), "arclength="&decimal d);

arclength=248.56473879450363

This returns the total length of the actual curve(s).

Find a specific drawn time of a path:

path p; numeric d;
p = (0,0){up}..{right}(200,100);
d = arctime 200 of p;
detaileddraw p;
labelat((100,0),

"arctime 200="&decimal d);
drawdot (point d of p) withcolor red;

arctime 200=0.83173739692754611

This returns the time along the path at which the arclength is the specified value.

Test if a variable is a path:

path p;
p = (0,0){up}..{right}(200,100);
detaileddraw p;
if path p:

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

yes

The if command tests the type of the following expression. This means that single
pairs fail even though they are valid as path declarations (due to the automatic con­
version into a pathwhen an assignment takes place). But on the other hand, it means
that you can use an explicit expression:
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path p;
p = (0,0){up}..{right}(200,100);
detaileddraw p;
if path ((0,0){up}..{right}(200,100)):

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

yes

Test if a variable is a cyclic path:

path p;
p = (0,0){up}..{right}(200,100);
detaileddraw p;
if cycle p:

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

no

Only paths created with cycle are considered cyclic. Paths that just so happen to
end at the same coordinates as they started are not considered a cycle by MetaPost.
There is an implied if path, so you do not have to test for that separately.

Find the time at which a path moves in a certain direction:

path p; numeric d;
p = (0,0){up}..{down}(200,0);
detaileddraw p;
d = directiontime (1,1) of p;
labelat((100,0), decimal d);
drawdot (point d of p) withcolor red;

0.23240812075600159

Side note: in this example it is obvious that a Bézier curve is not the same as a circular
arc. If they were, the return value would have been exactly 0.25.
Some other things of note about directiontime:

� the pair argument is treated as a direction vector
� if the path never travels in that direction, the return value is -1
� if the path travels multiple times in that direction, the first of those is returned.
� corner points are assumed to have all directions between the incoming and out­
going angles simultaneously.

Finally, it is possible to find any one of the bounding box points of a path:

path p; pair a;
p = (0,0){up}..{right}(200,100);
detaileddraw p;
a = ulcorner p;
drawdot a withcolor red;

Also defined are the complementing primitives llcorner, lrcorner, and urcorner.
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Pair operations
Now let’s look at the operations you can do on pairs.
Test if a variable is a pair:

pair a;
a = (100,100);
draw_origin;
drawdot a withcolor red;
if pair a:

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

yes

Get the 𝑥 or 𝑦 part:

pair a; numeric d;
a = (100,100);
d = xpart a;
draw_origin;
drawdot a withcolor red;
labelat((100,0), "xpart=" & decimal d); xpart=100

Of course there is also a matching ypart operation.
You can multiply or divide a pair by a numeric:

pair a;
a = (50,50) * 2;
draw_origin;
drawdot a withcolor red;

You can add or subtract another pair:

pair a,b;
b = (10,10);
a = (100,100) + b;
draw_origin;
drawdot b;
drawdot a withcolor red;

You can negate a pair:

pair a;
a = -(100,100);
draw_origin;
drawdot a withcolor red;
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You can compare a pair to another pair:

pair a,b;
b = (10,10);
a = (100,100);
draw_origin;
drawdot b;
drawdot a withcolor red;
if a > b:

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

yes

Pairs are first compared using the xpart values. If these are equal, the ypart values
are compared.

You can mediate between two pairs using the off-the-way operation:

pair a,b,c;
a = (10,10);
b = (60,60);
c = 0.5[a,b];
draw_origin;
drawdot a;
drawdot b;
drawdot c withcolor red;
labelat((100,0), "c=(35,35)")

c=(35,35)

When using mediation with negative values, you have to keep in mind that unary
minus binds less forcefully than mediation:

pair a,b,c;
a = (10,10);
b = (60,60);
c = -1[a,b];
draw_origin;
drawdot a;
drawdot b;
drawdot c withcolor red;
labelat((100,0), "c=(-60,-60)")

c=(-60,-60)

The result here is (-60,-60) because the mediation is processed first (using the pos­
itive value of 1):

𝑎 + 𝑥 ∗ (𝑏 − 𝑎) → 10 + 1 ∗ (60 − 10) → 10 + 60 − 10
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And not until after this has been processed to (60,60) is the pair then negated,
whereas in:

pair a,b,c;
a = (10,10);
b = (60,60);
c = (-1)[a,b];
draw_origin;
drawdot a;
drawdot b;
drawdot c withcolor red;
labelat((100,0), "c=(-40,-40)")

c=(-40,-40)

The result is (-40,-40) because the mediation is processed with the value -1:

𝑎 + 𝑥 ∗ (𝑏 − 𝑎) → 10 + (−1) ∗ (60 − 10) → 10 − 60 + 10

For the last of the pair operations, when looking at a pair as a vector, it is often handy
to know the angle:

pair a; numeric d;
a = (200,100);
d = angle a;
draw_origin;
draw (origin--a);
drawdot a withcolor red;
labelat((120,0), "angle="&decimal d)

angle=26.56505117707799

Pen operations
Now let’s look at operations you can do on pens.There are just a few of those, because
pens as independent objects are not very useful.

Test if a variable is a pen:

pen mypen;
mypen = pencircle scaled 50;
draw_origin;
draw makepath mypen withcolor red;
if pen mypen:

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

yes

And, just like for paths, it is possible to find any one of the bounding box points of
a pen:

pen mypen; pair a;
mypen = pencircle scaled 50;
draw_origin;
a = ulcorner mypen;
draw makepath mypen withcolor red;
drawdot a withcolor red;

Also defined are the complementing primitives llcorner, lrcorner, and urcorner.
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Transform operations
Now let’s look at the operations you can do on transforms. Like with pens, there are
not a whole lot of them.

Test if a variable is a transform:
if transform identity:

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

yes

Extract any of the constituent parts:

transform id;
id = identity;
labelat((0,100), "xpart=" & decimal xpart id);
labelat((0,80), "ypart=" & decimal ypart id);
labelat((0,60), "xxpart=" & decimal xxpart id);
labelat((0,40), "xypart=" & decimal xypart id);
labelat((0,20), "yxpart=" & decimal yxpart id);
labelat((0,0), "yypart=" & decimal yypart id);

xpart=0

ypart=0

xxpart=1

xypart=0

yxpart=0

yypart=1

Compare a transform with another transform:

transform T,V;
T = identity;
V = T scaled 2;
if T<V:

labelat((100,0), "yes");
else:

labelat((100,0), "no");
fi

yes

Comparison of transforms tests xpart, ypart, xxpart, xypart, yxpart, yypart con­
secutively. Note that this assigns the most importance to the translation part of the
transformation, which may not be how you think about transformation matrix siz­
ing. In some cases it may be better to compare the xxpart and yypart explicitly.
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Wrap-up
This article documents all of the primitive operations relating to paths, pairs, pens,
and transforms.
Normally, onewould useMetaPost with a preloadedmacro package, and such a pack­
age will of course define extra operators, functions, predefined variables, et cetera.
For example, plain.mp defines all the extra identifiers already mentioned ear­
lier in this article, but also the pair constants left and down, the path con­
stants quartercircle, halfcircle, fullcircle and unitsquare, the pen constants
pensquare, penrazor and penspeck, and unary operators dir and unitvector for pairs
(vectors), inverse for transforms, and center for paths. And that is just in the first
200 lines or so of that macro package.
This article does not mention all of those additional definitions on purpose. It is very
long already, and adding just the definitions from plain.mpwould easily add another
20 pages, let alone the number of additions in MetaFun. For practical use of those
macro packages, you will have to look at their documentation. The goal here is to
show you the underpinnings beneath all of those smart macros. Nothing more, and
nothing less.

Taco Hoekwater
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Conditions and loops

Abstract
This article is about how to make your program decide what to do next: conditions and
loops.

Conditions
Conditions in MetaPost are both simple and a bit unexpected.
They are simple because there is only one command: if. The syntactical structure of
that command is simple as well: it is the keyword if followed by a condition test that
is closed off by a colon, then the replacement body and finally it ends with the closing
keyword fi. And as one would expect, conditions can contain nested conditions, and
there are provisions for alternatives (else and elseif).
The unexpected bit: conditions can be inserted (almost) everywhere and do not have
to adhere to syntactical structure rules except for their own internal ones. For exam­
ple, a nested condition can start halfway through the condition test and end some­
where in the middle of the replacement text of the outer condition. This allows for a
very flexible but also sometimes a little confusing or potentially obscure input code.
I find it helps to think of each if as an in-line preprocessor that stops at the next fi.
First, here is the formal definition of ⟨condition⟩:

⟨condition⟩ → if ⟨boolean expression⟩ : ⟨conditional text⟩⟨alternatives⟩ fi

⟨alternatives⟩ → ⟨empty⟩
| else : ⟨conditional text⟩
| elseif ⟨boolean expression⟩ : ⟨conditional text⟩⟨alternatives⟩

⟨boolean primary⟩ → ⟨boolean variable⟩
| true
| false
| ( ⟨boolean expression⟩ )
| begingroup ⟨statement list⟩⟨boolean expression⟩ endgroup
| known ⟨primary⟩
| unknown ⟨primary⟩
| ⟨type⟩⟨primary⟩
| cycle ⟨primary⟩
| odd ⟨numeric primary⟩
| not ⟨boolean primary⟩
| bounded ⟨primary expression⟩
| clipped ⟨primary expression⟩
| filled ⟨primary expression⟩
| stroked ⟨primary expression⟩
| textual ⟨primary expression⟩

⟨boolean secondary⟩ → ⟨boolean primary⟩
| ⟨boolean secondary⟩ and ⟨boolean primary⟩

⟨boolean tertiary⟩ → ⟨boolean secondary⟩
| ⟨boolean tertiary⟩ or ⟨boolean secondary⟩
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⟨boolean expression⟩ → ⟨boolean tertiary⟩
| ⟨numeric expression⟩⟨relation⟩⟨numeric tertiary⟩
| ⟨pair expression⟩⟨relation⟩⟨pair tertiary⟩
| ⟨transform expression⟩⟨relation⟩⟨transform tertiary⟩
| ⟨boolean expression⟩⟨relation⟩⟨boolean tertiary⟩
| ⟨string expression⟩⟨relation⟩⟨string tertiary⟩

⟨relation⟩ → < | <= | > | >= | = | <>

Condition tests
As you can see above, the ⟨boolean variable⟩s true and false are primitive keywords:

if true:
message "hi";

fi

Of course, this is a silly example.
However, new boolean variables can be declared:

boolean mystate;
mystate = true;

Boolean variables can then be used in if expressions:

if mystate:
message "hi";

fi

Note that declared boolean variables start off in the unknown state, just like all other
declared variables.

If you really want to, you can use parentheses to create a nested ⟨boolean expression⟩:

if (mystate):
message "hi";

fi

But as mentioned in the first paragraph of this article, if can be nested inside another
if without needing extra parentheses, so

if (if mystate: false else: true fi):
message "hi";

fi

and

if if mystate: false else: true fi:
message "hi";

fi

are equivalent. Usually MetaPost programmers do not use parentheses in situations
like this, because parentheses can be easily misunderstood as the syntax for a pair.
But in some cases, parenthesis might be needed to resolve syntactic precedence.
This was another silly example: the if mystate: false else: true fi condition
can be written much clearer and shorter using not mystate instead (see below).
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More important is that you can use grouping, because that allows execution of extra
statements ‘on the fly’:

if begingroup
mystate := false ;
mystate

endgroup:
message "hi";

fi

You can test whether a conditional value is (un)known:

if known mystate:
message "known";

fi
if unknown mystate:

message "unknown";
fi

Boolean variables are unknown unless initialized, but indeed known when they are
false as well as when they are true.

You can test for the variable type:

if boolean mystate:
message "boolean";

fi

this works for all other variable types as well (if path mystate: et cetera).

You can ask if something is a cyclic path:

if cycle fullcircle:
message "cyclic path";

fi

For ease of use this test works on anything, but of course it is only true for cyclic
paths.

You can ask if a ⟨numeric primary⟩ is odd:

if odd 5.5:
message "odd";

fi

A non-integer numeric is rounded before testing for even or oddness. However, the
rounding rule in MetaPost is a little weird: for halfway cases like this one, the odd
test rounds rigorously upward to the nearest integer before it decides, so while 5.5
is even, −5.5 is odd.
That is just for the halfway cases, though:

if odd -5.5004:
message "odd";

else:
message "even";

fi

will print out the string even, because −5.5004 rounds to −6 as one would expect.
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A ⟨boolean primary⟩ can be inverted (as seen earlier):

if not known mystate:
message "known";

fi

There are special if tests for objects inside pictures (pictures are explained in detail
in a different article):

if filled p:
message "filled";

fi

There are different keywords for each of the five different types of graphical objects
that can be contained inside pictures:

filled true for filled paths
stroked true for stroked paths
clipped true for clip objects
bounded true for setbounds objects
textual true for typeset text

The textual test may have unexpected results when you use external processing
for included text (for example btex ... etex in plain MetaPost or textext() in
ConTEXt) because such subsystems do not always translate the text to primitive op­
erations in a simple way. The textual test works on graphical objects created using
the low-level infont operation, which may or may not be used by such subsystems.

Actually you can apply these tests not just within within (see below about for-loops),
but also on an actual complete picture. Here is a simple example:

draw fullcircle;
fill fullsquare;
for a within currentpicture:

if stroked a:
message "stroked";

fi
endfor
if stroked currentpicture:

message "still stroked";
fi

This works because if their argument is of type picture, the tests test the first item
inside that picture.

Going down the syntax tree, a ⟨boolean primary⟩ can be composed of ⟨boolean secondary⟩
using and:

boolean mycondition;
if mystate and unknown mycondition:

message "state true but condition unknown"
fi

Similarly, a ⟨boolean secondary⟩ can be composed of ⟨boolean tertiary⟩ using or:

if mystate or unknown mycondition:
message "state true or condition unknown"

fi
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And tertiaries can by built up from expressions:

if 5 < 6:
message "universe still sane";

fi

relation tests are: < (less than), <= (less or equal), > (greater than), >= (greater or equal),
= (equal), and <> (not equal).

Alternatives
There is also a possible else clause:

if 5 < 6:
message "universe still sane";

else:
message "the sky is falling";

fi

And lastly, there is a chained elseif possible:

if 5 < 6:
message "universe still sane";

elseif mystate:
message "in limbo";

else:
message "the sky is falling";

fi

where the elseifs can be repeated.
There is always a colon required (marking the end of the condition), even in the lone
else case!

loops
Loops allow bits of code to be repeated until a certain condition is met.
Loops start with a ⟨loop header⟩ (for..., see below) and end with endfor.
Similar to conditions, loops can be inserted in the input nearly everywhere assuming
their replacement text is syntactically valid at that spot, including containing a loop
inside of another loop. However, there is a restriction related to conditions: loops
cannot be interwoven with the actual syntax of a conditional.
For example, this input generates an error:

if true:
for a = 1, 2: % WRONG!

elseif a>0:
message "found";

endfor
fi

endfor

The error happens because in the first loop iteration, when the alternative text fol­
lowing the elseif is processed, MetaPost cannot find its ending command (the
elseifwill not be ‘seen’ until the next iteration, and outer fi is unreachable because
it is not part of the loop text. You can still think of loops as in-line preprocessors, just
be careful if conditionals are also involved.
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Here is the formal syntax definitions for ⟨loop⟩:

⟨loop⟩ → ⟨loop header⟩ : ⟨loop text⟩ endfor

⟨loop header⟩ → for⟨symbolic token⟩⟨is⟩⟨for list⟩
| for ⟨symbolic token⟩⟨is⟩⟨progression⟩
| forsuffixes ⟨symbolic token⟩⟨is⟩⟨suffix list⟩
| forever
| for ⟨symbolic token⟩ within ⟨picture expression⟩

⟨is⟩ → = | :=

⟨for list⟩ → ⟨expression⟩ | ⟨empty⟩
| ⟨for list⟩ , ⟨expression⟩
| ⟨for list⟩ , ⟨empty⟩

⟨suffix list⟩ → ⟨suffix⟩
| ⟨suffix list⟩ , ⟨suffix⟩

⟨progression⟩ → ⟨initial value⟩ step ⟨step size⟩ until ⟨limit value⟩

⟨initial value⟩ → ⟨numeric expression⟩

⟨step size⟩ → ⟨numeric expression⟩

⟨limit value⟩ → ⟨numeric expression⟩

⟨exit clause⟩ → exitif ⟨boolean expression⟩ ;

Loop commands
Loops can be created using an explicit expression list:

for a = "1","2","3":
message (a);

endfor

As shown by the formal syntax, you can use := instead of = if you want:

for a := "1","2","3":
message (a);

endfor

There is no difference between these two examples.
Within each loop iteration, the ⟨symbolic token⟩ becomes a freshly created local-only
temporary alias of the current object in the ⟨for list⟩.
With this example:

for a := "1",2,(origin--cycle),d:
show a;

endfor

the local a will in turn be interpreted as a known string, known numeric, known
path, and the symbolic variable d.
If for some reason you need to access the existing symbolic token a from inside the
loop, you have to use quote a as explained in the article about MetaPost definitions,
like you would inside inside a macro definition body.
The iterator variables (a in the example) are essentially identical to formal arguments
inside macro definitions. Iterator variables are read-only.
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You can also start a loop using a numeric progression:

for a = 1 step 1 until 3:
message (decimal a);

endfor

It should be obvious that in this case the three numerics from the ⟨progression⟩ all have
to produce known values.
In most MetaPost macro packages there is a macro named upto available that is
defined as step 1 until. This allows for more natural input:

for a = 1 upto 3:
message (decimal a);

endfor

You can also do a loop over a list of suffixes:

vardef mymessage @# =
message (decimal @#)

enddef;

forsuffixes a = 1, 2:
mymessage.a;

endfor

This type of loop is very useful for (typically short) lists of ‘familiar’ suffixes. For
example, it is used in the plain.mp definitions of dotlabels and penlabels. Again, see
the the article about MetaPost definitions for a detailed description of what suffixes
are.

If the number of possible loop iterations cannot be determined beforehand, you can
start a loop with the keyword forever:

forever:
message ("eternal");

endfor

Especially with forever: (but also with the other loop types), it is also useful to be
able to abort a loop mid-iteration:

a = 0;
forever:

message ("eternal");
exitif a>10;
a := a + 1;

endfor

MetaPost does not have a way to skip to the next iteration but still remain in the
loop (like ‘continue’ in the language C). If you need that functionality, you will have
to enclose some (or all) of the loop body inside a conditional.

Finally, there is a way to loop over a picture's content:

for a within currentpicture:
if stroked a: message "stroked"; fi

endfor

The explanation of stroked and friends was already done earlier in this article, and
pictures are the subject of another article.
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Final words
This was a rather short article, because there are not that many primitives that con­
trol program flow inside MetaPost. This may feel as an oversight in the language if
you are used to languages with more elaborate structures like symbolic switch state­
ments and generic list filters. But at the most basic level, all program flow is just a
combination of conditionals and jumps. MetaPost's set of built-in operations may be
small and low-level, but it is sufficient. And nothing stops you from defining more
complex flow control commands on top of those built-in operations.
Here is one such example (like the definition of upto seen earlier), the definitions of
range and thru from plain.mp, that allow you to use shortcut ranges inside lists of
suffixes, like so:

labels(1, range 100 thru 124, 223)

These definitions internally use a loop to generate an explicit list of suffixes for the
outer labels command to use.
To end this article, here is another very small but useful definition from plain.mp:

def exitunless expr c = exitif not c enddef;

Taco Hoekwater
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Colors and pictures

Abstract
This article is about MetaPost output. MetaPost produces graphics by means of picture
variables that can contain a few different object types. The most important drawing object
types can be colorized, so the first part of this article will talk about color data structures.

Colors
Color models
In order to understand how MetaPost handles color, it is necessary to understand a
little bit about color models. Explaining that prerequisite knowledge in this article
would make it much too long, so the assumption is made that you at least under­
stand the difference between the basic principle behind greyscale, RGB, and CMYK
specifications as ways to describe colors.
For once, this section does not start with a formal syntax. The formal specification
would not really help because almost all the information we need cannot be seen in
the expression syntax: parsing colors is easy for MetaPost. The interpretation that
needs to happen after the reading has been done is the complicated bit.
MetaPost internally has four color models, any one of which can be chosen to do
actual output with. Each of the color models also has an associated data type that
can be used to define variables with that color model as its ‘type’:

� No model: boolean
� Greyscale: numeric
� RGB: rgbcolor (this is the initial default color model)
� CMYK: cmykcolor

None of these color models have an alpha/opacity component.
There is an internal variable defaultcolormodel that allows you to set a default color
model:

defaultcolormodel := 5; % RGB

Each of the four color models MetaPost supports has an integer value associated
with it, and these are the numerics used with defaultcolormodel. The numbers are:
No model: 1, Greyscale: 3, RGB: 5, and CMYK: 7.
In case you are wondering: they are all odd because MetaPost uses the values 0, 2, 4,
and 6 internally to signify ⟨unknown⟩ variables in each of these color models.
When you ask MetaPost to create a graphic element (a path or picture, as will be
discussed in the next section) there are primitive operations to specify both the color
model and the color value that is to be used while adding this object to the picture
it will become part of.
The next set of examples use draw as example of creating a graphic element. All of the
examples produce output with the color value ‘black’, depending on how that is done
within that particular color model.The examples use draw as an educational shortcut,
but in reality they apply to one of the primitive operations that will be discussed in
the next section. A typical definition of the draw macro does more work than just
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a single primitive operation, so please focus on the color differences between the
examples only.

First up, there is the option to use the current default:

draw p;

which uses a suitable ‘black’ definition for the current defaultcolormodel.

To use an explicit black greyscale when drawing a path:

draw p withgreyscale 0;
% or its alias:
draw p withcolor 0;

To use an explicit black RGB when drawing a path:

draw p withrgbcolor (0,0,0);
% or its alias:
draw p withcolor (0,0,0);

To use an explicit black CMYK when drawing a path:

draw p withcmykcolor (0,0,0,1);
% or its alias:
draw p withcolor (0,0,0,1);

From the above, you can see that withcolor is smart about what argument it gets
and automatically picks the correct color model based on that value's specification.
It will do the same thing if the value is a named variable. Use of the withcolor alias
is recommended because it is shorter and (when used with color variables instead of
literal values) it allows you to switch to a different color model without having to
manually change every drawing command.
You will probably have noticed that the preceding examples covered only three of
the four color models. The ‘No color’ color mode needs a bit more explanation.
The equivalent of

draw p;

is this:

draw p withcolor true;

Which uses the ‘No model’ color model to explicitly enable the black initialization.
On its own that is not valuable. The real reason for the ‘No model’ is seen when the
color model is used as a negation.
To skip black initialization when drawing a path, you can do this:

draw p withoutcolor;
% or its alias:
draw p withcolor false;

In this situation, the current object (p) will have no color information attached to it
at all. No default ‘black’ will be output, so this object will be drawn with the color
of the preceding object, if there is one. Be warned though that if this is the very first
object to be output, it is likely it will still come out as black because usually printing
systems start by initializing a default black color value.
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Color variables
Variables of all color model types can be created using:

boolean mynocolor;
numeric mygreycolor;
rgbcolor myrgbcolor;
cmykcolor mycmykcolor;

As we saw earlier in the literal color model syntax examples, the input syntax for
rgbcolor is a triplet of ⟨numeric expression⟩s inside parentheses, and for cmykcolor it is
a quartet of ⟨numeric expression⟩s.
Just like pairs have xpart and ypart to access the parts of the variable, there are
dedicated primitives for the RGB and CMYK color model parts as well.
For RGB:

redpart myrgbcolor;
greenpart myrgbcolor;
bluepart myrgbcolor;

For CMYK:

cyanpart mycmykcolor;
magentapart mycmykcolor;
yellowpart mycmykcolor;
blackpart mycmykcolor;

For orthogonality, there is also a primitive for the single greyscale part of a ⟨numeric⟩:

greypart mygreycolor;

These eight primitives can be used in equations, just like their pair counterparts.
The ⟨numeric expression⟩s that are used for the color parts in colors are treated a bit spe­
cial when they are used as part of one of the primitive drawing commands. Most
importantly, no error is produced when any of the parts are unknown or outside of
the [0, 1] range.They are just silently clipped to fit within the range. It is your respon­
sibility as programmer to make sure that all the combination of ⟨numeric expression⟩s
actually make sense as a color value.

Operations on colors
There are relatively few operations MetaPost can perform on RGB or CMYK colors
as a singular object. Quite a lot of operations can already be done by manipulating
the separate parts that were mentioned in the previous section, so there is little need
for color-specific operators. Still, there are a few operations at ‘top level’ available.
You can multiply or divide color variables by a numeric:

rgbcolor myrgb;
myrgb = (0.5,0.5,0.5) * 1.5;
% => (0.75,0.75,0.75)

Or you can add or subtract two colors of the same type:

rgbcolor myrgb;
myrgb = (0.5,0.5,0.5) + (0.25,0.25,0.25);
% => (0.75,0.75,0.75)
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You can also find the ‘along-the-way’ between two colors:
rgbcolor myrgb;
myrgb = .5[(0.5,0.5,0.5),(0.25,0.25,0.25)];
% => (0.375,0.375,0.375)

And colors can be negated:
rgbcolor myrgb;
myrgb = -(0.5,0.5,0.5);
% => (-0.5,-0.5,-0.5)

Finally, you can compare colors of the same type with each other:
rgbcolor myrgb, myrgba;
myrgb = (0.5,0.5,0.5);
myrgba = (0.25,0.25,0.25);
if myrgb > myrgba:

message "true";
fi

Such tests process each component in order, and stop as soon as they notice a differ­
ence.
Operations on color variables like these may seem a bit useless at first glance, but
the MetaPost macro packages that do three-dimensional drawings typically depend
on color-based triplets or quartets as their data structures for points in space.

Pictures
MetaPost uses ⟨picture⟩s to internally store and eventually output graphical items.
Here is the syntax tree for specifying ⟨picture⟩s:

⟨picture primary⟩ → ⟨picture variable⟩
| nullpicture
| (⟨picture expression⟩)

⟨picture secondary⟩ → ⟨picture primary⟩
| ⟨picture secondary⟩⟨transformer⟩

⟨picture tertiary⟩ → ⟨picture secondary⟩

⟨picture expression⟩ → ⟨picture tertiary⟩

⟨addto command⟩ → addto⟨picture variable⟩also⟨picture expression⟩⟨option list⟩
| addto⟨picture variable⟩contour⟨path expression⟩⟨option list⟩
| addto⟨picture variable⟩doublepath⟨path expression⟩⟨option list⟩

⟨option list⟩ → ⟨empty⟩ | ⟨drawing option⟩⟨option list⟩

⟨drawing option⟩ → withcolor⟨color expression⟩
| withrgbcolor⟨rgbcolor expression⟩
| withcmykcolor⟨cmykcolor expression⟩
| withgreyscale⟨numeric expression⟩
| withoutcolor
| withprescript⟨string expression⟩
| withpostscript⟨string expression⟩
| withpen⟨pen expression⟩
| dashed⟨picture expression⟩

There are simple parts like ⟨transformer⟩ and subexpressions in parentheses that can be
skipped because we have talked about those before. The expression part of this syn­
tax diagram is quite unremarkable, except for mentioning the one predefined picture
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variable: nullpicture. But this is a really important variable, because nullpicture is
the way to create or reset a picture variable to the ⟨known⟩ (and empty) state.

Creating pictures and adding to them
Before you look at the examples below, there is some information you should know.
The examples use a predefined path with the name heart, like this:

path heart;
heart := (0,0){dir 30}..{up}(20,20)..

{left}(10,30)..
{dir -150}(0,25){dir 150}..
{left}(-10,30)..{down}(-20,20)..
{dir -30}cycle;

and a picture arrow_pic that already contains a simple graphic. The complete defin­
ition for that picture is:

path t_,h_,a_;
picture arrow;
arrow := nullpicture;
t_ := (-4,19){down}..{right}(0,15)

{left}..{down}(-4,11);
h_ := t_ shifted (45,0);
a_ := (0,15)--(45,15);
def stroke_ =

withpen pencircle scaled 1
enddef;
addto arrow doublepath t_ stroke_;
addto arrow doublepath a_ stroke_;
addto arrow doublepath h_ stroke_;
arrow := arrow rotated -30

shifted (-25,12);

The last line of an example is typically

shipout A;

We will talk about the shipout command (and the withpen option) a bit later in the
article. Now let's start with the examples ...

You create a new picture variable using picture:

picture A;

however, this creates a picture variable with the ‘unknown’ state. To convert it to a
usable state, you always have to initialize it from another picture, for example:

picture A;
A = nullpicture;

Use an assignment (:=) instead of an equation (=) if you need to clear the receiving
picture.
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You can add another picture to a picture:

picture A,B;
A = nullpicture;
B = arrow;
addto A also B;
shipout A;

Add a stroked path to a picture:

picture A;
A = nullpicture;
addto A doublepath heart;
shipout A;

Add a filled path to a picture:

picture A;
A = nullpicture;
addto A contour heart;
shipout A;

The path must be cyclic for contour to work, because it needs a closed path to fill.

Adding a text label to a picture:

picture A,B;
A = nullpicture;
B = "a" infont "cmr10" scaled 4;
addto A also B;
shipout A;

a
The infont operation is a bit special because it literally creates a picture and therefore
it wants to be pairedwith a non-initialized picture variable.There is no need to assign
nullpicture to B first. In fact, if B is a ‘known’ variable at this point, you will get the
Redundant or inconsistent equation. error.

All three of the ⟨addto command⟩ versions accept a list of options that we will discuss
shortly.
At the expression level, a picture expression can be transformed in all the normal
ways:

picture A,B;
A = nullpicture;
B = arrow;
A := B scaled 2;
shipout A;
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or (for example)

picture A,B;
A = nullpicture;
B = arrow;
addto A also B scaled 2 rotated 60;
shipout A;

Options to the addto command
The addto command forms accept various options.
We have already encountered the color options:

withcolor⟨color expression⟩
withrgbcolor⟨rgbcolor expression⟩
withcmykcolor⟨cmykcolor expression⟩
withgreyscale⟨numeric expression⟩
withoutcolor

It is useful to know that when multiple color options are specified, the last one in
the sequence ‘wins’.
Here are a few examples:

picture A,B;
A = nullpicture;
B = arrow;
addto A also B

withrgbcolor (0.2, 0.7, 0.2);
shipout A;

picture A;
A = nullpicture;
addto A contour heart

withcmykcolor (0.2, 0.7, 0.2, 0);
shipout A;

picture A;
A = nullpicture;
addto A contour heart

withcmykcolor (0.2, 0.7, 0.2, 0);
addto A also arrow

withcolor (0.2, 0.7, 0.2);
shipout A;

picture A;
A = nullpicture;
addto A contour heart

withcmykcolor (0.2, 0.7, 0.2, 0);
addto A also arrow

withgreyscale 0.75;
shipout A;
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picture A;
A = nullpicture;
addto A contour heart

withcmykcolor (0.2, 0.7, 0.2, 0);
addto A also arrow;
shipout A;

The withpen option allows specifying a pen:

picture A;
A = nullpicture;
addto A doublepath heart

withpen pencircle scaled 5;
shipout A;

This also works for the contour case, where it then does ‘filldraw’:

picture A;
A = nullpicture;
addto A contour heart

withcmykcolor (0.2, 0.7, 0.2, 0)
withpen pencircle scaled 5;

shipout A;

The example above uses a single color for both the filling and the stroking. If you
want to use separate colors for each, you have to add two items to the image:

picture A;
A = nullpicture;
addto A contour heart

withcmykcolor (0.1, 0.6, 0.1, 0);
addto A doublepath heart

withcmykcolor (0.2, 0.7, 0.2, 0)
withpen pencircle scaled 5;

shipout A;

With dashed, it is possible to specify a dash pattern to use for stroking a path.This ac­
cepts a picture as argument, so that needs be exist first. One of the simplest examples
looks like this:

picture A,B;
A = nullpicture;
B = nullpicture;
addto B doublepath (0,0)--(2,0);
addto B doublepath (6,0)--(8,0);
addto A doublepath heart

dashed B;
shipout A;

Dash patterns are quite special pictures. When the dash pattern gets used, MetaPost
flattens whatever the content of the picture is onto the 𝑥 axis. The left-most and
right-most 𝑥 values define the bounds of the pattern. The set of produced 𝑥 values
will then be used as the pattern to use to stroke the path the dash pattern is applied
to. MetaPost will repeat that whole picture as a pattern if needed, but it will initially
start at 𝑥 = 0. This allows shifting of the pattern.
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Here are the dashes from the example above again, but now applied to a straight line.
I also added a dot to show to (0,0) point:

picture A,B;
A = nullpicture;
B = nullpicture;
addto A doublepath (0,0)

withpen pencircle;
addto B doublepath (0,0)--(2,0);
addto B doublepath (6,0)--(8,0);
addto A doublepath (0,0)--(48,0)

dashed B;
shipout A;

Note that the dash picture produces a repeating pattern 2 units on, 4 units off, 2 units
on. The middle dashes in the example output are the same width as the gaps because
they consist of the last part of the first repetition and the first part of the second
repetition (and that repeated five times).
Shifting the pattern to the left by two units allows it to start with a gap.

picture A,B;
A = nullpicture;
B = nullpicture;
addto A doublepath (0,0)

withpen pencircle;
addto B doublepath (0,0)--(2,0);
addto B doublepath (6,0)--(8,0);
addto A doublepath (0,0)--(48,0)

dashed (B shifted (-2,0));
shipout A;

There are lots of rules for dash patterns because MetaPost typically uses primitive
support in the backend to handle the actual dashing (e.g. setdash for Encapsulated
PostScript output):

� A dash pattern should not contain text or filled objects (so only non-cyclic paths
are allowed)

� None of the paths may overlap when projected on the 𝑥 axis (and all the 𝑦 coor­
dinates are ignored)

� Any used pens (withpen) are ignored.
� Color settings (withcolor c.s.) are simply not allowed at all.

The last two limitations come from the fact that a dash patterns uses the pen and
color of the object they are applied to. Finally, dashed does not work well with pens
other than pens derived from pencircle. Again, this is because of limitations in the
backend(s).

The final two options are for specifying pre- or postscripts:

withprescript⟨string expression⟩
withpostscript⟨string expression⟩

These can be useful when generating EPS or SVG output. It is not possible to give an
actual example inside this (ConTEXt-processed) article, because ConTEXt uses these
primitives for its own purposes, unfortunately.
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But here is a listing of an example that assumes the default EPS output mode in
standalone MetaPost:

picture A;
A = nullpicture;
addto A doublepath (0,0)

withprescript "start1"
withprescript "start2"
withpostscript "stop1"
withpostscript "stop2";

shipout A;
end.

When the above is processed by MetaPost, it will create an output file containing the
typical EPS preamble followed by:

start2
start1
0 0 0 setrgbcolor 0 0 dtransform truncate idtransform setline...

newpath 0 0 moveto 0 0 rlineto stroke
stop1
stop2
showpage

The withprescript and withpostscript options are therefore a lot like special in
TEX: if you are familiar with PostScript (or SVG, for that output format), you can use
these options to tweak the output to support features that are not possible within
MetaPost itself, like for example spot colors or transparency.
Two uses of each option are included in the example to show off the relative ordering
in the output when either one of them is specified more than once.

Picture commands
Possibly the most important command that can be used with a picture is shipout,
because that instructs MetaPost to open an output file for the picture and convert its
contents to the correct format. Using the command itself is simple:

shipout A;

This uses the internal variables outputformat and outputtemplate to construct the
filename to be used.

There is a command to clip a picture to a path:

picture A;
path p;
...
clip A to p;

This path can have any shape, but it must be cyclic.

Set the bounding box of a picture to a path:

picture A;
path p;
...
setbounds A to p;

the path must be cyclic, and is always simplified to a rectangle based on the smallest
and largest 𝑥 and 𝑦 values of the path's explicit points.
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You can ask for the corners of a picture:

picture A;
pair t;
...
t = llcorner A;
% also lrcorner, urcorner, ulcorner

Finally, it is possible to loop over de contents of a picture using the within operator.
Using the for ... within operation, it is possible to ask for the constituent parts of
each of the drawing items in a picture. The part names are given in a condensed
form in the following examples. By recombining the extracted parts, it is possible to
completely reconstruct a picture.
For these tests, you may have to check the type with an if test (one of filled,
stroked, clipped, bounded, textual, as discussed in the article about conditionals)
first, because not all graphical objects have all parts.
Here is the list:

Pre- and postscripts:

string part;
for v within A:

part := prescriptpart v;
% postscriptpart
endfor

Transformation parts:

numeric part;
for v within A:

part := xpart v;
% ypart xxpart yypart xypart yxpart
endfor

Color model and/or color part

numeric part;
for v within A:

part := colormodel v;
endfor

Color parts (RGB)

numeric part;
for v within A:

part := redpart v;
% bluepart greenpart

endfor

Color parts (CMYK)

numeric part;
for v within A:

part := cyanpart v;
% magentapart yellowpart blackpart

endfor
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Color parts (grey)

numeric part;
for v within A:

part := greypart v;
endfor

The dash part (which is itself a picture):

picture part;
for v within A:

part := dashpart v;
endfor

The pen part:

pen part;
for v within A:

part := penpart v;
endfor

The path part:

path part;
for v within A:

part := pathpart v;
endfor

The text part of a label:

string part;
for v within A:

part := textpart v;
endfor

The font part of a label:

string part;
for v within A:

part := fontpart v;
endfor

Summary
That wraps up this article about the primitive operations on pictures and colors. As
usual, many of the commands mentioned here are normally hidden behind macro
definitions. In particular, as far as I know all of the MetaPost macro packages define
a macro draw for adding stroked paths and a macro fill for adding filled paths to
a picture. These are then used in combination with a predefined picture variable
called currentpicture. Macros packages usually predefine the primary RGB colors
red, green, and blue as well.
Maybe more higher level commands are available. For that, you will have to check
the documentation of the macro package you are using.

Taco Hoekwater


